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Abstract

This thesis deals with the asymptotic behaviour of stochastic difference and functional differential equa-
tions of Itô type. Numerical methods which both minimise error and preserve asymptotic features of the
underlying continuous equation are studied. The equations have a form which makes them suitable to model
financial markets in which agents use past prices. The second chapter deals with the behaviour of moving
average models of price formation. We show that the asset returns are positively and exponentially cor-
related, while the presence of feedback traders causes either excess volatility or a market bubble or crash.
These results are robust to the presence of nonlinearities in the traders’ demand functions. In Chapters 3 and
4, we show that these phenomena persist if trading takes place continuously by modelling the returns using
linear and nonlinear stochastic functional differential equations (SFDEs). In the fifth chapter, we assume
that some traders base their demand on the difference between current returns and the maximum return over
several trading periods, leading to an analysis of stochastic difference equations with maximum functionals.
Once again it is shown that prices either fluctuate or undergo a bubble or crash. In common with the earlier
chapters, the size of the largest fluctuations and the growth rate of the bubble or crash is determined. The
last three chapters are devoted to the discretisation of the SFDE presented in Chapter 4. Chapter 6 high-
lights problems that standard numerical methods face in reproducing long–run features of the dynamics of
the general continuous–time model, while showing these standard methods work in some cases. Chapter 7
develops an alternative method for discretising the solution of the continuous time equation, and shows that
it preserves the desired long–run behaviour. Chapter 8 demonstrates that this alternative method converges
to the solution of the continuous equation, given sufficient computational effort.
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Chapter 1

Introduction

1.1 Summary and Overview
The thesis examines stochastic systems with memory; initially it involves studying the asymptotic properties
of stochastic difference and differential equations. In particular the thesis examines the rate at which the
solutions of certain stochastic delay differential equation (SDDE) tend to an infinite limit or the size of
fluctuations of the equations. The equations examined all result from models of the inefficient financial
markets, in which inefficiency stems from the trading strategy of agents.

The first aim of the thesis is to highlight the fact that different feedback trading strategies led to the same
two types of asymptotic behaviour, which depend on parameters in the models. These parameters can be
interpreted in terms of the confidence of the traders and the amount of feedback they take from the past. In
one regime the models display random walk behaviour which obeys Law of the Iterated Logarithm (LIL)

lim sup
n→∞

X(n)√
2n log log n

= σ = − lim inf
n→∞

X(n)√
2n log log n

,

where the increments of X(n) (the returns) are not independent. These fluctuations in the returns are quite
volatile but controlled. In the other regime however, an event occurs or news enters the market in an initial
trading period which triggers a trend to emerge in the returns. This trend encourages feedback traders into
further buying (selling) which increases (decreases) the price. This upward (downward) spiral continues
and a bubble (crash) ensues.

The second aim is to analyse the discretisation of the continuous-time SDDE which are in keeping with
real world problems. We examine the effectiveness of the standard Euler-Maruyama method. This method
is inadequate for long-run simulations and we propose an alternative discretisation method which preserves
the correct asymptotic behaviour of the continuous equation and also converges like conventional Euler-
Maruyama methods.

The type of stability that has been established for this class of equations is important in a variety of real–
world problems which involve feedback from the past, and are subject to external random forces. Examples
include population biology (Mao [51]),( Mao and Rassias [53, 54]), neural networks (cf. e.g. Blythe et
al. [20]), viscoelastic materials subjected to heat or mechanical stress (Drozdov and Kolmanovskii [31]),
(Caraballo et al. [27]), (Mizel and Trutzer [61, 62]), or financial mathematics (Anh et al. [1, 2]), (Arrojas et
al. [14]), (Hobson and Rogers [38]), and (Cont and Bouchaud [21]).

In particular, stochastic difference and differential equations may be used to model inefficient financial
markets. Surveys of financial markets reveal that a persistently high proportion of traders use past prices as
a guide to making investment decisions. Such feedback trading strategies are thought to be responsible for
speculative asset bubbles and crashes; this feedback behaviour is absent from standard non–delay models.
It is therefore plausible to postulate that aggregate demand is functional of past prices. In which case, price
dynamics could be modeled by stochastic difference and differential equations.

We first consider a stochastic delay difference equation with a simple trading strategy. We assume that
the traders demand for the asset depends on the difference between a weighted average over the last N1− 1
periods of the cumulative return on the stock in the short run and N2 − 1 in the long-run. We also assume
that speculator’s react to other random stimuli–”news” which is independent of past returns. This news
arrives at time (n + 1) adding a further ξ(n + 1) to the traders’ excess demand, where ξ ∼ N(0, 1). The
stochastic delay difference equation is of the form

Y (n+ 1) = Y (n) + β

N1−1∑
j=0

w1(j)Y (n)−
N2−1∑
j=0

w2(j)Y (n− j)

+ ξ(n+ 1) n ∈ N

Y (0) = 1, Y (n) = 0, n < 0.

If the trend following speculators do not react very aggressively to the differences between short-run and
long-run historical returns then the rate growth of the partial maxima of the solution is the same as that
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of a random walk. However if the contrary is true, then the returns will tend to plus or minus infinity
exponentially fast. The proof of these results involve writing the resolvent Y (n) in terms of the deterministic
equation and variation of constants formula. In the latter part of the chapter we study the behaviour of the
non–linear stochastic delay difference equation namely

X(n+ 1) = X(n) +

N1−1∑
j=0

w1(j)g(X(n− j))−
N2−1∑
j=0

w2(j)g(X(n− j))

+ ξ(n+ 1) n ∈ N

X(0) = 1, X(n) = 0, n < 0,

where g : R → R is presumed to have the following property

g ∈ C(R; R); lim
|x|→∞

g(x)
x

= β for someβ ≥ 0.

i.e. g is asymptotically linear at infinity. We show how the asymptotic behaviour of the non–linear equation
mimics that of the linear equation by rewriting the non–linear equation in terms of the linear equation and
a controllable equation. By dropping the assumption that the noise is normally distributed and adopting
the property that the tails of the noise exhibit polynomial decay then we can show that the system’s tails
are fatter at the extremes than a normal distribution. If we assume that the cumulative returns follow a
correlated random walk then the upper and lower bounds on the rate of growth of the partial maxima,
X(n) − X(n − ∆) are exactly the same as those which apply to the innovation (or ”news”) process ξ.
This indicates that the distribution of the noise term strongly characterizes the distribution of the returns.
This proof hinges on writing the equation for the ∆–returns in terms of a difference equation. We also note
that in the stable case the ∆-returns are positively correlated at all time horizons. This is the feature of the
economic model which is responsible for the excess volatility and bubbles. This proof uses results proved
in various lemmas throughout the chapter.

In chapter 3 the continuous linear analogue of the model in the previous chapter is considered. However
we have chosen to model the speculators’ behaviour using finite measures rather than through fixed delays
of continuous averages of past returns. This allows us to capture a very wide variety of moving average–
type strategies within the same model including continuous time moving averages. It also highlights the
fact that the manner in which traders compute their moving averages is unimportant in determining the
ultimate dynamics. This is important in any mathematical model in economics, as model assumptions are
unlikely to be satisfied in reality, rendering general models which are robust to changes in the assumptions
particularly desirable. Chapter 4 considers the continuous nonlinear analogue of chapter 2. The proofs of
the main theorems in these two chapters mimic the proofs from chapter 2.

In chapter 5 we assume that the traders adopt a new trading strategy where trades are based on a com-
parison of current prices with a reference level. As with the previous equations we assume that traders
can respond to ”news” where ξ is assumed to be either heavy or thin tailed. This type of speculative be-
haviour makes it reasonable to incorporate a maximum functional of the process on the right–hand side of
the stochastic difference equation. For these reasons we are led to analyse a stochastic functional difference
equation of the form

X(n+ 1) = X(n) + αX(n) + β max
n−N≤j≤n

X(j) + ξ(n+ 1) n ≥ 0,

where ξ is the news and α and β > 0 are constants which model the trading behaviour of the various classes
of speculators. If the speculators do not react very aggressively to the difference between the maximum
and the current returns the rate of growth of the partial maxima of the solution is the same as that of the
noise term where the ξ are assumed to be either thin–tailed or heavy–tailed. However if the contrary is
true, the volatility in the market increases and subsequently the upper and lower bounds of the noise are
pushed higher and lower respectively. This causes a bubble or crash to occur. All the results are proved by
contradiction.

In chapter 6 we consider the discretisation of two continuous stochastic delay equations

dX(t) =

 m∑
j=1

αjg(X(t− θj))−
p∑
j=1

βjg(X(t− τj))

 dt+ σ dB(t), t ≥ 0
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and

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt+ σ dB(t), t ≥ 0. (1.1.1)

in which the weight functionsw1 andw2 are continuous. First we show that the simple Euler method discre-
tises the first equation successfully and that the asymptotic behaviour of the discretisation preserves that of
the continuous equation. However this is not the case for the second equation. The problem arises because
zero is a solution of the characteristic equation of the underlying linear differential resolvent. Moreover zero
can be the solution with largest real part. The Euler method does not ensure that the underlying discretised
characteristic equation has a unit solution. Although it is possible to modify the Euler method so this will
be the case, errors arising from truncation and rounding–off make it unsuccessful in practice. Only with the
removal of this unit solution is the correct asymptotic behaviour displayed. This is shown in the penultimate
chapter. Theorems in this chapter are derived in a manner similar to that of chapter 2, 3 and 4.

The final chapter shows that it is possible to perform a uniform discretisation of (1.1.1) which preserves
the positivity and exponentially fading memory present in the autocovariance function of increments of the
process X . This ensures that the discretisation captures the short–run and long–run asymptotic behaviour
of the continuous equation. In the final chapter we even show that this discretisation method obeys

lim
h→0+

E
[

max
0≤t≤T

|X̄h(t)−X(t)|2
]

= 0, for any T > 0, (1.1.2)

where X̄h is a piecewise constant process defined on [0, T ] for which X̄h(t) = X̂h([t/h]) for t ≥ 0. The
condition (1.1.2) is enjoyed by conventional Euler–Maruyama methods for stochastic functional differential
equations. This result is proved by adopting similar techniques to those employed by Mao.

1.2 Preliminaries
In this section, we give some results, notation and terminology from real and stochastic analysis that will
be used throughout the thesis.

Let N denotes the integers 0, 1, 2, . . ., and R the real line. A real sequence a = {a(n) : n ∈ N} obeys
a ∈ `1(N; R) if

∑
n∈N |a(n)| <∞.

Landau notation. In subsequent work it is necessary to characterise the asymptotic behaviour of functions.
The Landau notation often helps in this regard by means of the symbols o and O.

The symbol O is used to describe an asymptotic upper bound for the magnitude of a function in terms of
another, usually simpler function. So for example suppose g : R → R and f : R → (0,∞) are measurable
functions and that g(t) = O(f(t)) as t → ∞. This notation signifies that g(t) exhibits a growth that is
limited to that of the function f according to

lim sup
t→∞

|g(t)|
f(t)

< +∞.

On the other hand, if g : R → R and f : R → (0,∞) are measurable functions are such that g(t) = o(f(t))
as t→∞, then g is related to f according to

lim
t→∞

g(t)
f(t)

= 0.

Gronwall’s Inequality. If Q : [0,∞) → [0,∞) is continuous and is such that

Q(t) ≤ A+
∫ t

0

B(t′)Q(t′) dt′ for all t

3



where B is a non–negative locally integrable function and A > 0 is some constant, then

Q(t) ≤ A exp
(∫ t

0

B(t′) dt′
)
, t ≥ 0.

Z–Transform. The z–transform of a sequence x(n) which is identically zero for negative integers n is
defined by

x̃(z) =
∞∑
j=0

x(j)z−j for all z ∈ C.

The set of numbers z in the complex plane where x̃(z) converges is called the region of convergence where

lim
j→∞

∣∣∣∣x(j + 1)
x(j)

∣∣∣∣ = R.

Then by the Ratio Test, the infinite series x̃(z) converges if

lim
j→∞

∣∣∣∣x(j + 1)z−j−1

x(j)z−j

∣∣∣∣ < 1 |z| > R

and diverges if

lim
j→∞

∣∣∣∣x(j + 1)z−j−1

x(j)z−j

∣∣∣∣ > 1 |z| < R.

Properties of the z-transform. If α and β ∈ R

˜(αx+ βy)(z) = αx̃(z) + βỹ(z).

If x(−i) = 0 for i = 1, 2, · · · , k then

z[x(n− k)] = z−kz̃(x) for |z| > R

and

z[x(n+ k)] = zkz̃(x)−
k−1∑
r=0

x(r)zk−r |z| > R.

The Final Value Theorem. Suppose L = limz→1(z−1)x̃(z) is finite. Then limn→∞ x(n) =: x(∞) is finite
and x(∞) = L.
The convolution of f = {f(n) : n ∈ N} and g = {g(n) : n ∈ N}, f ∗ g, is a sequence defined by n ∈ N.

(f ∗ g)(n) =
n∑
k=0

f(n− k)g(k) =
n∑
k=0

f(k)g(n− k).

The z-transform of the convolution is then given by

(̃x ∗ y)(z) = x̃(z)ỹ(z).

Integrable Functions in the Deterministic Sense. If J is an interval in R and V a finite–dimensional
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normed space, with norm || · ||, then C(J, V ) denotes the family of continuous functions φ : J → V . The
space of Lebesgue integrable functions φ : (0,∞) → V will be denoted by L1((0,∞), V ), where∫ ∞

0

||φ(t)|| dt <∞

The space of Lebesgue square–integrable functions φ : (0,∞) → V will be denoted by L2((0,∞), V )
where ∫ ∞

0

||φ(t)||2 dt <∞.

Where V is clear from the context it is omitted from the notation. Note that a function of domain J that
belongs to L1(K,V ) for every compact subset K of J is known as a locally integrable function.

Convolutions. The convolution of A : [0,∞] → R and B : [0,∞] → R is denoted by A ∗ B and defined
by the function given by

(A ∗B)(t) =
∫ t

0

A(t− s)B(s) ds, t ≥ 0

Laplace Transform. The Laplace transform of the function x : [0,∞) → R is defined as

x̂(z) =
∫ ∞

0

x(t)e−zt dt

If ε ∈ R and
∫∞
0
||x(t)||eεt dt <∞ then x̂(z) exists for Rez ≥ ε and is analytic for Rez > ε. The following

property of the Laplace transform is useful: if x and y ∈ L1(0,∞) then

(̂x ∗ y)(z) = x̂(z)ŷ(z) Rez ≥ 0.

1.2.1 Stochastic Preliminaries
Random Variables. A random variable is an F-measurable function X : Ω → R. Every random variable
X induces a probability measure µx on the Borel sets B of R where µx(B) = P[ω : X(ω) ∈ B], If X is
integrable with respect to the probability measure; that is if∫

Ω

||X(ω)|| dP(w) <∞

then the expectation of X can be expressed as

E[X] =
∫

Ω

||X(ω)|| dP(w) =
∫ ∞

0

x dµx(x).

Distributions. The distribution function of a random variable X is the function F : R → [0, 1] given
by F (x) = P(X ≤ x). The sequence of random variables X1, X2, · · · (with corresponding distributions
functions F1, F2 · · · ) has a limiting distribution denoted F if limn→∞ Fn = F .

Stochastic Processes. A stochastic process is a family {X(t)}t≥0 of Rn − valued random variables. It
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is continuous for all ω ∈ Ω if the function t → X(t, ω) is continuous. It is F(t) - adapted if X(t) is
F(t)- measurable for every t. It is said to be increasing if X(t, ω) is nonnegative, nondecreasing and right
continuous on t ≥ 0 for almost all ω ∈ Ω. It is a process of finite variation if X(t) = A(t) − Â(t) where
both {A(t)} and {Â(t)} are increasing processes.

Standard Brownian Motion. If (Ω,F , {F(t)}t≥0,P) is a filtered probability space then a one–dimensional
standard Brownian motion {B(t)}t≥0 is a process which has the following properties: B(0) = 0; the in-
crements B(t) − B(s) is normally distributed with mean 0 and variance t − s where 0 ≤ s < t < ∞; the
increment B(t)−B(s) is independent of Fs where 0 ≤ s < t <∞. We often take as filtration (F(t))t≥0

the natural filtration of the Brownian motion. In this thesis, this is the filtration with respect to which pro-
cesses are adapted. It will be denoted by {FB(t)}t≥0 throughout.

Martingales. The stochastic processM = {M(t)}t≥0, defined on the filtered probability space (Ω,F , {F(t)}t≥0,P)
is said to be a martingale with respect to the filtration {F(t)}t≥0 if M(t) is F(t)–measurable for all t ≥ 0,
E[|M(t)|] <∞ for all t ≥ 0 and for all 0 ≤ s ≤ t

E [M(t)|F(s)] = M(s) a.s.

Furthermore if the process M is a real–valued square integrable martingale then there exists a unique,
adapted, increasing., integrable process such that the process {M(t)2 − 〈M(t)〉}t≥0 is a martingale which
vanishes at t = 0. The process 〈M〉 is known as the quadratic variation of M . The asymptotic behavior of
the quadratic variation characterises the asymptotic behavior of the martingale, this is seen in the Martin-
gale convergence Theorem which is stated precisely in Lemma 2.3.1. A random variable τ : Ω → [0,∞]
is called a stopping time if {ω : τ(ω) ≤ t} ∈ F(t) for an t ≥ 0. A right continuous adapted process
M = {M(t)}t≥0 is a local martingale if there exists a nondecreasing sequence of stopping times {τk}k≥0

with τk →∞ as k →∞ almost surely such that every {M(τk) ∧ t}t≥0 is a martingale.

Stochastic Integrability and Convergence. Due to the random nature of stochastic processes various defi-
nition of stochastic integrability exist. A stochastic processX(t) is integrable with respect to the probability
measure if E[X(t)] <∞ for each t > 0; it is square integrable if E[X(t)]2 <∞ for each t ≥ 0.

One–dimensional Itô calculus and integration. In this thesis we study scalar stochastic functional differ-
ential equations, and consider the initial data for our price processes to be known. Therefore, we need only
consider the scalar theory of Itô integration and Itô processes with deterministic initial values.

We now define our terms more precisely. Let T > 0. SupposeB is a one–dimensional standard Brownian
motion and g = {g(t) : t ∈ [0, T ]} is a scalar process adapted to the natural filtration {FB(t)}t≥0 generated
by B. Suppose also that ∫ T

0

g(s)2 ds < +∞, a.s.

Then the Itô integral of g is denoted by∫ t

0

g(s) dB(s), t ∈ [0, T ].

Furthermore if

E
∫ T

0

g(s)2 ds < +∞,

then Itô’s Isometry holds: this is the identity

E

[(∫ t

0

g(s) dB(s)
)2
]

= E
[∫ t

0

g(s)2 ds
]
, 0 ≤ t ≤ T.
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Suppose that X is a scalar FB–adapted process with deterministic initial value X(0). Then X = {X(t) :
0 ≤ t ≤ T} is an Itô process if there exist adapted scalar processes f and g obeying∫ T

0

|f(s)| ds < +∞,

∫ T

0

g(s)2 ds < +∞, a.s.

such that

X(t) = X(0) +
∫ t

0

f(s) ds+
∫ t

0

g(s) dB(s), t ∈ [0, T ]. (1.2.1)

The equivalent stochastic differential shorthand notation used to express this is given by

dX(t) = f(t) dt+ g(s) dB(t) t ∈ [0, T ].

If we have an Itô process X , we can transform it using a stochastic version of the chain rule called Itô’s
formula. Let F ∈ C2(R; R) and X be the Itô process defined by (1.2.1). Then F (X) is an Itô process and
for each T > 0 we have

F (X(t)) = F (X(0)) +
∫ t

0

(
F

′
(X(s))f(s) +

1
2
F

′′
(X(s))g2(s)

)
ds

+
∫ t

0

F
′
(X(s))g(s)dB(s) 0 ≤ t ≤ T.

Laws of the Iterated Logarithm. The law of the iterated logarithm is the name given to several theorems
which describe the magnitude of the fluctuations of a random walk. Let Sn be the sum of n independent
and identically distributed random variables with mean zero and finite variance σ2. Then

lim sup
n→∞

Sn

σ
√

2n log log n
= 1 = − lim inf

n→∞

Sn

σ
√

2n log log n
a.s.

It should be noted that this Law can also be applied in continuous time to standard Brownian motion. If B
is a standard Brwonian motion, then

lim sup
t→∞

B(t)
σ
√

2t log log t
= 1 = − lim inf

t→∞

B(t)
σ
√

2t log log t
a.s.

1.2.2 Useful Results
This section contains results that are used throughout the chapters.

Burkholder Davis Gundy Inequality. Let B be a standard one–dimensional Brownian motion and H be
an FB adapted process such that E[

∫ T
0
H(s)2 ds] < +∞. Then for any p ≥ 0, there exists Cp > 0

independent of H , T and B such that

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

H(s) dB(s)
∣∣∣∣p
]
≤ CpE

[(∫ t

0

H(s)2 ds
) p

2
]
.

A special case is when p = 2 and Cp = 4 and is known as Doob’s Inequality.
Chebyshev Inequality. Let (Ω,F ,P) be a probability triple. If an F-measurable random variable X is
such that E[|X|p] <∞, then for all k > 0 we have

P(|X| ≥ k) ≤ E[|X|p]
kp

.
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Dirac Measure. A Dirac measure σx for any measurable set A is defined as

σx(A) =
{

1, for all t ∈ A
0, otherwise

Fatou’s Lemma. Let (Ω,F ,P) be a probability triple. Suppose that (Y (n))n≥0 is a sequence of non-
negative random variables with Y (n) being F–measurable for each n ≥ 0. Then

E[lim inf
n→∞

Y (n)] ≤ lim inf
n→∞

E[Y (n)].

First Borel-Cantelli Lemma. Let (Ω,F ,P) be a probability triple. If (En : n ≥ 1) be a sequence of
events such that each En ∈ F and

∑∞
n=1 P(En) <∞, then

P(En, i.o.) = 0,

where {En i.o.} is the event that the events En are realised infinitely often.
Second Borel-Cantelli Lemma. Let (Ω,F ,P) be a probability triple. If (En : n ≥ 1) is a sequence of
independent events such that each En ∈ F and

∞∑
n=1

P(En) = ∞

then
P(En, i.o.) = 1.

Fubini’s Theorem. If f is a bounded measurable function on [0, T ]× [0, T ] and

Zu(t) =
∫ t

0

f(s, u) dB(s), 0 ≤ t ≤ T

is continuous from the right and has left limits for each u ∈ [0, T ]. Then∫ t

0

(∫ t

0

f(s, u) du
)
dB(s) =

∫ t

0

(∫ t

0

f(s, u) dB(s)
)
du for all t ∈ [0, T ].

Mill’s Estimate. Let Z be a standard normal variable. Then

lim
x→∞

P[|Z| > x]
2√
2π
· 1
x · e

− 1
2x

2 = 1.

The following result, which appears as e.g. Corollary 4.1.3 in Chow and Teicher [28] is used throughout
the thesis. To use it we need a preliminary definition.

Definition 1.2.1. Given any non–negative constants (bn)n≥0 a continuous function b on [0,∞) is called an
extension of (bn)n≥0 to [0,∞) if b(n)n≥0 = bn for n ∈ N. Moreover, when (bn)n≥0 is strictly monotone,
b is called a strictly monotone extension of (bn)n≥0 if it is both strictly monotone and an extension on
(bn)n≥0.

Lemma 1.2.1. Let (bn)n≥0 be a strictly monotone increasing sequence with bn ≥ 0 and bn → ∞ as
n → ∞. and let b be a strictly monotone extension of (bn) to [0,∞). Then for any a.s. non–negative
random variable ζ

∞∑
n=1

P[ζ ≥ bn] ≤ E[b−1(ζ)] ≤
∞∑
n=0

P[ζ > bn].

We use this result in various sections of the thesis to show that the expected value of a function of each
member of a sequence of identically and independently distributed noise terms is either finite or infinite.
The existence of this generalised moment can then be related to the size of the large fluctuations of the
process by means of the Borel–Cantelli lemmata.
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1.3 Definition of inefficiency in financial markets
According to Fama [32, 33], when efficiency refers only to historical information which is contained in
every private trading agent’s information set, the market is said to be weakly efficient (cf.[42, Definition
10.17]. Weak efficiency implies that successive price changes (or returns) are independently distributed.
Formally, let the market model be described by a probability triple (Ω,F ,P). Suppose that trading takes
place in continuous time, and that there is one risky security. Let h > 0, t ≥ 0 and let rh(t+ h) denote the
return of the security from t to t+ h, and let S(t) be the price of the risky security at time t. Also let F(t)
be the collection of historical information available to every market participant at time t. Then the market
is weakly efficient if

P[rh(t+ h) ≤ x|F(t)] = P[rh(t+ h) ≤ x], ∀x ∈ R, h > 0, t ≥ 0.

Here the informationF(t) which is publicly available at time t is nothing other than the generated σ-algebra
of the price FS(t) = σ{S(u) : 0 ≤ u ≤ t}. An equivalent definition of weak efficiency in this setting is
that

rh(t+ h) is FS(t)-independent, for all h > 0 and t ≥ 0. (1.3.1)

Geometric Brownian Motion is the classical stochastic process that is used to describe stock price dynamics
in a weakly efficient market. More concretely, it obeys the linear SDE

dS(t) = µS(t) dt+ σS(t) dB(t), t ≥ 0 (1.3.2)

with S(0) > 0. Here S(t) is the price of the risky security at time t, µ is the appreciation rate of the
price, and σ is the volatility. It is well-known that the logarithm of S grows linearly in the long-run. The
increments of logS are stationary and Gaussian, which is a consequence of the driving Brownian motion.
That is, for a fixed time lag h,

rh(t+ h) := log
S(t+ h)
S(t)

= (µ− 1
2
σ2)h+ σ(B(t+ h)−B(t))

is Gaussian distributed. Clearly rh(t + h) is FB(t)-independent, because B has independent increments.
Therefore if FB(t) = FS(t), it follows that the market is weakly efficient. To see this, note that S being a
strong solution of (1.3.2) implies that FS(t) ⊆ FB(t). On the other hand, since

logS(t) = logS(0) + (µ− 1
2
σ2)t+ σB(t), t ≥ 0,

we can rearrange for B in terms of S to get that FB(t) ⊆ FS(t), and hence FB(t) = FS(t). Due to this
reason, equation (1.3.2) has been used to model stock price evolution under the classic Efficient Market
Hypothesis.
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Chapter 2

Fat Tails and Bubbles in a Discrete Time Model of an
Inefficient Financial Market

2.1 Introduction
In recent years much attention in financial economics has focussed on the trading strategies of investors.
Classical models of financial markets assume that agents are rational, have homogeneous preferences, and
do not use historical market data in making their investment decisions. An important and seminal collection
of papers summarising this position is [29].
Econometric evidence of market returns (cf., e.g. [48]) and analysis of the behaviour of real traders reveal a
more complex picture. Traders often employ rules of thumb which do not conform to notions of rational be-
haviour based on knowledge of the empirical distribution of returns (cf., e.g. [43]). Moreover, many traders
use past prices as a guide to the evolution of the price in the future, with strategies using the crossing of
short–run and long–run price averages being very popular (cf., e.g. [64]). Linear continuous–time stochastic
models of markets in which agents use past prices to determine their demand, but in which traders discount
past returns using an exponentially fading memory, include [21, 38].
In this chapter, we present a stochastic difference equation model of an inefficient financial market. The
model is informationally inefficient in the sense that past movements of the stock price have an influence
on future movements. We assume that there is trading at intervals of one time unit with prices fixed in
the intervening period. The inefficiency stems from the presence of trend–following speculators whose
demand for the asset depends on the difference between a short–run and long–run weighted average of
the cumulative returns on the stock over the last N1 and N2 periods, where N2 > N1. More precisely, if
X(n) is the cumulative return up to time n, the planned excess demand just before trading at time n+ 1 is∑N1−1
j=0 w1(j)g(X(n− j))−

∑N2−1
j=0 w2(j)g(X(n− j)) where

∑Nm−1
j=0 wm(j) = 1 for m = 1, 2 and g is

an increasing function. In other words, speculators buy when the short–run average is above the long–run
average, and sell when the short–run average is below the long–run average. Speculators react to other
random stimuli— “news”— which is independent of past returns. This news arrives at time n + 1, adding
a further ξ(n + 1) to the traders’ excess demand. Prices increase when there is excess demand (resp. fall
when there is excess supply), with the rise (resp. fall) being larger the greater the excess demand (resp.
supply). Hence, the price adjustment at time n+ 1 is given by

X(n+ 1) = X(n) +
N1−1∑
j=0

w1(j)g(X(n− j))−
N2−1∑
j=0

w2(j)g(X(n− j)) + ξ(n+ 1). (2.1.1)

We need one final assumption on the weights w1 and w2 so that the weighted average with weight w1

represents a short–run average, while the weighted average with weight w2 represents a long–run average.
If the terminology “short–run” and “long–run” is to be meaningful, the short–run average should always
give a greater cumulative weight to the last n units of information than the long–run average for any n;
mathematically, this means that

n∑
j=0

w1(j) ≥
n∑
j=0

w2(j), n = 0, 1, . . . , N1 − 1. (2.1.2)

We study the almost sure asymptotic behaviour as n → ∞ of solutions of (2.1.1) under the assumption
(2.1.2). Roughly speaking, we show that the market either follows a correlated random walk, or experi-
ences a crash or bubble.
This chapter shows three things: firstly, if the trend–following speculators do not react very aggressively
to differences between the short–run and long–run returns, then the rate of growth of the partial maxima
of the solution is the same as that of a random walk. Therefore, to a first approximation, the market ap-
pears efficient. However, the size of these largest fluctuations is greater in the presence of trend–following
speculators than in their absence, where the market only reacts to “news”. Hence, the presence of these
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speculators tends to increase market volatility, as well as causing correlation in the returns. These results
hold if g is linear (Theorem 2.3.1), or g(x) = βx + o(x) as x → ∞ for some β ≥ 0 sufficiently small
(Theorem 2.5.1). Moreover, when g is linear the returns follow a random walk plus a stationary process.
Secondly, when g is linear and the trend–following speculators behave aggressively, the returns will tend
to plus or minus infinity exponentially fast (Theorem 2.3.2). This is a mathematical realisation of a stock
market bubble or crash. The result also holds for the nonlinear equation when g(x) = βx + O(|x|ν) as
x→∞ for some ν ∈ (0, 1) (Theorem 2.5.2).
Thirdly, in the case when the cumulative returns follow a correlated random walk, we show for both linear
(Theorem 2.6.1) and nonlinear (Theorem 2.6.2) models that the ∆–returns X(n) −X(n −∆) are subject
to the same size of large excursions as the “news” process ξ, under the assumption that the distribution of
each variate in ξ has polynomially decaying tails. In other words, we show that the ∆–returns behave in
a way which is consistent with a stationary process in which each variate is distributed with polynomially
decaying tails. In the context of financial markets, such returns’ distributions are often called “fat–tailed”
or “heavy–tailed”. In this situation, where “news” is an additive perturbation, and the function g is not too
far from linear, the heavy–tailed returns arise from the “news” process being heavy–tailed rather than from
the nature of the interaction of the speculators.
This chapter is a generalisation of work of Appleby & Swords [12] which proves analogues of Theo-
rems 2.3.1, 2.3.2 and 2.5.1 in the simpler case when the speculators’ trading strategy is based on com-
paring the current returns with a weighted average of past returns. Moreover, there are no analogues of
Theorems 2.5.2, 2.6.1 or 2.6.2 in [12].
If we define T2 =

∑N2−1
j=1 jw2(j), T1 =

∑N1−1
j=1 jw1(j), the market experiences a bubble or crash, or

a correlated random walk, depending on whether β(T2 − T1) is greater than or less than unity. T2 − T1

is positive on account of (2.1.2). Large values of β correspond to aggressive or confident speculative be-
haviour; if g(x) = βx for example, the planned excess demand of traders is β times the difference between
the short–run and long–run weighted averages of returns. Therefore, for larger β a smaller signal from the
market is required to produce a given response from the traders.
The term T2 =

∑N2−1
j=1 jw2(j) is in [1, N2 − 1], and the greater weight that traders give to returns further

back in time, the larger T2 becomes. Therefore, T2 is a measure of the effective length of the “long–run”
memory of the traders; in a similar manner, T1 is a measure of the effective length of the “short–run”
memory of the traders. The larger the difference between T2 − T1 the more readily the market leaves the
correlated random walk regime and enters the bubble or crash regime. Moreover, even within the random
walk regime, the large fluctuations become more extreme the larger that T2 − T1 becomes. It may be seen
that a large value of T2 − T1 arises, for example, when traders base their short–run average on returns over
a very short time–horizon, but whose long–run average gives significant weight to returns from the relative
distant past. This strategy can obviously introduce significant feedback from the distant past, so causing
trends from the returns in the past to persist for long periods of time, which tends to cause the formation of
bubbles or crashes. To take a simple example, if traders make their decisions based only on a comparison
of returns N1−1 periods ago with returns N2−1 periods ago, where N1 < N2, then we have T1 = N1−1
and T2 = N2 − 1, and so bubbles form if β(N2 − N1) > 1 while we have a correlated random walk if
β(N2 −N1) < 1.
This chapter has the following structure; Section 2 gives notation and supporting results, the asymptotic
behaviour of the cumulative returns in the linear equation and the probability of a bubble or a crash is stud-
ied in Section 3; Section 4 studies the asymptotic behaviour of the autocovariance function of the linear
equation, the corresponding results for the nonlinear equation are in Section 5; Section 6 is concerned with
the large deviations of the ∆–returns and Section 7 contains the proofs of supporting lemmas.

2.2 Background Material
N denotes the integers 0, 1, 2, . . ., and R the real line. A real sequence a = {a(n) : n ∈ N} obeys
a ∈ `1(N; R) if

∑
n∈N |a(n)| < ∞. The convolution of f = {f(n) : n ∈ N} and g = {g(n) : n ∈ N},

f ∗ g, is a sequence defined by (f ∗ g)(n) =
∑n
k=0 f(n− k)g(k), n ∈ N. Let x̃(z) denote the z-transform

of x. Let β > 0, N1, N2 ∈ N with N2 > N1 and wm = {wm(n) : n = 0, . . . , Nm − 1}, m = 1, 2 be

11



sequences obeying

wm(n) ≥ 0, n = 0, . . . , Nm − 1;
Nm−1∑
n=0

wm(n) = 1, m = 1, 2; (2.2.1a)

n∑
j=0

w1(j) ≥
n∑
j=0

w2(j), j = 0, . . . , N1 − 1. (2.2.1b)

The resolvent r = {r(n) : n ≥ −N2} is a scalar sequence defined by

r(n+ 1) = r(n) + β

N1−1∑
j=0

w1(j)r(n− j)−
N2−1∑
j=0

w2(j)r(n− j)

 , n ∈ N (2.2.2a)

r(0) = 1, r(n) = 0, n < 0. (2.2.2b)

Lemma 2.2.1. Let β > 0, N1 and N2 be positive integers with N1 > N2, w1 and w2 obey (2.2.1), and r
be defined by (2.2.2).

(a) r is a non–decreasing sequence with r(n) > 0 for n ∈ N.

(b) If

β

N2−1∑
j=0

jw2(j)−
N1−1∑
j=0

jw1(j)

 < 1, (2.2.3)

then
lim
n→∞

r(n) =
1

1− β
(∑N2−1

j=0 jw2(j)−
∑N1−1
j=0 jw1(j)

) =: r∗, (2.2.4)

and δ = {δ(n) : n ≥ −N2} ∈ `1(N; R+), where δ(−N2) = 0, δ(n + 1) = r(n + 1) − r(n) for
n ≥ −N2.

(c) If

β

N2−1∑
j=0

jw2(j)−
N1−1∑
j=0

jw1(j)

 > 1, (2.2.5)

there exists α ∈ (0, 1) defined by

α−1 = 1 + β

(
N1−1∑
k=0

αkw1(k)−
N2−1∑
k=0

αkw2(k)

)
(2.2.6)

such that limn→∞ αnr(n) = R∗, where R∗ > 0 is given by

R∗ =
1

(1− α)(1 + βα
∑∞
j=1 jα

jw(j))
, (2.2.7)

where w(n) :=
∑n∧(N2−1)
j=0 w1(j)− w2(j), and w1(n) := 0 for n ≥ N1.

Remark 2.2.1. For the proof of this lemma we write the resolvent r(n) in terms of a new function δ(n).
We then use this information to prove part (a). For part (b) we can compute the limit of δ(n) and use
this information to derive an explicit formula for the limit of r(n). By applying the final value theorem to
the z-transform of δ(n) we compute an explicit formula for its rate of exponential growth. Rewriting the
exponential rate of growth of r(n) in terms of δ(n) we can derive the exponential rate of growth of r(n)
thus proving part (c).
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Proof. We assume N1 > 1. r is non–decreasing if δ is non–negative. Extend w1 to {N1, . . . , N2 − 1} by
w1(n) = 0 for n = N1, . . . , N2 − 1. To prove part (a), we put r(n) =

∑n
j=−N2+1 δ(j) into (2.2.2) for

n ≥ 0, we have

n+1∑
j=−N2+1

δ(j)−
n∑

j=−N2+1

δ(j) =

+ β

N1−1∑
k=0

w1(k)
n−k∑

j=−N2+1

δ(j)−
N2−1∑
k=0

w2(k)
n−k∑

j=−N2+1

δ(j)

 ,

and hence

δ(n+ 1) = β

N1−1∑
j=0

n−j∑
k=−N2+1

w1(j)δ(k)−
N2−1∑
j=0

n−j∑
k=−N2+1

w2(j)δ(k)

 .

Using the fact that w1(n) = 0 for n ≥ N1, and by reversing the order of summation, we have

N1−1∑
j=0

n−j∑
k=−N2+1

w1(j)δ(k) =
N2−1∑
j=0

n−j∑
k=−N2+1

w1(j)δ(k)

=
n∑

k=−N2+1


(n−k)∧(N2−1)∑

j=0

w1(j)

 δ(k),

and similarly we have

N2−1∑
j=0

n−j∑
k=−N2+1

w2(j)δ(k) =
n∑

k=−N2+1


(n−k)∧(N2−1)∑

j=0

w2(j)

 δ(k).

By defining

w(n) =
n∧(N2−1)∑

j=0

w1(j)− w2(j), (2.2.8)

we have δ(n + 1) = β
∑n
k=−N2+1 w(n − k)δ(k) for n = 0, 1, 2, . . .. Since δ(n) = 0 for n < 0 and

δ(0) = 1,

δ(n+ 1) = β
n∑
k=0

w(n− k)δ(k), n = 0, 1, 2, . . . ; δ(0) = 1. (2.2.9)

By (2.2.1a), for n ≥ N2 − 1 we have w(n) = 0. For 0 ≤ n ≤ N1 − 1, as N1 < N2, we have w(n) =∑n
j=0 w1(j)−w2(j), and so by (2.2.1b), w(n) ≥ 0 for n = 0, 1, . . . , N1−1. Finally forN1 ≤ n ≤ N2−2,

we have

w(n) =
n∑
j=0

(w1(j)− w2(j)) =
N1−1∑
j=0

w1(j) +
n∑

j=N1

w1(j)−
n∑
j=0

w2(j) = 1−
n∑
j=0

w2(j),

and so w(n) ≥ 0 for n = N1, . . . , N2 − 2. Hence w(n) ≥ 0 for all n ≥ 0, and so δ(n) ≥ 0 for all n ≥ 0,
proving (a).

To prove part (b), we note first that w ∈ `1(N; [0,∞)). If β
∑∞
n=0 w(n) < 1, then

∞∑
n=0

δ(n)− 1 =
∞∑
n=0

δ(n+ 1) = β

∞∑
n=0

n∑
k=0

w(n− k)δ(k)

= β
∞∑
n=0

w(n)
∞∑
j=0

δ(j),

13



and
∑∞
n=0 δ(n) =: r∗ is finite, with r∗ = 1 + βr∗

∑∞
n=0 w(n). Since w(n) = 0 for n ≥ N2 − 1 and w

obeys (2.2.8),

∞∑
n=0

w(n) =
∞∑
n=0

n∧(N2−1)∑
j=0

(w1(j)− w2(j))


=
N2−2∑
j=0

N2−2∑
n=j

w1(n)−
N2−2∑
j=0

N2−2∑
n=j

w2(n)

=
N2−2∑
j=0

(N2 − j − 1)w1(j)−
N2−2∑
j=0

(N2 − 1− j)w2(j).

Now
N2−2∑
j=0

(N2 − 1− j)w2(j) =
N2−1∑
j=0

(N2 − 1− j)w2(j) = N2 − 1−
N2−1∑
j=0

jw2(j)

and similarly for
∑N2−2
j=0 (N2 − 1− j)w1(j). As (2.2.1a) holds, we get

∞∑
n=0

w(n) =
N2−1∑
j=0

jw2(j)−
N1−1∑
j=0

jw1(j),

proving (2.2.4). For part (c), the condition that β
∑∞
n=0 w(n) > 1 implies there is a unique α ∈ (0, 1)

such that βα
∑∞
j=0 wα(j) = 1, where wα(n) = αnw(n). Indeed, such an α must satisfy (2.2.6). Now, by

multiplying across (2.2.9) by αn+1, we get δα(n+1) = βα
∑n
j=0 wα(j)δα(n−j) where δα(n) = αnδ(n).

Now taking the z-transforms yields

z(δ̃α(z))− 1 = βα
n∑
j=0

wα(j)z−j δ̃α(z)

1 = δ̃α(z)

z − βα
n∑
j=0

wα(j)z−j


1 = lim

z→1
δ̃α(z)

z − βα
n∑
j=0

wα(j)z−j

 .

Now by the final value theorem limz→1 x̃(z)(1− z−1) = limn→∞ x(n) where
limz→1(1− z−1) = 0. Then

lim
z→1

z − βα
n∑
j=0

wα(j)z−j

 = 0

1− βα
n∑
j=0

w(j)
αn − 1
α− 1

= 0

1 + β
n∑
j=1

w(j)αj = α−1.

Rewriting the equation in terms of the Final Value Theorem yields

lim
z→1

δ̃α(z)(1− z−1)

(
z

1− z−1
−
βα
∑n
j=0 w(j)z−j

1− z−1

)
=

1
1 + βα

∑n
j=0 jα

jw(j)

Thus
lim
n→∞

δ(n) =
1

1 + βα
∑n
j=0 jα

jw(j)
.
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As αnδ(n) → δ∗ as n → ∞ then limn→∞ αnr(n) = (1 − α)−1δ∗ := R∗ where R∗ is given by (2.2.7).
Therefore limn→∞ αnr(n) = 1

(1−α) δ
∗ =: R∗, where R∗ > 0 is given by (2.2.7).

2.3 Cumulative Returns In The Linear Equation
We consider the linear stochastic difference equation for n ≥ 0

Y (n+ 1) = Y (n) + β


N1−1∑
j=0

w1(j)Y (n− j)−
N2−1∑
j=0

w2(j)Y (n− j)

+ ξ(n+ 1), (2.3.1a)

Y (n) = φ(n), n ≤ 0, (2.3.1b)

where ξ = {ξ(n) : n ∈ N} is a is a sequence of independent, identically distributed variables obeying

E[ξ(n)] = 0, σ2 := E[ξ(n)2] for all n ∈ N. (2.3.2)

Proposition 2.3.1. Let r be the solution of (2.2.2) and let Y be the solution of (2.3.1) and y obey (2.3.7)
then

Y (n) =
n∑
j=1

r(n− j)ξ(j) + y(n). (2.3.3)

Proof. Define Z(n) = Y (n) − y(n) for all n ≥ −N where Z(n) = 0 for all n ≤ 0, then Z(n + 1) =
Y (n+ 1)− y(n+ 1). Using the fact that Y obeys (2.3.1) gives

Z(n+ 1) = Y (n) + β

N1−1∑
j=0

w1(j)Y (n− j)−
N2−1∑
j=0

w2(j)Y (n− j)

+ ξ(n+ 1)

− y(n)− β

N1−1∑
j=0

w1(j)y(n− j)−
N2−1∑
j=0

w2(j)y(n− j)


= Y (n)− y(n) + β

N1−1∑
j=0

w1(j)(Y (n− j)− y(n− j))

− β

N2−1∑
j=0

w2(j)(Y (n− j)− y(n− j)) + ξ(n+ 1)

= Z(n) + β(
N1−1∑
j=0

w1(j)Z(n− j)−
N2−1∑
j=0

w2(j)Z(n− j)) + ξ(n+ 1).

Therefore by Lemma 2.7.2

Z(n) =
n−1∑
j=0

r(n− 1− j)ξ(j + 1) =
n∑
j=1

r(n− j)ξ(j).

From (2.3.8) we know that y(n) = r(n)φ(0) + β(φ0 ∗ r)(n) for n ≥ 1. Then for n ≥ 1
Z(n) =

∑n
j=1 r(n− j)ξ(j) and Y (n) = z(n) + y(n) as required.

Remark 2.3.1. This propostion shows that the resolvent Y (n) can be expressed in terms of the deterministic
equation and the variation of constants formula.
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2.3.1 Correlated random walk obeying the law of the iterated logarithm
If (2.2.3) holds, then Y behaves asymptotically as a random walk. For instance, if ξ obeys (2.3.2) the
process S given by S(n) =

∑n
j=1 ξ(j) is a random walk and obeys the Law of the Iterated Logarithm:

lim sup
n→∞

S(n)√
2n log log n

= − lim inf
n→∞

S(n)√
2n log log n

= σ, a.s.

Theorem 2.3.1. Let β > 0, N1 and N2 be positive integers with N1 > N2, w1 and w2 obey (2.2.1), and β
obey (2.2.3). If ξ obeys (2.3.2), and Y obeys (2.3.1), then

lim sup
n→∞

Y (n)√
2n log log n

=
|σ|

1− β
(∑N2−1

j=0 jw2(j)−
∑N1−1
j=0 jw1(j)

) , a.s. (2.3.4)

lim inf
n→∞

Y (n)√
2n log log n

= − |σ|

1− β
(∑N2−1

j=0 jw2(j)−
∑N1−1
j=0 jw1(j)

) , a.s. (2.3.5)

Remark 2.3.2. In the above formulas the right–hand side limit is greater than |σ|, the traders cause excess
volatility in the market. The size of the excess increases as the key parameter, that is

β

N2−1∑
j=0

jw2(j)−
N1−1∑
j=0

jw1(j)

 ,

tends to 1. The reason for this is more easily ilustrated by the following example.

Example 2.3.1. A common trading strategy is to compare the arithmetic average of prices or returns over
200 days (long run average) with that over 30 days (short run average). We generalise this here to a
comparison of arithmetic averages over N1 and N2 days, where N1 > N2. To do this, we let

w1(j) =
1
N1

, for j = 0, · · · , N1 − 1

and
w2(j) =

1
N2

, for j = 0, · · · , N2 − 1.

It can be easily checked that w1 and w2 obey all the hypotheses of Theorem 2.3.1. Then the key parameter
as defined above turns out to be

β

N2−1∑
j=0

jw2(j)−
N1−1∑
j=0

jw1(j)

 =
β

2
(N2 −N1) .

If this value is less than one then the volatility is amplified by a factor of 1
1− β

2 (N2−N1)
(with respect to a

market with feedback traders). Firstly, this factor increases as β increases, which means the market becomes
more volatile the more aggresive the traders. Secondly, the factor increases as N2 − N1 increases, and it
increases very rapidly as β(N2 − N1) approaches 2. Therefore the market becomes arbitrarily volatile
relative to a market free of feedback traders as we get ever closer to this boundary in (β,N2, N1) parameter
space. N2 −N1 becomes large when the traders take very long–run moving averages with very short–run
moving averages.

We consider another example in which traders compare the returns N2 units of time ago with those N1

units of time ago, where again N2 > N1. In this case X obeys

X(n+ 1) = X(n) + β (X(n− (N1 − 1))−X(n− (N2 − 1))) + ξ(n+ 1),

and we identify w1 and w2 as follows:

w1(n) =
{

1, n = N1 − 1
0, otherwise, . . . ,

w2(n) =
{

1, n = N2 − 1
0, otherwise, . . . ,
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Then the key parameter is defined as β (N2 −N1). Again the volatility increases as β increases and as
N2 −N1 increases. However, this market is less stable than that with arithmetic averages because moving
averages smooth the effect of a large of the process at a given instant over the entire period sampled by the
investors.

Remark 2.3.3. For this proof we write the resolvent Y (n) in terms of the deterministic equation and the
variation of constants formula. For the variation of constants formula we add on and take away the limit of
the characteristic equation (in the stable case) leaving us with two terms. By combining Lemma 1.2.1 with
the Borel–Cantelli lemma and by employing Lemma 2.7.1 we show for the first of these terms that its limit
tends to zero. The limit of the second term is equal to the limit of the resolvent multiplied by the absolute
value of the standard deviation of the news process. Once stochastic effects have been taken into account,
it is this term that dominates the contribution from the deterministic equation, and therefore yields the limit
for resolvent Y (n).

Proof. For n ≥ 1, Y (n) = y(n) +
∑n
j=1 r(n− j)ξ(j), where

y(n+ 1) = y(n) + β

N1−1∑
j=0

w1(j)y(n− j)−
N2−1∑
j=0

w2(j)y(n− j)

 n ≥ 0,

y(n) = φ(n), n ≤ 0. Define ∆∗(n) = r∗ − r(n) and U(n) =
∑n
j=1 ∆(n− j)ξ(j), we get

Y (n) = y(n)− U(n) + r∗
n∑
j=1

ξ(j) n ≥ 1.

By (2.2.3), r(n) → r∗, and so limn→∞ y(n) exists. By the law of the iterated logarithm, we need to
show limn→∞ |U(n)|/

√
2n log log n = 0 a.s. By Lemma 2.2.1, we have ∆(n) ≥ 0 and

∑∞
n=0 ∆(n) =∑∞

n=1 nδ(n). By (2.2.9) and the fact that w(n) = 0 for n ≥ N2 − 1, we see that δ is the summable
solution of a finite lag linear difference equation, and therefore |δ(n)| ≤ Cνn for some ν ∈ (0, 1). Thus,
∆ ∈ `1(N,R).

Let b(x) =
√
x, x ≥ 0. Then b : [0,∞) → [0,∞) is increasing and b−1(x) = x2. If ξ is a random

variable with the same distribution as ξ(n), by Lemma 1.2.1 we have

∞∑
n=1

P[|ξ(n)| >
√
n] ≤ E[b−1(|ξ|)] = E[ξ2] <∞.

By the Borel–Cantelli lemma, lim supn→∞ |ξ(n)|/
√
n ≤ 1, a.s. which implies that

limn→∞ |ξ(n)|/
√

2n log log n = 0 a.s. Thus, there is an a.s. event Ω∗ such that for all ω ∈ Ω∗, and all
ε > 0, there is C(ε, ω) > 0 such that |ξ(n, ω)| < C(ε, ω) + ε

√
2n log log(n+ ee) =: γ(n, ω) for n ∈ N.

Since ∆ ∈ `1(N; R), by Lemma 2.7.1 we have

lim sup
n→∞

|U(n, ω)|
γ(n, ω)

≤ lim sup
n→∞

∑n
j=1 |∆(n− j)|γ(ω, j)

γ(n, ω)
=

∞∑
j=0

|∆(j)|;

thus lim supn→∞ |U(n, ω)|/
√

2n log log n < ε
∑∞
j=0 |∆(j)|, hence the result.

When (2.2.3) holds, it can further be shown that y − U is an asymptotically stationary ARMA process,
so Y is the sum of an asymptotically stationary (and mean reverting) process and a random walk. ARMA
(autoregressive moving average) processes are used widely in financial econometrics (see e.g., [22]). Notice
also that the limit on the righthand side of (2.3.4) is greater than |σ|; this shows that the large fluctuations of
X are greater than those of the random walk S, which represents a market without the presence of feedback
traders.
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2.3.2 Presence of bubbles and crashes
When β obeys (2.2.5), we now prove αnY (n) → Y ∗ as n → ∞ where α ∈ (0, 1) and Y ∗ is a random
variable which is explicitly given in terms of ξ. Hence Y (n) tends to ±∞ according to the sign of Y ∗. But
before we state the theorem the following result is needed for its proof:

Lemma 2.3.1. For a continuous local Martingale M, the sets {〈M〉(∞) <∞} and {limt→∞M(t) exists}
are almost–surely equal. Furthermore, lim supt→∞M(t) = ∞ and lim inft→∞M(t) = −∞ almost
surely on the set {〈M〉(∞) = ∞}.

Theorem 2.3.2. Let β > 0, N1 and N2 be positive integers with N1 > N2, w1 and w2 obey (2.2.1), and β
obey (2.2.5). Suppose also that α ∈ (0, 1) is given by (2.2.6), and R∗ by (2.2.7). If ξ obeys (2.3.2), and Y
obeys (2.3.1), then

lim
n→∞

αnY (n) = R∗

L(φ) +
∞∑
j=1

αjξ(j)

 , a.s.

where

L(φ) = φ(0) + β

N1−2∑
j=0

αj
−1∑

l=j−N1+1

w1(j − l)φ(l)− β

N2−2∑
j=0

αj
−1∑

l=j−N2+1

w2(j − l)φ(l). (2.3.6)

Remark 2.3.4. In the proof we write the resolvent Y (n) in terms of the deterministic equation and variation
of constants formula. We then calculate the exponential rate of growth of the deterministic equation via
z-transforms. We add on and take away the exponential rate of growth of the deterministic equation from
the variation of constant formula. By employing the martingale convergence theorem to this term we are
able to compute its exponential rate of growth thus deriving the result.

Proof. Let y be given by

y(n+ 1)− y(n) = β

(
N1−1∑
k=0

w1(k)y(n− k)−
N2−1∑
k=0

w2(k)y(n− k)

)
. (2.3.7)

Taking the z- transform yields,

z (ỹ(z)− y(0))

= β

( ∞∑
n=0

z−n
N1−1∑
k=0

w1(k)y(n− k)−
∞∑
n=0

z−n
N2−1∑
k=0

w2(k)y(n− k)

)
.

Now

∞∑
n=0

z−n
N1−1∑
k=0

w1(k)y(n− k) =
∞∑
n=0

N1−1∑
k=0

w1(k)z−ky(n− k)z−(n−k)

=
N1−1∑
k=0

w1(k)z−k
∞∑

l=−k

z−ly(l)

=
N1−1∑
k=0

w1(k)z−k
( −1∑
l=−k

z−ly(l) +
∞∑
l=0

z−ly(l)

)

= ỹ(z)
N1−1∑
k=0

w1(k)z−k +
N1−1∑
k=0

w1(k)z−k
−1∑
l=−k

z−lφ(l).

Letting m = l + k, then

N1−1∑
k=0

w1(k)z−k
−1∑
l=−k

z−lφ(l) =
N1−1∑
k=0

w1(k)
k−1∑
m=0

z−mφ(m− k).
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Thus,

z (ỹ(z)− y(0)) = ỹ(z) + β

(
ỹ(z)

N1−1∑
k=0

w1(k)z−k +
N1−1∑
k=0

w1(k)
k−1∑
m=0

z−mφ(m− k)

)

− β

(
ỹ(z)

N2−1∑
k=0

w2(k)z−k −
N2−1∑
k=0

w2(k)
k−1∑
m=0

z−mφ(m− k)

)
.

Define φ0(n) = φ1(n)− φ2(n) and

φm(n) =
{ ∑−1

l=n−Nm+1 wm(n− l)φ(l), n = 0, 1, . . . , Nm − 2
0, n = Nm − 1, Nm, . . . ,

then

ỹ(z)

(
z − 1− β

Nm−1∑
k=0

w(k)z−k
)

= φ(0) + β

(
j−1∑
m=0

z−mφ0(n)

)
.

Using the fact that

r̃(z) =
1

z − 1− β
∑Nm−1
k=0 z−kw(k)

and getting the inverse of the z-transform of the above yields

y(n) = r(n)φ(0) + β(φ0 ∗ r)(n) n ≥ 1. (2.3.8)

Then y(n) = r(n)φ(0) + β
∑N2−2
j=0 r(n− j)φ0(j), n ≥ N2 − 1. As limn→∞ r(n)αn = R∗,

lim
n→∞

αny(n)

= R∗β

N1−2∑
j=0

αj
−1∑

l=j−N1+1

w1(j − l)φ(l)−
N2−2∑
j=0

αj
−1∑

l=j−N2+1

w2(j − l)φ(l)


+R∗φ(0).

Next, for n ≥ 1, it is know that Y (n) = y(n) +
∑n
j=1 r(n− j)ξ(j) thus

αnY (n) = αny(n) +
n∑
j=1

(αn−jr(n− j)−R∗)αjξ(j) +R∗
n∑
j=1

αjξ(j). (2.3.9)

Let M(n) = R∗
∑n
j=1 α

jξ(j). Since α ∈ (0, 1), M is martingale with finite quadratic variation, so by the
martingale convergence theorem limn→∞M(n) is finite a.s. By (2.3.2), E

∑n
j=1 α

j |ξ(j)| ≤ ασ/(1− α),
so ξα(n) := αnξ(n) ∈ `1(N; R), a.s. As r1(n) := αnr(n) − R∗ → 0, (r1 ∗ ξα)(n) → 0 as n → ∞. We
end by letting n→∞ in (2.3.9).

2.3.3 Bubble dynamics
We rewrite (2.3.9) as

lim
n→∞

αnY (n) = R∗

L(φ) +
∞∑
j=1

αjξ(j)

 =: Γ(φ), a.s. (2.3.10)

where the constant R∗ is given by (2.2.7) and L(φ) is given by (2.3.6). We say that the market experiences
a bubble if Γ = Γ(φ) > 0 and a crash if Γ = Γ(φ) < 0, because in the former case Y (n) →∞ as n→∞
at an exponential rate, while in the latter Y (n) → −∞ as n→∞. We remark that Γ(φ) 6= 0 a.s. because Γ
is normally distributed with non–zero variance. Therefore only bubbles or crashes can occur when (2.2.5)
holds. In the next theorem, we analyse the dependence of the probability of a crash or bubble according to
the behaviour of the initial returns φ on the interval set of times {−N2 + 1, · · · , 0}.
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Theorem 2.3.3. Suppose that ξ obeys (2.3.2). Suppose also that β > 0, N1 and N2 are positive integers
with N1 > N2, w1 and w2 obey (2.2.1), and β obeys (2.2.5). Let Y be the solution of (2.3.1).

(i) If φ is constant, then P[Γ(φ) > 0] = 1/2.

(ii) Let Y (φ1) be the solution of (2.3.1) with initial condition φ1 and Y (φ2) be the solution of (2.3.1)
with initial condition φ2. If φ1 − φ2 is constant then

P[Γ(φ1) > 0] = P[Γ(φ2) > 0].

(iii) Let φ be such that P[Γ(φ) > 0] > 1/2. Then c 7→ P[Γ(cφ) > 0] is increasing and moreover

lim
c→∞

P[Γ(cφ) > 0] = 1, lim
c→−∞

P[Γ(cφ) > 0] = 0. (2.3.11)

(iv) Let φ be such that P[Γ(φ) > 0] < 1/2. Then c 7→ P[Γ(cφ) > 0] is decreasing and moreover

lim
c→∞

P[Γ(cφ) > 0] = 0, lim
c→−∞

P[Γ(cφ) > 0] = 1. (2.3.12)

(v) If φ is non–decreasing with φ(0) > φ(−1), then P[Γ(φ) > 0] > 1/2. Moreover c 7→ P[Γ(cφ) > 0]
is increasing and obeys (2.3.11).

(vi) If φ is non–increasing with φ(0) < φ(−1), then P[Γ(φ) > 0] < 1/2. Moreover c 7→ P[Γ(cφ) > 0] is
decreasing and obeys (2.3.12).

Before giving the proof we interpret the conclusions (i)–(vi) of the theorem. Part (i) implies that if there
is no trend in the returns on the interval set of times {−N2 + 1, · · · , 0}, then the market is equally likely
to enter a bubble or a crash. This is sensible because the traders are not able to detect a trend in the market
which might influence their decisions in one direction or another. Part (ii) suggests that it is the patterns of
the recent returns which influences the probability of a bubble rather than whether the returns are high or
low; this is emphasised by parts (v) and (vi) which show that if there is an initial upward trend in the returns
then the speculators are more likely to extrapolate this rising trend, causing a bubble to occur. On the other
hand if there is an initial downward trend in the returns, the speculators are more likely to trade in a manner
that causes this trend to be extrapolated downwards, leading to a crash. The initial poor performance of
the asset convinces positive feedback traders that informed traders believe the asset will perform poorly
in future, so they sell (or short sell) the stock. This then forces prices lower, encouraging further selling,
and the result of this downward spiral is a crash. The second part of the conclusion of parts (v) and (vi)
echo the conclusion of parts (iii) and (iv) of the theorem. Part (iii) suggests that if there is a trend in the
initial returns which makes the probability of a bubble more likely than that of a crash, an amplified version
of that trend would make a bubble even more likely to occur, with greater amplifying factors leading to
greater probabilities of a bubble. This suggests that when the traders receive stronger trending signals
from the market (even if those signals are simply noise), they are more likely to make these trends self–
fulfilling. Also, it can be seen that a mirror image of the trend which makes a bubble more likely is precisely
what makes a crash more likely. Part (iv) shows that the situation for bubbles described in part (iii) holds
symmetrically for crashes.

Theorem 2.3.3 concentrates on the impact of the initial returns on the probability of a bubble or crash.
However, this probability also depends on the properties of the summation of ξ on the righthand side of
(2.3.10). Because of this we can determine the impact of a sequence of “good news stories” about the asset
at the time shortly after trading begins. Speaking very loosely, we can interpret this as a “majority” of
the (infinitesimal) increments of ξ being positive. Since the summation on the righthand side of (2.3.10)
diminishes exponentially as time increases, it is the sign of these “initial” increments of ξ that largely
determines whether the summation assumes a positive or negative value. Therefore, initial good news about
the stock tends to result in a positive value of the summation, while initial bad news about the stock tends
to lead to a negative value of the summation. Therefore, if there is good initial news about the asset, the
price of the stock tends to increase and the traders force the price higher by misperceiving this increase as
arising from demand from informed speculators. As before, this induces further buying and the stock price
undergoes a bubble. Similarly, initial bad news tends to precipitate a crash.
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These remarks suggest that the mechanisms by which bubbles form in this model are consistent with the
notion of mimetic contagion introduced by Orléan (cf. e.g., [65]). In mimetic contagion we may think of
the market as comprising of two forms of traders, with new entrants choosing the trading strategy which
tends to dominate at a given time. In the long-run, the proportion of traders in each category settles down to
a value which is random but which depends quite strongly on what happens in the first trading periods. The
similarities with mimetic contagion are as follows: in (2.3.10), the righthand side depends crucially on the
market behaviour in the first few time periods; once a dominant trend becomes apparent, the trend following
speculators will tend to extrapolate that trend; and the longrun behaviour (either a bubble or crash) is not
known in advance.

Remark 2.3.5. To prove (i) - (iv) of the theorem we employ the property of the normal distribution to
compute the value of the probability. The proof of (v) and (vi) are similar. For (v) we write y in terms of
a function U and apply z-transforms to this ”new” equation. Using the Final Value Theorem we show this
limit is positive and hence calculate the probability of this event occurring.

Proof. To prove (i), notice that if φ(n) = R∗ for all n = −N2 + 1, · · · , 0 then the solution y of (2.3.7) is
y(n, φ) = R∗ for all n = −N2 + 1, · · · ,. Therefore limn→∞ y(n, φ)/αn = 0 and so

Γ(φ) = R∗
∞∑
j=1

αjξ(j) =: Z (2.3.13)

where Z is normally distributed with zero mean and variance R∗2
∑n
j=1 α

2j and P[Γ(φ) > 0] = P[Z >
0] = 1/2 as claimed.

For the proof of (ii), let y(φ1) be the solution of (2.3.7) with initial condition φ1 and y(φ2) be the solution
of (2.3.7) with initial condition φ2. Let z(n) := y(φ1, n) − y(φ2, n) for all n = −N2 + 1, · · · ,. Then
z(n) = c for all n = −N2 + 1, · · · , 0 and z(n+ 1)− z(n) = L(zn) for n ≥ 0. Therefore z(n) = c for all
n = 0, · · · and y(φ1, n)− y(φ2, n) = c for all n = −N2 + 1, · · · , 0. If y is the solution of (2.3.7) we may
define the operator L by

lim
n→∞

y(n, φ)/αn = L(φ) (2.3.14)

where L(φ) is defined by (2.3.6) and R∗ > 0. We note that R∗ is independent of φ. Since z(n)/αn → 0 as
n→∞, we have

L(φ1)− L(φ2) = lim
n→∞

y(φ1, n)
αn

− lim
n→∞

y(φ2, n)
αn

= 0,

and L(φ1) = L(φ2). Therefore Γ(φ1) = Γ(φ2) and (ii) is proven.
We now prove (iii). By (3.6.2) and (2.3.6) we have

Γ(φ) = L(φ) +R∗
∞∑
j=1

αjξ(j) = L(φ) + Z

where Z is defined by (2.3.13). If P[Γ(φ) > 0] > 1/2 we have

1/2 < P[Γ(φ) > 0] = P[L(φ) + Z > 0] = P[Z > −L(φ)] = 1− P[Z ≤ −L(φ)],

and L(φ) > 0. Clearly L(cφ) = cL(φ) for any c ∈ R and Γ(cφ) = cL(φ) + Z. As L(φ) > 0 we have that
c 7→ P[Γ(cφ) > 0] is increasing and

lim
c→∞

P[Γ(cφ) > 0] = 1, lim
c→−∞

P[Γ(cφ) > 0] = 0.

The proof of (iv) is similar. We now prove (v). Let y be defined by (2.3.7) where y(n) = φ(n) for all
n = −N2 + 1, · · · , 0 and y(n) = 0 for all n ≤ −N2. Define u(n) := y(n) − y(n − 1) for n ∈ Z. Then
u(n) = 0 for all n ≤ −N2 and u(n) = φ(n)− φ(n− 1) for all n = −N2 + 1, · · · , 0. Let n ≥ 0, then

u(n+ 1) = y(n+ 1)− y(n) = β

N1−1∑
j=0

w1(j)y(n− j)−
N2−1∑
j=0

w2(j)y(n− j)

 .
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Observe that y(n) :=
∑∞
n=−∞ u(n) where n ∈ Z. Then for n ≥ 0

u(n+ 1) = β

N1−1∑
j=0

w1(j)
∞∑

l=−∞

u(l)−
N2−1∑
j=0

w2(j)
∞∑

l=−∞

u(l)

 .

Now

N1−1∑
j=0

w1(j)
∞∑

l=−∞

u(l) =
∞∑

l=−∞

(n−l)∧(N1−1)∑
j=0

w1(j)

u(l)

=
−N2∑
l=−∞

(N1−1)∧(n−l)∑
j=0

w1(j)

u(l) +
−1∑

l=−N2+1

(N1−1)∧(n−l)∑
j=0

w1(j)

u(l)

+
∞∑
l=0

(N1−1)∧(n−l)∑
j=0

w1(j)

u(l).

By definition u(n) = 0 for all n ≤ −N2 and consequently
∑−N2
l=−∞

(∑(N1−1)∧(n−l)
j=0 w1(j)

)
u(l) = 0.

Then for n ≥ 0

N1−1∑
j=0

w1(j)
∞∑

l=−∞

u(l)−
N2−1∑
j=0

w2(j)
∞∑

l=−∞

u(l)

=
−1∑

l=−N2+1

(N1−1)∧(n−l)∑
j=0

w1(j)

u(l) +
∞∑
l=0

(N1−1)∧(n−l)∑
j=0

w1(j)

u(l)

−
−1∑

l=−N2+1

(N2−1)∧(n−l)∑
j=0

w2(j)

u(l)−
∞∑
l=0

(N2−1)∧(n−l)∑
j=0

w2(j)

u(l).

We define w1(j) = 0 for all j = N1 · · · , N2 − 1 and let w(n) =
∑(N1−1)∧n
j=0 w1(j) −

∑(N2−1)∧n
j=0 w2(j)

for all n ≥ 0. Then for n ≥ 0

N1−1∑
j=0

w1(j)
∞∑

l=−∞

u(l)−
N2−1∑
j=0

w2(j)
∞∑

l=−∞

u(l) =
−1∑

l=−N2+1

w(n− l)u(l) +
n∑
l=0

w(n− l)u(l)

and

u(n+ 1) = F (n) + β
n∑
l=0

w(n− l)u(l), n ≥ 0;

u(n) = φ(n)− φ(n− 1), n = −N2 + 1, . . . , 0;
u(n) = 0, n ≤ −N2

where F (n) = β
∑−1
l=−N2+1 w(n − l)u(l) for n ≥ 0. We have already noted that w(n) ≥ 0 for all

n ∈ {0, . . . , N2 − 2} and that w(n) = 0 for all n ≥ N2 − 1. Since φ is non–decreasing, it follows that
u(n) ≥ 0 for all n ≤ −1 and that u(0) = φ(0) − φ(−1) > 0 by hypothesis. Therefore for all n ≥ 0,
F (n) ≥ 0. Since w1 and w2 obey (2.2.1) and (2.2.5), there exists α ∈ (0, 1) which is the unique solution
of (2.2.6). Define λ = 1/α > 1, so that λ > 1 is given by

β
∞∑
j=0

w(j)λ−(j+1) = 1.

Applying z–transforms to

u(n+ 1) = F (n) + β
n∑
l=0

w(n− l)u(l), n ≥ 0,
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yields
ũ(z)− u(0) = z−1F̃ (z) + βz−1w̃(z)ũ(z).

Hence

ũ(z) =
u(0) + z−1F̃ (z)
1− βz−1w̃(z)

.

Define uλ(n) = u(n)/λn for n ∈ Z. Then

ũ(z) =
∞∑
n=0

( z
λ

)−n
uλ(n) = ũλ(z/λ).

and

ũλ(z) =
u(0) + λ−1z−1F̃ (λz)

1− βλ−1z−1
∑∞
n=0(λz)−nw(n)

.

Notice by the definition of λ > 1 that the denominator tends to zero as z → 1. If the limit

l1 := lim
z→1

1− z−1

1− βλ−1z−1
∑∞
n=0(λz)−nw(n)

exists and is finite, by the final value theorem for z–transforms we have

lim
n→∞

u(n)
λn

= lim
n→∞

uλ(n) = l1

(
u(0) + λ−1F̃ (λ)

)
= l1

(
u(0) + λ−1

∞∑
n=0

λ−nF (n)

)
.

Since u(0) > 0 and F (n) ≥ 0 for all n ≥ 0, if l1 > 0, then the limit is positive, and we have shown that
P[Γ(φ) > 0] > 1/2. Using L’Hôpital’s rule we obtain

l1 = lim
z→1

1− z−1

1− β
∑∞
n=0 λ

−(n+1)z−n−1w(n)

= lim
z→1

z−2

β
∑∞
n=0 λ

−(n+1)(n+ 1)z−n−2w(n)

=
1

1 + β
∑∞
n=0 λ

−(n+1)nw(n)
.

Since W (n) ≥ 0, and β and λ are positive the limit l1 is clearly positive and finite as required.

2.4 Asymptotic behaviour of the autocovariance function in the Lin-
ear Equation

In this section we prove that the autocovariance function in the linear equation is positive. This means once
a trend appears in the returns then this trend will persist. It is the continuation of this trend which underlines
the bubble/crash dynamics of the system. However, it can also be shown that this correlation decays at
an (exact and real) exponential rate. Therefore, although the market is inefficient (due to the presence of
correlation) it does not retain a “long memory” of past price trends.

2.4.1 Asymptotic behaviour of δ

In the following Lemma we prove that the rate of exponential decay of δ(n) is finite and constant where
δ(n) = r(n)− r(n− 1). This result is required for the main proof of this section. Throughout this section
we assume that

n∑
j=0

w1(j) >
n∑
j=0

w2(j) for some n ≥ 0. (2.4.1)
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Lemma 2.4.1. If (2.2.3) holds there exists α0 ∈ (0, 1) defined by

α0 = 1 + β

(
N1−1∑
k=0

α−k0 w1(k)−
N2−1∑
k=0

α−k0 w2(k)

)
(2.4.2)

such that limn→∞ δ(n)/αn0 = δ0, where δ0 > 0 is given by

δ0 =
1

1 + α−1
0 β

∑N2−1
k=1 kα−k0

(∑k
j=0 w1(j)− w2(j)

) . (2.4.3)

Proof. We assume N1 > 1. By (2.2.1a), for n ≥ N2 − 1 we have w(n) = 0. For 0 ≤ n ≤ N1 − 1, as
N1 < N2, we have w(n) =

∑n
j=0[w1(j)−w2(j)], and so by (2.2.1b), w(n) ≥ 0 for n = 0, 1, . . . , N1− 1.

Finally for N1 ≤ n ≤ N2 − 2, we have

w(n) = 1−
n∑
j=0

w2(j),

and so w(n) ≥ 0 for n = N1, . . . , N2 − 2. Hence w(n) ≥ 0 for all n ≥ 0.
The condition that β

∑∞
n=0 w(n) < 1 implies there is a unique α0 ∈ (0, 1) such that if we define

wα(n) = α−n0 w(n) we have

βα−1
0

∞∑
n=0

wα0(n) = 1.

We now show that such an α must satisfy (2.4.2). Since w(n) = 0 for all n ≥ N2 − 1 we have

βα−1
0

N2−1∑
n=0

α−n0 w(n) = 1.

Using the fact that
N2−1∑
n=j

α
−(n−j)
0 =

1− (α−1
0 )N2−j

1− α−1
0

,

and also that
∑N2−1
j=0 w1(j)− w2(j) = 0 we have

1 = βα−1
0

N2−1∑
n=0

α−n0 w(n) = βα−1
0

N2−1∑
n=0

α−n0

n∧(N2−1)∑
j=0

{w1(j)− w2(j)}

= βα−1
0

N2−1∑
n=0

α−n0

n∑
j=0

{w1(j)− w2(j)}

= βα−1
0

N2−1∑
j=0

N2−1∑
n=j

α
−(n−j)
0

α−j0 (w1(j)− w2(j))

= βα−1
0

1
1− α−1

0

N2−1∑
j=0

(1− (α−1
0 )N2−j)α−j0 (w1(j)− w2(j))

= βα−1
0

1
1− α−1

0

N2−1∑
j=0

α−j0 (w1(j)− w2(j))− (α−1
0 )N2

βα−1
0

1− α−1
0

N2−1∑
j=0

(w1(j)− w2(j))

= βα−1
0

1
1− α−1

0

N2−1∑
j=0

α−j0 (w1(j)− w2(j))

= βα−1
0

1
1− α−1

0


N1−1∑
j=0

α−j0 w1(j)−
N2−1∑
j=0

α−j0 w2(j)

 .
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By rearranging this we see that α0 ∈ (0, 1) obeys (2.4.2).
Define δα0(n) = δ(n)/αn0 for n ≥ 0. Then by dividing across (2.2.9) by αn+1

0 , we get

δα0(n+ 1) = βα−1
0

n∑
j=0

wα0(j)δα0(n− j), n ≥ 0; δα0(0) = 1.

By taking the z-transform we have

lim
n→∞

δα0(n) =
1

1 + βα−1
0

∑∞
j=0 jwα0(j)

where

βα−1
0

∞∑
j=0

wα0(j) = 1

so as wα0(n) = 0 for all n ≥ N2 − 1 we have

lim
n→∞

δ(n)/αn0 =
1

1 + βα−1
0

∑N2−1
k=1 kα−k0

{∑k
j=0 w1(j)− w2(j)

} =: δ0 > 0.

Hence δ(n)/αn0 → δ0 > 0 as n→∞.

2.4.2 Asymptotic behaviour of the autocovariance function
In this subsection, we analyse the patterns in the θ–returns, where θ > 0 in the situation where the stability
condition (2.2.3) holds. The θ–returns are simply the percentage gains or losses made by investing over a
time period of θ units, and are denoted at time n by Yθ(n). Let θ ≥ 1 and ∆ ≥ 0 be integers. Extend r to
−∞, . . . ,−N2 − 1 by setting r(n) = 0 for n ≤ −N2 − 1. If Y is the process given by (2.3.1) we define
the process Yθ = {Yθ(n) : n ≥ θ + 1} by

Yθ(n) := Y (n)− Y (n− θ), n ≥ θ + 1. (2.4.4)

Let us also introduce the sequences rθ and yθ by

rθ(n) = r(n)− r(n− θ), n ≥ 0, (2.4.5)

and
yθ(n) = y(n)− y(n− θ), n ≥ θ + 1, (2.4.6)

where r and y are the sequences given by (2.2.2) and (2.3.7) respectively. If y is the solution of (2.3.7) then
the solution Y of (2.3.1) obeys

Y (n) = y(n) +
n∑
j=1

r(n− j)ξ(j), n ≥ 1,

so we have for all n ≥ θ + 1 the identity

Yθ(n) = yθ(n) +
n∑
j=1

rθ(n− j)ξ(j), n ≥ θ + 1. (2.4.7)

Theorem 2.4.1. Let β > 0 and N2 > N1 ≥ 1 be integers. Let θ ≥ 1, ∆ ≥ 0 be integers and suppose that
w1 and w2 obey (2.2.1) and that β, w1 and w2 obey (2.2.3). Suppose also the sequence of random variables
ξ obeys (2.3.2) and let Y be the solution of (2.3.1) and Yθ is the process defined by (2.4.7). Suppose that rθ
is given by (2.4.5). Then

(i)
Cov(Yθ(n), Yθ(n+ ∆)) ≥ 0, for all n ≥ θ + 1. (2.4.8)
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(ii) For every ∆ ≥ 0 the limit

cθ(∆) := lim
n→∞

Cov(Yθ(n), Yθ(n+ ∆)) = σ2
∞∑
l=0

rθ(l)rθ(l + ∆) (2.4.9)

exists and is finite.

(iii) There exists a unique α0 ∈ (0, 1) which obeys (2.4.2) such that

lim
∆→∞

cθ(∆)α−∆
0 =

σ2(1− αθ0)(1− α−θ0 )
(1− α0)(1− α−1

0 )

× 1

1− βα0

∑N2−1
j=0 αj0w(j)

· 1

1 + α−1
0 β

∑N2−1
k=1 kα−k0

∑k
j=0 w(j)

> 0. (2.4.10)

We make some further observations and comments before the proof is given. An interesting conclusion of
the theorem is that the θ–returns are positively autocorrelated. Therefore, even though the returns undergo
iterated logarithm behaviour like standard Brownian motion, there is correlation between the increments
of the process. The presence of a positive correlation means that trends in the returns have a tendency
to persist. This is responsible for the fact that the largest fluctuations of the process Y are greater that
those that would be seen if there were no trend–following speculators present. The correlation between
returns of horizon length δ decays exponentially in the time lag ∆ between successive observations, as
∆ →∞. Moreover, the exponent in the rate of decay is independent of ∆. Therefore, although the market
is informationally inefficient because the future returns are correlated with past returns, the memory of
recent events is discounted relatively quickly. This “short memory” is a consequence of the finite memory
trading strategies employed by agents. The autocovariance function is positive because δ(n) is positive and
the limit of the autocovariance function exists and is finite because rθ(n) is bounded. Finally the exponential
rate of decay of the correlation function is calculated by employing the result of lemma 2.4.1.
Remark 2.4.1. The proof of part (i) is straightforward and no outline is given. Part (ii) is proven by using
the fact that rθ is bounded and part (iii) is proven by employing Lemma 2.4.1.

Proof. By (2.4.7), (2.3.2) and the fact that y is deterministic we have E[Yθ(n)] = yθ(n) for n ≥ θ + 1.
Therefore for n ≥ θ + 1 we have

Cov(Yθ(n), Yθ(n+ ∆)) =E

 n∑
j=1

rθ(n− j)ξ(j) ·
n+∆∑
j=1

rθ(n+ ∆− j)ξ(j)


=

n∑
j=1

n+∆∑
l=1

rθ(n− j)rθ(n+ ∆− j)E [ξ(j)ξ(l)] .

As ∆ ≥ 0 and E [ξ(j)ξ(l)] = 0 when j = l where ξ obeys (2.3.2) we have

Cov(Yθ(n), Yθ(n+ ∆)) = σ2
n∑
j=1

rθ(n− j)rθ(n+ ∆− j) = σ2
n−1∑
l=0

rθ(l)rθ(l + ∆).

Since we have extended r(n) to all negative values of n, we can consider δ(n) = 0 for all n ≤ 0 or
equivalently δ(n) = r(n)− r(n− 1) for all n ∈ Z. Hence we notice that

rθ(n) = δ(n) + δ(n− 1) + . . .+ δ(n− θ + 1). (2.4.11)

Let ∆ ≥ 1. Since δ(n) ≥ 0 for all n ∈ Z we have rθ(n) ≥ 0 for all n ≥ 0 and θ ≥ 1 as so we have that
(2.4.8) holds for all n ≥ θ + 1.

To prove part (ii) note from (2.4.11) that for each fixed θ ≥ 1, since δ(n) → 0 as n → ∞ we have
rθ(n) → 0 as n → ∞. Also as δ ∈ `1(N; R+) we have rθ ∈ `1(N; R+) for each fixed θ ≥ 1. Thus for
each ∆ ≥ 0 we can consider the limit

cθ(∆) := lim
n→∞

Cov(Yθ(n), Yθ(n+ ∆)) = σ2
∞∑
l=0

rθ(l)rθ(l + ∆).
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This limit is finite, because rθ is bounded and rθ ∈ `1(N; R+); this proves (2.4.9).
It remains to prove (2.4.10). We have shown in Lemma 2.4.1 that if (2.2.3) holds there exists α0 ∈ (0, 1)

defined by

α0 = 1 + β

(
N1−1∑
k=0

α−k0 w1(k)−
N2−1∑
k=0

α−k0 w2(k)

)
such that limn→∞ α−n0 δ(n) = δ0, where δ0 > 0 is given by

δ0 =
1

1 + α−1
0 βα

∑N2−1
j=1 kα−k0

(∑k
j=0 w1(j)− w2(j)

) ,
Therefore by (2.4.11) we have

lim
n→∞

rθ(n)
αn0

= δ0
1− α−θ0

1− α−1
0

. (2.4.12)

Since rθ ∈ `1(N; R+) and α0 ∈ (0, 1), we have that

∞∑
l=0

rθ(l)αl0 < +∞.

Now

cθ(∆)/α∆
0 = σ2

∞∑
l=0

rθ(l)αl0

(
α
−(∆+l)
0 rθ(l + ∆)− δ0

1− α−θ0

1− α−1
0

)
+ σ2

∞∑
l=0

rθ(l)αl0 · δ0
1− α−θ0

1− α−1
0

.

so as rθ is summable, by (2.4.12) we have

lim
∆→∞

cθ(∆)/α∆
0 = σ2

∞∑
l=0

rθ(l)αl0 · δ0
1− α−θ0

1− α−1
0

. (2.4.13)

Observe that rθ(0) = r(0)− r(−θ) = 1 for θ ≥ 1 so the limit on the right hand side of (2.4.13) is positive
and moreover finite by the finiteness of

∑∞
l=0 rθ(l)α

l
0. Given that δ0 > 0 obeys (2.4.3), this formula agrees

with (2.4.10).
To compute

∑∞
n=0 rθ(n)αn0 notice first from (2.4.11) that

rθ(n) =
θ−1∑
j=0

δ(n− j)

so

∞∑
n=0

rθ(n)αn0 =
∞∑
n=0

αn0

θ−1∑
j=0

δ(n− j) =
θ−1∑
j=0

αj0

∞∑
n=0

αn−j0 δ(n− j)

=
θ−1∑
j=0

αj0

∞∑
n=j

αn−j0 δ(n− j) =
θ−1∑
j=0

αj0 ·
∞∑
l=0

αl0δ(l) =
1− αθ0
1− α0

∞∑
n=0

αn0 δ(n).

Therefore by (2.4.13) we have

lim
∆→∞

cθ(∆)/α∆
0 = σ2 1− αθ0

1− α0

∞∑
n=0

αn0 δ(n) · δ0
1− α−θ0

1− α−1
0

. (2.4.14)

It remains to determine S :=
∑∞
n=0 α

n
0 δ(n). To do this, we multiply across (2.2.9) by αn+1

0 for each n ≥ 0;
thus by summing over all n we get

∞∑
n=0

αn+1
0 δ(n+ 1) = βα0

∞∑
n=0

n∑
k=0

αn−k0 w(n− k)αk0δ(k) = βα0

∞∑
j=0

αj0w(j) ·
∞∑
k=0

αk0δ(k).
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Now

S − 1 =
∞∑
j=0

αj0δ(j)− 1 =
∞∑
n=0

αn+1
0 δ(n+ 1) + α0

0δ(0)− 1 =
∞∑
n=0

αn+1
0 δ(n+ 1).

Therefore we have

S − 1 = βα0

∞∑
j=0

αj0w(j) ·
∞∑
k=0

αk0δ(k) = βα0

∞∑
j=0

αj0w(j) · S = βα0

N2−1∑
j=0

αj0w(j) · S.

Hence
∞∑
n=0

αn0 δ(n) = S =
1

1− βα0

∑N2−1
j=0 αj0w(j)

. (2.4.15)

Combining (2.4.14) and (2.4.15) we obtain

lim
∆→∞

cθ(∆)/α∆
0 = σ2 1− αθ0

1− α0
· δ0

1− α−θ0

1− α−1
0

· 1

1− βα0

∑N2−1
j=0 αj0w(j)

,

as required.

2.5 Cumulative Returns In The Nonlinear Equation
It is convenient in market models which seek to aggregate the behaviour of individual agents to assume that
agents’ demands are log linear in the price, and therefore linear in the returns. However, this assumption
derives from a particular appetite to risk, and it is certainly possible to consider different demand functions.
In this section (and also in Chapter 4) we suppose that the linear response in excess demand to the returns
is essentially preserved when the returns are large positive or negative, but not for moderate levels of the
returns. Therefore the traders have essentially log–linear demand when the market, in their opinion, is far
from equilibrium. We allow for diverse attitudes towards risk by permitting the response of demand to
returns to vary nonlinearly, allowing much greater flexibility among the investors when returns are closer
to equilibrium levels. This has the impact of allowing investors in our model to be very responsive or very
insensitive to changes in the returns when the market is relatively quiet. We do not base our models of
investor behaviour on the existence of utility functions: however, allowing g to be almost any nonlinear
function for a wide (though finite) range of returns is equivalent in the the utility framework to allowing
both risk seeking and risk aversion of widely varying degrees among the investors. For reasons of modelling
flexibility, and to test the robustness of the model to changes in hypotheses, we therefore study the following
nonlinear stochastic difference equation for n ∈ N

X(n+ 1) = X(n) +
N1−1∑
j=0

w1(j)g(X(n− j))−
N2−1∑
j=0

w2(j)g(X(n− j)) + ξ(n+ 1), (2.5.1a)

X(n) = φ(n), n = −N2 + 1, . . . , 0. (2.5.1b)

g : R → R is presumed have the following properties

g ∈ C(R; R), lim
x→∞

g(x)
x

= lim
x→−∞

g(x)
x

= β for some β ≥ 0. (2.5.2)

The preservation of the log–linear response to the returns is embodied by the second part of hypothesis
(2.5.2). In practice, we might expect g to be non–decreasing, but this hypothesis is not needed in our
proofs. We show that despite the presence of the non-linearity of g the returns undergo dynamics which are
consistent with a correlated SBM or a bubble or crash characterised by exponential growing returns.

2.5.1 Law of the iterated logarithm for nonlinear model
We now show that if the conditions of Theorem 2.3.1 hold, the a.s. partial extrema of the solution of
(2.5.1) grow exactly as those of the solution of (2.3.1). Moreover, the distance between these solutions is
asymptotically negligible relative to the size of partial extrema, which are themselves consistent with the
extrema of a random walk.
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Theorem 2.5.1. Let β > 0, N1 and N2 be positive integers with N1 > N2, w1 and w2 obey (2.2.1), β obey
(2.2.3), and g obey (2.5.2). If ξ obeys (2.3.2), and Y obeys (2.3.1), then the solution of (2.5.1) obeys

lim
n→∞

|X(n)− Y (n)|√
2n log log n

= 0, (2.5.3)

lim sup
n→∞

X(n)√
2n log log n

=
|σ|

1− β
(∑N2−1

j=0 jw2(j)−
∑N1−1
j=0 jw1(j)

) , a.s. (2.5.4)

lim inf
n→∞

X(n)√
2n log log n

= − |σ|

1− β
(∑N2−1

j=0 jw2(j)−
∑N1−1
j=0 jw1(j)

) , a.s. (2.5.5)

Remark 2.5.1. The proof of this theorem hinges on writing the nonlinear resolvent X(n) in terms of the
linear resolvent Y (n) and another function Z(n). Firstly we show that Z(n) is bounded and secondly we
show that its limit tends to zero. This enables us to conclude that the limit ofX(n) equals the limit of Y (n).

Proof. Define Z(n) = X(n)− Y (n) then

Z(n+ 1)− Z(n) =
N1−1∑
j=0

w1(j) (g(X(n− j))− βY (n− j))

−
N2−1∑
j=0

w2(j) (g(X(n− j))− βY (n− j)) .

Using that G(n+ 1) =
∑N1−1
j=0 w1(j)γ(X(n− j))−

∑N2−1
j=0 w2(j)γ(X(n− j)) and γ(x) = g(x)− βx

then

Z(n+ 1)− Z(n) = G(n+ 1) + β

N1−1∑
j=0

w1(n− j)Z(j)−
N2−1∑
j=0

w2(n− j)Z(j)

 .

For n ≥ 1,

Z(n) =
n−1∑
j=0

r(n− 1− j)G(j + 1)

=
n−1∑
j=0

r(n− 1− j)
N1−1∑
k=0

w1(k)γ(X(j − k))

−
n−1∑
j=0

r(n− 1− j)
N2−1∑
k=0

w2(k)γ(X(j − k)).

For n ≥ 2 , n ≥ N1 and letting l = j − k,

n−1∑
j=0

r(n− 1− j)
N1−1∑
k=0

w1(k)γ(X(j − k))

=
n−1∑

l=−N1+1

γ(X(l))
(N1−1)∧(n−1−l)∑

k=0∨−l

w1(k)r(n− 1− l − k)

=
−1∑

l=−N1+1

γ(X(l))
(N1−1)∧(n−1−l)∑

k=0∨−l

w1(k)r(n− 1− l − k)

+
n−1∑
l=0

γ(X(l))
(N1−1)∧(n−1−l)∑

k=0∨−l

w1(k)r(n− 1− l − k).
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Let m = n− l − 1 and define

T1(n) =
−1∑

l=−N1+1

γ(X(l))
(m)∧(N1−1)∑
k=0∨−l

w1(k)r(m− k),

then
n−1∑
j=0

r(n− 1− j)
N1−1∑
m=0

w1(m)γ(X(j −m))

= T1(n) +
1
β

n−1∑
m=0

γ(X(n−m− 1))
(N1−1)∧m∑

k=0

βw1(k)r(m− k)

= T1(n) +
N1−2∑
m=0

γ(X(n−m− 1))
(N1−1)∧m∑

k=0

w1(k)r(m− k)

+
1
β

n−1∑
m=N1−1

γ(X(n−m− 1))
N1−1∑
k=0

βw1(k)r(m− k).

Define S1(n) =
∑N1−2
m=0 γ(X(n−m− 1))

∑(N1−1)∧m
k=0 w1(k)r(m− k), then

=T1(n) + S1(n) +
1
β

n−1∑
m=N1−1

γ(X(n−m− 1))
N1−1∑
k=0

βw1(k)r(m− k).

Introducing analogous functions T2 and S2, and define f1(n) = T1(n)−T2(n), and f2(n) = S1(n)−S2(n).
Using that 1

β δ(m+ 1) =
∑N
k=0 w(k)r(m− k), where w(k) = w1(k)− w2(k)

Z(n) = f1(n) +
N2−2∑

m=N1−1

γ(X(n−m− 1))
N1−1∑
k=0

w1(k)r(m− k)

+ f2(n) +
1
β

n−1∑
m=N2−1

γ(X(n−m− 1))δ(m+ 1).

Noting that Sj(n) =
∑Nj−2
m=0 γ(X(n−m− 1))

∑m
k=0 wj(k)r(m− k), we have that

|f2(n)| ≤
N1−2∑
m=0

|γ(X(n−m− 1))|C1(m) +
N2−2∑
m=0

|γ(X(n−m− 1))|C2(m).

Letting C3 :=
∑N1−1
k=0 w1(k)r(m− k) then

|Z(n)| ≤ |f1(n)|+
N2−2∑

m=N1−1

|γ(X(n−m− 1))|C3(m)

+ |f2(n)|+ 1
β

n−1∑
m=N2−1

|γ(X(n−m− 1))|δ(m+ 1)

≤ |f1(n)|+
n−1∑
m=0

|γ(X(n−m− 1))|κ(m),

where C4 := C1 + C2 + C3, κ(m) := C4(m), m ≤ N2 − 2 and κ(m) := δ(m + 1)/β, m ≥ N2 − 1.
By (2.5.2), for each ε > 0 there is L(ε) > 0 such that |γ(x)| ≤ L(ε) + ε|x|, x ∈ R. Defining f2(n) =
|f1(n)|+ L(ε)

∑n
l=0 κ(l), we get

|Z(n)| ≤ f2(n) + ε
n∑
l=0

κ(l)|Y (n− 1− l)|+ ε
n∑
l=0

κ(l)|Z(n− 1− l)|.
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Since δ ∈ `1(N; R+), κ is summable. Moreover, as limn→∞ f1(n), limn→∞ f2(n) exists. Defining
f3(n) := f2(n) + maxj=1,...,N2−1 |Z(j)|, we have

|Z(n)| ≤ f3(n) + ε
n−1∑
j=0

κ(n− 1− j)|Y (j)|+ ε
n−1∑
j=0

κ(n− 1− j)|Z(j)| ∀ n ≥ 0.

Fix ε > 0 so that ε
∑∞
n=0 κ(n) < 1/2. Define ρ by ρ(0) = 1, ρ(n+ 1) = ε(κ ∗ ρ)(n), n ∈ N, and z by

z(n+ 1) = f3(n+ 1) + ε(κ ∗ |Y |)(n) + ε(κ ∗ z)(n) for n ∈ N,

and where z(0) = 0. Therefore |Z(n)| ≤ z(n) and

z(n) =
n∑
j=1

ρ(n− j)

(
f3(j) + ε

j−1∑
k=0

κ(j − 1− k)|Y (k)|

)
.

As ρ ∈ `1(N; (0,∞)), there is an f4 obeying limn→∞ f4(n) = 0 and |Z(n)| ≤ f4(n)+ε
∑n−1
k=0(ρ∗κ)(n−

k − 1)|Y (k)|. Therefore, from 2.3.4 and Lemma 2.7.1 it follows that

lim sup
n→∞

|Z(n)|√
2n log log n

≤ εc′
∞∑
k=0

(ρ ∗ κ)(k) = εc′
∞∑
k=0

κ(k)
1

1− ε
∑∞
k=0 κ(k)

,

where c′ > 0 is the righthand side of 2.3.4. Since ε can be taken as small as required, and the last inequality
holds pathwise, we have (2.5.3). (2.5.4) is an immediate consequence of (2.5.3) and Theorem 2.3.1.

2.5.2 Presence of bubbles and crashes in nonlinear model
Our next result shows that if the conditions of Theorem 2.5.1 hold and g obeys not only g(x) = βx+ o(x)
as |x| → ∞ but a fortiori g(x) = βx + O(|x|ν) as |x| → ∞ for some ν ∈ (0, 1), then the a.s. rate of
growth of the solution of (2.5.1) is exactly that of the solution of (2.3.1) in the sense that both αnY (n) and
αnX(n) tend to finite limits a.s. The proof of this result is inspired by an argument in [10].

Theorem 2.5.2. Let β > 0, N1 and N2 be positive integers with N2 > N1, w1 and w2 obey (2.2.1), and
β obeys (2.2.5). Suppose also that α ∈ (0, 1) is given by (2.2.6).If g obeys (2.5.2), ξ obeys (2.3.2), and X
obeys (2.5.1), then lim supn→∞ log |X(n)|/n ≤ log(1/α), a.s. If, moreover,

There exists β ≥ 0 and ν ∈ (0, 1) such that lim sup
|x|→∞

∣∣∣∣g(x)− βx

|x|ν

∣∣∣∣ < +∞ (2.5.6)

then limn→∞ αnX(n) exists and is finite a.s.

Remark 2.5.2. For this proof we write the resolvent X(n) interms of the linear deterministic equation and
varaiation of constants formula. Using this information we show that X(n) is bounded and summable.
From this we can show that lim supn→∞ log |X(n)|/n ≤ log(1/α) almost surely. Next we add on and take
away the exponential rate of growth of the characteristic equation from the modified form of X(n). Using
this new equation we show that the limit of the exponential rate of growth exists and is finite.

Proof. Now

X(n+ 1) = X(n) +
N1−1∑
j=0

w1(j)g(X(n− j))−
N2−1∑
j=0

w2(j)g(X(n− j)) + ξ(n+ 1).

But g(X) = γ(X) + βX ,

X(n+ 1) = X(n) + β

N1−1∑
j=0

w1(j)X(n− j)− β

N2−1∑
j=0

w2(j)X(n− j)

+
N1−1∑
j=0

w1(j)γ(X(n− j))−
N2−1∑
j=0

w2(j)γ(X(n− j)) + ξ(n+ 1).
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Define

F (n+ 1) =
N1−1∑
j=0

w1(j)γ(X(n− j))−
N2−1∑
j=0

w2(j)γ(X(n− j)),

then

X(n+ 1) = X(n) + β

N1−1∑
j=0

w1(j)X(n− j)− β

N2−1∑
j=0

w2(j)X(n− j)

+ F (n+ 1) + ξ(n+ 1).

If y is the solution of y(n+ 1) = y(n) + β
(∑N1−1

j=0 w1(j)y(n− j)−
∑N2−1
j=0 w2(j)y(n− j)

)
we have

X(n) = y(n) +
n∑
j=1

r(n− j)[F (j) + ξ(j)] n ≥ 1.

Let η > 0 and multiply both sides of the equation by (α/(1 + η))n, for n ≥ 1

(α/(1 + η))nX(n) = (α/(1 + η))ny(n) + (α/(1 + η))n
n∑
j=1

r(n− j)[F (j) + ξ(j)].

Define X̃(n) = (α/(1 + η))nX(n), ỹ(n) = (α/(1 + η)ny(n), r̃(n) = (α/(1 + η))nr(n) and F̃ (n) =
(α/(1 + η))nF (n),

X̃(n) = ỹ(n) + (1 + η)−n
n∑
j=1

r(n− j)αn−j · αjξ(j) +
n∑
j=1

r̃(n− j)F̃ (j),

Let x1(n) = ỹ(n) + (1 + η)−n
∑n
j=1 r(n− j)αn−j · αjξ(j) then

X̃(n) = x1(n) +
n∑
j=1

r̃(n− j)F̃ (j).

By Lemma 2.2.1 and Theorem 2.3.2, we have ỹ, r̃ ∈ `1(N; R). Moreover, as ξα is a.s. summable, x1 ∈
`1(N; R) a.s. Now, for every ε > 0, with w+(n) = w1(n)+w2(n), and using the fact that maxw+(n) = 2

|F (n+ 1)| ≤
N1−1∑
j=0

w1(j)(L(ε) + ε|X(n− j)|) +
N2−1∑
j=0

w2(j)(L(ε) + ε|X(n− j)|)

≤ 2L(ε) + ε

N2−1∑
j=0

w+(j)|X(n− j)|.

Hence

|F̃ (n+ 1)| ≤ 2L(ε)(α/(1 + η))n+1 + ε(α/(1 + η))
N2−1∑
j=0

w̃+(j)|X̃(n− j)|,

where w̃+(n) = (α/(1 + η)nw+(n). Then

|X̃(n)| ≤ |x1(n)|+ 2L(ε)
n∑
j=1

|r̃(n− j)|(α/(1 + η))j

+ ε(α/(1 + η))
n∑
j=1

|r̃(n− j)|
N2−1∑
l=0

w̃+(l)|X̃(j − 1− l)|.
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Let

x2(n) := |x1(n)|+ 2L(ε)
n∑
j=1

|r̃(n− j)|(α/(1 + η))j ,

thus

|X̃(n)| ≤ x2(n) + ε(α/(1 + η))
n∑
j=1

|r̃(n− j)|
N2−1∑
l=0

w̃+(l)|X̃(j − 1− l)|.

Let k = j − l ,

|X̃(n)| ≤ x2(n) + εα
n∑

k=−N2+2

k+N2−1∑
j=1∨k

|r̃(n− j)|w̃+(j − k)|X̃(k − 1)|.

Splitting the double summation

|X̃(n)| ≤ x2(n) + εα
0∑

k=−N2+2

k+N2−1∑
j=1

|r̃(n− j)|w̃+(j − k)|φ̃0(k − 1)|

+ εα
n∑
k=1

N2−1∑
j=0

|r̃(n− j)|w̃+(j − k)|X̃(k − 1)|.

Define x3(n) := x2(n) + εα
∑0
k=−N2+2

∑k+N2−1
j=1 |r̃(n− j)|w̃+(j − k)|φ̃0(k − 1)| and

r∗(n) =
∑N2−1
l=0 |r̃(n− l)|w̃+(l),

|X̃(n)| ≤ x3(n) + εα
n∑
k=1

r∗(n− k)|X̃(k − 1)|.

Since x3 is summable, X̃ is summable provided εα
∑∞
k=1 r̃∗(k) < 1. Since the sum is independent of

ε > 0, for every η > 0, there is a ε(η) > 0 such that X̃ is summable. Hence for each η > 0, X(n)(α/(1 +
η))n → 0 as n→∞, and so lim supn→∞ log |X(n)|/n ≤ log(1/α) on each sample path in an a.s. event.
Therefore the first assertion holds. To prove that αnX(n) tends to a finite limit, we write

αnX(n) = αny(n) +
n∑
j=1

(αn−jr(n− j)−R∗)(αjξ(j) + αjF (j))

+
n∑
j=1

R∗αjξ(j) +
n∑
j=1

R∗αjF (j).

Since rα(n) → R∗, and ξα ∈ `1(N; R), we see that the righthand side tends to a finite limit once Fα ∈
`1(N; R). Note that (2.5.6) implies that there exist c0 > 0 and c1 > 0 such that |γ(x)| ≤ c0 + c1|x|µ. Fix
η ∈ (0, (1/α)1/µ−1 − 1). Thus

αn+1|F (n+ 1)| ≤ 2c0αn+1 + c1

N2−1∑
j=0

w+(j)|X̃(n− j)|µ(α/(1 + η))−µ(n−j)αn+1

= c1α

N2−1∑
j=0

w+(j)(α/(1 + η))µj |X̃(n− j)|µ(α1−µ/(1 + η)−µ)n

+ 2c0αn+1.

Since X̃ is bounded, there is a finite random variable C5 such that

αn+1|F (n+ 1)| ≤ 2c0αn+1 + C5(η)α′(η)n,

where α′(η) := α1−µ/(1 + η)−µ ∈ (0, 1). Hence Fα ∈ `1(N; R), and so αnX(n) tends to an a.s. finite
limit, a.s.
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2.6 Large Deviations Of The Incremental Returns
In what follows, we find it convenient to introduce for ∆ ∈ N the process ξ∆ given by

ξ∆(n+ 1) =
n∑

j=n−∆+1

ξ(j + 1). (2.6.1)

We presume in this section that each variate in the process ξ has polynomially decaying distribution function
F .

There exists µ > 0, c+, c− > 0 such that lim
x→∞

(1− F (x))xµ = c+, lim
x→∞

F (−x)|x|µ = c−. (2.6.2)

Since the ξ’s are independent, we may apply the Borel–Cantelli lemma to establish the size of the largest
fluctuations of the processes ξ and ξ∆.

Lemma 2.6.1. Suppose that ξ obeys (2.3.2) and (2.6.2).

(i) Let γ− : N → (0,∞) be a sequence such that

∞∑
n=1

γ−µ− (n) = ∞. (2.6.3)

Then lim supn→∞ |ξ(n)|/γ−(n) = ∞, a.s. and for each ∆ ∈ N, if ξ∆ is the process defined in
(2.6.1), we have lim supn→∞ |ξ∆(n∆)|/γ−(n) = ∞, a.s.

(ii) Let γ+ : N → (0,∞) be a sequence such that

∞∑
n=1

γ−µ+ (n) < +∞ (2.6.4)

Then lim supn→∞ |ξ(n)|/γ+(n) = 0, a.s. and for each ∆ ∈ N, if ξ∆ is the process defined in (2.6.1),
we have lim supn→∞ |ξ∆(n)|/γ+(n) = 0, a.s.

Proof. Apart from the claim that lim supn→∞ |ξ∆(n∆)|/γ−(n) = ∞, a.s., the other claims are straightfor-
ward consequences of the Borel–Cantelli lemma and (2.6.2), (2.6.3) and (2.6.4). We prove the remaining
claim. Let ∆ ∈ N and define

ζ∆(n) := ξ∆(n∆) =
n∆∑

j=(n−1)∆+1

ξ(j + 1).

Then, (ζ∆(n))n≥1 is a sequence of independently and identically distributed random variables. Since F is
the distribution function of ξ(·) and the ξ’s are independent, for any c > 0 we have

P[|ζ∆(n)| > cγ−(n)] = 1− F (?∆)(cγ−(n)) + 1− F
(?∆)
− (cγ−(n))

where F− is the distribution function of −ξ(·), and F (?∆), F (?∆)
− are the ∆–fold convolutions of F and

F−, respectively. By (2.6.2), (1 − F (x))xµ → c+ and (1 − F−(x))xµ = F (−x)xµ → c− as x → ∞.
Thus the right tail 1−F (resp. 1−F−) of the distribution F (resp. F−) is regularly varying at infinity (see
below for a definition), implying that

lim
x→∞

1− F (?∆)(x)
1− F (x)

= ∆, lim
x→∞

1− F
(?∆)
− (x)

1− F−(x)
= ∆,

by appealing to e.g., Feller [34, Chapter VIII.8, p.279]. Since γ−(n) →∞ as n→∞, we have

lim
n→∞

1− F (?∆)(cγ−(n))
γ−(n)−µ

=

lim
n→∞

1− F (?∆)(cγ−(n))
1− F (cγ−(n))

· 1− F (cγ−(n))
(cγ−(n))−µ

· c−µ = ∆c+c−µ.

34



Similarly limn→∞(1− F
(?∆)
− (cγ−(n))/γ−(n)−µ = ∆c−c−µ. Hence

P[|ζ∆(n)| > cγ−(n)]/γ−(n)−µ → ∆c+c−µ + ∆c−c−µ as n→∞,

and so, by (2.6.3),
∑∞
n=1 P[|ζ∆(n)| > cγ−(n)] = ∞ for all c > 0. Therefore, by the Borel–Cantelli lemma

and the independence of (ζ∆(n))n≥1, we have that lim supn→∞ |ζ∆(n)|/γ−(n) ≥ c a.s. Letting c → ∞
through the integers gives lim supn→∞ |ζ∆(n)|/γ−(n) = ∞ a.s., which is the required result.

It is possible for m ∈ N to choose functions γ−,m and γ+,m which obey these properties, for example

γ−,1(n) = [n log n]1/α, . . . γ−,m(n) =

n m∏
j=1

logj n

1/α

(2.6.5a)

γ+,1(n) = [n(log n)1+ε]1/α, . . . , γ+,m(n) =

nm−1∏
j=1

logj n · (logm n)1+ε

1/α

, (2.6.5b)

where ε > 0 is arbitrary, and we have used for x > 0 and j ∈ N the recursive notation logj to signify the
iterated composition of the natural logarithm function, according to log1 x := log x, logj x = log(logj−1 x)
for j ≥ 2.

2.6.1 Large fluctuations of the incremental returns in the linear model
Under the condition (2.6.2) on ξ, we determine for ∆ ∈ N the size of the largest fluctuations of the ∆–
returns process Y∆ = {Y∆(n) : n ≥ −N2 + 1 + ∆} where and Y is the process defined by (2.3.1)
and

Y∆(n) = Y (n)− Y (n−∆). (2.6.6)

Before stating our main result on the rate of growth of the a.s. partial maxima of Y∆, we recall (see e.g.,
Feller [34, Chapter VIII]) that h : [0,∞) → R is regularly varying at infinity (with index η ∈ R) if for all
λ > 0 we have limx→∞ h(λx)/h(x) = λη. Furthermore, if h is regularly varying, then limx→∞ h(x −
1)/h(x) = 1.

Theorem 2.6.1. Let β > 0, N1 and N2 be positive integers with N2 > N1, w1 and w2 obey (2.2.1), β obey
(2.2.3). Let ξ obey (2.3.2) and (2.6.2), and Y∆ obey (2.6.6).

(i) If γ− is regularly varying at infinity and obeys (2.6.3), then for every ∆ ∈ N,
lim supn→∞ |Y∆(n)|/γ−(n) = ∞ a.s.

(ii) If γ+ is regularly varying at infinity and obeys (2.6.4), then for every ∆ ∈ N,
lim supn→∞ |Y∆(n)|/γ+(n) = 0 a.s.

Remark 2.6.1. To begin the proof we rewrite Y∆(n) using Lemma 2.6.2. Combining part (i) of Lemma 2.6.1
with a contradiction argument we prove part (i) of the theorem. For the second part of the proof we write
Y∆(n) in terms of the determinstic equation and an alternative equation (which is defined in the proof) and
by employing Lemma 2.7.1 we prove part (ii).

We notice that the examples of functions γ+ and γ− in (2.6.5) which obey (2.6.4) and (2.6.3) are both
regularly varying at infinity with index 1/µ > 0. These sequences show that it is possible to determine the
rate of growth of the a.s. partial maxima of Y∆ to within an arbitrary iterated logarithmic factor. Moreover,
the a.s. upper and lower bounds on the rate of growth of the partial maxima are exactly the same as
those which apply to the innovation (or “news”) process ξ. The key to the proof of Theorem 2.6.1 is
the development of a linear difference equation for the ∆–increment, where ∆ ∈ N. Let N ∈ N and
a = {a(j) : j = 0, 1, . . . , N − 1} be a real sequence. We consider

V (n+ 1) = V (n) +
N−1∑
j=0

a(k)V (n− k) + ξ(n+ 1), n ≥ 0. (2.6.7)

and its ∆–increment V∆(n) = V (n)− V (n−∆).
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Lemma 2.6.2. Suppose a obeys
∑N−1
k=0 a(k) = 0. Define A(n) =

∑N−2
j=0 a(k), n = 0, . . . , N − 2. If ξ∆

is defined by (2.6.1), and V by (2.6.7), then V∆ given by V∆(n) = V (n)− V (n−∆) obeys V∆(n+ 1) =∑N−2
k=0 A(k)V∆(n− k) + ξ∆(n+ 1).

This is a special case of Lemma 2.6.3, which is stated and proved in the next section.

Proof of Theorem 2.6.1. We note that Lemma 2.6.2 applies to Y∆, where N = N2 and

a(j) =
{
β(w1(j)− w2(j)), j = 0, . . . , N1 − 1

−βw2(j), j = N1, . . . , N2 − 1,

We let A(j) =
∑j
k=0 a(k) for j = 0, . . . , N − 2. We prove part (i) of the theorem first. Suppose that the

event B∆ defined by B∆ = {ω : lim supn→∞ |Y∆(n, ω)|/γ−(n) < ∞} has positive probability. By part
(i) of Lemma 2.6.1 and the fact that γ− is regularly varying and obeys (2.6.3) we have

lim sup
n→∞

|ξ∆(n∆)|
γ−(n∆)

= lim sup
n→∞

|ξ∆(n∆)|
γ−(n)

· γ−(n)
γ−(n∆)

= ∞, a.s. (2.6.8)

Since Y∆ obeys

Y∆(n+ 1) =
N−2∑
k=0

A(k)Y∆(n− k) + ξ∆(n+ 1) (2.6.9)

which rearranges to give ξ∆(n+ 1) = Y∆(n+ 1)−
∑N−2
k=0 A(k)Y∆(n− k), we have

|ξ∆(n∆)|
γ−(n∆)

≤ |Y∆(n∆)|
γ−(n∆)

+
N−2∑
k=0

|A(k)| |Y∆(n∆− 1− k)|
γ−(n∆− 1− k)

· γ−(n∆− 1− k)
γ−(n∆)

.

For ω ∈ B∆ there exists a finite C(∆, ω) := lim supn→∞ |Y∆(n, ω)|/γ−(n). Since γ− is regularly
varying, for each j ∈ N we have γ(n− j)/γ(n) → 1 as n→∞. Therefore

lim sup
n→∞

|ξ∆(n∆)|
γ−(n∆)

≤ C(∆) +
N−2∑
k=0

|A(k)|C(∆) <∞,

on B∆, which contradicts (2.6.8). Therefore the complement of B∆ is an almost sure event and part (i) is
proven. To prove part (ii), define % by

%(n+ 1) =
N−2∑
j=0

A(j)%(n− j) for n ≥ 0

with %(0) = 1 and %(n) = 0 for n = −N + 1, . . . ,−1. With a and A defined in terms of w1 and w2 above,
the condition (2.2.3) implies that % ∈ `1(N, (0,∞)). By (2.6.9), we have

Y∆(n) = y∆(n) +
n∑
j=1

%(n− j)ξ∆(j) for n ≥ 1,

where y∆ is a deterministic sequence which, on account of %(n) → 0 as n → ∞ obeys y∆(n) → 0 as
n → ∞. Since γ+ obeys (2.6.4), we have γ+(n) → ∞ as n → ∞. Therefore, as γ+ is regularly varying
at infinity, there exists an increasing γ∗ such that γ+(n)/γ∗(n) → 1 as n → ∞. Since γ∗ is also regularly
varying at infinity, it follows that γ∗(n − 1)/γ(n) → 1 as n → ∞. Therefore, by Lemma 2.7.1, and the
fact that ξ∆(n)/γ+(n) → 0 as n → ∞ a.s., we have that (% ∗ ξ∆)(n)/γ+(n) → 0 as n → ∞ a.s., and so
Y∆(n)/γ+(n) → 0 as n→∞ a.s., as required.
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2.6.2 Large fluctuations of the incremental returns in the nonlinear model
Under the condition (2.6.2) on ξ, we now determine for ∆ ∈ N the size of the largest fluctuations of the
∆–returns process X∆ = {X∆(n) : n ≥ −N2 + 1 + ∆} where

X∆(n) = X(n)−X(n−∆) (2.6.10)

and X is the process defined by (2.5.1). In this case, in addition to (2.5.2), we require that the function g
obeys

There exists K > 0 such that |g(x)− g(y)| ≤ K|x− y|, for all x, y ∈ R. (2.6.11a)

lim
δ→∞

sup
x,y∈R:|x−y|≥δ

∣∣∣∣g(x)− g(y)
x− y

− β

∣∣∣∣ = 0. (2.6.11b)

Theorem 2.6.2. Let β > 0, N1 and N2 be positive integers with N1 > N2, w1 and w2 obey (2.2.1), β obey
(2.2.3). Suppose that g obeys (2.5.2) and (2.6.11). Let ξ obey (2.3.2) and (2.6.2), and X∆ obey (2.6.10).

(i) If γ− is regularly varying at infinity and obeys (2.6.3), then for every ∆ ∈ N,
lim supn→∞ |X∆(n)|/γ−(n) = ∞ a.s.

(ii) If γ+ is regularly varying at infinity and obeys (2.6.4), then for every ∆ ∈ N,
lim supn→∞ |X∆(n)|/γ+(n) = 0 a.s.

Remark 2.6.2. Part (i) of the theorem is proved by contradiction. To prove part (ii) we let X∆(n) =
Y∆(n) + Z∆(n) as with the previous nonlinear theorem . We show that Z∆(n) is bounded and hence
lim supn→∞ |Z∆(n)|/γ+(n) = 0 almost surely. As this is also the case for Y∆(n) then lim supn→∞ |X∆(n)|/γ+(n) =
0 almost surely.

As in the linear case, the a.s. upper and lower bounds on the rate of growth of the partial maxima of X∆

are exactly the same as those which apply to the innovation (or “news”) process ξ. Also, we notice that
the same functions γ− and γ+ are lower and upper bounds on the rate of growth of the large fluctuations
regardless of the value of ∆. The key to this proof is the development of a difference equation for the
∆–increment, where ∆ ∈ N. Let N ∈ N and a = {a(j) : j = 0, 1, . . . , N − 1} be a real sequence. We
consider

W (n+ 1) = W (n) +
N−1∑
k=0

a(k)g(W (n− k)) + ξ(n+ 1), n ≥ 0, (2.6.12)

W (n) = ψ(n), n ≤ 0, (2.6.13)

and its ∆–increment W∆(n) = W (n)−W (n−∆).

Lemma 2.6.3. Suppose that a is a sequence obeying
∑N−1
k=0 a(k) = 0. Define A(n) =

∑N−2
j=0 a(k) for

n = 0, . . . , N − 2. If ξ∆ is the process defined by (2.6.1), and W the process defined by then W∆ defined
by W∆(n) = W (n)−W (n−∆) obeys

W∆(n+1) =
N−2∑
k=0

A(k) {g(W (n− k))− g(W (n−∆− k))}+ ξ∆(n+1), n ≥ N +∆−1. (2.6.14)

Proof. Let n′ ≥ N − 1, then,

n′∑
n=0

W (n+ 1) =
n′∑
n=0

W (n) +
n′∑
n=0

N−1∑
k=0

a(k)g(W (n− k)) +
n′∑
n=0

ξ(n+ 1)

W (n′ + 1)−W (0) =
N−1∑
k=0

a(k)
n′∑
n=0

g(W (n− k)) +
n′∑
n=0

ξ(n+ 1)

=
N−1∑
k=0

a(k)
n′−k∑
l=−k

g(W (l)) +
n′∑
n=0

ξ(n+ 1)

=
N−1∑
k=0

a(k)
−1∑
l=−k

g(φ(l)) +
N−1∑
k=0

a(k)
n′−k∑
l=0

g(W (l)) +
n′∑
n=0

ξ(n+ 1).
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Letting I =
∑N−1
k=0 a(k)

∑−1
l=−k g(ψ(l)) +W (0),

W (n′ + 1) =
N−1∑
k=0

a(k)
n′−k∑
l=0

g(W (l)) + I +
n′∑
j=0

ξ(j + 1), n′ ≥ N − 1.

Therefore for n ≥ N + ∆− 1, we have that

W∆(n+ 1) = W (n+ 1)−W (n−∆ + 1)

=
N−1∑
k=0

a(k)
n−k∑
l=0

g(W (l)) + I +
n∑
j=0

ξ(j + 1)

−

N−1∑
k=0

a(k)
n−k−∆∑
l=0

g(W (l)) + I +
n−∆∑
j=0

ξ(j + 1)


=
N−1∑
k=0

a(k)
n−k∑

l=n−∆−k+1

g(W (l)) + ξ∆(n+ 1)

=
n∑

l=n−N−∆+2

(N−1)∧(n−l)∑
k=0∨(n−l−∆+1)

a(k)g(W (l)) + ξ∆(n+ 1).

Consider now the case when ∆ ≥ N .Letting l = n− j, then the first term on the righthand side of the last
member in the above identity is

N+∆−2∑
j=0

(N−1)∧j∑
k=0∨(j−∆+1)

a(k)g(W (n− j))

=
N−2∑
j=0

j∑
k=0

a(k)g(W (n− j)) +
∆−1∑
j=N−1

N−1∑
k=0

a(k)g(W (n− j))

+
N+∆−2∑
j=∆

N−1∑
k=j−∆+1

a(k)g(W (n− j)).

The middle term is zero as
∑N−1
k=0 a(k) = 0. Since A(j) =

∑j
k=0 a(k) and∑N−1

k=j−∆+1 a(k) =
∑N−1
k=0 a(k)−

∑j−∆
k=0 a(k) = −A(j −∆), we have

N+∆−2∑
j=0

(N−1)∧j∑
k=0∨(j−∆+1)

a(k)g(W (n− j))

=
N−2∑
j=0

A(j)g(W (n− j))−
N+∆−2∑
j=∆

A(j −∆)g(W (n− j))

=
N−2∑
j=0

A(j) (g(W (n− j))− g(W (n− j −∆))) .

This is the first term on the righthand side of (2.6.14), and hence proves (2.6.14) in the case where ∆ ≥ N .
When N > ∆, we have

N+∆−2∑
j=0

(N−1)∧j∑
k=0∨(j−∆+1)

a(k)g(W (n− j))

=
∆−1∑
j=0

j∑
k=0

a(k)g(W (n− j)) +
N−1∑
j=∆

j∑
k=j−∆+1

a(k)g(W (n− j))

+
N+∆−2∑
j=N

N−1∑
k=j−∆+1

a(k)g(W (n− j)),
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and so

N+∆−2∑
j=0

(N−1)∧j∑
k=0∨(j−∆+1)

a(k)g(W (n− j))

=
∆−1∑
j=0

A(j)g(W (n− j)) +
N−1∑
j=∆

(A(j)−A(j −∆))g(W (n− j))

−
N+∆−2∑
j=N

A(j −∆)g(W (n− j))

=
N−1∑
j=0

A(j)g(W (n− j))−
N+∆−2∑
j=∆

A(j −∆)g(W (n− j))

=
N−1∑
j=0

A(j)g(W (n− j))−
N−2∑
j=0

A(j)g(W (n− j −∆)).

As A(j) = 0 for j > N − 2 then the above is equal to the first term on the righthand side of (2.6.14), and
hence proves (2.6.14) in the case where ∆ < N . Since the case ∆ ≥ N has already been dealt with, the
proof is complete.

To prove lemma 2.6.2 we substitute W (n + 1) = W (n) +
∑N−1
k=0 a(k)g(W (n − k)) + ξ(n+ 1) in the

above proof for V (n+ 1) = V (n) +
∑N−1
k=0 a(k)V (n− k) + ξ(n+ 1) and follow line for line.

Proof of Theorem 2.6.2. The result of Lemma 2.6.3 applies to the processX in (2.5.1) and the ∆–increment
X∆. With N := N2, a defined by a(j) = w1(j) − w2(j) for j = 0, . . . , N1 − 1, a(j) = −w2(j) for
j = N1, . . . , N2 − 1 and A(j) =

∑j
k=0 a(k) for j = 0, . . . , N − 2, we have

X∆(n+ 1) =
N−2∑
j=0

A(j) (g(X(n− j))− g(X(n−∆− j))) + ξ∆(n+ 1), n ≥ N + ∆− 1. (2.6.15)

To prove part (i), we rearrange (2.6.15) and use (2.6.11a) to get

|ξ∆(n+ 1)| ≤ |X∆(n+ 1)|+K

N−2∑
j=0

|A(j)||X∆(n− j)|.

we have

|ξ∆(n∆)|
γ−(n∆)

≤ |X∆(n∆)|
γ−(n∆)

+K
N−2∑
j=0

|A(j)| |X∆(n∆− 1− j)|
γ−(n∆− 1− j)

· γ−(n∆− 1− j)
γ−(n∆)

.

For ω ∈ B∆, there exists a finite C(∆, ω) := lim supn→∞ |X∆(n, ω)|/γ−(n). Since γ− is regularly
varying, for each j ∈ N we have γ(n− j)/γ(n) → 1 as n→∞. Therefore

lim sup
n→∞

|ξ∆(n∆)|
γ−(n∆)

≤ C(∆) +K

N−2∑
k=0

|A(k)|C(∆) <∞,

on B∆, which contradicts (2.6.8). Therefore the complement of B∆ is an almost sure event, and part (i) is
proven. To prove part (ii) we use that g(X) = βX + γ(X) and we notice that (2.6.11b) implies

lim
δ→∞

sup
x,y∈R:|x−y|≥δ

∣∣∣∣γ(x)− γ(y)
x− y

∣∣∣∣ = 0.

Therefore, for every ε > 0 there is a δ(ε) > 0 such that |γ(x)−γ(y)| < ε|x−y| once |x−y| > δ(ε). Using
(2.6.11a), we find that |γ(x)− γ(y)| < (|β|+K)δ(ε) for all |x− y| ≤ δ(ε). With L∗(ε) = (|β|+K)δ(ε),
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we have |γ(x)− γ(y)| ≤ L∗(ε) + ε|x− y| for all x, y ∈ R. Therefore, for n ≥ N + ∆− 1, from (2.6.15)
we have

X∆(n+ 1) =
N−2∑
j=0

A(j) (g(X(n− j))− g(X(n−∆− 1))) + ξ∆(n+ 1)

=
N−2∑
j=0

A(j) (g(X∆(n− j))) + ξ∆(n+ 1)

= β
N−2∑
j=0

A(j) (βX∆(n− j) + γ(X∆(n− j))) + ξ∆(n+ 1)

=
N−2∑
j=0

βA(j)X∆(n− j) + F (n+ 1) + ξ∆(n+ 1), n ≥ N + ∆− 1,

where F (n+ 1) =
∑N−2
j=0 A(j) (γ(X(n− j))− γ(X(n−∆− j))). Hence for every ε > 0 we have

|F (n+ 1)| ≤
N−2∑
j=0

|A(j)| (L∗(ε) + ε|X∆(n− j)|) .

Define Z∆(n) = X∆(n)− Y∆(n) where Y∆ is given by
Y∆(n) =

∑N−2
j=0 βA(j)Y∆(n− j) + ξ∆(n+ 1), and so Y∆ is the process in Theorem 2.6.1. The condition

(2.2.3) therefore implies that limn→∞ Y∆(n)/γ+(n) = 0 a.s. Moreover,

Z∆(n+ 1) =
N−2∑
k=0

A(k)g(X∆(n− k)) + ξ∆(n+ 1)− β

N−2∑
k=0

A(k)Y∆(n− k)− ξ∆(n+ 1)

=
N−2∑
k=0

A(k) (g(X∆(n− k))− βY∆(n− k))

=
N−2∑
k=0

A(k) (βX∆(n− k)− βY∆(n− k)) +
N−2∑
k=0

A(k)γ(X∆(n− k))

=
N−2∑
j=0

βA(j)Z∆(n− j) + F (n+ 1), n ≥ N + ∆− 1.

The fact that X∆ = Z∆ + Y∆ implies that

|F (n)| ≤ L∗(ε)
N−2∑
j=0

|A(j)|+ ε
N−2∑
j=0

|A(j)||Y∆(n− 1− j)|+ ε
N−2∑
j=0

|A(j)||Z∆(n− 1− j)|.

Introducing %β as the solution of %β(n+ 1) =
∑N−2
j=0 βA(j)%β(n− j), n ≥ 0, with %β(0) = 1, %β(n) = 0

for n = −N + 2, . . . ,−1, then

Z∆(n) = z∆(n) +
n∑

j=N+∆−1

%β(n− j)F (j) for n ≥ N + ∆− 1.

The condition (2.2.3) implies that %β is summable (it is nothing other than δ in Lemma 2.2.1), so z∆(n) → 0
as n→∞. Since Y∆(n)/γ+(n) → 0 as n→∞ a.s., we have that

|Z∆(n)| ≤ u∆(n) + ε
n∑

j=N+∆−1

%β(n− j)
N−2∑
k=0

|A(k)||Z∆(j − 1− k)|, n ≥ N + ∆− 1,
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where

u∆(n) =

z∆(n) +
n∑

j=N+∆−1

%β(n− j)

(
L∗(ε)

N−2∑
k=0

|A(k)|+ ε
N−2∑
k=0

|A(k)||Y∆(n− 1− k)|

)
,

and u∆(n)/γ+(n) → 0 as n→∞ a.s. By taking ε > 0 sufficiently small and observing that %β ∈ `1(N,R),
an argument similar to that used at the end of the proof of Theorem 2.5.1 shows that Z∆(n)/γ+(n) → 0 as
n→∞ a.s., and hence that X∆ = Y∆ + Z∆ obeys X∆(n)/γ+(n) → 0 as n→∞ a.s.

2.7 Supporting Lemmas
The following Lemma is used in the proof of Theorem 2.3.1, Theorem 2.5.1, Theorem 2.6.1 and Theo-
rem 2.6.2. It enables us to find the growth rate of a moving average of a slowly increasing function.

Lemma 2.7.1. Let γ be positive and increasing with γ(n − N)/γ(n) → 1, as n → ∞, for all N ∈ N.
If k = {k(n) : n ∈ N} is non–negative with

∑∞
n=0 k(n) ∈ (0,∞), then limn→∞(k ∗ γ)(n)/γ(n) =∑∞

n=0 k(n).

Proof. Without loss of generality, let
∑∞
n=0 k(n) = 1. For every ε > 0 there is N > 0 such that∑∞

j=N+1 k(j) < ε/2. For n ≥ N + 1, we have

(k ∗ γ)(n)
γ(n)

−
n∑
j=0

k(j) =
n∑
j=0

(
k(j)γ(n− j)

γ(n)

)
−

N∑
j=0

k(j)

=
N∑
j=0

k(j)γ(n− j)
γ(n)

−
N∑
j=0

k(j) +
n∑

j=N+1

k(j)γ(n− j)
γ(n)

−
n∑
j=0

k(j)

=
N∑
j=0

k(j)
(
γ(n− j)
γ(n)

− 1
)

+
n∑

j=N+1

k(j)
(
γ(n− j)
γ(n)

− 1
)
.

Now as γ is an increasing sequence,∣∣∣∣∣∣
N∑
j=0

k(j)
γ(n− j)
γ(n)

− 1

∣∣∣∣∣∣ ≤
N∑
j=0

k(j)
∣∣∣∣γ(n− j)
γ(n)

− 1
∣∣∣∣

≤ max
0≤j≤N

∣∣∣∣γ(n− j)
γ(n)

− 1
∣∣∣∣

= max
0≤j≤N

∣∣∣∣γ(n− j)− γ(n)
γ(n)

∣∣∣∣
= max

0≤j≤N

(
1− γ(n− j)

γ(n)

)
= 1− γ(n−N)

γ(n)
.

Also ∣∣∣∣∣∣
n∑

j=N+1

k(j)
(
γ(n− j)
γ(n)

− 1
)∣∣∣∣∣∣ ≤

n∑
j=N+1

k(j)
∣∣∣∣γ(n− j)
γ(n)

− 1
∣∣∣∣

≤
n∑

j=N+1

k(j)
(
γ(n− j)
γ(n)

− 1
)

≤ 2
n∑

j=N+1

k(j) ≤ 2
∞∑

j=N+1

k(j).
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Thus ∣∣∣∣∣∣
n∑
j=0

k(j)γ(n− j)
γ(n)

−
n∑
j=0

k(j)

∣∣∣∣∣∣ ≤
(

1− γ(n−N)
γ(n)

)
+ 2

∞∑
j=N+1

k(j).

Using γ(n−N)/γ(n) → 1, and then letting ε→ 0 yields the result.

The following Lemma shows that the difference equation as defined below satisfies the variation of
constants formula. This result is used in the proof of the Law of the Iterated Logarithm.

Lemma 2.7.2. DefineZ(n+1)−Z(n) = G(n+1)+β
(∑N1−1

j=0 w1(j)Z(n− j)−
∑N2−1
j=0 w2(j)Z(n− j)

)
;

Then

Z(n) =
n−1∑
j=0

r(n− 1− j)G(j + 1), n ≥ 1 (2.7.1)

Proof. For n ≥ 1, suppose that Z(n) =
∑n−1
j=0 r(n− 1− j)G(j + 1) then

Z(n+ 1)− Z(n) = G(n+ 1) + β

N1−1∑
j=0

w1(j)Z(n− j)−
N2−1∑
j=0

w2(j)Z(n− j)

 ,

yields

n∑
j=0

r(n− j)G(j + 1)−
n−1∑
j=0

r(n− 1− j)G(j + 1) = G(n+ 1)

+β

N1−1∑
k=0

w1(k)
n−1−k∑
j=0

r(n− k − 1− j)G(j + 1)−
N2−1∑
k=0

w2(k)
n−1−k∑
j=0

r(n− k − 1− j)G(j + 1)

 .

Now

n∑
j=0

r(n− j)G(j + 1)−
n−1∑
j=0

r(n− 1− j)G(j + 1) = G(n+ 1)

+
n−1∑
j=0

(r(n− j)− r(n− 1− j))G(j + 1).

According to equation (2.2.2)

r(n− j)− r(n− j − 1) = β

(
N1−1∑
k=0

w1(k)r(n− j − k − 1)−
N2−1∑
k=0

w2(k)r(n− j − k − 1)

)
,

then

G(n+ 1) +
n−1∑
j=0

(r(n− j)− r(n− 1− j))G(j + 1) = G(n+ 1)

+
n−1∑
j=0

β

(
N1−1∑
k=0

w1(k)r(n− j − k)−
N2−1∑
k=0

w2(k)r(n− j − k)

)
.

As both sides of the equation are equal we have (2.7.1) as required.

In Theorem 2.5.1 we write the nonlinear resolventX(n) in terms of the linear resolvent Y (n) and another
resolvent Z(n). The following Lemma shows Z(n) is bounded.
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Lemma 2.7.3. Suppose Z and z are sequences defined by

Z(n) ≤ F (n) +
n−1∑
j=0

a(n− 1− j)Z(j), n ≥ 1 (2.7.2)

z(n) = F (n) +
n−1∑
j=0

a(n− 1− j)z(j), n ≥ 1 (2.7.3)

where Z(0) ≤ z(0) and z(n) ≥ 0. Then z(n) ≥ Z(n).

Proof. Define ∆(n) = z(n)− Z(n), n ≥ 0. Then ∆(0) ≥ 0.

∆(n) = z(n)− Z(n)

≥
n−1∑
j=0

a(n− 1− j) (z(j)− Z(j))

=
n−1∑
j=0

a(n− 1− j)∆(j).

Suppose ∆(j) ≥ 0 for all j = 0, · · · , n− l. This is true for n = 1. But by the previous equation
∆(n) ≥ 0. Hence the result is true by induction.
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Chapter 3

An Affine Stochastic Functional Differential Equation
model of an Inefficient Financial Market

3.1 Introduction
In the previous chapter we examined in detail the long–run behaviour of a discrete–time inefficient financial
market in which the returns were governed by the demand of trend–following speculators. In particular
we showed that the market can either exhibit a kind of (positively) correlated random walk or experience a
bubble or crash, characterised by exponential growth in the returns. It is therefore interesting to ask whether
these results are peculiar to discrete–time models or whether an analogous modelling of the speculators’
behaviour in continuous–time would lead to similar dynamics in the returns. In this chapter we answer
this question in the affirmative. Roughly speaking it is shown that the returns follow a kind of positively
correlated SBM or undergo exponential growth. The condition under which these two possibilities arise
are directly comparable to the mathematical conditions and financial interpretation under which these occur
in the discrete–time model. In other words the results of the model are not only robust to the absence of
exact linearity of the speculators demand function but also to the time scale on which trading takes place.
Taken together with evidence form the following two chapters we see that the presence of trend–following
speculators tends to lead to excess volatility or to bubbles or crashes independently of the precise model
used.

To capture this mathematically we model the returns using a SFDE. Trading is now assumed to take place
continuously as opposed to occurring at fixed (and uniformly spaced) points in time.Once again the returns
respond to imbalances in the demand of speculators. This demand, as in the previous chapter depends
on the difference between a short–run and long–run weighted average of the cumulative returns over the
previous τ units of time. This planned ex-ante demand is supplemented by expost and unplanned demand
which depends on ”news” which reaches the speculators. In the time–honored fashion of continuous time
modelling this cumulative news process is modelled by a scalar SBM. We suppose that the price adjustment
at time t for a market with N traders is given by

dY (t) = α

N∑
j=1

βj

(∫
[−θj ,0]

Y (t+ u)sj(du)−
∫

[−τj ,0]

Y (t+ u)lj(du)

)
dt+ σ dB(t). (3.1.1)

Here sj and lj are finite measures, representing the short– and long–run weights that trader j uses to form
their demand schedule. βj > 0, α > 0 and σ are constants. This is equivalent to the linear stochastic
functional differential equation

Y (t) = ψ(0) +
∫ t

0

L(Ys) ds+
∫ t

0

σ dB(s), t ≥ 0, (3.1.2a)

Y (t) = φ(t), t ∈ [−τ, 0]. (3.1.2b)

where L : C[−τ, 0] → R is a linear functional with τ = maxj=1,...,N max(τj , θj), and

L(φ) =
∫

[−τ,0]
φ(s)ν(ds), φ ∈ C([−τ, 0]; R).

The measure ν ∈M [−τ, 0] inherits properties from the weights sj and lj and the constants βj and α. These
special properties influence the almost sure asymptotic behaviour as t→∞ of solutions of (3.1.1). Roughly
speaking, we show that the market either follows a correlated Brownian motion or experiences a crash or
bubble. Therefore, the presence of feedback traders produces more complicated or extreme price dynamics
than would be present in a corresponding efficient market model in which the driving semimartingale is a
continuous Gaussian process with independent increments.

In common with chapter 2 there are two main and analogous findings; Firstly, if the trend–following
speculators do not react very aggressively to differences between the short–run and long–run returns, then
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the rate of growth of the partial maxima of the solution is the same as that of a standard Brownian motion.
Therefore, to a first approximation, the market appears efficient. However, the size of these largest fluc-
tuations is greater in the presence of trend following speculators than in their absence, where the market
only reacts to “news”. Hence the presence of these speculators tends to increase market volatility as well as
causing positive (though exponentially decaying) correlation in the returns. The main result in this direction
is part (a) of Theorem 3.3.1 and mirrors the corresponding results in discrete time in chapter 2. Secondly,
when the trend–following speculators behave aggressively, the returns will tend to plus or minus infinity
exponentially fast (see part (b) in Theorem 3.3.1). Again this is a direct analogue of results in chapter 2;
moreover the same causes of bubble or crash can be identified. There are some distinction between the
work in this chapter and that in chapter 2. Since we do not consider a non–Gaussian news process we do
not obtain results on the large fluctuations of the returns which correspond to those in section titled ”Large
Deviations Of The Incremental Returns” in chapter 2. Furthermore we do not extend results to nonlinear
equations in continuous time in this chapter. However results analogous to those proven in section titled
”Cumulative Returns In The Nonlinear Equation” in chapter 2 are developed and proved in chapter 4.

In terms of financial economics, this chapter is an extension of previous work by Appleby & Swords [12]
and Appleby, Swords and Rodkina [11], which considers corresponding discrete time equations and in
which discrete–time analogues of Theorem 3.3.1 are proven. This chapter covers some special cases of
results proven in Riedle [66] and for more general affine stochastic functional equations in which the struc-
ture of the Liapunov spectrum is extensively investigated. Here the scalar structure of the equation, and
positivity and monotonicity of the underlying resolvent enable us to prove complementary results. Another
related paper on the Liapunov spectrum for linear SFDEs is [63]. The analysis is also inspired by recent
work of Appleby, Reynolds and Devin [5, 6] which studies affine stochastic Volterra equations that have
non–equilibrium and random limits. A common theme with these papers and the current work is the fact
that the characteristic equation of the underlying deterministic resolvent has zero as one of its solutions. An
interesting recent paper which concentrates on non–equilibrium limits in deterministic functional differen-
tial equations is [26].

We have chosen to model the speculators’ behaviour in this chapter using finite measures rather than
through fixed delays or continuous averages of past returns. This affords some modelling advantages. It
allows us to capture a very wide variety of moving average–type strategies within the same model. Here, we
can consider a market comprising of agents who compare (i) current returns with a continuously computed
moving average of historical returns, (ii) continuous short–term and long–term weighted averages of re-
turns, (iii) corresponding weighted averages using only a finite number of times in the short and long–term
averages and (iv) any combination of these strategies. Not only does this allow for a general and flexible
model of feedback trading, it enables us to do so using a compact and unified notation which simplifies anal-
ysis and aids interpretation of economic results. Apart from notational advantages, we have the important
implication that the manner in which traders compute moving averages is unimportant in the form of the
ultimate dynamics. This is important in any mathematical model in economics, as model assumptions are
unlikely to be satisfied in reality, rendering general models which are robust to changes in the assumptions
particularly desirable.

This chapter has the following structure; Section 2 gives notation and supporting results; Section 3 states
the main mathematical results of the chapter; while Section 4 shows how the hypotheses of these results
are satisfied in the financial model. The interpretation of the results to the financial model are also explored
in Section 4, along with a variety of concrete examples of moving average trading strategies which involve
both continuous and discrete weights of past returns. The rest of the chapter is devoted to proofs which
mimic those of chapter 2.

3.2 Preliminaries
We first turn our attention to the deterministic delay equation underlying the stochastic differential equation
(3.1.2). Let x̃(z) denote the Laplace transform of x. For a fixed constant τ ≥ 0 we consider the deterministic
linear delay differential equation

y′(t) =
∫

[−τ,0]
y(t+ u) ν(du) for t ≥ 0,

y(t) = φ(t) for t ∈ [−τ, 0],
(3.2.1)
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for a measure ν ∈ M = M [−τ, 0], the space of signed Borel measures on [−τ, 0] with the total variation
norm ‖·‖TV which is defined as ||a||TV = supNj=1 |a(tj)− a(tj−1)| where the supremum is taken over all
N and over all sets of points tj ∈ J such that ti < tj for i < j. The initial function φ is assumed to be in
the space C[−τ, 0] := {φ : [−τ, 0] → R : continuous}. A function y : [−τ,∞) → R is called a solution of
(3.2.1) if y is continuous on [−τ,∞), its restriction to [0,∞) is continuously differentiable, and y satisfies
the first and second identity of (3.2.1) for all t ≥ 0 and t ∈ [−τ, 0], respectively. It is well known that for
every φ ∈ C[−τ, 0] the problem (3.2.1) admits a unique solution y = y(·, φ).

The fundamental solution or resolvent of (3.2.1) is the unique locally absolutely continuous function
r : [0,∞) → R which satisfies

r(t) = 1 +
∫ t

0

∫
[max{−τ,−s},0]

r(s+ u) ν(du) ds for t ≥ 0. (3.2.2)

It plays a role which is analogous to the fundamental system in linear ordinary differential equations and
the Green function in partial differential equations. Formally, it is the solution of (3.2.1) corresponding to
the initial function φ = 1{0}. For later convenience we set r(t) = 0 for t ∈ [−τ, 0).

The solution y(·, φ) of (3.2.1) for an arbitrary initial segment φ exists, is unique, and can be represented
as

y(t, φ) = φ(0)r(t) +
∫

[−τ,0]

∫ 0

s

r(t+ s− u)φ(u) du ν(ds) for t ≥ 0, (3.2.3)

cf. lemma 3.9.3. Define the function h : C → C by

h(λ) = λ−
∫

[−τ,0]
eλs ν(ds). (3.2.4)

Define also the set
Λ = {λ ∈ C : h(λ) = 0} . (3.2.5)

The function h is analytic, and so the elements of Λ are isolated. Define

v0(ν) := sup {Re (λ) : h(λ) = 0} , (3.2.6)

where Re (z) denotes the real part of a complex number z. Furthermore, the cardinality of Λ′ := Λ ∩
{Re (λ) = v0(ν)} is finite. Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) we have

e−v0(ν)tr(t) =
∑
λj∈Λ′

{pj(t) cos(Im (λj)t) + qj(t) sin(Im (λj)t)}+ o(e−εt), t→∞, (3.2.7)

where pj and qj are polynomials of degree mj − 1, with mj being the multiplicity of the zero λj ∈ Λ′ of h,
and Im (z) denoting the imaginary part of a complex number z. This is a simple restatement of Diekmann
et al [30, Thm. 5.4].

Let us introduce equivalent notation for (3.2.1). For a function y : [−τ,∞) → R we define the segment
of y at time t ≥ 0 by the function

yt : [−τ, 0] → R, yt(u) := y(t+ u).

If we equip the space C[−τ, 0] of continuous functions with the supremum norm Riesz’ representation
theorem guarantees that every continuous functional L : C[−τ, 0] → R is of the form

L(ψ) =
∫

[−τ,0]
ψ(u) ν(du)

for a measure ν ∈M [−τ, 0]. Hence, we will write (3.2.1) in the form

y′(t) = L(yt) for t ≥ 0, y0 = φ

and assume L to be a continuous and linear functional on C[−τ, 0].
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Let us fix a complete probability space (Ω,F ,P) with a filtration (F(t))t≥0 satisfying the usual condi-
tions and let (B(t) : t ≥ 0) be a standard Brownian motion on this space. We study the following stochastic
differential equation with time delay:

dY (t) = L(Yt) dt+ σ dB(t) for t ≥ 0,
Y (t) = φ(t) for t ∈ [−τ, 0],

(3.2.8)

where L is a continuous and linear functional on C[−τ, 0] for a constant τ ≥ 0 and σ ≥ 0.
For every φ ∈ C[−τ, 0] there exists a unique, adapted strong solution (Y (t, φ) : t ≥ −τ) with finite

second moments of (3.2.8) (cf., e.g., Mao [49]). The dependence of the solutions on the initial condition φ
is neglected in our notation in what follows; that is, we will write y(t) = y(t, φ) and Y (t) = Y (t, φ) for
the solutions of (3.2.1) and (3.2.8), respectively.

By lemma 3.9.2 the solution (Y (t) : t ≥ −τ) of (3.2.8) obeys a variation of constants formula

Y (t) =

{
y(t) +

∫ t
0
r(t− s)σ dB(s), t ≥ 0,

φ(t), t ∈ [−τ, 0],
(3.2.9)

where r is the fundamental solution of (3.2.1). This result mimics that of proposition 2.3.1 in chapter 2.

3.3 Main Theorems
If we assume that there is only one λ ∈ C with Re (λ) = v0(ν), i.e. Λ′ = {λ} then it follows that λ is
real-valued. If we assume furthermore that λ is a simple zero of h the representation (3.2.7) implies that
there exists ε0 > 0 such that

r(t)e−v0(ν)t = c+ o(e−εt) for all ε ∈ (0, ε0), (3.3.1)

and moreover c obeys

c =
1

1−
∫
[−τ,0] se

v0(ν)sν(ds)
. (3.3.2)

The formula for c can be determined by contour integration; see e.g., Chapter 7 of Gripenberg et al. [35].
The assumption that λ is a simple zero of h guarantees that c is well-defined because the denominator of c
equals h′(λ), i.e. is non-zero.

Theorem 3.3.1. Suppose that r obeys (3.3.1). Then the solution Y of (3.2.8) satisfies

(a) if v0(ν) = 0, then

lim sup
t→∞

Y (t)√
2t log log t

= σc a.s.

lim inf
t→∞

Y (t)√
2t log log t

= −σc a.s.

(b) if v0(ν) > 0, then a.s.

lim
t→∞

e−v0(ν)tY (t)

= c

(
φ(0) +

∫
[−τ,0]

∫ 0

s

ev0(ν)(s−u)φ(u) du ν(ds) + σ

∫ ∞

0

e−v0(ν)s dB(s)

)
.

In both cases, the constant c is given by (3.3.2).

Remark 3.3.1. The case v0(ν) < 0 is discussed in [36]. It turns out in this case that all solutions converge
weakly to a stationary distribution. The trading strategies of the speculators in our market model forces the
measure ν to obey v0(ν) ≥ 0. Thus the situation where v0(ν) < 0 has no economical interpretation and
will therefore not be considered.
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Remark 3.3.2. The analogue of this Theorem can be found in chapter 2. Part (a) corresponds to Theo-
rem 2.3.1 and part (b) corresponds to Theorem 2.3.2. The underlying idea of the proof is the same as that
of chapter 2.

We notice that if σ 6= 0, then the random variable on the righthand side in (b) of Theorem 3.3.1 is
normally distributed with non–zero variance. Thus, there is a positive probability that the limit is positive,
and a positive probability that the limit is negative.

Given a measure ν it is often a rather delicate issue to determine the value of v0(ν). In the following result
we give sufficient conditions for this for a subclass of M [−τ, 0] which will cover the economic modelling
later.

Theorem 3.3.2. Suppose that 0 6= ν ∈M [−τ, 0] obeys

ν([−t, 0]) ≥ 0 for all t ∈ [0, τ ], (3.3.3)
ν([−τ, 0]) = 0. (3.3.4)

(i) If

m(ν) :=
∫

[−τ,0]
s ν(ds) > 1 (3.3.5)

then h has a simple zero at λ = v0(ν) > 0 and all other zeros λ of h obey Re (λ) < v0(ν).

(ii) If

m(ν) :=
∫

[−τ,0]
s ν(ds) < 1 (3.3.6)

then h has a simple zero at λ = v0(ν) = 0 and all other zeros λ of h obey Re (λ) < v0(ν).

Remark 3.3.3. The condition given by 3.3.3 is required for exponential growth and 3.3.4 is required for the
Law of the Iterated Logarithm. Equations 3.3.5 and 3.3.6 define the stability condition for an unstable and
a stable market. The analogue of these two conditions in chapter 2 are 2.2.5 and 2.2.3 respectively.

Remark 3.3.4. For this proof we introduce the function P (λ) which is written in terms of the characteristic
equation. To prove the result for the unstable case we apply Lebesgue’s Theorem which implies there exists
a unique λ0 > 0 so that P (λ0) = 1. We show that λ0 > is simple by differentiation and then show that
λ1 < λ0. An outline of the proof in the stable case is omitted as it is straightforward.

3.4 Applications to Financial Markets

3.4.1 Economic modelling
We now consider equation (3.2.8) in the context of a market model. Suppose that there are N traders in the
economy, who determine their demand based on the cumulative returns Y on an asset. The trading strategy
of the j-th agent at time t is as follows: he considers a short–run moving average of the cumulative returns
price over the last θj units of time ∫

[−θj ,0]

Y (t+ u) sj(du)

for a measure sj ∈ M [−θj , 0] and also calculates a long–run average of cumulative returns over the last
τj ≥ θj units of time ∫

[−τj ,0]

Y (t+ u) lj(du)

for a measure lj ∈ M [−τj , 0]. The measures sj and lj reflect the weights the agent puts on the different
past values. In order to make the short-run and long-run comparable the measures sj and lj are chosen such
that

sj([−θj , 0]) = lj([−τj , 0]). (3.4.1)

We extend sj to M [−τj , 0] by setting sj(I) = 0 for any Borel set I ⊆ [−τj , θj). These averages can
be distinguished as being “short–run” and “long–run” by hypothesising that the short–run average always
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allocates at least as much weight to the most recent t time units of returns as the long–run average does.
Mathematically, this means that∫

[−t,0]
sj(du) ≥

∫
[−t,0]

lj(du), t ∈ [0, τj , ]. (3.4.2)

The averages are distinguishable by presuming that sj 6= lj .
Trader j then has planned demand at time t which depends upon the strength of the signal received from

the market, the signal being stronger the greater the difference between the short–run and long run–average.
We assume in the sequel that the trader buys the asset if the short–run average exceeds the long–run average
and that he sells the asset if the short–run average lies below the long run average. The converse situation
can be analysed analogously. The planned excess demand of trader j at time t is

βj

(∫
[−θj ,0]

Y (t+ u) sj(du)−
∫

[−τj ,0]

Y (t+ u) lj(du)

)
where βj ≥ 0. Therefore, the overall planned excess demand of all traders is

N∑
j=1

βj

(∫
[−θj ,0]

Y (t+ u) sj(du)−
∫

[−τj ,0]

Y (t+ u) lj(du)

)
.

The constants βj model the different influence of each trader on the total excess demand. Speculators react
to other random stimuli— “news”— which are independent of past returns. The increments of this news
are independent, so if the stimulus is a continuous process, this may be thought of as adding a further
σ(B(t2) − B(t1)) to the traders’ excess demand over the interval [t1, t2] where B is a one–dimensional
Brownian motion and σ ≥ 0.

Finally, we suppose that returns increase when there is excess demand (resp. fall when there is excess
supply), with the rise (resp. fall) being larger the greater the excess demand (resp. supply). One way to
capture this is to suppose that the evolution of the returns is described by

dY (t) =
N∑
j=1

βj

(∫
[−θj ,0]

Y (t+ u) sj(du)−
∫

[−τj ,0]

Y (t+ u) lj(du)

)
dt + σ dB(t). (3.4.3)

We extend all measures sj and lj to the interval [−τ, 0] where τ = max{τ1, . . . , τN} by setting them zero
outside their support. By introducing the measure ν ∈M [−τ, 0] defined by

ν(du) :=
N∑
j=1

βj(sj − lj)(du) (3.4.4)

and the linear functional L defined by

L : C[−τ, 0] → R, Lφ =
∫

[−τ,0]
Y (t+ u) ν(du)

we can rewrite equation (3.4.3) as

dY (t) = L(Yt) dt+ σ dB(t) for all t ≥ 0.

Note, that under the conditions (3.4.1) and (3.4.2) on the measures sj and lj the measure ν satisfies the
conditions in Theorem 3.3.2.

The evolution of the price of the risky asset (S(t) : t ≥ 0) is now given by

dS(t) = µS(t) dt+ S(t) dY (t), t ≥ 0; S(0) = s0 > 0. (3.4.5)

We can think of µ as the non-random interest rate in the model and consider P as the equivalent risk-neutral
measure. Applying Itô’s formula shows as in the standard Black-Scholes model that the asset S can be
represented by

S(t) = S(0) exp
(
Y (t) + (µ− 1

2σ
2)t
)

for all t ≥ 0. (3.4.6)

In the case when the feedback traders are absent, i.e. βj = 0 for all j = 1, . . . , N , we have dY (t) =
σ dB(t), in which case S is Geometric Brownian motion, evolving according to

dS(t) = µS(t) dt+ σS(t) dB(t), t ≥ 0; S(0) = s0 > 0.
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3.4.2 Economic interpretation of main results
Before considering specific examples of types of moving average strategies of the traders, we make some
general comments about the economic implications of these results.

One of the most important consequence of our model is that the presence of trend-following agents makes
the market more volatile. Suppose momentarily that the Brownian motionB is extended on allR. If ν obeys
the conditions in Theorem 3.3.2 and m(ν) < 1 then it can be shown that

Y (t) = σc∗B(t) + σ

∫ t

−∞
(r(t− s)− c∗) dB(s)

is a solution of the first equality in (3.2.8), which means that this solution of (3.2.8) can be written as the
sum of a Brownian motion plus a stationary Gaussian process. The implication for the financial model is
that the driving semimartingale Y is composed of a process with independent and stationary increments,
plus a correlated process. It is this correlated process which is responsible for short–term trends that can
arise in the price and this makes the market informationally inefficient. Also, as c∗ > 1, we see that the
largest fluctuations of Y are greater than would occur if in the standard Black-Scholes model with ν = 0,
i.e. βj = 0 for all j = 1, . . . , N . Therefore, the presence of trend–following speculators also make the
market more volatile.

If m(ν) < 1 then combining Theorem 3.3.1 and Theorem 3.3.2 implies

lim sup
t→∞

Y (t)√
2t log log t

=
σ

1−
∫
[−τ,0] u ν(du)

, a.s.

which because of (4.3.9) yields

lim sup
t→∞

logS(t)− (µ− 1
2σ

2)t
√

2t log log t
=

σ

1−
∫
[−τ,0] u ν(du)

, a.s.

with a similar result available for the liminf. Therefore the process S experiences larger fluctuations from
the trend rate of growth than it experiences in the absence of the trend chasing speculators. In other words,
the presence of the trend chasing speculators makes the market more risky and leads to greater fluctuations.
Moreover, the fluctuations increase in size with∫

[−τ,0]
u ν(du) =

N∑
j=1

βj

(∫
[−θj ,0]

usj(du)−
∫

[−τj ,0]

ulj(du)

)

=:
N∑
j=1

m(sj)−m(lj).

We now investigate what factors increase this quantity. Note, that in the most common situation when
the measures sj and lj are non-negative then the quantities m(sj) and m(lj) are negative. The larger the
absolute quantity |m(sj)|, the greater the weight that trader j gives to recent returns when computing their
short–run moving average. Therefore, m(sj) is a weight of the effective length of the “short–run” memory
of trader j. In a similar manner, the quantity m(lj) is a weight of the effective length of the “long–run”
memory of trader j. The greater the difference m(sj)−m(lj) between these times, the larger the value of
m(ν) and the more unstable that the market becomes. It may be seen that a large value of m(sj) −m(lj)
arises, for example, when trader j bases their short–run average on returns over a very short time–horizon,
but whose long–run average gives significant weight to returns from the relatively distant past. This strategy
can obviously introduce significant feedback from the distant past, so causing trends from the returns in the
past to persist for long periods of time, which will tend to cause excess volatility. As we shortly see, it can
even lead to the formation of bubbles or crashes as well.

To take a simple example: if all traders make their decisions based only on a comparison of returns θ
periods ago with returns τ periods ago, where θ < τ , then we have m(sj) = θ and m(lj) = τ , and
so bubbles form if (θ − τ)

∑N
j=1 βj > 1 while we have a correlated Brownian motion market if (θ −

τ)
∑N
j=1 βj < 1.
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A large value of βj corresponds to aggressive or confident speculative behaviour. The planned excess
demand of trader j is βj times the difference between the short–run and long–run weighted averages of
returns. Therefore, for larger βj , a smaller signal from the market is required to produce a given response
from trader j. Hence, as an increase in βj also increases m(ν), aggressive or overconfident trend chasing
strategies will tend to increase the market volatility, as switches from an advancing to a declining market
are amplified by the trend chasing strategy, causing increased volatility and greater extreme fluctuations in
the price.

Finally, the greater the value of α, the more responsive is the price to changes in demand and the greater
the value of m(ν).

Summarising these effects, we see that aggressive responses from traders, giving significant weight to
the returns in the more distant past and responsiveness in the price to changes in demand, will all tend
to destabilise the market. In fact, when these effects are so pronounced that m(ν) > 1 we have that
limt→∞ e−v0(ν)tY (t) =: Γ exists and is almost surely non–zero, and it assumes a positive and negative
value with positive probability. In this case, the aggressive response and long memory of the traders is
sufficient to force the market into a bubble (when Γ > 0) or a crash (when Γ < 0). Therefore, the more
aggressive the responses from traders and the greater the weight that they allocate to returns in the more
distant past, the more readily the market leaves the correlated Brownian motion regime (m(ν) < 1), and
enters the bubble or crash regime (m(ν) > 1).

3.4.3 Bubble dynamics
In the case when ν ∈M([−τ, 0],R) obeys (3.3.3) and (3.3.4) and is such that (3.3.5), then there is a unique
v0(ν) > 0 such that a.s.

lim
t→∞

e−v0(ν)tY (t)

= c

(
φ(0) +

∫
[−τ,0]

∫ 0

s

ev0(ν)(s−u)φ(u) du ν(ds) + σ

∫ ∞

0

e−v0(ν)s dB(s)

)
=: Γ(φ). (3.4.7)

where the constant c is given by (3.3.2). We say that the market experiences a bubble if Γ = Γ(φ) > 0 and
a crash if Γ = Γ(φ) < 0, because in the former case Y (t) → ∞ as t → ∞ at an exponential rate, while
in the latter Y (t) → −∞ as t→∞. We remark that Γ(φ) 6= 0 a.s. because Γ is normally distributed with
non–zero variance. Therefore only bubbles or crashes can occur when ν obeys (3.3.3), (3.3.4) and (3.3.5).
In the next theorem, we analyse the dependence of the probability of a crash or bubble according to the
behaviour of the initial returns φ on the interval [−τ, 0].

Theorem 3.4.1. Suppose that ν ∈ M([−τ, 0],R) obeys (3.3.3) and (3.3.4) and is such that (3.3.5). Let Y
be the solution of (3.1.2a) with initial condition φ ∈ C([−τ, 0],R).

(i) If φ is constant, then P[Γ(φ) > 0] = 1/2.

(ii) Let Y (φ1) be the solution of (3.1.2a) with initial condition φ1 and Y (φ2) be the solution of (3.1.2a)
with initial condition φ2. If φ1 − φ2 is constant then

P[Γ(φ1) > 0] = P[Γ(φ2) > 0].

(iii) Let φ ∈ C([−τ, 0],R) be such that P[Γ(φ) > 0] > 1/2. Then α 7→ P[Γ(αφ) > 0] is increasing and
moreover

lim
α→∞

P[Γ(αφ) > 0] = 1, lim
α→−∞

P[Γ(αφ) > 0] = 0. (3.4.8)

(iv) Let φ ∈ C([−τ, 0],R) be such that P[Γ(φ) > 0] < 1/2. Then α 7→ P[Γ(αφ) > 0] is decreasing and
moreover

lim
α→∞

P[Γ(αφ) > 0] = 0, lim
α→−∞

P[Γ(αφ) > 0] = 1. (3.4.9)

(v) If φ ∈ C1([−τ, 0],R) is increasing with φ′(0) > 0, then P[Γ(φ) > 0] > 1/2. Moreover α 7→
P[Γ(αφ) > 0] is increasing and obeys (3.4.8).
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(vi) If φ ∈ C1([−τ, 0],R) is decreasing with φ′(0) < 0, then P[Γ(φ) > 0] < 1/2. Moreover α 7→
P[Γ(αφ) > 0] is decreasing and obeys (3.4.9).

Remark 3.4.1. This Theorem and its interpretation is an analogue of Theorem 2.3.3 in chapter 2. As the
proofs are very similar no outline is given.

3.4.4 Positive and exponentially fading autocovariance in the returns
In this subsection, we analyse the patterns in the δ–returns, where δ > 0 in the situation where the measure
ν obeys (3.3.3) (3.3.4) and the stability condition (3.3.6). The δ–returns are simply the percentage gains or
losses made by investing over a time period of δ units, and are denoted at time t by Yδ(t). Accordingly we
define the process Yδ by

Yδ(t) := Y (t)− Y (t− δ), t ≥ δ. (3.4.10)

It is convenient to extend r to (−∞,−τ) by setting r(t) = 0 for t ∈ (−∞,−τ), and to introduce the
function rδ defined by

rδ(t) = r(t)− r(t− δ), t ≥ 0. (3.4.11)

Since Y (t) = y(t) +
∫ t
0
r(t− s)σ dB(s) for t ≥ 0, we have the identity

Yδ(t) = y(t)− y(t− δ) +
∫ t

0

rδ(t− s)σ dB(s), t ≥ δ. (3.4.12)

The next theorem shows firstly that Yδ is an asymptotically stationary process for each δ > 0. Secondly,
we show that it is positively autocorrelated at all time horizons. Thirdly, it is shown that the autocorrelation
of δ returns separated by ∆ time units, decays at an exact exponential rate in ∆ as ∆ → ∞. We state the
result.

Theorem 3.4.2. Let δ > 0, ∆ ≥ 0. Suppose that ν ∈ M([−τ, 0],R) obeys (3.3.3) and (3.3.4) and (3.3.6).
Let Y be the solution of (3.2.8) with initial condition φ ∈ C([−τ, 0],R). Suppose that r is given by (3.2.2),
rδ by (3.4.11), and Yδ by (3.4.12). Then

(i)
Cov(Yδ(t), Yδ(t+ ∆)) > 0, for all t ≥ δ. (3.4.13)

(ii) For every ∆ ≥ 0 the limit

cδ(∆) := lim
t→∞

Cov(Yδ(t), Yδ(t+ ∆)) = σ2

∫ ∞

0

rδ(u)rδ(u+ ∆) du (3.4.14)

exists and is finite. Moreover, lim∆→∞ cδ(∆) = 0 and cδ ∈ L1(0,∞) for each δ > 0.

(iii) If ν is such that
Leb{t ∈ [−τ, 0] : ν([t, 0]) > 0} > 0,

there exists a unique λ > 0 such that −λ ∈ Λ and cδ(∆) obeys

lim
∆→∞

cδ(∆)eλ∆

=
σ2(1− eλδ)

1−
∫
[−τ,0] ue

−λuν(du)

(∫ δ

0

r(u)e−λu du+
(1− e−λδ)

∫
[−τ,0] e

λuν(du)

λ(λ−
∫
[−τ,0] e

λuν(du))

)
, (3.4.15)

with the limit being finite and positive.

Remark 3.4.2. This Theorem is an analogue of Theorem 2.4.1 in chapter 2 and the proof is very similar.

Once again the proof is postponed to the end. We make some further observations and comments. An
interesting conclusion of the theorem is that the δ–returns are positively autocorrelated. Therefore, even
though the returns undergo iterated logarithm behaviour like standard Brownian motion, there is correlation
between the increments of the process. The presence of a positive correlation means that trends in the returns
have a tendency to persist. This is responsible for the fact that the largest fluctuations of the process Y are
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greater that those that would be seen if there were no trend–following speculators present. The correlation
between returns of horizon length δ decays exponentially in the time lag ∆ between successive observations,
as ∆ → ∞. Moreover, the exponent in the rate of decay is independent of ∆. Therefore, although the
market is informationally inefficient in the sense of Fama because the future returns are correlated with past
returns, the memory of recent events is discounted relatively quickly. This “short memory” is a consequence
of the finite memory trading strategies employed by agents.

3.4.5 Examples of investment strategies
In each of the following examples, we consider only one agent and his or her trading strategy. Because of
that we neglect the parameters βj in the model.

Current returns versus past returns

Suppose that the investor compares the current value of the cumulative returns Y with a continuous time
weighted average over the last τ units. To put this in the form of the model considered in the beginning of
this section, the current value of the cumulative returns is weighted by

s(du) := αδ0(du)

for a constant α > 0 and where δ0 denotes the Dirac measure in 0. The cumulative returns in the long-run
are weighted by

l(du) := f(u) du,

where f is a nonnegative function in L1([−τ, 0]) with ‖f‖L1 = α and for some τ > 0. Then the measure

ν(du) := s(du)− l(du) = αδ0(du)− f(u) du

satisfies the conditions in Theorem 3.3.2 with the moment given by

m(ν) = −
∫ 0

−τ
uf(u) du.

The linear functional L is of the form

L : C([−τ, 0]) → R, L(φ) = αφ(0)−
∫ 0

−τ
φ(u)f(u) du.

Thus, if m(ν) < 1 then the cumulative returns obey

lim sup
t→∞

Y (t)√
2t log log t

=
σ

1 +
∫ 0

−τ uf(u) du
a.s.,

lim inf
t→∞

Y (t)√
2t log log t

= − σ

1 +
∫ 0

−τ uf(u) du
a.s.

On the other hand if m(ν) > 1 then there exists a unique λ > 0 such that a.s.

lim
t→∞

e−λtY (t)

=
1

1 +
∫ 0

−τ ue
λuf(u) du

(
φ(0)−

∫ 0

−τ
f(s)

∫ 0

s

eλ(s−u)φ(u) du ds+
∫ ∞

0

σe−λs dB(s)
)
.
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Short run versus long run moving averages

Suppose that the investor compares a continuous time weighted average of the cumulative returns Y over
the last θ units of time with a moving average over the last τ ≥ θ units of time. The short-run is weighted
by a nonnegative function f ∈ L1([−θ, 0]) whereas the long-run by a nonnegative function g ∈ L1([−τ, 0])
with ‖f‖L1 = ‖g‖L1 > 0. We extend f to [−τ, 0] by setting f(u) = 0 for u ∈ [−τ,−θ). If we suppose in
addition that ∫ 0

−t
f(u) du ≥

∫ 0

−t
g(u) du for all t ∈ [−τ, 0],

then the measure ν(du) := (f(u)− g(u)) du satisfies all the conditions in Theorem 3.3.2 with the moment

m(ν) =
∫ 0

−τ
u(f(u)− g(u)) du.

The linear functional L is given by

L : C([−τ, 0]) → R, L(φ) =
∫ 0

−τ
φ(u)(f(u)− g(u)) du.

If we have m(ν) < 1 then combining Theorem 3.3.1 and Theorem 3.3.2 yield

lim sup
t→∞

Y (t)√
2t log log t

=
σ

1−
∫ 0

−τ u(f(u)− g(u)) du
a.s.

lim inf
t→∞

Y (t)√
2t log log t

= − σ

1−
∫ 0

−τ u(f(u)− g(u)) du
a.s.

On the other hand, if m(ν) > 1 then there exists a unique positive λ > 0 such that a.s.

lim
t→∞

e−λtY (t)

= c

(
φ(0) +

∫ 0

τ

(f(s)− g(s))
∫ 0

s

eλ(s−u)φ(u) du ds+
∫ ∞

0

σe−λs dB(s)
)

where
c =

1

1−
∫ 0

−τ se
λs(f(s)− g(s)) ds

.

Discrete–time moving averages

Suppose that the investor compares a weighted average of the cumulative returns at m points in time over
the last θ units of time with a weighted average of the cumulative returns at n points in time over the
last τ units of time, where τ ≥ θ. Let the cumulative returns in the short-run be observed at time points
−θ := −θm < · · · < −θ1 ≤ 0 and in the long-run at time points −τ := −τn < · · · < −τ1 ≤ 0. Then the
short-run observations are averaged according to a measure

s(du) :=
m∑
j=1

αjδ−θj
(du)

for some weights αj ≥ 0 and the long-run observations according to

l(du) :=
n∑
j=1

βjδ−τj (du)
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for some weights βj ≥ 0. If we assume that

α1 + · · ·+ αm = β1 + · · ·+ βn > 0,
m∑
j=1

αjχ[−t,0](−θj) ≥
n∑
j=1

βjχ[−t,0](−τj) for all t ∈ [0, τ ],

then the measure ν(du) := s(du)− l(du) satisfies all the conditions in Theorem 3.3.2 with the moment

m(ν) =
n∑
j=1

βjτj −
m∑
j=1

αjθj .

The linear functional L is given by

L : C([−τ, 0]) → R, L(φ) =
m∑
j=1

αjφ(−θj)−
n∑
j=1

βjφ(−τj).

If m(ν) < 1 then the cumulative returns evolve according to

lim sup
t→∞

Y (t)√
2t log log t

=
σ

1−
∑n
j=1 βjτj +

∑m
j=1 αjθj

a.s

lim inf
t→∞

Y (t)√
2t log log t

= − σ

1−
∑n
j=1 βjτj +

∑m
j=1 αjθj

a.s.

On the other hand, if m(ν) > 1 then there exists a unique positive λ > 0 such that a.s.

lim
t→∞

e−λtY (t) = c

(
φ(0) +

∫ ∞

0

σe−λs dB(s)
)

+ c

 m∑
j=1

αj

∫ 0

−θj

e−λ(θj+u)φ(u) du−
n∑
j=1

βj

∫ 0

−τj

e−λ(τj+u)φ(u) du

 ,

where
c =

1
1−

∑n
j=1 βjτje

−λτj +
∑m
j=1 αjθje

−λθj
.

3.5 Proof of Theorem 3.3.1
We start this section by proving a kind of law of the iterated logarithm for the Gaussian process (Q(t) : t ≥
0) defined by

Q(t) :=
∫ t

0

f(t− s) dB(s) (3.5.1)

for a differentiable function f ∈ L2(R+) with f ′ ∈ L2(R+) , (f ∈ W 2,1([0,∞))). Instead of following
the direct proof one can also use general results on the law of iterated logarithm for Gaussian process, see
for example the monograph [46].

Lemma 3.5.1. Suppose that f ∈ L2(R+) with f ′ ∈ L2(R+). Then the Gaussian process Q defined in
(3.5.1) satisfies

lim sup
t→∞

Q(t)√
2 log t

≤ ‖f‖1/2
L2 a.s.

Remark 3.5.1. For this proof we decompose equation 3.5.1 into three terms. By Lemma 3.9.4 we can show
that the limit of the first term is zero. For the second term we calculate a bound on it’s second moment.
Then using the Borel–Cantelli Lemma we show that it’s limit is less than one. By applying Mill’s estimate
and the Borel–Cantelli Lemma to the third term we prove the above result.
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Lemma 3.5.2. Suppose that B is a standard Brownian motion. Then for every ε ∈ (0, 1) we have

lim
n→∞

sup
nε≤t≤(n+1)ε

|B(t)−B(nε)|√
ε log n

= 0 a.s. (3.5.2)

Remark 3.5.2. See Section 3.9 for the proof of the Lemma. As the proof is short no outline is given.

Proof. Because f is differentiable we obtain by partial integration and the stochastic Fubini’s Theorem

Q(t) =
∫ t

0

(
f(0) +

∫ t−s

0

f ′(u) du
)
dB(s)

=
∫ t

0

(∫ v

0

f ′(v − s) dB(s)
)
dv + f(0)B(t).

Thus, for arbitrary ε ∈ (0, 1) and n ∈ N we can decompose Q(t) according to

Q(t) = Q(t)−Q(nε) +Q(nε)

= f(0)(B(t)−B(nε)) +
∫ t

nε

(∫ v

0

f ′(v − s) dB(s)
)
dv +Q(nε). (3.5.3)

We now analyse each term in (3.5.3). By Lemma 3.9.4, the first term obeys

lim
n→∞

sup
nε≤t≤(n+1)ε

|f(0)||B(t)−B(nε)|√
ε log n

= 0 a.s. (3.5.4)

For estimating the second term in (3.5.3) choose k ∈ N such that (1− ε)2k > 1 and let

Un = sup
nε≤t≤(n+1)ε

∣∣∣∣∫ t

nε

(∫ v

0

f ′(v − s) dB(s)
)
dv

∣∣∣∣ .
Applying Cauchy-Schwarz inequality implies

E
[
Un

2k
]

= E

[
sup

nε≤t≤(n+1)ε

∣∣∣∣∫ t

nε

(∫ v

0

f ′(v − s) dB(s)
)
dv

∣∣∣∣2k
]

≤ E

[
sup

nε≤t≤(n+1)ε

(t− nε)2k−1

(∫ t

nε

∣∣∣∣(∫ v

0

f ′(v − s) dB(s)
)∣∣∣∣2k dv

)]

= ((n+ 1)ε − nε)2k−1
∫ (n+1)ε

nε

E
[
J(v)2k

]
dv,

where J(v) =
∫ v
0
f ′(v− s) dB(s) is normally distributed with zero mean and variance

∫ v
0
f ′(s)2 ds. Since

f ′ ∈ L2(0,∞) we have E[J(v)2k] = Ck
(∫ v

0
f ′(s)2 ds

)k ≤ Ck ‖f ′‖kL2 . Moreover for every n there exists
n∗ ∈ [n, n+ 1] such that (n+ 1)ε − nε = εnε−1

∗ ≤ εnε−1. Because (1− ε)2k > 1, E[U2k
n ] is summable.

By Chebyshev’s Inequality, P[|Un| ≥ 1] ≤ E[U2k
n ], and so the Borel–Cantelli Lemma implies

lim sup
n→∞

sup
nε≤t≤(n+1)ε

∣∣∣∣∫ t

nε

(∫ v

0

f ′(v − s) dB(s)
)
dv

∣∣∣∣ ≤ 1 a.s. (3.5.5)

For estimating the last term in (3.5.3) we define the standardized normal random variable

Znε := Q(nε)

(∫ nε

0

f2(s) ds

)−1/2

.

For any θ > 1 we get by Mill’s estimate

P
[
|Znε | >

√
2θ log(nε)

]
≤ 2√

2π
· 1√

2θ log(nε)
· e−θ log(nε)

=
2√
2π

· 1√
2θ log(nε)

· 1
(nε)θ

.
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Thus, choosing θε > 1, we get

∞∑
n=2

P
[
|Znε | >

√
2θ log(nε)

]
<∞.

According to the Borel–Cantelli lemma, there exists a random integer n0 such that

lim sup
n→∞

|Znε |√
2 log(nε)

≤
√
θ a.s.

Letting θ → 1
ε through the rational numbers, we get

lim sup
t→∞

Q(nε)√
2 log nε

≤ 1√
ε

√
‖f‖L2 . (3.5.6)

Finally, (3.5.4), (3.5.5) and (3.5.6) allows us to conclude for the decomposition (3.5.3) that

lim sup
n→∞

sup
nε≤t≤(n+1)ε

|Q(t)|√
2 log t

≤ 1√
ε

√
‖f‖L2 a.s.,

which implies

lim sup
t→∞

|Q(t)|√
2 log t

≤ 1√
ε

√
‖f‖L2 , a.s.

Finally, by letting ε↗ 1 through the rational numbers, we get

lim
t→∞

|Q(t)|√
2 log t

≤
√
‖f‖L2 a.s.

as required.

Proof of (a) in Theorem 3.3.1. The solution Y of equation (3.2.8) can be decomposed in

Y (t) = y(t) + σ

∫ t

0

r(t− s) dB(s)

= y(t) + σQ(t) + σcB(t),

where y is the solution of equation (3.2.1) and Q is defined by

Q(t) =
∫ t

0

(r(t− s)− c) dB(s).

We next notice that (3.2.3) and the fact that r(t) → c as t→∞ together imply that

lim
t→∞

y(t) = φ(0)c+ c

∫
[−τ,0]

∫ 0

s

φ(u) du ν(ds). (3.5.7)

By combining the Law of the Iterated Logarithm for standard Brownian motion together Lemma 3.5.1 and
(3.5.7), we find that

lim sup
t→∞

Y (t)√
2t log log t

= σc, lim inf
t→∞

Y (t)√
2t log log t

= −σc a.s.,

as required.

To prove the second part of Theorem 3.3.1 we require another Lemma on a convolution Gaussian process,
which is similar to the one considered in Lemma 3.5.1.
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Lemma 3.5.3. Define for λ > 0 and k ∈ L2(0,∞) with k′ ∈ L2(0,∞) a Gaussian process (K(t) : t ≥ 0)
by

K(t) =
∫ t

0

k(t− s)e−λs dB(s).

Then lim
t→∞

K(t) = 0 a.s.

Remark 3.5.3. We begin the proof by splitting K(t) into three terms. Applying the Cauchy–Schwarz
inequality and taking suprema over [an, an+1] we rewrite these terms in terms of the second moment. We
then show that the second moments are finite. By employing Fubini’s Theorem we can show that the
limt→∞K(t) = 0 almost surely.

Proof. Applying the stochastic Fubini’s Theorem we obtain the representation

K(t) =
∫ t

0

(
k(0) +

∫ t−s

0

k′(u) du
)
e−λs dB(s)

= k(0)
∫ t

0

e−λs dB(s) +
∫ t

0

(∫ t−s

0

k′(u) du
)
e−λs dB(s)

= k(0)
∫ t

0

e−λs dB(s) +
∫ t

0

∫ v

0

k′(v − s)e−λs dB(s) dv.

Thus, for an arbitrary increasing sequence (an)∞n=0 and t ∈ [an, an+1) we have the identity

K(t) = K(an) + k(0)
∫ t

an

e−λs dB(s) +
∫ t

an

∫ v

0

k′(v − s)e−λs dB(s) dv.

Then using the Cauchy–Schwarz inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) and taking suprema over
[an, an+1] result in

E

[
sup

an≤t≤an+1

K(t)2
]
≤ 3E[K(an)2] + 3k(0)2E

[
sup

an≤t≤an+1

(∫ t

an

e−λs dB(s)
)2
]

+ 3(an+1 − an)
∫ an+1

an

E

[(∫ v

0

k′(v − s)e−λs dB(s)
)2
]
dv.

(3.5.8)

The function t 7→ E[K2(t)] is in L1(R+) because∫ ∞

0

E[K2(t)] dt =
∫ ∞

0

∫ t

0

k2(t− s)e−2λs ds dt =
1
2λ

∫ ∞

0

k2(u) du <∞.

Thus, the integrability criterion for series implies that we can choose the sequence (an)∞n=0 with a0 = 0,
0 < an+1 − an < 1 for all n ∈ N, limn→∞ an = ∞ such that

∞∑
n=1

E[K(an)2] < +∞, (3.5.9)

see [3, Lemma 3]. Doob’s inequality implies

∞∑
n=0

E

[
sup

an≤t≤an+1

(∫ t

an

e−λs dB(s)
)2
]
≤

∞∑
n=0

4
∫ an+1

an

e−2λs ds <∞. (3.5.10)

Applying Itô’s isometry and letting e2λ(t) = e−2λt gives∫ an+1

an

E

[(∫ v

0

k′(v − s)e−λs dB(s)
)2
]
dv =

∫ an+1

an

(k′2 ∗ e2λ)(v) dv.
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Since k′ ∈ L2(0,∞) and e2λ ∈ L1(0,∞) we have k′2 ∗ e2λ ∈ L1(0,∞), and so, by using the fact that
an+1 − an < 1, it follows that

∞∑
n=0

(an+1 − an)
∫ an+1

an

E

[(∫ v

0

k′(v − s)e−λs dB(s)
)2
]
dv

≤
∫ ∞

0

(k′2 ∗ e2λ)(v) dv <∞.

(3.5.11)

Applying (3.5.9), (3.5.10) and (3.5.11) to the representation (3.5.8) gives

∞∑
n=0

E

[
sup

an≤t≤an+1

K(t)2
]
<∞.

Fubini’s Theorem implies

∞∑
n=0

sup
an≤t≤an+1

K(t)2 <∞ a.s.

yielding K(t) → 0 a.s. as t→∞.

Proof of (b) in Theorem 3.3.1. Define

k(t) = e−v0(ν)tr(t)− c, (3.5.12)

K(t) =
∫ t

0

k(t− s)e−v0(ν)s dB(s), (3.5.13)

where v0(ν) > 0 is defined by (3.2.6) and c is defined by (3.3.1). By the variation of constants formula
(3.2.9) we have

e−v0(ν)tY (t) = e−v0(ν)ty(t) + σc

∫ t

0

e−v0(ν)s dB(s) + σK(t). (3.5.14)

The second term on the righthand side of (3.5.14) tends to the almost surely finite random variable
cσ
∫∞
0
e−v0(ν)s dB(s) as t→∞ a.s., by the martingale convergence theorem.

By (3.3.1) the function k is in L2(0,∞). In order to prove that k′ is also in L2(0,∞) note that

k′(t) = −v0(ν)e−v0(ν)tr(t) +
∫

[−τ,0]
e−v0(ν)(t+s)r(t+ s)ev0(ν)s ν(ds).

Because v0(ν) is a zero of h we have

k′(t) = −v0(ν)(e−v0(ν)tr(t)− c) +
∫

[−τ,0]
(e−v0(ν)(t+s)r(t+ s)− c)ev0(ν)s ν(ds).

Hence, by (3.3.1), we have that k′ ∈ L2(0,∞) which enables us to apply Lemma 3.5.3 and to conclude
K(t) → 0 a.s. as t→∞.

For the first term in (3.5.14) the formula (3.2.3) yields

e−v0(ν)ty(t) = φ(0)e−v0(ν)tr(t)

+
∫

[−τ,0]

∫ 0

s

e−v0(ν)(t+s−u)r(t+ s− u)ev0(ν)(s−u)φ(u) du ν(ds)

→ φ(0)c+
∫

[−τ,0]

∫ 0

s

cev0(u)(s−u)φ(u) du ν(ds) as t→∞,

which completes the proof.
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3.6 Proof of Theorem 3.4.1
To prove (i), notice that if φ(t) = c for all t ∈ [−τ, 0], then the solution y of (3.2.1) is y(t, φ) = c for all
t ≥ −τ . Therefore limt→∞ y(t, φ)/ev0(νt) = 0, and so

Γ(φ) = cσ

∫ ∞

0

e−v0(ν)s dB(s) =: Z, (3.6.1)

where Z is normally distributed with zero mean and variance c2σ2/(2v0(ν)). Therefore P[Γ(φ) > 0] =
P[Z > 0] = 1/2 as claimed.

For the proof of (ii), let y(φ1) be the solution of (3.2.1) with initial condition φ1 and y(φ2) be the solution
of (3.2.1) with initial condition φ2. Let z(t) := y(φ1, t) − y(φ2, t) for all t ≥ −τ . Then z(t) = c for all
t ∈ [−τ, 0] and z′(t) = L(zt) for t ≥ 0. Therefore z(t) = c for all t ≥ 0, or y(φ1, t)− y(φ2, t) = c for all
t ≥ −τ . If y is the solution of (3.2.1) we may define the operator L1 : C([−τ, 0],R) → R by

lim
t→∞

y(t, φ)/ev0(νt) = L1(φ) (3.6.2)

where L1(φ) is given by the formula

L1(φ) = c

(
φ(0) +

∫
[−τ,0]

∫ 0

s

ev0(ν)(s−u)φ(u) du ν(ds)

)
, (3.6.3)

with c > 0 given by (3.3.2). We note that c is independent of φ. Since z(t)/ev0(νt) → 0 as t→∞, we have

L1(φ1)− L1(φ2) = lim
t→∞

y(φ1, t)
ev0(νt)

− lim
t→∞

y(φ2, t)
ev0(νt)

= 0,

so L1(φ1) = L1(φ2). Therefore Γ(φ1) = Γ(φ2) and (ii) is proven.
We now prove (iii). By (3.6.2) and (3.6.3) we have

Γ(φ) = L1(φ) + cσ

∫ ∞

0

e−v0(ν)s dB(s) = L1(φ) + Z,

where Z is defined by (3.6.1). Therefore if P[Γ(φ) > 0] > 1/2, we have

1/2 < P[Γ(φ) > 0] = P[L1(φ) + Z > 0] = P[Z > −L1(φ)] = 1− P[Z ≤ −L1(φ)],

so P[Z ≤ −L1(φ)] < 1/2, which implies L1(φ) > 0. Clearly L1(αφ) = αL1(φ) for any α ∈ R, and
so Γ(αφ) = αL1(φ) + Z. Now P[Γ(αφ) > 0] = P[Z > −αL1(φ)], so as L1(φ) > 0 we have that
α 7→ P[Γ(αφ) > 0] is increasing, with limα→∞ P[Γ(αφ1) > 0] = 1 and limα→−∞ P[Γ(αφ1) > 0] = 0.
The proof of (iv) is similar.

We prove (v). Let y be the solution of (3.2.1). Extend ν to (−∞,−τ ] by setting ν(E) = 0 for every Borel
set E ⊂ (−∞,−τ). Next consider ν+(E) = ν(−E) for every E ⊆ [0,∞). Also extend φ to [−∞,−τ)
by setting φ(t) = 0 for all t < −τ . Then y satisfies

y′(t) =
∫

[−τ,0]
y(t+ s)ν(ds) =

∫
(−∞,0]

y(t+ s)ν(ds) =
∫

[0,∞)

y(t− s)ν+(ds),

so with F1(t) =
∫
[t,∞)

φ(t− s)ν+(ds) for t ≥ 0 we have

y′(t) =
∫

[0,t]

y(t− s)ν+(ds) + F1(t), t > 0, y(0) = φ(0).

Define N by

N(t) =
∫

[0,t]

ν+(ds), t ≥ 0, (3.6.4)

and F by

F (t) =
∫

[0,t]

φ(0)ν+(ds) +
∫

[0,∞)

φ(t− s)ν+(ds), t ≥ 0. (3.6.5)
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Since y ∈ C1(0,∞) we have∫
[0,t]

y(t− s)ν+(ds) =
∫

[0,t]

ν+(ds)
(
φ(0) +

∫ t−s

0

y′(u) du
)

= N(t)φ(0) +
∫

[0,t]

ν+(ds)
∫ t−s

0

y′(u) du

= N(t)φ(0) +
∫

[0,t]

∫ t−s

0

ν+(ds)y′(u) du

= N(t)φ(0) +
∫ t

0

∫
[0,t−u]

ν+(ds)y′(u) du

= N(t)φ(0) +
∫ t

0

N(t− s)y′(u) du.

Therefore with F defined by (3.6.5) we get

y′(t) =
∫

[0,t]

N(t− u)y′(u) du+ F (t), t > 0. (3.6.6)

For t ≥ τ since (3.3.3) holds and ν+(E) = 0 for all Borel sets E ⊂ [τ,∞) we have

F (t) =
∫

[0,τ ]

φ(0) · ν+(ds) +
∫

(τ,t]

φ(0) · ν+(ds) +
∫

[t,∞)

φ(t− s)ν+(ds) = 0.

For 0 ≤ t ≤ τ define N1(t) =
∫
[0,t)

ν+(ds) with N1(0) = 0. Then

F (t) =
∫ 0

t−τ
N1(t− u)φ′(u) du

=
∫ τ

t

N1(s)φ′(t− s) ds

Since N1(t) ≥ 0 for all t ≥ 0 and F (t) ≥ 0 for all t ≥ 0 we have from (3.6.6) that y′(t) ≥ 0 for all
t ≥ 0. Since m(ν) > 1 there exists a unique λ > 0 such that

∫ τ
0
N1(s)e−λs ds = 1; in fact v0(ν) = λ > 0.

Therefore we have

y′(t)e−λt = F (t)e−λt +
∫

[0,t]

N1(s)e−λse−λ(t−s)y′(t− s) ds, t ≥ 0,

and so by the renewal theorem and the fact that F (t) = 0 and N(t) = 0 for t ≥ τ we have

lim
t→∞

y′(t)
eλt

=

∫∞
0
e−λsF (s) ds∫∞

0
sN1(s)e−λs ds

=

∫ τ
0
e−λsF (s) ds∫ τ

0
sN1(s)e−λs ds

.

From this we see that

lim
t→∞

y(t)
eλt

=
1
λ

∫ τ
0
e−λsF (s) ds∫ τ

0
sN1(s)e−λs ds

.

Therefore P[Γ(φ) > 0] > 1/2 provided
∫ τ
0
e−λsF (s) ds > 0, which is true if F is positive on some

subinterval of [0, τ ].
Since φ′(0) > 0 and φ′ ∈ C([−τ, 0],R) there exists β2 ∈ (0, τ) such that φ′(u) > 0 for all u ∈

(−β2, 0] ∈ [−τ, 0]. Since m(ν) > 1 we have
∫ τ
0
N1(s) ds > 1 and therefore there exists an interval

(θ1, θ2) ⊂ [0, τ ] such that N1(s) > 0 for s ∈ (θ1, θ2) ⊂ [0, τ ].
Let t ∈ [0, τ ] be such that 0∨ (θ1−β2) < t < θ1. Define the interval It := (t, θ2∧ (t+β2)) ⊂ (t, τ) and

J = (θ1, τ). Since t > θ1 − β2 we have t+ β2 > θ1, and, because θ2 > θ1, we have θ2 ∧ (t+ β2) > θ1.
Therefore It ∩ J is a nontrivial open interval. Let s ∈ It. Then we have θ2 > s > t and s < t + β2, so
0 > t− s > −β2. Hence for all s ∈ It we have φ′(t− s) > 0, and so φ′(t− s) > 0 for all s ∈ It ∩ J . If
s ∈ J ∩ It, we have s ∈ It, s > θ1, and s < θ2. Hence for all s ∈ It ∩ J we have N1(s) > 0. Therefore as
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N1(s)φ′(t − s) > 0 for all s ∈ It ∩ J , and each t ∈ (0 ∨ (θ1 − β2), θ1), for each t ∈ (0 ∨ (θ1 − β2), θ1)
we have

F (t) =
∫

[t,τ ]

N1(s)φ′(t− s) ds ≥
∫
It∩J

N1(s)φ′(t− s) ds > 0,

so
∫ τ
0
e−λsF (s) ds > 0 which implies P[Γ(φ) > 0] > 1/2. The fact that α 7→ P[Γ(αφ) > 0] is increasing

and that (3.4.8) hold is a consequence of part (iii).
The proof of part (iv) is similar to that of part (v). If φ is decreasing, and y(φ) is the solution of (3.2.1),

we note that y− = −y(φ) is the solution of (3.2.1) with initial condition φ− = −φ. Since φ− is increasing
with φ′−(0) > 0, part (v) can now be applied to y− to give the result.

3.7 Proof of Theorem 3.4.2
By (3.4.12) for t ≥ δ we have

Cov(Yδ(t), Yδ(t+ ∆)) = E

[∫ t

0

rδ(t− s)σ dB(s) ·
∫ t+∆

0

rδ(t+ ∆− s)σ dB(s)

]
.

Hence as ∆ ≥ 0

Cov(Yδ(t), Yδ(t+ ∆)) = σ2

∫ t

0

rδ(t− s)rδ(t+ ∆− s) ds = σ2

∫ t

0

rδ(u)rδ(u+ ∆) du.

Extend ν to (−∞,−τ ] by setting ν(E) = 0 for every Borel set E ⊂ (−∞,−τ). Next consider ν+(E) =
ν(−E) for every E ⊆ [0,∞). Then r satisfies

r′(t) =
∫

[−τ,0]
r(t+ s)ν(ds) =

∫
(−∞,0]

r(t+ s)ν(ds) =
∫

[0,∞)

r(t− s)ν+(ds),

so
r′(t) =

∫
[0,t]

r(t− s)ν+(ds), t > 0, r(0) = 1.

Let N be defined by (3.6.4). In the case when (3.3.3) and (3.3.4) hold we have that N(t) ≥ 0 for all
t ≥ 0, limt→∞N(t) = 0, and in particular N(t) = 0 for all t ≥ τ . Since r ∈ C1(0,∞) we have
r(t− s) = 1 +

∫ t−s
0

r′(u) du, then

r′(t) =
∫

[0,t]

ν(ds)
(

1 +
∫ t−s

0

r′(u) du
)
, t > 0.

Notice that r′(0) =
∫
[0,0]

ν+( ds)r(−s) = V+(0) ≥ 0. By definition of N this gives

r′(t) = N(t) +
∫

[0,t]

ν+(ds)
∫ t−s

0

r′(u) du, t > 0.

By Fubini’s Theorem ∫
[0,t]

ν+(ds)
∫ t−s

0

r′(u) du =
∫

[0,t]

∫ t−s

0

ν+(ds)r′(u) du

=
∫ t

0

(∫
[0,t−s]

ν+(ds)

)
r′(u) du

=
∫ t

0

N(t− u)r′(u) du.

Therefore
r′(t) = N(t) +

∫
[0,t]

N(s)r′(t− s) ds, t > 0. (3.7.1)
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Since N(t) ≥ 0, we have r′(t) ≥ 0 for all t ≥ 0. Let ∆ > 0. If rδ is defined by (3.4.11), then rδ(t) ≥ 0 for
all t ≥ 0. Since rδ(0) > 0, by continuity we have that (3.4.13) holds for all t ≥ δ.

If we suppose that m(ν) < 1, then∫ ∞

0

N(t) dt =
∫ ∞

0

∫
[0,t]

ν+(ds) dt

=
∫ τ

0

∫
[0,t]

ν+(ds) dt+
∫ ∞

τ

(∫
[0,τ ]

ν+(ds) +
∫

[τ,t]

ν+(ds)

)
dt

=
∫ τ

0

∫
[0,t]

ν+(ds) dt =
∫

[0,τ ]

∫ τ

s

dt · ν+(ds)

=
∫

[0,τ ]

(τ − s)ν+(ds) =
∫

[0,τ ]

−sν+(ds) =
∫

[−τ,0]
sν(ds) = m(ν) < 1.

Therefore r′ ∈ L1(0,∞) and so r′(t) → 0 as t→∞. Therefore for t ≥ δ we have

rδ(t) = r(t)− r(t− δ) =
∫ t

t−δ
r′(s) ds.

Hence rδ(t) → 0 as t→∞. Also for T ≥ 2δ we have∫ T

δ

rδ(t) dt =
∫ T

δ

∫ t

t−δ
r′(s) ds dt =

∫ T

0

∫ (s+δ)∧T

s∨δ
dtr′(s) ds

=
∫ δ

0

∫ s+δ

δ

dtr′(s) ds+
∫ T−δ

δ

∫ s+δ

s

dtr′(s) ds+
∫ T

T−δ

∫ T

s

dtr′(s) ds

=
∫ δ

0

sr′(s) ds+
∫ T−δ

δ

δr′(s) ds+
∫ T

T−δ
(T − s)r′(s) ds

≤ δ

∫ T

0

r′(s) ds.

Therefore rδ ∈ L1(0,∞) for each δ > 0. For each ∆ > 0 we can consider the limit

cδ(∆) := lim
t→∞

Cov(Yδ(t), Yδ(t+ ∆)) = σ2

∫ ∞

0

rδ(u)rδ(u+ ∆) du.

This limit is finite, because rδ is bounded and rδ ∈ L1(0,∞), proving (3.4.14). Next we have
0 ≤ cδ(∆) ≤ σ2

∫∞
0
rδ(u) du · supv≥∆ rδ(v). Therefore cδ(∆) → 0 as ∆ →∞. Also we have∫ ∞

0

cδ(∆) d∆ = σ2

∫ ∞

0

∫ ∞

0

rδ(u)rδ(u+ ∆) du d∆

= σ2

∫ ∞

0

rδ(u)
(∫ ∞

u

rδ(v) dv
)
du ≤ σ2

(∫ ∞

0

rδ(u) du
)2

,

and so cδ ∈ L1(0,∞).
It remains to prove (3.4.15). We note that because r′(t) ≥ 0,N(t) ≥ 0 and

∫∞
0
N(s) ds =

∫ τ
0
N(s) ds <

1 and N(t) = 0 for all t ≥ τ that there exists a unique λ = λ(N) > 0 such that

1 =
∫ τ

0

N(s)eλs ds =
∫ ∞

0

N(s)eλs ds.

Since ∫ τ

0

N(t)eλt dt =
∫ τ

0

(∫
[0,t]

ν+(ds)

)
eλt dt =

∫
[0,τ ]

∫ τ

s

eλt dtν+(ds)

=
1
λ

∫
[0,τ ]

(
eλτ − eλs

)
ν+(ds)

=
1
λ

(∫
[0,τ ]

eλτν+(ds)−
∫

[0,τ ]

eλsν+(ds)

)
,
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we have that λ > 0 obeys

λ = −
∫

[0,τ ]

eλsν+(ds). (3.7.2)

Now h(−λ) = −λ−
∫
[−τ,0] e

−λsν(ds) = −λ−
∫
[0,τ ]

eλuν+(du) = 0, so −λ ∈ Λ.
Moreover, with r(λ)(t) := r′(t)eλt, N(λ)(t) := eλtN(t) we get

r(λ)(t) = N(λ)(t) +
∫ t

0

N(λ)(t− s)r(λ)(s) ds, t ≥ 0,

and so by the renewal theorem we have

lim
t→∞

r′(t)eλt = lim
t→∞

r(λ)(t) =
1∫∞

0
tN(λ)(t) dt

=
1∫ τ

0
teλt

∫
[0,t]

ν+(ds) dt
=: Rλ.

We can simplify Rλ. Since
∫ τ
s
teλt dt = τeλτ/λ− seλs/λ− (eλτ − eλs)/λ2, and using (3.3.4) and (3.7.2)

we have ∫ τ

0

teλt
∫

[0,t]

ν+(ds) dt =
∫

[0,τ ]

∫ τ

s

teλt dtν+(ds) =
∫

[0,τ ]

(∫ τ

s

teλt dt

)
ν+(ds)

=
∫

[0,τ ]

{
1
λ
τeλτ − 1

λ
seλs − 1

λ2
(eλτ − eλs)

}
ν+(ds)

=
∫

[0,τ ]

{
− 1
λ
seλs +

1
λ2
eλs
}
ν+(ds)

= − 1
λ

∫
[0,τ ]

seλsν+(ds)− 1
λ
.

Therefore by the definition of ν+ we get∫ ∞

0

tNλ(t) dt = − 1
λ

+
1
λ

∫
[−τ,0]

ue−λuν(du),

so
Rλ =

λ

−1 +
∫
[−τ,0] ue

−λuν(du)
. (3.7.3)

Since

rδ(t)eλt =
∫ t

t−δ
r′(s)eλs · eλ(t−s) ds =

∫ t

t−δ
(r′(s)eλs −Rλ) · eλ(t−s) ds+Rλ

∫ δ

0

eλu du,

we have

lim
t→∞

rδ(t)eλt = Rλ

∫ δ

0

eλu du.

Now

cδ(∆)eλ∆ = σ2

∫ ∞

0

rδ(u)e−λurδ(u+ ∆)eλ(∆+u) du,

so as rδ is in L1 and λ > 0 we have

lim
∆→∞

cδ(∆)eλ∆ = σ2Rλ

∫ δ

0

eλu du

∫ ∞

0

rδ(u)e−λu du. (3.7.4)

The righthand side of (3.7.4) is positive. Finally, we write it in terms of data. By (3.7.3) we have

σ2Rλ

∫ δ

0

eλu du = σ2 eλδ − 1
−1 +

∫
[−τ,0] ue

−λuν(du)
.
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To compute
∫∞
0
rδ(u)e−λu du notice first that∫ ∞

0

rδ(u)e−λu du =
∫ δ

0

r(u)e−λu du+
∫ ∞

δ

∫ u

u−δ
r′(s) dse−λu du.

Hence ∫ ∞

0

rδ(u)e−λu du =
∫ δ

0

r(u)e−λu du− e−λδ − 1
λ

∫ ∞

0

r′(s)e−λs ds. (3.7.5)

We evaluate the second integral on the righthand side. By (3.7.1) we have∫ ∞

0

r′(s)e−λs ds =

∫∞
0
N(s)e−λs ds

1−
∫∞
0
N(s)e−λs ds

=

∫ τ
0
N(s)e−λs ds

1−
∫ τ
0
N(s)e−λs ds

.

Next we have∫ τ

0

N(t)e−λt dt =
∫ τ

0

(∫
[0,t]

ν+(ds)

)
e−λt dt =

∫
[0,τ ]

(∫ τ

s

e−λt dt

)
ν+(ds)

=
∫

[0,τ ]

(
1
−λ

e−λτ − 1
−λ

e−λs
)
ν+(ds) =

1
λ

∫
[0,τ ]

e−λsν+(ds).

Hence ∫ τ

0

N(t)e−λt dt =
1
λ

∫
[0,τ ]

e−λsν+(ds) =
1
λ

∫
[−τ,0]

eλuν(du),

and so ∫ ∞

0

r′(s)e−λs ds =

∫
[−τ,0] e

λuν(du)

λ−
∫
[−τ,0] e

λuν(du)
. (3.7.6)

By (3.7.5) and (3.7.6) we have∫ ∞

0

rδ(u)e−λu du =
∫ δ

0

r(u)e−λu du− e−λδ − 1
λ

∫
[−τ,0] e

λuν(du)

λ−
∫
[−τ,0] e

λuν(du)
.

Hence

lim
∆→∞

cδ(∆)eλ∆

=
σ2(1− eλδ)

1−
∫
[−τ,0] ue

−λuν(du)

(∫ δ

0

r(u)e−λu du+
1− e−λδ

λ

∫
[−τ,0] e

λuν(du)

λ−
∫
[−τ,0] e

λuν(du)

)
,

as required.

3.8 Proof of Theorem 3.3.2
To prove Theorem 3.3.2, it is convenient to introduce the function

P : C → C, P (λ) =
∫ τ

0

e−λt
∫

[−t,0]
ν( ds) dt (3.8.1)

and the function
N : [0, τ ] → R, N(t) = ν([−t, 0]). (3.8.2)

Fubini’s theorem and ν([−τ, 0]) = 0 yield

P (λ) =
∫

[−τ,0]

(∫ τ

−s
e−λt dt

)
ν( ds) =

1
λ

∫
[−τ,0]

eλsν( ds) = −h(λ)
λ

+ 1 (3.8.3)
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for λ 6= 0. Therefore, for λ 6= 0 we have that P (λ) = 1 if and only if h(λ) = 0. For λ = 0 Fubini’s
theorem yields

P (0) =
∫

[−τ,0]

∫ τ

−s
dt ν(ds) =

∫
[−τ,0]

s ν(ds) = m(ν). (3.8.4)

Proof of (i): Because of (3.8.4) we have P (0) > 1 and due to Lebesgue’s theorem we see P (λ) → 0
as λ → ∞. Hence there exists a unique λ0 > 0 such that P (λ0) = 1 and so a unique λ0 > 0 such that
h(λ0) = 0.

To see that this root λ0 is simple we differentiate P and deduce by (3.3.3)

P ′(λ) = −
∫ τ

0

te−λt
∫

[−t,0]
ν( ds) dt < 0 for all λ ≥ 0.

On the other hand differentiating P by using representation (3.8.3) results in P ′(λ) = −h′(λ)/λ+h(λ)/λ2

for λ > 0. Since P ′(λ0) < 0, and P ′(λ0) = −h′(λ0)/λ0, we have h′(λ0) > 0.
Suppose there exists λ2 ∈ R such that h(λ0 + iλ2) = 0. Then P (λ0 + iλ2) = 1 yields

1 =
∫ τ

0

e−λ0t cos(λ2t)N(t) dt, 0 =
∫ τ

0

e−λ0t sin(λ2t)N(t) dt. (3.8.5)

Since h(λ0) = 0, we have P (λ0) = 1, or 1 =
∫ τ
0
e−λ0tN(t) dt. Using this and the first equality in (3.8.5)

gives ∫ τ

0

e−λ0t(1− cos(λ2t))N(t) dt = 0. (3.8.6)

But because N is non-negative and not vanishing everywhere this yields λ2 = 0.
Since we have already shown that there are no other zeros of h on the line Re (λ) = λ0, it is enough to

show that λ1 ≤ λ0 for all λ1 ∈ R with h(λ1 + iλ2) = 0 for some λ2 ∈ R. Because P (λ1 + iλ2) = 1 we
have

1 = Re (P (λ1 + iλ2)) =
∫ τ

0

e−λ1t cos(λ2t)N(t) dt ≤
∫ τ

0

e−λ1tN(t) dt = P (λ1).

Since P is decreasing on R and P (λ0) = 1, we must have λ1 ≤ λ0, which, by the above remark, proves
part (i).

Proof of (ii): The assumption ν([−τ, 0]) = 0 implies that h has a root in 0. It is simple since h′(0) =
1−

∫
[−τ,0] sν( ds) > 0, using m(ν) < 1.

Suppose there exists λ2 6= 0 such that h(iλ2) = 0. Then (3.8.3) implies P (iλ2) = 1 which results in

1 =
∫ τ

0

cos(λ2t)N(t) dt, 0 =
∫ τ

0

sin(λ2t)N(t) dt. (3.8.7)

On the other hand (3.8.4) yields ∫ τ

0

N(t) dt = P (0) = m(ν) < 1.

Consequently, by using the first equality in (3.8.7) we get∫ τ

0

N(t)
(
1− cos(λ2t)

)
dt < 0,

which contradicts N ≥ 0. Hence h(iλ2) 6= 0 for all λ2 6= 0.
The same argument as in (i) shows that for all other roots λ1 + iλ2 of h we have λ1 < 0.

3.9 Supporting Lemmas
In this section, Lemma 3.9.1, 3.9.2 and 3.9.3 are interrelated. Each one simplifies the form of the solution
of either the stochastic or deterministic differential equation supplied by a previous result.
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Lemma 3.9.1. Let Y (t) and y(t) be solutions of the processes defined by (3.2.8) and (3.2.1) respectively.
Then the solution (Y (t) : t ≥ −τ) obeys the variation of constants formula

Y (t) =

{
y(t) +

∫ t
0
r(t− s)σ dB(s), t ≥ 0,

φ(t), t ∈ [−τ, 0],
(3.9.1)

where r is the fundamental solution of (3.2.1).

Remark 3.9.1. As the proof is straightforward no outline is given.

Proof. Let Z(t) = Y (t)− y(t), then

dZ(t) = dY (t)− dy(t)

=
∫

[−τ,0]
Y (t+ s)ν( ds) dt+ σ dB(t)−

∫
[−τ,0]

y(t+ s)ν( ds) dt.

Hence
dZ(t) =

∫
[−τ,0]

Z(t+ s)ν( ds) dt+ σ dB(t), t ≥ 0, (3.9.2)

where Z(t) = 0 for all values of t ∈ [−τ, 0]. Consider the process

U(t) =
{
σ
∫ t
0
r(t− s) dB(s), t ≥ 0

0, t < 0.

We will show that U satisfies the equation for Z. Now by the stochastic Fubini’s theorem

U(t) = σ

∫ t

0

r(t− s) dB(s)

= σ

∫ t

0

(
1 +

∫ t−s

0

r′(u) du
)
dB(s)

= σB(t) + σ

∫ t

0

∫ t

s

r′(v − s) dv dB(s)

= σB(t) + σ

∫ t

0

∫ v

0

r′(v − s) dB(s) dv.

Therefore

dU(t) = σ dB(t) + σ

∫ t

0

r′(t− s) dB(s) dt, t > 0.

Now for t ≥ τ ,∫
[−τ,0]

U(t+ s)ν( ds) = σ

∫
s∈[−τ,0]

ν( ds)
∫ t+s

u=0

r(t+ s− u) dB(u)

= σ

∫ t

0

(∫
[u−t,0]∧[−τ,0]

r(t+ s− u)ν( ds)

)
dB(u).

For −τ < u− t < 0, define

I(u, t) =
∫

[u−t,0]
r(t+ s− u)ν( ds).

Then

I(u, t) =
∫

[−τ,0]
r(t− u+ s)ν( ds)−

∫
[−τ,u−t]

r(t− u+ s)ν( ds)

= r′(t− u),
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and for u− t ≤ −τ ,

I(u, t) =
∫

[−τ,0]
r(t− u+ s)ν( ds)

=r′(t− u).

Thus ∫
[−τ,0]

U(t+ s)ν( ds) = σ

∫ t

0

r′(t− u) dB(u), t ≥ τ.

Now for t ∈ [0, τ ] we have∫
[−τ,0]

U(t+ s)ν( ds) =
∫

[−τ,−t)
U(t+ s)ν( ds) +

∫
(−t,0]

U(t+ s)ν( ds)

=
∫

[−t,0]
U(t+ s)ν( ds)

=
∫

[−t,0]
ν( ds)σ

∫
[0,t+s]

r(t+ s− u) dB(u)

= σ

∫ t

0

∫
[−t,0]n[u−t,0]

r(t+ s− u)ν( ds) dB(u)

= σ

∫ t

0

∫
[u−t,0]

r(t+ s− u)ν( ds) dB(s)

= σ

∫ t

0

r′(t− u) dB(u).

Thus for t ≥ 0, ∫
[−τ,0]

U(t+ s)ν( ds) = σ

∫ t

0

r′(t− u) dB(u).

Hence for t ≥ 0

dU(t) = σ dB(t) +
∫

[−τ,0]
U(t+ s)ν( ds) dt,

where U(t) = 0 for t ∈ [−τ, 0]. But the solution of 3.9.2 with initial condition Z(t) = 0 for all t ∈ [−τ, 0]
is unique, so Z(t) = U(t) for all t ≥ −τ and hence Y (t) obeys the variation of constants formulas
3.9.1.

Lemma 3.9.2. Let y be the solution of (3.2.1). Then

y(t) = r(t)φ(0) +
∫ t

0

r(t− s)φ2(s) ds, t ≥ 0 (3.9.3)

where r is the fundamental solution of (3.2.1) and

φ2(t) =
{ ∫

[−τ,0] φ1(s+ t)ν( ds), for all t ∈ [0, τ ]
0, otherwise,

Remark 3.9.2. As the proof is straightforward no outline is given.

Proof. Now y′(t) =
∫
[−τ,0] y(t + s)v( ds) where t > 0. We compute its Laplace Transform is ỹ in what

follows. First, we integrate to get∫ ∞

0

e−λty′(t) dt =
∫ ∞

0

e−λt
∫

[−τ,0]
y(t+ s)ν( ds) dt.
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Hence

λỹ(λ)− φ(0) =
∫

[−τ,0]
eλsν( ds)

∫ ∞

0

e−λ(t+s)y(t+ s) dt

=
∫

[−τ,0]
eλsν( ds)

∫ ∞

s

e−λuy(u) du

=
∫

[−τ,0]
eλsν( ds)

(∫ ∞

0

e−λuy(u) du−
∫ s

0

e−λuy(u) du
)

=
∫

[−τ,0]
eλsν( ds)ỹ(λ) +

∫
[−τ,0]

eλsν( ds)
∫ 0

s

e−λuφ(u) du.

Then (
λ−

∫
[−τ,0]

eλsν( ds)

)
ỹ(λ) = φ(0) +

∫
[−τ,0]

eλsν( ds)
∫ 0

s

e−λuφ(u) du.

If r is the differential resolvent we have
(
λ−

∫
[−τ,0] e

λsν( ds)
)
r̃(λ) = 1, so

ỹ(λ) = φ(0)r̃(λ) + r̃(λ)

(∫
[−τ,0]

eλsν( ds)
∫ 0

s

e−λuφ(u) du

)
.

We need to take inverse transforms to establish (3.9.3). To do so we write the second term on the right hand
side as a product of transforms. To this end, we write∫

[−τ,0]
eλsν( ds)

∫ 0

s

e−λuφ(u) du =
∫

[−τ,0]
ν( ds)

∫ 0

s

e−λ(u−s)φ(u) du

=
∫

[−τ,0]
ν( ds)

∫ −s

0

e−λwφ(s+ w) dw.

Now define

φ1(t) =

{
φ(t), for all t ∈ [−τ, 0],
0, t > 0.

Then ∫
[−τ,0]

ν( ds)
∫ −s

0

e−λwφ(s+ w) dw =

−
∫

[−τ,0]
ν( ds)

∫ ∞

−s
e−λwφ(s+ w) dw +

∫
[−τ,0]

ν( ds)
∫ ∞

0

e−λwφ(s+ w) dw

=
∫

[−τ,0]
ν( ds)

∫ ∞

0

e−λwφ1(w + s) dw

=
∫ ∞

0

e−λw
∫

[−τ,0]
ν( ds)φ1(w + s) dw

= φ̃2(λ).

Thus ỹ(λ) = r̃(λ)φ(0) + r̃(λ)φ̃2(λ) which implies

y(t) = r(t)φ(0) +
∫ t

0

r(t− s)φ2(s) ds, t ≥ 0.

Finally we rewrite the formula in (3.9.3) in a form which simply depends on φ.

69



Lemma 3.9.3. Let y be the solution of (3.2.1). Then

y(t) = r(t)φ(0) +
∫

[−τ,0]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds), t ≥ 0. (3.9.4)

where r is the fundamental solution of (3.2.1).

Remark 3.9.3. As the proof is straightforward no outline is given.

Proof. By Lemma 3.9.2

y(t) = r(t)φ(0) +
∫ t

0

r(t− s)φ2(s) ds

= r(t)φ(0) +
∫ t

0

r(t− s)
∫

[−τ,0]
φ1(s+ u)ν( du) ds.

Now ∫ t

0

r(t− s)
∫

[−τ,0]
φ1(s+ u)ν( du) ds =

∫
[−τ,0]

∫ t

0

r(t− s)φ1(s+ u) ds ν( du)

=
∫

[−τ,0]

∫ t+s

s

r(t+ s− w)φ1(w) dw ν( ds)

=
∫

[−τ,0]

∫ 0

s

r(t+ s− u)φ1(u) duν( ds)

+
∫

[−τ,0]

∫ t+s

0

r(t+ s− u)φ1(u) du ν( ds).

If t ≥ τ , then for s ∈ [−τ, 0],∫
[−τ,0]

(∫ 0

s

r(t+ s− u)φ1(u) du+
∫ t+s

0

r(t+ s− u)φ1(u) du
)
ν( ds)

=
∫

[−τ,0]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds).

This confirms (3.9.4), in the case t ≥ τ . If 0 ≤ t < τ then,∫
[−τ,0]

∫ t+s

s

r(t+ s− u)φ1(u) du ν( ds) =∫
[−τ,−t]

∫ t+s

s

r(t+ s− u)φ1(u) du ν( ds) +
∫

[−t,0]

∫ t+s

s

r(t+ s− u)φ1(u) du ν( ds).

We express the first term to get∫
[−τ,−t]

∫ t+s

s

r(t+ s− u)φ1(u) du ν( ds)

=
∫

[−τ,−t]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds)−
∫

[−τ,−t]

∫ 0

t+s

r(t+ s− u)φ(u) du ν( ds)

=
∫

[−τ,−t]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds),

and then the second, yielding∫
[−t,0]

∫ t+s

s

r(t+ s− u)φ1(u) du ν( ds)

=
∫

[−t,0]

∫ 0

s

r(t+ s− u)φ1(u) du ν( ds) +
∫

[−t,0]

∫ t+s

0

r(t+ s− u)φ1(u) du ν( ds)

=
∫

[−t,0]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds).
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Therefore if t ∈ [0, τ ] we again get∫ t

0

r(t− s)
∫

[−τ,0]
φ1(s+ u)ν( du) ds =

∫
[−τ,0]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds)

and hence obtain (3.9.4) in this case, as required.

y(t) = r(t)φ(0) +
∫

[−τ,0]

∫ 0

s

r(t+ s− u)φ(u) du ν( ds),

as required.

Lemma 3.9.4. Suppose that B is a standard Brownian motion. Then for every ε ∈ (0, 1) we have

lim
n→∞

sup
nε≤t≤(n+1)ε

|B(t)−B(nε)|√
ε log n

= 0 a.s. (3.9.5)

Proof. Using some properties of Brownian motion we obtain

P[sup nε≤t≤(n+1)ε |B(t)−B(nε)| > 1]
= P[{ sup

nε≤t≤(n+1)ε

(B(t)−B(nε)) > 1} ∪ { inf
nε≤t≤(n+1)ε

(B(t)−B(nε)) < −1}]

≤ 2P[ sup
nε≤t≤(n+1)ε

(B(t)−B(nε)) > 1]

= 2P[ sup
0≤t≤(n+1)ε−nε

B(t) > 1]

= 2P[|B((n+ 1)ε − nε)| > 1]

= 2P [|Zε(n)| > xn] ≤
4√
2π

1
xn
e−x

2
n/2,

where xn := 1/
√

(n+ 1)ε − nε and we have used the fact that

Zε(n) :=
B((n+ 1)ε − nε)√

(n+ 1)ε − nε
,

isN (0, 1) distributed. By the mean value theorem xn =
√
ε
−1
n

(1−ε)/2
∗ for some n∗ ∈ [n, n+1]. Therefore√

ε
−1
n(1−ε)/2 ≤ xn, and so

P[sup nε≤t≤(n+1)ε |B(t)−B(nε)| > 1] ≤ 4√
2π

1
√
ε
−1
n(1−ε)/2

e−
1
2εn

(1−ε)
.

Therefore
∞∑
n=1

P[sup nε≤t≤(n+1)ε |B(t)−B(nε)| > 1] < +∞,

and so by the Borel–Cantelli lemma there exists an almost sure event Ω∗ and for each ω ∈ Ω∗ there exists
n0 = n0(ω) ∈ N such that for all n > n0, we have supnε≤t≤(n+1)ε |B(t) − B(nε)| ≤ 1. This gives
(3.9.5).
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Chapter 4

A Nonlinear Stochastic Functional Differential Equation
model of an Inefficient Financial Market

4.1 Introduction
As with the previous chapter, we present a stochastic functional differential equation model of an inefficient
financial market. Once again the model is informationally inefficient, in the sense that past movements of
the stock price have an influence on future movements. Following the model of the previous chapter we
suppose that the price adjustment at time t for a market with N traders is given by

dX(t) =
N∑
j=1

βj

(∫
[−θj ,0]

g(X(t+ u))sj(du)−
∫

[−τj ,0]

g(X(t+ u))lj(du)

)
dt

+ σ dB(t). (4.1.1)

Here sj and lj are finite measures, representing the short– and long–run weights that trader j uses to form
their demand schedule. βj > 0 and σ are constants. This is equivalent to the nonlinear stochastic functional
differential equation

X(t) = ψ(0) +
∫ t

0

{∫
[−τ,0]

g(X(s+ u))ν(du)

}
ds+

∫ t

0

σ dB(s), t ≥ 0, (4.1.2a)

X(t) = φ(t), t ∈ [−τ, 0], (4.1.2b)

where τ = maxj=1,...,N max(τj , θj). The measure ν ∈ M [−τ, 0] inherits properties from the weights sj
and lj , and the constants βj and α. These special properties influence the almost sure asymptotic behaviour
as t→∞ of solutions of (4.1.1).

The distinguishing feature of this model is the presence of the nonlinear function g in the place of the
linear function x 7→ βx in the equation (3.1.1). As in chapter 2, this nonlinear function allows us to capture
differing attitudes to risk among the traders when the returns do not depart too far from equilibrium values.

Despite the presence of the nonlinearity g we can still show that the returns undergo long run dynamics
consistent with either a correlated standard Brownian motion, or a bubble or crash characterised by expo-
nentially growing returns. These results are directly comparable to the corresponding results for nonlinear
discrete–time equation in chapter 2 and to continuous–time affine equations in chapter 3. The economic
interpretation of these results and the conditions under which they apply carries over without any significant
amendment.

The chapter has the following structure; Section 2 gives notation and supporting results; Section 3 states
the main mathematical results of the paper, while Section 4 shows how the hypotheses of these results are
satisfied in the financial model. The interpretation of the results to the financial model are also explored in
Section 4 and the rest of the chapter is devoted to proofs.

4.2 Preliminaries
Please refer to chapter 3 section 3.2, from (3.2.1) to (3.2.1) and (3.2.9), for an outline of various equations.
Let us fix a complete probability space (Ω,F ,P) with a filtration (F(t))t≥0 satisfying the usual conditions
and let (B(t) : t ≥ 0) be a standard Brownian motion on this space. We study the following stochastic
differential equation with time delay:

dX(t) =
∫

[−τ,0]
g(X(t+ s))ν(ds) dt+ σ dB(t) for t ≥ 0,

X(t) = φ(t) for t ∈ [−τ, 0],
(4.2.1)
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for a constant τ ≥ 0 and σ ≥ 0. We presume that g obeys

g ∈ C(R; R) is locally Lipschitz continuous (4.2.2a)

lim
x→∞

g(x)
x

= 1, lim
x→−∞

g(x)
x

= 1. (4.2.2b)

Then for every φ ∈ C[−τ, 0] there exists a unique, adapted strong solution (X(t, φ) : t ≥ −τ) with finite
second moments of (4.2.3) (cf., e.g., Mao [49]).

It is convenient to introduce an associated affine stochastic differential with time delay

dY (t) =
∫

[−τ,0]
ν(ds)Y (t+ s) dt+ σ dB(t) for t ≥ 0,

Y (t) = φ(t) for t ∈ [−τ, 0].
(4.2.3)

For every φ ∈ C[−τ, 0] there exists a unique, adapted strong solution (Y (t, φ) : t ≥ −τ) with finite
second moments of (4.2.3) (cf., e.g., Mao [49]). The dependence of the solutions on the initial condition φ
is neglected in our notation in what follows; that is, we will write X(t) = X(t, φ) and Y (t) = Y (t, φ) for
the solutions of (4.2.1) and (4.2.3) respectively.

4.3 Statement and Discussion of Main Mathematical Results
In advance of stating our main results concerning the nonlinear equation (4.2.1), first recall the result con-
cerning the linear equation (3.2.8). We can now state a nonlinear version of Theorem 3.3.1, which is the
main mathematical result of the chapter. Roughly speaking, because (3.2.8) is a “linearisation” of (4.2.1) at
infinity, the asymptotic behaviour of the solution of (4.2.1) follows that of (3.2.8) according as to whether
v0(ν) is zero or positive.

Theorem 4.3.1. Let σ 6= 0. Let g ∈ C(R; R) satisfy (4.2.2), and let ν ∈ M [−τ, 0]. Suppose that r obeys
(3.3.1). Then the solution X of (4.2.1) satisfies

(i) If v0(ν) = 0, then

lim sup
t→∞

X(t)√
2t log log t

= |σ|c, lim inf
t→∞

X(t)√
2t log log t

= −|σ|c, a.s.

(ii) If v0(ν) > 0, then

lim sup
t→∞

1
t

log |X(t)| ≤ v0(ν), a.s.

If, moreover there exists a non–decreasing continuous γ0 : [0,∞) → (0,∞) such that

|g(x)− x| ≤ γ0(|x|), x ∈ R;
∫ ∞

1

γ0(x)
x2

dx < +∞, (4.3.1)

then
lim
t→∞

e−v0(ν)tX(t) = Λ, a.s. (4.3.2)

where

Λ = c

(
φ(0) +

∫
[−τ,0]

∫ 0

s

ev0(ν)(s−u)g(φ(u)) du ν(ds) + σ

∫ ∞

0

e−v0(ν)s dB(s)

)

+ cv0(ν)
∫ ∞

0

e−v0(ν)s{g(X(s))−X(s)} ds. (4.3.3)

In both cases, the constant c is given by (3.3.2) and Λ is finite.
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Remark 4.3.1. The function γ0(x) = max0≤s≤|x| |g(s) − s| is non-decreasing, continuous positive and
obeys the first part of Theorem 4.3.1. Therefore if∫ ∞

1

max0≤s≤|x| |g(s)− s|
x2

dx <∞

and v0(ν) > 0, then (4.3.2) and (4.3.3) hold.

Remark 4.3.2. The analogue of this Theorem can be found in chapter 2. Part (a) corresponds to Theo-
rem 2.5.1 and part (b) corresponds to Theorem 2.5.2. The proof of this Theorem is similar to the proof of
the Theorems mentioned in chapter 2 and for this reason no outline of the proof is given.

The next result shows that in the case when v0(ν) > 0 the condition (4.3.1) on g is difficult to relax
without losing the property that X is asymptotic to ev0(ν)t as t→∞.

Theorem 4.3.2. Let σ 6= 0. Let g ∈ C(R; R) satisfy (4.2.2), and let ν ∈ M [−τ, 0]. Suppose that r obeys
(3.3.1) with v0(ν) > 0. Suppose there exists x1 > 0 such that γ is monotone on (−∞,−x1] ∪ [x1,∞),
and that the solution X of (4.2.1) obeys (4.3.2) where Λ is a finite FB(∞)–measurable random variable
which assumes positive values on an event of positive probability, and negative values on a event of positive
probability. Then Λ is given by (4.3.3), and∫ ∞

1

γ(x)
x2

dx and
∫ −1

−∞

γ(x)
x2

dx are finite. (4.3.4)

The result also shows that the existence of a limit in (4.3.2) forces that limit to be given by (4.3.3).
An explicit equivalence between the size of g(x) − x and the existence of the limit in (4.3.2) can be

obtained by imposing some extra monotonicity and structure on g.

Theorem 4.3.3. Let σ 6= 0. Let g ∈ C(R; R) satisfy (4.2.2), and let ν ∈ M [−τ, 0]. Suppose that r obeys
(3.3.1) with v0(ν) > 0. Suppose that x 7→ g(x) − x is odd and monotone on R. Let X be the solution of
(4.2.1).

(i) If ∫ ∞

1

|g(x)− x|
x2

dx < +∞, (4.3.5)

then there is a finite FB(∞)–measurable random variable Λ such that X obeys (4.3.2), and Λ is
given by (4.3.3).

(ii) Suppose there is a finite FB(∞)–measurable random variable Λ positive values on an event of
positive probability, and negative values on a event of positive probability, and that X obeys (4.3.2).
Then Λ is given by (4.3.3) and g obeys (4.3.5).

Proof. Let γ(x) = g(x) − x for x ∈ R. Then γ is monotone and odd. Define γ0(x) = |γ(x)| for x ∈ R.
Then

γ0(−x) = |γ(−x)| = | − γ(x)| = |γ(x)| = γ0(x).

Then |g(x)− x| = γ0(x) = γ0(|x|) for x ∈ R. (4.3.5) implies∫ ∞

1

γ0(x)
x2

dx =
∫ ∞

1

|g(x)− x|
x2

dx < +∞.

By part (ii) of Theorem 4.3.1 we have that X obeys (4.3.2) and that Λ in (4.3.2) obeys (4.3.3). This proves
part (i) of the result.

To prove part (ii), since γ is monotone on R it follows from Theorem 4.3.2 that Λ is given by (4.3.3) and
that γ obeys (4.3.4). The latter conclusion implies that∫ ∞

1

g(x)− x

x2
dx and

∫ −1

−∞

g(x)− x

x2
dx are finite.

Since x 7→ g(x)− x is odd, we may rewrite the second integral as∫ −1

−∞

g(x)− x

x2
dx =

∫ ∞

1

g(−u)− (−u)
u2

du =
∫ ∞

1

u− g(u)
u2

du.
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Therefore both
∫∞
1

(g(x)− x)/x2 dx and
∫∞
1

(x− g(x))/x2 dx are finite.
Since x 7→ g(x)− x is odd, we have that 0 = g(0)− 0. If x 7→ g(x)− x is monotone non–decreasing,

then g(x)− x ≥ 0 for all x ≥ 0 and so∫ ∞

1

|g(x)− x|
x2

dx =
∫ ∞

1

g(x)− x

x2
dx < +∞,

and the proof of part (ii) is complete in this case. If, on the other hand, x 7→ g(x) − x is monotone
non–increasing, then g(x)− x ≤ 0 for all x ≥ 0 and so∫ ∞

1

|g(x)− x|
x2

dx =
∫ ∞

1

x− g(x)
x2

dx < +∞.

and part (ii) has been established in this case also.

Given a measure ν it is often a rather delicate issue to determine the value of v0(ν), but Theorem 3.3.2
gives sufficient conditions for this for a subclass of M [−τ, 0] which will cover the economic modelling
later. Theorem 3.3.2 guarantees that when ν obeys (3.3.3) and (3.3.4), then m(ν) < 1 implies part (a) of
Theorem 4.3.1, while m(ν) > 1 implies part (b).

The following auxiliary lemma is required in the proof of Theorem 4.3.1; its proof is deferred to the final
section.

Lemma 4.3.1. Let ϑ be positive and increasing with ϑ(t− T )/ϑ(t) → 1, as t→∞, for all T ≥ 0. If κ is
non–negative with

∫∞
0
κ(s) ds ∈ (0,∞), then

lim
t→∞

1
ϑ(t)

∫ t

0

κ(t− s)ϑ(s) ds =
∫ ∞

0

κ(s) ds.

Remark 4.3.3. This Lemma is an analogue of Lemma 2.7.1 in chapter 2.

4.3.1 Economic modelling
Equation (4.2.1) application to the financial market mimics that of chapter 3. The only difference is the
trading strategy of the j-th agent at time t is as follows: he considers a short–run moving average of a near
linear transform the cumulative returns over the last θj units of time∫

[−θj ,0]

g(X(t+ u)) sj(du)

for a measure sj ∈ M [−θj , 0] and also calculates a corresponding long–run average of cumulative returns
over the last τj ≥ θj units of time ∫

[−τj ,0]

g(X(t+ u)) lj(du)

for a measure lj ∈M [−τj , 0]. So the planned excess demand of trader j at time t is

βj

(∫
[−θj ,0]

g(X(t+ u)) sj(du)−
∫

[−τj ,0]

g(X(t+ u)) lj(du)

)

where βj ≥ 0. Therefore, the overall planned excess demand of all traders is

N∑
j=1

βj

(∫
[−θj ,0]

g(X(t+ u)) sj(du)−
∫

[−τj ,0]

g(X(t+ u)) lj(du)

)
,

and the returns are described by

dX(t) =
N∑
j=1

βj

(∫
[−θj ,0]

g(X(t+ u)) sj(du)−
∫

[−τj ,0]

g(X(t+ u)) lj(du)

)
dtσ dB(t). (4.3.6)
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We extend all measures sj and lj to the interval [−τ, 0] where τ = max{τ1, . . . , τN} by setting them zero
outside their support. Again introducing the measure ν ∈M [−τ, 0] defined by

ν(du) :=
N∑
j=1

βj(sj − lj)(du) (4.3.7)

we can rewrite equation (4.3.6) as

dX(t) =
∫

[−τ,0]
ν(ds)g(X(t+ s)) dt+ σ dB(t) for all t ≥ 0,

which is the form of (4.2.1). The evolution of the price of the risky asset (S(t) : t ≥ 0) is now given by

dS(t) = µS(t) dt+ S(t) dX(t), t ≥ 0; S(0) = s0 > 0. (4.3.8)

We can think of µ as the non-random interest rate in the model and consider P as the equivalent risk-neutral
measure. Applying Itô’s formula shows as in the standard Black-Scholes model that the price of the asset
S can be represented by

S(t) = S(0) exp
(
X(t) + (µ− 1

2σ
2)t
)

for all t ≥ 0. (4.3.9)

In the case when the feedback traders are absent, i.e. βj = 0 for all j = 1, . . . , N , we have dX(t) =
σ dB(t), in which case S is Geometric Brownian motion, evolving according to

dS(t) = µS(t) dt+ σS(t) dB(t), t ≥ 0; S(0) = s0 > 0.

4.4 Proofs

4.4.1 Proof of Theorem 4.3.1, part (i)
Let Y be a solution of (4.2.3) with Y (t) = φ(t), t ∈ [−τ, 0]. Define Z(t) = X(t) − Y (t), t ≥ −τ . Then
Z ∈ C1(0,∞) obeys

Z ′(t) =
∫

[−τ,0]
g(X(t+ s))ν(ds) dt−

∫
[−τ,0]

Y (t+ s)ν(ds), t > 0,

with Z(t) = 0 for t ∈ [−τ, 0]. Define γ(x) = g(x)− x, x ∈ R. Then

Z ′(t) =
∫

[−τ,0]
Z(t+ s)ν(ds) +

∫
[−τ,0]

γ(X(t+ s))ν(ds) ds, t > 0.

Hence by variation of constants and Fubini’s Theorem, we get

Z(t) =
∫ t

0

r(t− s)
∫

[−τ,0]
γ(X(s+ u))ν(du) ds

=
∫

[−τ,0]

{∫ t

0

r(t− s)γ(X(s+ u)) ds
}
ν(du).

Therefore for t ≥ τ , and using the fact that X(v) = φ(v) for v ∈ [−τ, 0], we have

Z(t) = F1(t) +
∫

[−τ,0]

{∫ t

−u
r(t− s)γ(X(s+ u)) ds

}
ν(du), (4.4.1)

where

F1(t) =
∫

[−τ,0]

{∫ −u

0

r(t− s)γ(φ(s+ u)) ds
}
ν(du), t ≥ τ. (4.4.2)

Notice that as r(t) → c as t→∞ implies that F1(t) → F ∗ as t→∞.
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Now, by Fubini’s Theorem, and (3.2.2), we get∫
[−τ,0]

{∫ t

−u
r(t− s)γ(X(s+ u)) ds

}
ν(du)

=
∫

[−τ,0]

{∫ t+u

0

r(t+ u− v)γ(X(v)) dv
}
ν(du)

=
∫ t

0

{∫
[v−t,0],u≥−τ

r(t+ u− v)ν(du)

}
γ(X(v)) dv

=
∫ t−τ

0

{∫
[−τ,0]

r(t+ u− v)ν(du)

}
γ(X(v)) dv

+
∫ t

t−τ

{∫
[v−t,0]

r(t+ u− v)ν(du)

}
γ(X(v)) dv

=
∫ t−τ

0

r′(t− v)γ(X(v)) dv +
∫ t

t−τ

{∫
[v−t,0]

r(t+ u− v)ν(du)

}
γ(X(v)) dv

=
∫ t−τ

0

r′(t− v)γ(X(v)) dv +
∫ t

t−τ
u0(t− v)γ(X(v)) dv,

where we have defined u0(t) =
∫
[−t,0] ν(du)r(t+ u), t ∈ [0, τ ]. Inserting this into (4.4.1), we obtain

Z(t) = F1(t) +
∫ t

0

u(t− v)γ(X(v)) dv, t ≥ τ,

where we have defined

u(t) =
{

r′(t), t > τ,
u0(t), t ∈ [0, τ ].

Note that r − c ∈ L1(0,∞) implies that r′ ∈ L1(0,∞), so u ∈ L1(0,∞). Property (4.2.2b) implies that
for every ε > 0 such that ε

∫∞
0
|u(s)| ds < 1/2, there exists a Λ(ε) > 0 such that

|γ(x)| ≤ Λ(ε) + ε|x|, for all x ∈ R.

Therefore for all t ≥ τ ,

|Z(t)| ≤ |F1(t)|+ Λ(ε)
∫ t

0

|u(t− v)| dv + ε

∫ t

0

|u(t− v)||X(v)| dv

≤ F2(t) + ε

∫ t

0

|u(t− v)||Z(v)| dv,

where F2(t) = |F1(t)|+ Λ(ε)
∫∞
0
|u(v)| dv + ε

∫ t
0
|u(t− v)||Y (v)| dv for t ≥ τ . Now define

F (t) =
{

maxt∈[0,τ ] |Z(s)|, t ∈ [0, τ),
F2(t), t ≥ τ,

Then

|Z(t)| ≤ F (t) + ε

∫ t

0

|u(t− v)||Z(v)| dv, t ≥ 0. (4.4.3)

Now, we determine the asymptotic behaviour of Z. To do this we need to find the asymptotic behaviour of
F . By Theorem 3.3.1, Y obeys

lim sup
t→∞

|Y (t)|√
2t log log t

= c|σ|, a.s.

Fix ω ∈ Ω∗, the almost sure event on which the last statement holds. Then by Lemma 4.3.1, we have

lim sup
t→∞

F (t, ω)√
2t log log t

≤ εc|σ|
∫ ∞

0

|u(s)| ds. (4.4.4)
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Next note by (4.4.3) that the solution U(·, ω) of

U(t, ω) = F (t, ω) + ε

∫ t

0

|u(t− v)|U(v, ω) dv, t ≥ 0,

obeys |Z(t, ω)| ≤ U(t, ω) for all t ≥ 0. Defining ρ by ρ(t) = ε|u(t)| +
∫ t
0
ε|u(t − s)|ρ(s) ds, t ≥ 0, we

have

U(t, ω) = F (t, ω) +
∫ t

0

ρ(t− s)F (s, ω) ds, t ≥ 0.

Since ε
∫∞
0
|u(s)| ds < 1/2, we have that ρ ≥ 0 is in L1(0,∞) and obeys

1 +
∫ ∞

0

ρ(s) ds = 1 + ε

∫∞
0
|u(t)| dt

1− ε
∫∞
0
|u(t)| dt

=
1

1− ε
∫∞
0
|u(t)| dt

.

Therefore, by Lemma 4.3.1, we obtain

lim sup
t→∞

U(t, ω)√
2t log log t

≤ εc|σ|
∫ ∞

0

|u(s)| ds
(

1 +
∫ ∞

0

ρ(s) ds
)
,

so

lim sup
t→∞

|Z(t, ω)|√
2t log log t

≤ εc|σ|
∫ ∞

0

|u(s)| ds · 1
1− ε

∫∞
0
|u(t)| dt

.

Therefore, we may let ε→ 0 to get

lim
t→∞

Z(t, ω)√
2t log log t

= 0.

Since this holds for each ω in an almost sure event and Z = X − Y , we have that

lim sup
t→∞

|X(t)− Y (t)|√
2t log log t

= 0, a.s.

Therefore, by applying the result of part (a) of Theorem 3.3.1, we see that the assertion of part (i) of the
Theorem 4.3.1 must hold.

4.4.2 Proof of Theorem 4.3.1, part (ii)
Let Z(t) = X(t)−Y (t), t ≥ 0 where Y is the solution of (4.2.3) with Y (t) = X(t) = φ(t) for t ∈ [−τ, 0].
With γ(x) = g(x)− x, F1 defined by

F1(t) =
∫

[−τ,0]

{∫ −u

0

r(t− s)γ(φ(s+ u)) ds
}
ν(du), t ≥ τ,

and u is defined by

u(t) =
{

r′(t), t > τ,∫
[−t,0] r(t+ u)ν(du), t ∈ [0, τ ],

we obtain

Z(t) = F1(t) +
∫ t

0

u(t− v)γ(X(v)) dv, t ≥ τ,

Hence with F (t) = F1(t) + Y (t), we have

X(t) = F (t) +
∫ t

0

u(t− s)γ(X(s)) ds, t ≥ τ.

By Theorem 3.3.1, we have that limt→∞ e−v0(ν)tY (t) =: Γ0 a.s. and by hypothesis we have
limt→∞ r(t)e−v0(ν)t = c, where c is given by (3.3.2) and v0(ν) is real, simple zero of the characteristic
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equation. Next as

e−v0(ν)tF1(t) =
∫

[−τ,0]

{∫ −u

0

(e−v0(ν)(t−s)r(t− s)− c)e−v0(ν)sγ(φ(s+ u))
}
ν(du)

+
∫

[−τ,0]

{∫ −u

0

ce−v0(ν)sγ(φ(s+ u)) ds
}
ν(du),

we obtain

lim
t→∞

e−v0(ν)tF1(t) =
∫

[−τ,0]

{∫ −u

0

ce−v0(ν)sγ(φ(s+ u)) ds
}
ν(du) =: Γ1.

Define X̃(t) = e−v0(ν)tX(t) for t ≥ −τ and for t ≥ 0 define ũ(t) = e−v0(ν)tu(t) and
F̃ (t) = e−v0(ν)tF (t). Then we have limt→∞ F̃ (t) = Γ0 + Γ1. Also

lim
t→∞

ũ(t) = lim
t→∞

e−v0(ν)tr′(t) = lim
t→∞

∫
[−τ,0]

ν(ds)ev0(ν)se−v0(ν)(t+s)r(t+ s)

= c

∫
[−τ,0]

ν(ds)ev0(ν)s = cv0(ν).

By the definition of X̃ , ũ etc., we have

X̃(t) = F̃ (t) +
∫ t

0

ũ(t− s)e−v0(ν)sγ(ev0(ν)sX̃(s)) ds, t ≥ τ. (4.4.5)

Now, let Xε(t) = X̃(t)e−(v0(ν)+ε)t etc, so that

Xε(t) = Fε(t) +
∫ t

0

uε(t− s)e−(v0(ν)+ε)sγ(e(v0(ν)+ε)sXε(s)) ds, t ≥ τ.

For every η > 0 there exists L(η) > 0 such that |γ(x)| ≤ L(η) + η|x|. Choose η > 0 sufficiently small so
that η

∫∞
0
e−εs|ũ(s)| ds < 1. Hence for t ≥ τ we have

|Xε(t)| ≤ |Fε(t)|+
∫ t

0

|uε(t− s)|
{
L(η)e−(v0(ν)+ε)s + η|Xε(s)|

}
ds

≤ |Fε(t)|+ η

∫ t

0

|uε(t− s)||Xε(s)| ds+ L(η)
∫ t

0

|uε(t− s)|e−(v0(ν)+ε)s ds

=: Gε,η(t) + η

∫ t

0

|uε(t− s)||Xε(s)| ds.

Since uε ∈ L1(0,∞) and Fε ∈ L1(0,∞) it follows that Gε,η ∈ L1(0,∞). Similarly, uε(t) → 0 and
Fε(t) → 0 as t→∞, and henceGε,η(t) → 0 as t→∞. SinceGε,η ∈ L1(0,∞) and η

∫∞
0
e−εs|ũ(s)| ds <

1, we have Xε ∈ L1(0,∞) a.s. Thus, as uε(t) → 0 as t→∞, we have that Xε(t) → 0 as t→∞ a.s. We
have thus shown that there exist a.s. events Ωε such that

lim
t→∞

e−(v0(ν)+ε)tX(t) = 0, on Ωε.

We hold ε > 0 fixed temporarily. The limit implies that for all ω ∈ Ωε there exists T (ε, ω) so that|X(t, ω)| <
e(v0(ν)+ε)t for all t > T (ε, ω). Hence

1
t

log |X(t)| ≤ v0(ν) + ε, t > T (ε, ω),

and so
lim sup
t→∞

1
t

log |X(t)| ≤ v0(ν) + ε, a.s. on Ωε.
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Now, let Ω∗ = ∩ε∈Q∩(0,1)Ωε. Then Ω∗ is an almost sure event and we have

lim sup
t→∞

1
t

log |X(t)| ≤ v0(ν), a.s. on Ω∗,

as required.
It remains to prove the existence of the limit limt→∞ e−v0(ν)tX(t) under the hypothesis (4.3.1) on g.

We begin by making some observations. Since F̃ is continuous and F̃ (t) → Γ0 + Γ1 as t → ∞, we may
define f1 = supt≥0 |F̃ (t)| ∈ (0,∞). Since ũ is continuous and ũ(t) → cv0(ν) as t → ∞, we may define
u1 = supt≥0 |ũ(t)| ∈ (0,∞). Thus

|X̃(t)| ≤ f1 +
∫ t

0

u1e
−v0(ν)s|γ(ev0(ν)sX̃(s))| ds, t ≥ τ.

Since |γ(x)| ≤ γ0(|x|) for x ∈ R we have

|X̃(t)| ≤ f1 + u1

∫ t

0

e−v0(ν)sγ0(ev0(ν)s|X̃(s)|) ds, t ≥ τ.

Define f2 > f1 such that ∫ ∞

f2

1
s2
γ0(s) ds ·

u1

v0(ν)
<

1
2
. (4.4.6)

Define I(t) =
∫ t
0
e−v0(ν)sγ0(ev0(ν)s|X̃(s)|) ds for t ≥ 0. Since γ0 is continuous and positive, I is non–

decreasing and differentiable, and I obeys |X̃(t)| ≤ f1 + u1I(t) for t ≥ τ and

I ′(t) = e−v0(ν)tγ0(ev0(ν)t|X̃(t)|).

Therefore as γ0 is non–decreasing for t ≥ τ we have

ev0(ν)tI ′(t) = γ0(ev0(ν)t|X̃(t)|) ≤ γ0(ev0(ν)t(f1 + u1I(t))).

Hence for any t ≥ τ we have

I(t) ≤ I(τ) +
∫ t

τ

e−v0(ν)sγ0(ev0(ν)s(f1 + u1I(s))) ds.

Since I is non–decreasing and γ0 is non–decreasing, with y∗ := f2 + u1I(t) > f1 + u1I(t) we have

I(t) ≤ I(τ) +
∫ t

τ

e−v0(ν)sγ0(ev0(ν)s(f1 + u1I(s))) ds

≤ I(τ) +
∫ t

τ

e−v0(ν)sγ0(y∗ev0(ν)s) ds.

Now, as u 7→ γ0(u)/u2 is integrable and (4.4.6) holds, we have∫ t

τ

e−v0(ν)sγ0(y∗ev0(ν)s) ds =
∫ y∗ev0(ν)t

y∗ev0(ν)τ

y∗

w
γ0(w)

1
v0(ν)

1
w
dw

≤
∫ ∞

y∗

γ0(w)
w2

dw · y∗

v0(ν)

≤
∫ ∞

f2

γ0(w)
w2

dw · f2 + u1I(t)
v0(ν)

≤
∫ ∞

f2

γ0(w)
w2

dw · f2
v0(ν)

+
1
2
I(t),

where we have also used the facts that y∗ > f2 and v0(ν) > 0 to extend the limits of integration. Thus for
any t ≥ τ we have

I(t) ≤ I(τ) +
∫ ∞

f2

γ0(w)
w2

dw · f2
v0(ν)

+
1
2
I(t).
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Therefore

I(t) ≤ 2I(τ) + 2
∫ ∞

f2

γ0(w)
w2

dw · f2
v0(ν)

, t ≥ τ.

Thus I is bounded, and therefore it follows that there exists a finite x̄ > 0 such that |X̃(t)| ≤ x̄ for all
t ≥ 0. Define J(t) = e−v0(ν)tγ(ev0(ν)tX̃(t)). This yields

X̃(t) = F̃ (t) +
∫ t

0

ũ(t− s)J(s) ds, t ≥ τ.

Since ũ(t) → cv0(ν) as t→∞, if we can show that J ∈ L1(0,∞), then

lim
t→∞

e−v0tX(t) = Γ0 + Γ1 + cv0(ν)
∫ ∞

0

J(s) ds, a.s.

which establishes the existence of the required limit. To show that J is integrable, we simply note that as
|X̃(t)| ≤ x̄ and γ0 is non–decreasing, we can obtain∫ ∞

0

|J(t)| dt =
∫ ∞

0

e−v0(ν)t|γ(ev0(ν)tX̃(t))| dt ≤
∫ ∞

0

e−v0(ν)tγ0(ev0(ν)t|X̃(t)|) dt

≤
∫ ∞

0

e−v0(ν)tγ0(ev0(ν)tx̄) dt

=
∫ ∞

x̄

x̄

w
γ0(w)

1
v0(ν)

1
w
dw < +∞,

as required. Therefore

lim
t→∞

e−v0tX(t)

= c

(
φ(0) +

∫
[−τ,0]

∫ 0

s

ev0(ν)(s−u)φ(u) du ν(ds) + σ

∫ ∞

0

e−v0(ν)s dB(s)

)

+ c

∫
[−τ,0]

{∫ 0

s

ev0(ν)(s−u)γ(φ(u)) du
}
ν(ds) + cv0(ν)

∫ ∞

0

e−v0(ν)sγ(X(s)) ds.

Since g(x) = x+ γ(x), we get (4.3.2) as required.

4.4.3 Proof of Theorem 4.3.2
Suppose that X(t)e−v0(ν)t → Λ 6= 0 as t→∞. Since

X̃(t) = F̃ (t) +
∫ t

0

ũ(t− s)e−v0(ν)sγ(ev0(ν)sX̃(s)) ds, t ≥ τ,

it follows that we must have

lim
t→∞

∫ t

0

ũ(t− s)e−v0(ν)sγ(X(s)) ds exists.

Now

ũ(t)− cv0(ν) =
∫

[−τ,0]
ev0(ν)s(r(t+ s)e−v0(ν)(t+s) − c)ν(ds)

so by (3.3.1), ũ− cv0(ν) is integrable. Hence

lim
t→∞

{∫ t

0

(ũ(t− s)− cv0(ν)) e−v0(ν)sγ(X(s)) ds+ cv0(ν)
∫ t

0

e−v0(ν)sγ(X(s)) ds
}
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exists. Now γ(x)/x = g(x)/x− 1 → 0 as |x| → ∞. Therefore, for every ε > 0 there is a Λ(ε) > 0 such
that for all t ≥ 0 we have

e−v0(ν)t|γ(X(t))| ≤ e−v0(ν)tΛ(ε) + εe−v0(ν)t|X(t)|.

Hence as X(t)e−v0(ν)t → Λ as t→∞, and v0(ν) > 0 we have

lim sup
t→∞

e−v0(ν)t|γ(X(t))| ≤ ε lim sup
t→∞

e−v0(ν)t|X(t)| = εΛ.

Since ε > 0 is arbitrary, we see that e−v0(ν)tγ(X(t)) → 0 as t→∞. Hence

lim
t→∞

∫ t

0

(ũ(t− s)− cv0(ν)) e−v0(ν)sγ(X(s)) ds = 0,

and therefore as cv0(ν) > 0 it follows that

lim
t→∞

∫ t

0

e−v0(ν)sγ(X(s)) ds exists and is finite.

Suppose that Λ > 0. Then there exists T1 > 0 such that 3Λ/2 > X(t)e−v0(ν)t > Λ/2 for all t >
T1, so that 3Λ/2ev0(ν)t > X(t) > Λ/2ev0(ν)t for all t > T1. Clearly there exists T2 ≥ T1 such that
Λ/2ev0(ν)T2 ≥ x1. Without loss of generality, we may take γ non–decreasing on [x1,∞). Then we have

C :=
∫ ∞

0

e−v0(ν)sγ(X(s)) ds =
∫ T2

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T2

e−v0(ν)sγ(X(s)) ds

≥
∫ T2

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T2

e−v0(ν)sγ(
Λ
2
ev0(ν)s) ds.

Also we have

C ≤
∫ T2

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T2

e−v0(ν)sγ(
3Λ
2
ev0(ν)s) ds.

Hence there exists a finite C1 such that

C1 ≥
∫ ∞

T2

e−v0(ν)sγ(
Λ
2
ev0(ν)s) ds =

∫ ∞

Λ/2ev0(ν)T2

Λ/2
u
γ(u)

1
v0(ν)

1
u
du.

Therefore there is a finite C ′1 such that

C ′1 ≥
∫ ∞

Λ/2ev0(ν)T2

γ(u)
u2

du.

Similarly, we can deduce that there is a finite C2 such that

C ′2 ≤
∫ ∞

3Λ/2ev0(ν)T2

γ(u)
u2

du,

which implies that
∫∞
1
γ(u)/u2 du is finite.

Suppose that Λ < 0. Then there exists T3 > 0 such that 3Λ/2 < X(t)e−v0(ν)t < Λ/2 for all t >
T3, so that Λ/2ev0(ν)t > X(t) > 3Λ/2ev0(ν)t for all t > T3. Clearly there exists T4 ≥ T3 such that
Λ/2ev0(ν)T4 ≤ −x1. Without loss of generality, we may take γ to be non–increasing on (−∞,−x1]. This
implies that γ(Λ/2ev0(ν)t) < γ(X(t)) < γ(3Λ/2ev0(ν)t) for t ≥ T4, so we get

C :=
∫ ∞

0

e−v0(ν)sγ(X(s)) ds =
∫ T4

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T4

e−v0(ν)sγ(X(s)) ds

≥
∫ T4

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T4

e−v0(ν)sγ(
Λ
2
ev0(ν)s) ds.
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Also we have

C ≤
∫ T4

0

e−v0(ν)sγ(X(s)) ds+
∫ ∞

T4

e−v0(ν)sγ(
3Λ
2
ev0(ν)s) ds.

Hence there exists a finite C1 such that

C1 ≥
∫ ∞

T4

e−v0(ν)sγ(
Λ
2
ev0(ν)s) ds =

∫ Λ/2ev0(ν)T4

−∞

−Λ/2
u

γ(u)
1

v0(ν)
1
u
du.

Therefore there is a finite C ′1 such that

C ′1 ≥
∫ Λ/2ev0(ν)T4

−∞

γ(u)
u2

du.

Similarly, we can deduce that there is a finite C ′2 such that

C ′2 ≤
∫ 3Λ/2ev0(ν)T4

−∞

γ(u)
u2

du,

which implies that
∫ −1

−∞ γ(u)/u2 du is finite.

4.4.4 Proof of Lemma 4.3.1
Without loss of generality, let

∫∞
0
κ(s) ds = 1. For every ε > 0 there is T = T (ε) > 0 such that∫∞

T
κ(s) ds < ε. For t ≥ T , we have

(κ ∗ ϑ)(t)
ϑ(t)

−
∫ t

0

κ(s) ds =
∫ T

0

κ(s)
(
ϑ(t− s)
ϑ(t)

− 1
)
ds

+
∫ t

T

κ(s)
(
ϑ(t− s)
ϑ(t)

− 1
)
ds.

Now, as
∫∞
0
κ(s) ds = 1, and ϑ is an increasing function∣∣∣∣∣

∫ T

0

κ(s)
(
ϑ(t− s)
ϑ(t)

− 1
)
ds

∣∣∣∣∣ ≤ 1− ϑ(t− T )
ϑ(t)

.

Moreover, as κ is non–negative and ϑ increasing, we have∣∣∣∣∫ t

T

κ(s)
(
ϑ(t− s)
ϑ(t)

− 1
)
ds

∣∣∣∣ = ∫ t

T

κ(s)
(

1− ϑ(t− s)
ϑ(t)

)
ds ≤

∫ ∞

T

κ(s) ds.

Thus ∣∣∣∣∫ t

0

κ(s)ϑ(t− s)
ϑ(t)

ds−
∫ t

0

κ(s) ds
∣∣∣∣ ≤ 1− ϑ(t− T )

ϑ(t)
+
∫ ∞

T

κ(s) ds

< 1 +
ϑ(t− T )
ϑ(t)

+ ε.

Using ϑ(t− T )/ϑ(t) → 1 as t→∞, and then letting ε→ 0 yields the result.
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Chapter 5

Market Models from Max-Type Stochastic Functional
Equations

5.1 Introduction
This chapter introduces a class of stochastic functional difference equations whose structure is motivated
by three ubiquitous forms of heuristic investment strategy in financial markets: the comparison of current
prices with a reference level; trading on noise (or the latest news); and trading based on a comparison of
the local maximum of prices with the current price. It is the presence of the last category of speculative
behaviour which makes it reasonable to incorporate a maximum functional of the process on the right
hand of the stochastic difference equation. Accordingly the equations studied are stochastic functional
difference equations in which the maximum of the solution over the last N time units appears on the
righthand side. Roughly speaking, we show that the market experiences either fluctuations or undergoes
dynamics consistent with a crash or bubble.

Earlier in the thesis we have considered moving averages a feature of many of these stochastic func-
tional equation models. A number of papers using these equations or difference equations to model risky
asset price dynamics include [1, 2, 14, 12, 11, 21, 38]. These moving averages lead to stochastic Volterra
equations or to equations using linear functionals of past prices or returns, such as those studied in earlier
chapters. These equations are quite tractable analytically but do not allow for the inclusion of agents who
use the maximum of the last several periods of returns as a trading indicator. If we wish to include such
agents in our model, it will first be necessary to understand and deduce some properties of stochastic func-
tional difference equations with maxima. A body of literature on deterministic equations with maxima has
begun to mature in the last ten years, building on original work on the stability of functional difference
inequalities with maxima found in [37]. The main result in this direction is referred to as Halanay’s in-
equality. Current research on deterministic functional differential equations with maxima covers results on
existence, oscillation and asymptotic behaviour. A selection of important and representative recent papers
is [41, 47, 40]. On the other hand, Halanay’s inequality has been employed in numerical analysis [19], and
in the numerical analysis of stochastic functional differential equations [15, 17, 18] in particular. Despite
the analysis in [15, 17, 18], it seems that very limited information about stochastic functional difference
equations with maxima has appeared in the mathematical literature. For this type of stochastic difference
equation, it is usually not possible to express the solution explicitly in terms of an underlying deterministic
difference equation. However, by employing a constructive comparison technique similar to that developed
in the study of almost sure asymptotic behaviour of SFDEs in [4, 9], we find it possible to determine quite
sharp estimates on the rate of growth of both the partial maxima and of the solutions themselves in the
recurrent and transient cases respectively.

We describe how the results in this chapter can be considered in terms of financial economics. Our model
is informationally inefficient, in the sense that past movements of the stock price have an influence on future
movements. We assume that there is trading at intervals of one time unit (a day, say) with prices fixed in
the intervening period. The inefficiency stems from the presence of a class of trend–following speculators,
whose demand for the asset depends on the difference between the current level of the daily returns and the
maximum of the daily returns over the past N time units. We assume that there are another class of traders
who compare returns with a reference level, and that traders can also respond to “news”, represented in the
model as a source of independent and identically distributed random variables independent of the returns.

By considering the excess demand of traders, we are led to analyse a stochastic difference equation of
the form

X(n+ 1) = X(n) + αX(n) + β max
n−N≤j≤n

X(j) + ξ(n+ 1), n ≥ 0, (5.1.1)

where ξ is the “news”. Here X(n) represents the daily returns, shifted by a constant, and α and β > 0
are constants which incorporate the trading behaviour of the various classes of speculator. These special
properties influence the almost sure asymptotic behaviour as n→∞ of solutions of (5.1.1). We are able to
identify two comprehensive and non—overlapping regions in (α, β) parameter space in which the equation
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has either transient or recurrent solutions. In the transient case we determine the growth rate of solutions,
while in the recurrent case we determine the size of the largest fluctuations of solutions. Roughly speaking,
we show that the returns exhibit dynamics consistent with the daily returns being stationary, or the market
experiences a crash or bubble.

The recurrent case (1+α+β < 1), which results from the presence of sufficient negative feedback from
the instantaneous term, may be interpreted as a conventional fluctuating market and enable us to show that
the daily returns are governed by fluctuations consistent with a stationary process. Such recurrent behaviour
arises if the technical speculators do not react very aggressively to differences between the maximum return
and current return, in which case the rate of growth of the partial maxima of the solution is the same as that
of the noise term. These partial maxima measure the asymptotic rate of growth of the largest fluctuations.
Therefore, the trading does not itself produce very excess volatility, and so to a first approximation the
market appears efficient. However, upper bounds on the size of these largest fluctuations is greater in the
presence of trend following speculators than in their absence, where the market only reacts to “news”.
Hence the presence of these speculators tends to increase market volatility as well as causing correlation in
the returns. Representative results in this direction are Theorems 5.2.2, 5.2.3 and 5.2.5, in which regularly
varying, polynomial and thin–tailed distribution functions are tackled, respectively.

The transient case (1 + α + β > 1) yields a mathematical realisation of a runaway stock market bubble
or crash. This occurs if the reference traders are predominantly positive feedback traders, and the daily
returns will tend to plus or minus infinity exponentially fast (see Theorem 5.2.1). The manner in which
these dynamics form is consistent with the phenomenon of mimetic contagion [65].

In terms of financial economics, the chapter is an extension of previous work by Appleby & Swords [12]
and Appleby, Swords and Rodkina [11], which consider discrete time equations in which speculators use
moving averages rather than maxima to determine their trading strategies, and of Appleby and Wu [13]
which considers related equations in continuous time. In each of [12, 11, 13] analogues of Theorem 5.2.1
and e.g., Theorem 5.2.2 are proven. This is important in any mathematical model in economics, as model
assumptions are unlikely to be satisfied in reality, rendering general models which are robust to changes in
the assumptions particularly desirable. The common feature with results in this chapter and those in [12, 11]
is that an excess of positive feedback trading leads to a market bubble or crash, while the presence of heavy
tailed noise leads to large fluctuations in the incremental returns consistent with the returns coming from
a heavy–tailed stationary distribution. In this chapter, we extend results in [11] and actually show that the
large fluctuations in the daily returns are equivalent to the same kind of thick tailed noise term ξ. Moreover,
unlike the situation in [12, 11], we are unable to avail of a variation of constants formula, or a linearisation
of an underlying linear Volterra difference equation owing to the presence of the maximum functional on the
righthand side of (5.1.1). The results of this chapter are in many cases discrete–time analogues of those in
[13]. However, due to variety of types of tail behaviour of the discrete stochastic sequences ξ (as opposed
to the Gaussian distribution of increments of Brownian motion), we can admit larger fluctuations in the
returns in e.g., Theorem 5.2.2.

The chapter has the following structure; Section 2 gives the mathematical model of the market, and
reduces the equation for the returns to the simplified form (5.1.1); Section 3 gives notation and gives
statements of and discussion about the main mathematical results of the chapter; Section 4 explores the
interpretation of the results to the financial model. The rest of the chapter is devoted to proofs.

5.1.1 The Economic Model
We suppose that there are M1 reference level traders and M2 technical traders. We assume that these
traders do not change their investment strategies over time and have infinite lives. We may interpret this
latter assumption as allowing for the replacement of a trader with a finite lifetime by another with the same
investment strategy. Trading takes place at times 1, 2, 3, . . .; for simplicity, we think of these times as
representing the start of the first, second, third etc. trading day. The (daily) return over the time interval
[n, n+ 1) is R(n).

Reference traders believe that daily returns should either (a) revert towards a mean level, or (b) will depart
from that level. The latter case reflects the idea that if the returns are currently at a high (resp. low) level this
is a signal of higher (resp. lower) returns to come and so it is advantageous to buy (resp. sell) in advance of
the increase (resp. decrease) in prices. The mean level rl chosen is idiosyncratic to the l–th trader and the
planned excess demand is proportional to the deviation of the return from the reference level. Therefore,
there is al ∈ R such that the planned excess demand of reference trader l = 1, . . . , N1 just before trading

85



at time n + 1 is al(R(n) − rl). The planned excess demand of all reference traders before trading at time
n+ 1 is therefore

M1∑
l=1

al(R(n)− rl).

Some reference traders are contrarians: such traders buy if the daily return is below the reference level and
sell if it is above this level. This type of trader is modelled by setting al < 0. Other traders are positive
feedback traders: such traders buy if the daily return is above the reference level, and sell if it is below the
reference level. This type of trader is modelled by setting al > 0.

Technical traders believe that patterns in the returns are significant and should be traced. We suppose that
there are M2 such traders and consider for concreteness the j-th trader. He believes that if the current daily
return R(n) is significantly (meaning more than a tolerance of τj units) below the maximum daily return
over the pastN days, then this is a signal that the market will advance. Trader j has planned excess demand
before trading at time n+ 1 proportional to the strength of the signal

max
n−N≤k≤n

R(k)−R(n)− τj .

The tolerance τj is idiosyncratic to the trader. However, we assume for mathematical convenience that all
traders have the same length of memory, N days. The planned excess demand of trader j before trading at
time n+ 1 is therefore

bj

(
max

n−N≤k≤n
R(k)−R(n)− τj

)
where bj > 0 means that a positive signal leads to buying, while a negative signal leads to selling at time
n+ 1.

We note that if R(n) = maxn−N≤j≤nR(j), then the signal is negative and trader j sells. Therefore, if
the market is experiencing a very strong day relative to the recent past, the trader sells, expecting a reversal
of the market in the near future. Therefore the planned excess demand of all technical traders before trading
at time n+ 1 is therefore

M2∑
j=1

bj

(
max

n−N≤k≤n
R(k)−R(n)− τj

)
.

Speculators react to other random stimuli— “news”— which is independent of past returns. This “news”
comes in the form of a signal of strength ξ′(n+1), arriving just before trading at time n+1. For speculator
j = 1, . . . ,M1 +M2 this leads to unplanned excess demand ςjξ(n+ 1). We let ξ(n+ 1) =

∑M1+M2
j=1 ςj ·

ξ(n+ 1).
We suppose that the daily return will be greater (resp. less) tomorrow than today if there is excess demand

(resp. supply), with the rise (resp. fall) being larger the greater the excess demand (resp. supply). Hence,
the price adjustment at time n+ 1 for a market with M1 reference traders and M2 technical traders is given
by

R(n+ 1)−R(n) =
M1∑
l=1

al(R(n)− rl) +
M2∑
j=1

bj

(
max

n−N≤k≤n
R(k)−R(n)− τj

)
+ ξ(n+ 1), n ≥ 0. (5.1.2)

We now show how to reduce (5.1.2) to the equation (5.1.1). Suppose that

M1∑
l=1

al 6= 0. (5.1.3)

Define

α′ =
M1∑
l=1

al, r∗ =
1
α′

M1∑
l=1

alrl +
M2∑
j=1

bjτj

 , (5.1.4)
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and X(n) = R(n)− r∗. Then R(n) = X(n) + r∗ and so

X(n+ 1)−X(n) =
M1∑
l=1

al(X(n) + r∗ − rl)

+
M2∑
j=1

bj

(
max

n−N≤k≤n
X(k)−X(n)− τj

)
+ ξ(n+ 1), n ≥ 0.

Therefore, with β :=
∑M2
j=1 bj > 0, we have

X(n+ 1) = X(n) + (α′ − β)X(n) + β max
n−N≤k≤n

X(k)

+

r∗α′ −
M1∑
l=1

alrl −
M2∑
j=1

bjτj

+ ξ(n+ 1), n ≥ 0.

By using the definition α := α′ − β and (5.1.4) we get

X(n+ 1) = X(n) + αX(n) + β max
n−N≤k≤n

X(k) + ξ(n+ 1), n ≥ 0. (5.1.5)

Note that β > 0. It is seen that (5.1.5) is nothing other than the equation (5.1.1). We examine the mathe-
matical properties of (5.1.5) in the next sections, returning in Section 4 to interpret these properties in the
context of the economic model.

5.2 Statement of the Problem and Discussion of Main Results
Let (Ω,F,P) be a probability triple and suppose that ξ = {ξ(n) : n ≥ 1} is a sequence of random variables
such that

ξ(n) is a sequence of i.i.d. random variables with distribution function F . (5.2.1)

Let N ∈ N, and let the following hypothesis stand throughout the chapter

1 + α > 0, β > 0. (5.2.2)

Let X = {X(n) : n ≥ −N} be the solution of

X(n+ 1) = X(n) + αX(n) + β max
n−N≤j≤n

X(j) + ξ(n+ 1), n ≥ 0 (5.2.3a)

X(n) = ψ(n), n ∈ {−N,−N + 1, . . . , 0}. (5.2.3b)

If G(n) = σ{ξ(j) : 1 ≤ j ≤ n} is the natural filtration generated by the process ξ = {ξ(n) : n ≥ 1}, then
there is a unique G(n)–adapted solution X of (5.2.3). We employ the conventional Landau big O and little
o notation throughout the chapter.

The asymptotic estimates on the solution of (5.2.3) given in the chapter are consequences of the following
comparison results. The first deals with the case when the solution grows exponentially; the second when
the solution fluctuates unboundedly.

The following proposition is required for the proof of Theroem 5.2.1.

Proposition 5.2.1. Let ξ be a process obeying (5.2.1). Let β > 0, 1 + α > 0 and 1 + α+ β > 1. Let X be
the solution of (5.2.3). Let C := 1 + maxj=1,··· ,N+1 |X(j)|. Then

X+(n) = (1 + α+ β)n−1

C +
n−1∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1)

 , n ≥ 1, (5.2.4)

and we have

X+(n+ 1) = X+(n) + αX+(n) + β max
n−N≤j≤n

X+(j) + |ξ(n+ 1)|+ 1, n ≥ N + 1. (5.2.5)

Moreover |X(n)| < X+(n) for n ≥ 1.
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Proposition 5.2.2. Let ξ be a process obeying (5.2.1). Let β > 0, 1 + α > 0 and 1 + α+ β < 1. Let X be
the solution of (5.2.3). Suppose that γ is a positive, increasing sequence with γ(n) → ∞ as n → ∞ such
that

lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

≤ c(ω). (5.2.6)

Then

lim sup
n→∞

|X(n, ω)|
γ(n)

≤ c(ω)
1− (1 + α+ β)

.

We are now in a position to state the main results of the chapter.

5.2.1 Exponential growth when 1 + α + β > 1

In the case when 1+α+β > 1, the solution of (5.2.3) exhibits exact geometric asymptotic growth to ±∞.

Theorem 5.2.1. Let ξ be a process obeying (5.2.1) and for which
∫∞
−∞ |x| dF (x) < +∞, and X be the

G(n)–adapted solution of (5.2.3). Suppose α, β obey (5.2.2) and 1 + α + β > 1. Then there exists a
G(∞)–measurable finite random variable Λ such that

lim
n→∞

(1 + α+ β)−nX(n) = Λ, a.s. (5.2.7)

where

Λ = X(0) + β

∞∑
j=0

(1 + α+ β)−(1+j)

(
max

j−N≤l≤j
X(l)−X(j)

)
+

∞∑
l=1

(1 + α+ β)−l ξ(l). (5.2.8)

Remark 5.2.1. For the proof of this Theorem we define the equation of the resolvent X(n) by three terms.
We know that the first two terms have limits (possibly infinite). By extending the definition of the last
term and by employing the Borel–Cantelli Lemma we also show that this term has a limit. We combine
proposition 5.2.1 with the Borel-Cantelli Lemma to prove the three limits are finite.

An explicit formula for Λ in (5.2.7) is not available, although a formula for Λ depends on a functional of
X and ξ is established given by (5.2.8). Perusal of the formula for Λ reveals that Λ ≥ X(0) +

∑∞
l=1(1 +

α + β)−lξ(l). Therefore P[Λ > 0] > 0. If we temporarily emphasise the dependence on ψ, by writing
Λ = Λ(ψ) we see that limψ(0)→∞ P[Λ(ψ) > 0] = 1. Therefore, an increasingly large initial condition
increases the probability that X(n) → ∞ as n → ∞ rather than X(n) → −∞. Moreover, X(n) → +∞
as n→∞ is the favoured limit in the case when each ξ has symmetric distribution (with expectation zero):
when ψ(0) = 0, we have Λ ≥

∑∞
l=1(1 + α + β)−lξ(l), and so P[Γ > 0] ≥ 1/2. These comments are of

particular interest from the perspective of financial modelling as we will see in the next Section.
The result is also a discrete–time analogue of Theorem 1 in [13] for a related continuous–time equation.

We will supply other analogues; so we introduce the continuous time process here. Let σ 6= 0 be a real
number, let τ > 0 and suppose that ψ ∈ C([−τ, 0]; (0,∞)) be a deterministic function. Suppose B
is a standard one–dimensional Brownian motion with natural filtration FB . We consider the stochastic
functional differential equation of Itô type

Y (t) = ψ(0) +
∫ t

0

(
aY (s) + b sup

s−τ≤u≤s
Y (u)

)
ds+

∫ t

0

σ dB(s), t ≥ 0; (5.2.9a)

Y (t) = ψ(t), t ∈ [−τ, 0]. (5.2.9b)

Under these conditions, (5.2.9) has a unique global strong solution (cf. e.g. [49]). A usual differential
shorthand for (5.2.9) is

dY (t) =
(
aY (t) + b sup

t−τ≤s≤t
Y (s)

)
dt+ σ dB(t), (5.2.10)

We presume b > 0. If also a+ b > 0, then the unique continuous adapted process Y which satisfies (5.2.9)
is such that there exists an almost surely finite FB(∞)–measurable random variable Γ such that

lim
t→∞

Y (t)e−(a+b)t = Γ, a.s. (5.2.11)
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where

Γ = Y (0) +
∫ ∞

0

be−(a+b)s

(
sup

s−τ≤u≤s
Y (u)− Y (s)

)
ds+

∫ ∞

0

e−(a+b)sσ dB(s).

5.2.2 Growth of large fluctuations when 1 + α + β < 1

We now consider the asymptotic behaviour in the other case when 1 + α + β ∈ (0, 1); we remark that the
case 1 + α+ β ≤ 0 is ruled out by the hypothesis (5.2.2).

We first consider the case when the tails of the distribution function F are “heavy” in the sense that their
tails decay at a polynomial rate as |x| → ∞. One way of characterising this is to assume that there is a
number µ > 0 such that∫ ∞

−∞
|x|µ−ε dF (x) < +∞,

∫ ∞

−∞
|x|µ+ε dF (x) = +∞, for all ε > 0;

This property is enjoyed by any distribution function F whose left tail Φ−(x) := F (−x) and right tail
Φ+(x) = 1 − F (x) decay whose density decays according to f(x) = O(|x|−(µ+1)) as |x| → ∞ but
1/f(x) = o

(
|x|µ+1

)
as |x| → ∞.

We also need to use the notion of regular variation at infinity for certain sequences. We say that a
sequence γ is regularly varying at infinity with index η if

lim
n→∞

γ([λn])
γ(n)

= λη for all λ > 0.

Theorem 5.2.2. Let ξ be a process obeying (5.2.1), and X be the solution of (5.2.3). Let α, β obey (5.2.2)
and 1 + α + β < 1. Suppose that γ+ and γ− are increasing functions regularly varying with index ρ > 0
at infinity. Then the following are equivalent:

(I) ∫ ∞

−∞
γ−1
+ (|x|) dF (x) < +∞

∫ ∞

−∞
γ−1
− (|x|) dF (x) = +∞; (5.2.12)

(II) The process ξ obeys

lim sup
n→∞

|ξ(n+ 1)|
γ+(n)

= 0, lim sup
n→∞

|ξ(n+ 1)|
γ−(n)

= ∞, a.s. (5.2.13)

(III) The process X obeys

lim sup
n→∞

|X(n)|
γ+(n)

= 0, lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s. (5.2.14)

Remark 5.2.2. To prove (III) implies (II) we use Lemma 5.4.1. To prove (II) implies (I) we combine
Borel–Cantelli Lemma with Lemma 1.2.1. To prove (I) implies (III) we combine Lemma 1.2.1 with the
Borel–Cantelli Lemma.

We have the following Corollary in the case when γ±(n) = n
1
µ±ε.

Theorem 5.2.3. Let ξ be a process obeying (5.2.1), and X be the solution of (5.2.3). Let α, β obey (5.2.2)
and 1 + α+ β < 1. Then the following are equivalent:

(I) There exists µ > 0 such that∫ ∞

−∞
|x|µ−ε dF (x) < +∞,

∫ ∞

−∞
|x|µ+ε dF (x) = +∞, for all ε > 0; (5.2.15)

(II) There exists µ > 0 such that

lim sup
n→∞

log |ξ(n+ 1)|
log n

=
1
µ
, a.s. (5.2.16)
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(III) There exists µ > 0 such that

lim sup
n→∞

log |X(n)|
log n

=
1
µ
, a.s. (5.2.17)

Finally, a result is available in the case when the noise is thin tailed in the sense that

lim sup
n→∞

|ξ(n+ 1)|
γ(n)

= 1, a.s. (5.2.18)

for some γ ∈ RV∞(0) which is increasing and obeys γ(n) → ∞ as n → ∞. As we now see, one
consequence of (5.2.18) is that F is a distribution for which all moments are finite, viz.,∫ ∞

−∞
|x|M dF (x) < +∞, for all M > 0. (5.2.19)

To prove (5.2.19), we note that it will be shown in Theorem 5.2.4 that (5.2.18) and γ ∈ RV∞(0) implies
the existence of K1,K2 ∈ (0,∞) such that∫ ∞

−∞
γ−1(|x|/K1) dF (x) = +∞,

∫ ∞

−∞
γ−1(|x|/K2) dF (x) < +∞; (5.2.20)

Since γ ∈ RV∞(0), we have log γ(x)/ log x → 0 as x → ∞. Since γ is increasing and γ(x) → ∞
as x → ∞, we have log y/ log γ−1(y) → 0 as y → ∞, which implies log γ−1(x)/ log x → ∞ as
x → ∞, and so for every M > 0 there is x1(M) > 0 such that γ−1(x) > xM , x > x1(M). Thus
γ−1(x/K2) > xM/(K2)M , x > K2x(M) =: x(M). Therefore, it follows that∫ ∞

−∞
|x|M dF (x)

=
∫ x(M)

−x(M)

|x|M dF (x) +KM
2

∫ −x(M)

−∞

|x|M

KM
2

dF (x) +KM
2

∫ ∞

x(M)

|x|M

KM
2

dF (x)

≤
∫ x(M)

−x(M)

|x|M dF (x) +KM
2

(∫ −x(M)

−∞
+
∫ ∞

x(M)

)
γ−1(|x|/K2) dF (x)

≤
∫ x(M)

−x(M)

|x|M dF (x) +KM
2

∫ ∞

−∞
γ−1(|x|/K2) dF (x),

which is finite for every M > 0 by (5.2.20), proving (5.2.19).

Theorem 5.2.4. Let ξ be a process obeying (5.2.1), and X be the solution of (5.2.3). Suppose that α, β
obey (5.2.2) and 1+α+β < 1. Suppose that γ is an increasing function in RV∞(0) such that ξ and γ obey
(5.2.18). Then

1
1 + 1 + α+ β

≤ lim sup
n→∞

|X(n)|
γ(n)

≤ 1
1− (1 + α+ β)

, a.s. (5.2.21)

Remark 5.2.3. This Theorem is proved by contradiction.

Example 5.2.1. If ξ(n) is a sequence of independent and identically distributed normal random variables
with mean zero and variance σ2, then

lim sup
n→∞

|ξ(n)|√
2 log n

= |σ| a.s.

Hence by Theorem 5.2.4, if 1 + α > 0, β > 0 and 1 + α+ β < 1, we have

σ

1 + 1 + α+ β
≤ lim sup

n→∞

|X(n)|√
2 log n

≤ σ

1− (1 + α+ β)
, a.s.

This example proves a discrete–time analogue of a result for the stochastic functional differential equation
(5.2.10) in the case where a + b < 0. In Theorem 2 of [13] it is shown that for the process Y obeying
(5.2.10) that there exist deterministic C1 > 0, C2 > 0 such that

C1 ≤ lim sup
t→∞

|Y (t)|√
2 log t

≤ C2, a.s.
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We can show that not only does the slow growth of the large fluctuations of |ξ| imply the same essential
rate of growth of the fluctuations of |X|, but that both are also equivalent to the thin tailed condition (5.2.20).
The following theorem captures this analogue of Theorem 5.2.2.

Theorem 5.2.5. Let ξ be a process obeying (5.2.1), and X be the solution of (5.2.3). Suppose that α, β
obey (5.2.2) and 1 + α + β < 1. Suppose that γ is an increasing function in RV∞(0). Then the following
are equivalent:

(I) There exist K1,K2 ∈ (0,∞) such that∫ ∞

−∞
γ−1(|x|/K1) dF (x) = +∞,

∫ ∞

−∞
γ−1(|x|/K2) dF (x) < +∞; (5.2.22)

(II) There exists deterministic 0 < c1 ≤ c2 < +∞ such that the sequence ξ obeys

c1 ≤ lim sup
n→∞

|ξ(n+ 1)|
γ(n)

≤ c2, a.s.; (5.2.23)

(III) There exist deterministic 0 < C1 ≤ C2 < +∞ such the process X obeys

C1 ≤ lim sup
n→∞

|X(n)|
γ(n)

≤ C2, a.s. (5.2.24)

Remark 5.2.4. Employing the method of the proof of Theorem 5.2.4 we show that (II) implies (III). Em-
ploying proposition 5.2.1 we show (III) implies (II). Combining Borel–Cantelli Lemma with Lemma 1.2.1
we prove (II) implies (I). Combining Lemma 1.2.1 and (5.2.22) with the Borel–Cantelli Lemma we show
(I) implies (III).

Remark 5.2.5. If we use the notation (I)(K1,K2) to be equivalent to (5.2.22), (II)(c1, c2) to be equivalent
to the statement (5.2.23) and the notation (III)(C1, C2) to be equivalent to (5.2.24), then (II)(c1, c2) implies
(III)(c1/(1+1+α+β), c2/(1− (1+α+β))), and (III)(C1, C2) implies (II)(C1(1− (1+α+β)), C2(1+
(1+α+β))). Moreover, (I)(K1,K2) implies (II)(K1,K2) and (II)(c1, c2) implies (I)(c1(1−ε), c2(1+ε))
for every ε ∈ (0, 1).

Example 5.2.2. If there exist 0 < C1 < C2 <∞ such that

C1 ≤ lim sup
n→∞

|X(n)|√
2 log n

≤ C2, a.s.

by Theorem 5.2.5 we then have

C1(1 + (1 + α+ β)) ≤ lim sup
n→∞

|ξ(n)|√
2 log n

≤ C2(1− (1 + α+ β)), a.s.

Now, as we identify γ(x) =
√

2 log x, we have γ−1(x) = exp(x2/2), by the above comment for each
ε ∈ (0, 1) we have ∫ ∞

−∞
exp

(
x2

2C2
1 (1 + (1 + α+ β))2(1− ε)2

)
dF (x) = +∞,∫ ∞

−∞
exp

(
x2

2C2
2 (1− (1 + α+ β))2(1 + ε)2

)
dF (x) < +∞.

5.3 Interpretation of Main Results to the Economic Model
Since bj > 0 for each j = 1, . . . ,M2 we have β > 0 as required by (5.2.2). The requirement that
1 + α = 1 + α′ − β > 0 is equivalent to

1 + α > 0 if and only if 1 +
M1∑
l=1

al −
M2∑
j=1

bj > 0. (5.3.1)
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We note that the key parameter 1 + α + β is given by 1 + α + β = 1 + α′ = 1 +
∑M1
l=1 al. Therefore we

have

1 + α+ β > 1 if and only if
M1∑
l=1

al > 0. (5.3.2)

The condition,
∑M2
j=1 bj −

∑M1
l=1 al < 1, is required as a standing assumption to ensure that the results

in Section 3 hold. The condition holds if the individual agents do not act very strongly at any time to
the signals provided by their trading rules which are based on discrepancies between current returns and
indicators of returns (reference levels in the case of the reference traders and the maximum of the last N
returns in the case of the technical traders). At any time step, the agents will react sufficiently moderately
to ensure that

∑M2
j=1 bj −

∑M1
l=1 al < 1, provided the time gap between trades is sufficiently small.

This can be seen explicitly by considering the continuous–time stochastic functional differential equation

dr(t) =


M1∑
l=1

αl(r(t)− rl) +
M2∑
j=1

βj

(
max

t−τ≤s≤t
r(s)− r(t)− τj

) dt+ σ dB(t), t ≥ 0,

where B is a standard one–dimensional Brownian motion. This equation is guaranteed to possess a strong
unique adapted continuous solution. If we take a uniform Euler–Maruyama discretisation with time step
h > 0, and letting R(n) be the approximation to r(nh), the evolution can be approximated by

R(n+ 1)−R(n) =
M1∑
l=1

hαl(R(n)− rl) +
M2∑
j=1

hβj

(
max

t−N≤s≤t
r(s)− r(t)− τj

)
+ ξ(n+ 1)

whereN is the nearest integer to τ/h and ξ is a sequence of zero mean independent normal random variables
with variance σ2h. This equation is in the form (5.1.2). In this case, if h > 0 is sufficiently small, we have

h

M2∑
j=1

βj −
M1∑
l=1

αl

 < 1.

Together with the condition
∑M2
j=1 βj > 0, this ensures that the standing hypothesis (5.2.2) holds.

If the feedback traders are, on the whole, of positive feedback type (in which case
∑M1
l=1 al > 0), by

Theorem 5.2.1 the market experiences a bubble or crash according to

lim
t→∞

(1 +
M1∑
l=1

al)−nR(n) = R(0)− 1∑M1
l=1 al

M1∑
l=1

alrl +
M2∑
j=1

bjτj


+

M2∑
j=1

bj ·
∞∑
j=0

(
1 +

M1∑
l=1

al

)−1−j (
max

j−N≤l≤j
R(l)−R(j)

)
+

∞∑
l=1

1 +
M1∑
j=1

aj

−l

ξ(l), (5.3.3)

almost surely. It should be noted that the presence of the technical traders neither prevents nor promotes the
creation of this runaway event.

Examining the limit on the righthand side of (5.3.3), we see that it tends to infinity a.s. as R(0) → ∞.
Therefore, the larger the initial daily return, the greater the probability that R(n) → ∞ as n → ∞.
This explains at least in part the manner in which this bubble forms; if initially the stock performs well,
this encourages positive feedback traders to take this good performance as a signal that informed investors
believe the stock will do well in future, so they buy the stock. This then forces prices up further, encouraging
further buying. This upward spiral continues and a bubble ensues.

Conversely, if the initial value of R(0) is negative, but |R(0)| is large, this tends to make the limit on the
righthand side of (5.3.3) negative and makes the event {R(n) → −∞ as n → ∞} more probable. In this
situation, this helps to explains the crash dynamics: an initially poor performance by the stock convinces
positive feedback traders that informed traders believe the stock will perform poorly in future, so they sell
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(or short sell) the stock. This then forces prices lower, encouraging further selling, and the result of this
downward spiral is a crash. In both cases, and when al > 0 for each l, we see that it is the level of the
market R(0) relative to the “weighted consensus” return rc :=

∑M1
l=1 alrl/

∑M1
l=1 al of the reference traders

that is particularly important; the greater the difference R(0)− rc, the more probable a bubble.
We next ask what is the impact of a sequence of “good news stories” about the stock at the time shortly

after trading begins. We can interpret this as a majority of noise terms ξ(n) being positive for small n. Since
the non-random part of the summand in the martingale term on the righthand side of (5.3.3) diminishes
rapidly as time increases, it is the sign of these “initial” values of ξ that largely determines whether the
sum assumes a positive or negative value. Therefore, initial good news about the stock tends to result in a
positive value of this sum, while initial bad news about the stock tends to lead to a negative value of the
sum. Therefore, if there is good initial news about the stock, the price of the stock tends to increase and
the positive feedback traders force the price higher by misperceiving this increase as arising from demand
from informed speculators. As before, this induces further buying and the stock price undergoes a bubble.
Similarly, initial bad news tends to precipitate a crash.

Finally, consider the penultimate term on the righthand side of (5.3.3). Firstly, we note that it is always
positive and that the main contribution to the overall value is from the time shortly after trading begins.
This contribution is relatively large if the returns are relatively low, because in this case maxj−N≤l≤j R(l)
will tend to strictly exceed R(j). If the returns are running below their maximum during the initial period
of trading, the technical traders will tend to force the returns upwards; this trend will then be extrapolated
by the positive feedback traders, increasing the probability of a bubble. On the other hand, the contribution
of the penultimate term in (5.3.3) is smaller if the returns are generally increasing and therefore at or close
to their N–day running maximum. However, in this case, the contributions of the first two terms on the
righthand side are quite likely to be positive; so the additional bubble–promoting impact of the penultimate
term, although modest, is likely to be unimportant. Hence, the penultimate term tends to have its greatest
bubble–promoting impact when other bubble–promoting factors (such as strong initial returns relative to
the reference levels of the feedback traders, or a sequence of good news stories about the stock) are not so
strong. Therefore, it seems that the technical traders can also “seed” a bubble in a market which is naturally
prone to generate a bubble. Hence, the interaction of such traders with the positive feedback traders can
make bubbles more likely.

These remarks suggest that the mechanisms by which bubbles form in this model are consistent with the
notion of mimetic contagion introduced by Orléan (cf. e.g., [65]). In mimetic contagion we may think of
the market as comprising of two forms of traders, with new entrants choosing the trading strategy which
tends to dominate at a given time. In the long–run, the proportion of traders in each category settles down
to a value which is random but which depends quite strongly on what happens in the first trading periods.
The similarities with mimetic contagion are as follows: in (5.3.3), the righthand side depends crucially on
the market behaviour in the first few time periods; once a dominant trend becomes apparent, the positive
feedback traders will tend to extrapolate that trend; and the long–run behaviour (either a bubble or crash) is
not known in advance.

If the feedback traders are, on the whole, of negative feedback type (in which case
∑M1
l=1 al < 0), the

market experiences large fluctuations whose size is intimately connected with the distribution of indepen-
dently and identically distributed news variates. For example, by Theorem 5.2.3 the tails of the distribution
function F of the “news” variates decay polynomially and satisfy∫ ∞

−∞
|x|µ−ε dF (x) < +∞,

∫ ∞

−∞
|x|µ+ε dF (x) = +∞, for all ε > 0,

for some µ > 0 if and only if

lim sup
n→∞

log |R(n)|
log n

=
1
µ
, a.s.

5.4 Proof of Theorems

5.4.1 Proof of Proposition 5.2.1
For n ≥ N + 1, X+ defined by 5.2.4 is increasing and

max
n−N≤j≤n

X+(j) = X+(n).
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Then for n ≥ N + 1

X+(n+ 1)− (1 + α+ β)X+(n)− |ξ(n+ 1)| − 1

= (1 + α+ β)n

C +
n∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1)

− 1− |ξ(n+ 1)|

− (1 + α+ β) (1 + α+ β)n−1

C +
n−1∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1)


= 1− 1 + |ξ(n+ 1)| − |ξ(n+ 1)|
= 0.

We next prove that X+(n) > |X(n)| for n = 1, . . . , N + 1. This holds for instance if

min
j=1,···N+1

X+(j) > max
j=1,···N+1

|X(j)|,

as

min
j=1,··· ,N+1

X+(j) = X+(1)

= C + (1 + α+ β)0 (|ξ(1)|+ 1)
= C + |ξ(1)|+ 1
≥ 1 + max

j=1,··· ,N+1
|X(j)|+ 1 > max

j=1,··· ,N+1
|X(j)|.

Finally, we must show that X+(n) > |X(n)| for all n > N + 1. Suppose to the contrary that there is a
minimal N1 > N + 1 such that X+(N1 + 1) ≤ |X(N1 + 1)|, so that X+(n) > |X(n)| for all n ≤ N1.
Then, as 1 + α > 0, and β > 0, for n ≥ 0, we have

|X(n+ 1)| =
∣∣∣∣(1 + α)X(n) + β max

n−N≤j≤n
X(j) + ξ(n+ 1)

∣∣∣∣
≤ (1 + α)|X(n)|+ β max

n−N≤j≤n
|X(j)|+ |ξ(n+ 1)|

< |X(n)|+ α|X(n)|+ β max
n−N≤j≤n

|X(j)|+ 1 + |ξ(n+ 1)|.

Hence

|X(N1 + 1)| < |X(N1)|+ α|X(N1)|+ β max
N1−N≤j≤N1

|X(j)|+ 1 + |ξ(N1 + 1)|

< X+(N1)(1 + α) + β max
N1−N≤j≤N1

X+(j) + 1 + |ξ(N1 + 1)|

= X+(N1 + 1) ≤ |X(N1 + 1)|,

a contradiction. Therefore we must have that X+(n) > |X(n)| for all n > N + 1, and thus that X+(n) >
|X(n)| for all n ≥ 1, as claimed.

5.4.2 Proof of Proposition 5.2.2
Since 1 + α > 0 and β > 0 we have

|X(n+ 1)| ≤ (1 + α)|X(n)|+ β max
n−N≤j≤n

|X(j)|+ |ξ(n+ 1)|, n ≥ 0.

By (5.2.6), it follows that for every ε > 0 there is an N1(ε) ∈ N such that |ξ(n+ 1, ω)| ≤ c(ω)(1 + ε)γ(n)
for n ≥ N1(ε). Define

c1(ω, ε) =
c(ω)(1 + ε)

1− (1 + α+ β)
, c2(ω, ε) = 1 + max

N1(ε)−N≤j≤N1(ε)
|X(j, ω)| > 0.
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Let X+(n, ω) = c2(ω, ε) + c1(ω, ε)γ(n) for n ≥ N1(ε) − N . Then for n = N1(ε) − N, . . . , N1(ε) we
have

X+(n, ω) ≥ c2(ω) = 1 + max
N1(ε)−N≤j≤N1(ε)

|X(j, ω)| > |X(n, ω)|.

For n ≥ N1(ε), since 1 + α+ β < 1, c2 > 0 and γ is increasing we have

X+(n+ 1)− (1 + α)X+(n)− β max
n−N≤j≤n

X+(j)− |ξ(n+ 1)|

= c2 + c1γ(n+ 1)− (1 + α)(c2 + c1γ(n))− β(c2 + c1γ(n))− |ξ(n+ 1)|
= c2(1− (1 + α+ β)) + c1γ(n+ 1)− (1 + α+ β)c1γ(n)− |ξ(n+ 1)|
> c1γ(n)− (1 + α+ β)c1γ(n)− c(1 + ε)γ(n)
= γ(n) (c1(1− (1 + α+ β)− c(1 + ε)) = 0.

Thus
X+(n+ 1) > (1 + α)X+(n) + β max

n−N≤j≤n
X+(j) + |ξ(n+ 1)|, n ≥ N1(ε).

By the argument of Proposition 5.2.1, it follows that |X(n, ω)| ≤ X+(n, ω) for n ≥ N1(ε, ω). Thus

lim sup
n→∞

|X(n, ω)|
γ(n)

≤ lim sup
n→∞

c2(ω, ε) + c1(ω, ε)γ(n)
γ(n)

= c1(ε, ω) =
c(ω)(1 + ε)

1− (1 + α+ β)
.

Letting ε→ 0 gives the result.

5.4.3 Proof of Theorem 5.2.1
We first rewrite (5.2.3) according to

X(n+ 1) = (1 + α+ β)X(n) + β

(
max

n−N≤j≤n
X(j)−X(n)

)
+ ξ(n+ 1), n ≥ 0.

Define H(n) = β (maxn−N≤j≤nX(j)−X(n)) for n ≥ 1. Note that H(n) ≥ 0 for all n ≥ 1. Then

X(n+ 1) = (1 + α+ β)X(n) +H(n) + ξ(n+ 1), n ≥ 0.

Multiplying both sides by
∑n−1
j=0 (1 + α+ β)n−1−j yields

X(n) = (1 + α+ β)nX(0) +
n−1∑
j=0

(1 + α+ β)n−1−jH(j)

+
n−1∑
j=0

(1 + α+ β)n−1−jξ(j + 1), n ≥ 1.

Therefore, for n ≥ 1 we have

(1 + α+ β)−nX(n) = X(0) +
n−1∑
j=0

(1 + α+ β)−1−jH(j) +
n∑
l=1

(1 + α+ β)−lξ(l).

Since H(n) ≥ 0 and 1+α+β > 1, the first two terms on the righthand side have a limit (possibly infinite)
as n→∞. As to the last term, consider the (possibly infinite) extended random variable

S∞ =
∞∑
l=1

(1 + α+ β)−lξ(l).

Since each ξ has the same distribution function F , with µ1 :=
∫∞
−∞ |x| dF (x) < +∞, we have

E[|S∞|] ≤
∞∑
l=1

(1 + α+ β)−lE|ξ(l)|

≤ µ1
1

1 + α+ β

∞∑
j=0

(1 + α+ β)−j = µ1
1

1 + α+ β

1
1− (1 + α+ β)−1

.
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Therefore S∞ is an almost surely finite G∞–measurable random variable. Hence

E

∣∣∣∣∣S∞ −
n∑
l=1

(1 + α+ β)−lξ(l)

∣∣∣∣∣ ≤
∞∑

l=n+1

(1 + α+ β)−lE|ξ(l)|

= µ1(1 + α+ β)−(n+1)
∞∑

l=n+1

(1 + α+ β)n+1−l

=
µ1(1 + α+ β)−n

(1 + α+ β)− 1
.

By Chebyshev’s inequality and the summability of the righthand side, the Borel–Cantelli Lemma implies
that

lim
n→∞

n∑
l=1

(1 + α+ β)−lξ(l) = S∞, a.s.

Therefore we have that (5.2.7) holds, with

Λ := X(0) + β
∞∑
j=0

(1 + α+ β)−1−j
(

max
j−N≤l≤j

X(l)−X(j)
)

+
∞∑
l=1

(1 + α+ β)−lξ(l)

possibly infinite. We note that Λ is G∞ measurable. If we can show that

lim sup
n→∞

|X(n)|(1 + α+ β)−n < +∞, a.s., (5.4.1)

then it is guaranteed that Λ is finite a.s., and the result is proven. To establish (5.4.1), we note by Proposi-
tion 5.2.1 that

(1 + α+ β)−(n−1)|X(n)| ≤ C +
n−1∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1) , n ≥ 1,

where C := 1 + maxj=1,··· ,N+1 |X(j)|. Now, with

S̃∞ =
∞∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1) ,

we have that S̃∞ > 0 and E[S̃∞] < +∞. Therefore

E

∣∣∣∣∣∣S̃∞ −
n−1∑
j=0

(1 + α+ β)−j (|ξ(j + 1)|+ 1)

∣∣∣∣∣∣ = (µ1 + 1)
∞∑
j=n

(1 + α+ β)−j ,

by Chebyshev’s inequality and the summability of the righthand side the Borel-Cantelli Lemma implies that
limn→∞

∑n−1
j=0 (1 + α+ β)−j (|ξ(j + 1)|+ 1) = S̃∞, a.s. Therefore

lim sup
n→∞

(1 + α+ β)−(n−1)|X(n)| ≤ C + S̃∞ < +∞, a.s.,

proving (5.4.1).

5.4.4 Proof of Theorem 5.2.2
We start by showing that under the hypotheses of Theorem 5.2.2 that (5.2.13) and (5.2.14) are equivalent. In
the proofs in the rest of the paper, we sometimes use the fact that a regularly varying sequence or function
γ has the property that

lim
n→∞

γ(n−M)
γ(n)

= 1, for each M ∈ N. (5.4.2)
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Lemma 5.4.1. Let ξ be a process obeying (5.2.1), and X be the solution of (5.2.3). Let α, β obey (5.2.2)
and 1 + α + β < 1. Suppose that γ+ and γ− are increasing functions in RV∞(µ) for µ > 0. Then the
following are equivalent:

(I) The process ξ obeys (5.2.13);

(II) The process X obeys (5.2.14).

Remark 5.4.1. This lemma is proved by contradiction.

Proof. We first prove that the second statement of (5.2.13) implies the second in (5.2.14). Suppose that

lim sup
n→∞

|ξ(n+ 1)|
γ−(n)

= ∞, a.s.

Let the event on which this is true be Ω∗. We want to prove that

lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s.

Suppose to the contrary that there exists an event A with P[A] > 0 such that

A =
{
ω : lim sup

n→∞

|X(n, ω)|
γ−(n)

<∞
}
.

Now define A∗ = A ∩ Ω∗, so that P[A∗] = P[A] > 0. Thus for ω ∈ A∗, we have

lim sup
n→∞

|ξ(n+ 1, ω)|
γ−(n)

≤ lim sup
n→∞

|X(n, ω)|
γ−(n)

+ |1 + α| lim sup
n→∞

|X(n, ω)|
γ−(n)

+ β max
n−N≤j≤n

|X(j, ω)|
γ−(n)

<∞,

which forces a contradiction. Hence P[A] = 0, or

lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s.

as required.
We now prove that the first statement in (5.2.14) implies the first statement in (5.2.13). We have by

hypothesis that

lim sup
n→∞

|X(n, ω)|
γ+(n)

= 0.

Let the event on which this holds be called A such that

A =
{
ω : lim sup

n→∞

|ξ(n+ 1, ω)|
γ+(n)

> 0
}

Consider A∗ = Ω∗ ∩A. Then P[A∗] > 0 and we have that

lim sup
n→∞

|ξ(n+ 1, ω)|
γ+(n)

≤ lim sup
n→∞

|X(n, ω)|
γ+(n)

+ |1 + α| lim sup
n→∞

|X(n, ω)|
γ+(n)

+ β max
n−N≤j≤n

|X(j, ω)|
γ+(n)

= 0,

which forces a contradiction. Hence P[A] = 0 or

lim sup
n→∞

|ξ(n+ 1, ω)|
γ+(n)

= 0, a.s.
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To prove that the first statement in (5.2.13) implies the first statement in (5.2.14), we start be remarking that
there exists an a.s. event Ω∗ such that for all ω ∈ Ω∗, we have

lim sup
n→∞

|ξ(n+ 1, ω)|
γ+(n)

= 0.

Hence for every ε > 0 we have

lim sup
n→∞

|ξ(n+ 1, ω)|
γ+(n)

≤ ε.

Setting c(ω) = ε in (5.2.6) we obtain by Proposition 5.2.2 that for all ω ∈ Ω∗ we have

lim sup
n→∞

|X(n, ω)|
γ+(n)

≤ ε

1− (1 + α+ β)
.

Letting ε→ 0 yields

lim sup
n→∞

|X(n, ω)|
γ+(n)

= 0, for all ω ∈ Ω∗,

and so

lim sup
n→∞

X(n)
γ+(n)

= 0, a.s.,

as required.
We now prove that the second statement in (5.2.14) implies the second statement of (5.2.13). We have by

hypothesis that

lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s.

Let the event on which this holds be called Ω∗. Suppose that there exists an event A with P[A] > 0 such
that

A =
{
ω : lim sup

n→∞

|ξ(n+ 1, ω)|
γ−(n)

< +∞
}
.

Consider A∗ = A ∩ Ω∗. Then P[A∗] > 0 and for ω ∈ A∗ we have

lim sup
n→∞

|ξ(n+ 1, ω)|
γ−(n)

=: c(ω) < +∞.

By Proposition 5.2.2, we have that

lim sup
n→∞

|X(n, ω)|
γ−(n)

≤ c(ω)
1− (1 + α+ β)

< +∞ for ω ∈ A∗.

This gives a contradiction. Hence P[A] = 0, and so

lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s.

as claimed.

5.4.5 Proof of Theorem 5.2.2
We show first that (III) implies (II) and that (II) implies (I). Lemma 5.4.1 implies

lim sup
n→∞

|ξ(n+ 1)|
γ−(n)

= ∞, a.s. (5.4.3)

and

lim sup
n→∞

|ξ(n+ 1)|
γ+(n)

= 0, a.s. (5.4.4)

Together (5.4.3) and (5.4.4) imply (II).
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If (II) (i.e., (5.2.13)) holds, then (5.4.3) and (5.4.4) hold. Since (ξ(n))n≥0 are independent random
variables, (5.4.3) and the Borel–Cantelli lemma implies that

∞∑
n=1

P[|ξ(n+ 1)| ≥M1γ−(n)] = +∞, for every M1 > 0,

while the independence and (5.4.4) implies

∞∑
n=1

P[|ξ(n+ 1)| > M2γ+(n)] < +∞ for every M2 > 0.

Let ζ be a random variable with the same distribution as ξ(n) for all n ≥ 1. Since ξ obeys (5.2.1), we have

∞∑
n=1

P[|ζ| ≥M1γ−(n)] = +∞,
∞∑
n=1

P[|ζ| > M2γ+(n)] < +∞.

Since γ− is an increasing function, the function ΓM,−(x) = Mγ−(x) has inverse given by Γ−1
M,−(x) =

γ−1
− (x/M). By lemma 1.2.1

∞∑
n=1

P[|ζ| ≥M1γ−(n)] ≤ E[Γ−1
M1,−(|ζ|)]

= E[γ−1
− (|ζ|/M1)] =

∫ ∞

−∞
γ−1
− (|x|/M1) dF (x).

Since γ− is in RV∞(µ), it follows that γ−1
− is in RV∞(1/µ), and so it follows that∫ ∞

−∞
γ−1
− (|x|) dF (x) = +∞.

Define ΓM,+(x) = Mγ+(x), which has inverse given by Γ−1
M,+(x) = γ−1

+ (x/M). On the other hand,
Lemma 1.2.1 also implies for all M2 > 0 that∫ ∞

−∞
γ−1
+ (|x|/M2) dF (x) = E[Γ−1

M2,+
|ζ|] ≤

∞∑
n=0

P[|ζ| > M2γ+(n)] < +∞,

so
∫∞
−∞ γ−1

+ (|x|/M2) dF (x) < +∞. Therefore we have (5.2.12). Hence (II) implies (I).
We now show that (I) implies (III). Let M1 > 0. Then by Lemma 1.2.1 and (5.2.12), we have

∞∑
n=0

P[|ζ| > M1γ−(n)] ≥ E[γ−1
− (|ζ|/M1)] =

∫ ∞

−∞
γ−1
− (|x|/M1) dF (x) = +∞,

using the fact that γ−1
− (x/M1)/γ−1

− (x) → (1/M1)1/µ as x→∞. Since ξ(n) has the same distribution as
ζ, we have

∞∑
n=0

P[|ξ(n+ 1)| > M1γ−(n)] = +∞. (5.4.5)

Therefore by the Borel–Cantelli lemma, we have

lim sup
n→∞

|ξ(n+ 1)|
γ−(n)

≥M1, a.s. on ΩM1,+,

where ΩM1,+ is an almost sure event. Let Ω+ = ∩M1∈NΩM1,+. Then Ω+ is an almost sure event, and we
have

lim sup
n→∞

|ξ(n+ 1)|
γ−(n)

= ∞, a.s. on Ω+.

99



Lemma 5.4.1 now implies

lim sup
n→∞

|X(n)|
γ−(n)

= ∞, a.s. on Ω+. (5.4.6)

Let M2 > 0. Similarly, by Lemma 1.2.1 and (5.2.12), we have

∞∑
n=1

P[|ζ| ≥M2γ+(n)] ≤ E[γ−1
+ (|ζ|/M2)] < +∞.

Since ξ(n) has the same distribution as ζ, we have

∞∑
n=1

P[|ξ(n+ 1)| ≥M2γ+(n)] < +∞. (5.4.7)

Therefore by the Borel–Cantelli lemma, we have

lim sup
n→∞

|ξ(n+ 1)|
γ+(n)

≤M2, a.s. on Ω∗M2,−,

where Ω∗M2,− is an almost sure event. Let Ω− = ∩M2∈(0,1)∩QΩ∗M2,−. Then Ω− is an almost sure event,
and we have

lim sup
n→∞

|ξ(n+ 1)|
γ+(n)

= 0, a.s. on Ω−.

Theorem 5.4.1 then implies

lim sup
n→∞

|X(n)|
γ+(n)

= 0, a.s. on Ω−. (5.4.8)

Together (5.4.6) and (5.4.8) imply (III).

5.4.6 Proof of Theorem 5.2.4
To establish the lower bound in (5.2.21), suppose that there is an event A such that

A =
{
ω : lim sup

n→∞

|X(n, ω)|
γ(n)

= C2(ω) <
1

1 + 1 + α+ β

}
and P[A] > 0. Let

Ω∗ =
{
ω : lim sup

n→∞

|ξ(n+ 1, ω)|
γ(n)

= 1
}
.

Then P[Ω∗] = 1. Let A∗ = A ∩ Ω∗. Then P[A∗] = P[A] > 0. Let ω ∈ A∗ then

lim sup
n→∞

|X(n, ω)|
γ(n)

= C2(ω), lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

= 1. (5.4.9)

By definition

X(n+ 1, ω) = (1 + α)X(n, ω) + β max
n−N≤j≤n

X(j, ω) + ξ(n+ 1, ω).

Then
|ξ(n+ 1, ω)| ≤ |X(n+ 1, ω)|+ |1 + α||X(n, ω)|+ β max

n−N≤j≤n
|X(j, ω)|.

Since γ is regularly varying and obeys (5.4.2) we have that

lim sup
n→∞

|X(n+ 1, ω)|
γ(n)

= lim sup
n→∞

|X(n+ 1, ω)|
γ(n+ 1)

· γ(n+ 1)
γ(n)

= C2(ω). (5.4.10)
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Also

maxn−N≤j≤n |X(j, ω)|
γ(n)

= max
n−N≤j≤n

|X(j, ω)|
γ(n)

= max
n−N≤j≤n

|X(j, ω)|
γ(j)

· γ(j)
γ(n)

.

So by (5.4.2) we have

lim sup
n→∞

maxn−N≤j≤n |X(j, ω)|
γ(n)

≤ C2(ω). (5.4.11)

Thus

lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

≤ C2(ω) + (1 + α)C2(ω) + βC2(ω) < 1, (5.4.12)

which contradicts (5.4.9) and the assumption that P[A] > 0. Hence P[A] = 0 and so P[Ā] = 1 or

lim sup
n→∞

|X(n)|
γ(n)

≥ 1
1 + (1 + α+ β)

, a.s.

which is the lower estimate in (5.2.21).
To prove the upper estimate in (5.2.21), we simply apply Proposition 5.2.2 with c(ω) = 1 in (5.2.6).

5.4.7 Proof of Theorem 5.2.5
By employing the method of proof of Theorem 5.2.4, we can show that

c1 ≤ lim sup
n→∞

|ξ(n+ 1)|
γ(n)

≤ c2, a.s. (5.4.13)

implies
c1

1 + (1 + α+ β)
≤ lim sup

n→∞

|X(n)|
γ(n)

≤ c2
1− (1 + α+ β)

, a.s.

Thus (II) implies (III). If (III) holds, then

lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

≤ lim sup
n→∞

|X(n+ 1, ω)|
γ(n)

+ (1 + α) lim sup
n→∞

|X(n, ω)|
γ(n)

+ β lim sup
n→∞

max
n−N≤j≤n

|X(j, ω)|
γ(j)

· γ(j)
γ(n)

,

so

lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

≤ C2 + (1 + α)C2 + βC2,

as required. Finally, suppose that there is an event A

A = {ω : lim sup
n→∞

|ξ(n+ 1, ω)|
γ(n)

=: c1(ω) < C1(1− (1 + α+ β))},

where P[A] > 0. Then by Proposition 5.2.2, we have for each ω ∈ A that

lim sup
n→∞

|X(n, ω)|
γ(n)

≤ c1(ω)
1− (1 + α+ β)

< C1.

Therefore for all ω ∈ A∗ we have

C1 ≤ lim sup
n→∞

|X(n, ω)|
γ(n)

< C1,

a contradiction. Hence (III) implies (II).
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We now show that (II) implies (I). If (II) holds then (5.4.13) holds. Since (ξ(n))n≥0 are independent
random variables and for all values ω ∈ Ω∗, there exists N(ω, ε) ∈ N such that

|ξ(n+ 1, ω)|
γ(n)

≤ c2(1 + ε) for all n > N(ω, ε).

Then

P
[
|ξ(n+ 1)|
γ(n)

> c2(1 + ε) i.o.
]

= 0

and by the Borel–Cantelli lemma

∞∑
n=1

P[|ξ(n+ 1)| ≥ c2(1 + ε)γ(n)] < +∞, for every ε > 0.

Similarly

P
[
|ξ(n+ 1)|
γ(n)

> c1(1− ε) i.o.
]

= 1,

so then for every ε ∈ (0, 1)

∞∑
n=1

P[|ξ(n+ 1)| ≥ c1(1− ε)γ(n)] = +∞, for every ε ∈ (0, 1).

Let ζ be a random variable with the same distribution as ξ(n) for all n ≥ 1. Since ξ obeys (5.2.1), we have

∞∑
n=1

P[|ζ| ≥ c1(1− ε)γ(n)] = +∞,
∞∑
n=1

P[|ζ| > c2(1 + ε)γ(n)] < +∞

and since γ is an increasing function, the functions Γ2(x) = c2(1 + ε)γ(x) and Γ1(x) = c1(1 − ε)γ(x)
have inverses given by Γ−1

2 (x) = γ−1(x/c2(1 + ε)) and Γ−1
1 (x) = γ−1(x/c1(1 − ε)). By Lemma 1.2.1

we have

∞∑
n=1

P[|ζ| ≥ c1(1− ε)γ(n)] ≤ E[Γ−1
1 (|ζ|)]

= E
[
γ−1

(
|ζ|

c1(1− ε)

)]
=
∫ ∞

−∞
γ−1

(
|x|

c1(1− ε)

)
dF (x).

Thus ∫ ∞

−∞
γ−1(|x|/c1(1− ε)) dF (x) = +∞ for every ε ∈ (0, 1).

On the other hand, Lemma 1.2.1 also implies for all ε ∈ (0, 1) that∫ ∞

−∞
γ−1(|x|/c2(1 + ε)) dF (x) = E[Γ−1

2 |ζ|] ≤
∞∑
n=0

P[|ζ| > c2(1 + ε)γ(n)] < +∞,

so
∫∞
−∞ γ−1(|x|/c2(1+ ε)) dF (x) < +∞ for all ε ∈ (0, 1). Therefore we have (5.2.22). Hence (II) implies

(I). We now show that (I) implies (III). By Lemma 1.2.1 and (5.2.22), we have

∞∑
n=0

P[|ζ| > K1γ(n)] ≥ E[γ−1(|ζ|/K1)] =
∫ ∞

−∞
γ−1(|x|/K1) dF (x) = +∞.

Since ξ(n) has the same distribution as ζ, we have

∞∑
n=0

P[|ξ(n+ 1)| > K1γ(n)] = +∞.
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Therefore by the Borel–Cantelli lemma, we have

lim sup
n→∞

|ξ(n+ 1)|
γ(n)

≥ K1, a.s. on Ω1,

where Ω1 is an almost sure event. Similarly, by Lemma 1.2.1 and (5.2.22), we have

∞∑
n=1

P[|ζ| ≥ K2γ(n)] ≤ E[γ−1(|ζ|/K2)] < +∞.

Since ξ(n) has the same distribution as ζ, we have

∞∑
n=1

P[|ξ(n+ 1)| ≥ K2γ(n)] < +∞.

Therefore by the Borel–Cantelli lemma, we have

lim sup
n→∞

|ξ(n+ 1)|
γ(n)

≤ K2, a.s. on Ω2.

Together we get that

K1 ≤ lim sup
n→∞

|ξ(n+ 1)|
γ(n)

≤ K2, a.s. on Ω1 ∩ Ω2,

which is (II), and this implies (III).
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Chapter 6

Spurious Long–Run Behaviour from Numerical Methods
for SFDEs with Continuous Weight Functions

6.1 Introduction
In this chapter we show that the long–time behaviour of the SFDE with discrete weights

dX(t) =

 m∑
j=1

αjg(X(t− θj))−
p∑
j=1

βjg(X(t− τj))

 dt+ σ dB(t), t ≥ 0 (6.1.1)

can be reproduced by using a standard Euler method with a sufficiently small but uniform step size. How-
ever, a similar simple method does not suffice to reproduce the asymptotic behaviour of the SFDE

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt+ σ dB(t), t ≥ 0. (6.1.2)

in which the weight functions w1 and w2 are continuous. By considering specific simulations, we show that
problems arise both for a naive explicit discretisation and also for a modified discretisation which attempts
to fix the solution of the characteristic equation associated with the linear deterministic equation underlying
(6.1.2) at zero. For an equation with a particular choice of weights w1 and w2, we show that these two
methods are unreliable. However, a third method of discretising (6.1.2) for these choices of w1 and w2,
when applied to a deterministic version of (6.1.2), seems to give asymptotic behaviour which is consistent
with the continuous time solution provided that h is chosen sufficiently small. This lays the ground for work
in the final chapter on a comprehensive numerical method which gives qualitatively satisfactory results for
the asymptotic behaviour of (6.1.2) for any choice of continuous weight functions, while also controlling
the error of the approximation on any compact interval.

The chapter has the following structure; Section 2 applies the uniform Euler scheme to a SFDE with
discrete weights; Section 3 discusses whether such a scheme will reproduce the long–time behaviour of the
SFDE with continuously distributed weights; Section 4 applies both the native and modified Euler to the
SFDE with continuously distributed weights.

6.2 Euler Scheme for Discrete Weights
In this chapter our analysis will focus mainly on the case where the speculators use continuously distributed
moving averages rather than discrete ones. It will be seen that in the former case we will need some kind
of specialised numerical method to mimic correctly the almost sure asymptotic behaviour of the continuous
time equation.

In this section we show that we can preserve the asymptotic behaviour if we use a standard Euler–
Maruyama method in the case that the speculators use discrete moving averages. We consider the most
general form of discrete weights introduced in the examples in Chapter 4. Our results say (roughly) that if
we take a fixed step size sufficiently small, then we can recover the basic type of almost sure asymptotic
behaviour, and if we let the step size get smaller and smaller, we can estimate key growth parameters with
arbitrary accuracy.

We recall the details of the discrete moving average investment strategy outlined in Section 3.4.5. Sup-
pose the investor compares a weighted average of the cumulative returns at m points in time over the
last θ units of time with a weighted average of the cumulative returns at p points in time over the last
τ units of time, where τ ≥ θ. Let the cumulative returns in the short-run be observed at time points
−θ := −θm < · · · < −θ1 ≤ 0 and in the long-run at time points −τ := −τp < · · · < −τ1 ≤ 0. A
weight αj ≥ 0 is attached to the observation at the time θj , while a weight βj ≥ 0 is associated with the
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observation at the time τj . We assume that the weights and observation times obey

α1 + · · ·+ αm = β1 + · · ·+ βp > 0, (6.2.1)
m∑
j=1

αjχ[−t,0](−θj) ≥
p∑
j=1

βjχ[−t,0](−τj) for all t ∈ [0, τ ], (6.2.2)

then the measure

ν(du) :=
m∑
j=1

αjδ−θj (du)−
p∑
j=1

βjδ−τj (du)

satisfies all the conditions in Theorem 3.3.2 with the moment

m(ν) =
p∑
j=1

βjτj −
m∑
j=1

αjθj .

As previously, we assume that g obeys

g : R → R is locally Lipschitz continuous, lim
|x|→∞

g(x)
x

= 1. (6.2.3)

Let φ ∈ C([−τ, 0],R). The continuous time functional differential equation is

dX(t) =

 m∑
j=1

αjg(X(t− θj))−
p∑
j=1

βjg(X(t− τj))

 dt+ σ dB(t), t ≥ 0 (6.2.4)

where X(t) = φ(t) for t ∈ [−τ, 0]. If m(ν) < 1 then the cumulative returns evolve according to

lim sup
t→∞

X(t)√
2t log log t

=
σ

1−
∑p
j=1 βjτj +

∑m
j=1 αjθj

a.s

lim inf
t→∞

X(t)√
2t log log t

= − σ

1−
∑p
j=1 βjτj +

∑m
j=1 αjθj

a.s.

On the other hand, if m(ν) > 1 then there exists a unique positive λ > 0 such that a.s.

lim
t→∞

e−λtX(t) = c

(
φ(0) +

∫ ∞

0

σe−λs dB(s)
)

+ c

 m∑
j=1

αj

∫ 0

−θj

e−λ(θj+u)φ(u) du−
p∑
j=1

βj

∫ 0

−τj

e−λ(τj+u)φ(u) du

 ,

where
c =

1
1−

∑p
j=1 βjτje

−λτj +
∑m
j=1 αjθje

−λθj
. (6.2.5)

It turns out that the asymptotic behaviour of (6.2.4) is preserved by a uniform Euler discretisation of
(6.2.4) once the uniform step size h > 0 is sufficiently small. We demonstrate this fact over the next few
pages. First define τ0 = 0 and θ0 = 0. Let

T = {t ∈ R : t = τj for some j = 0, . . . , p or t = θk for some k = 0, . . . ,m}. (6.2.6)

Define d(T ) = min{|x− y| : x, y ∈ T , x 6= y}. Clearly d(T ) > 0. Let h ∈ (0, d(T )) and define

T (h) = {n ∈ N : n = [τj/h] for some j = 0, . . . , p or n = [θk/h] for some k=0,. . . ,m}.

Define the integers Mj(h) = [θj/h] for j = 1, . . . ,m and Nj(h) = [τj/h] and j = 1, . . . , p. The fact that
h < d(T ) implies that the order of the non–negative integers (Nj(h))j=1,...,p, (Mj(h))j=1,...,m preserves
the order of the real sequences (τj)j=1,...,p (θj)j=1,...,m in the sense that

τj < θk for some j, k implies Nj(h) < Mk(h)
τj > θk for some j, k implies Nj(h) > Mk(h)
τj = θk for some j, k implies Nj(h) = Mk(h),
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Figure 6.1: θ , M short–run and τ , N long–run time delays

and the fact that the sequences (θj)j=1,...,m and (τj)j=1,...,p are increasing implies that the sequences
(Mj(h))j=1,...,m and (Nj(h))j=1,...,p are increasing.

First we note form the graphs that θi ≥ τi and Mi ≥ Ni as required by (6.2.2). If we let j = 1 and
k = 2 then τ1 < θ2 and N1(h) > M2(h) . On the other hand if we set j = k = 2 , then τ2 > θ2 and
N2(h) > M2(h) . Final if j = 3 and k = 4 then τ3 = θ4 and N3(h) = M4(h) as required.

We now consider the stochastic difference equation

Xh(n+ 1) = Xh(n) + h

 m∑
j=1

αjg(Xh(n−Mj(h)))−
p∑
j=1

βjg(Xh(n−Nj(h)))


+ σ

√
hξ(n+ 1), n ≥ 0 (6.2.7)

where Xh(n) = φ(nh) for n = −Np(h), . . . , 0.
We definew1,h(n) for n = 0, . . . ,Mm(h). If n ∈ {0, . . . ,Mm(h)} is such that there is a j ∈ {1, . . . ,m}

for which Mj(h) = n, define w1,h(n) = αjh; otherwise let w1,h(n) = 0. We similarly define w2,h(n) for
n = 0, . . . , Np(h). If n ∈ {0, . . . , Np(h)} is such that there is a j ∈ {1, . . . , p} for which Nj(h) = n,
define w2,h(n) = βjh; otherwise let w2,h(n) = 0. This means that (6.2.7) can be rewritten as

Xh(n+ 1) = Xh(n) +
Mm(h)∑
j=0

w1,h(j)g(Xh(n− j))−
Np(h)∑
j=0

w2,h(j)g(Xh(n− j))

+ σ
√
hξ(n+ 1), n ≥ 0

Since each αj and βj is positive, we have

w1,h(n) ≥ 0, n = 0, . . . ,Mm(h) w2,h(n) ≥ 0, n = 0, . . . , Np(h).

The condition (6.2.1) implies that

Mm(h)∑
j=0

w1,h(j) =
Np(h)∑
j=0

w2,h(j) > 0.

Finally, the condition (6.2.2) guarantees that

n∑
j=0

w1,h(j) ≥
n∑
j=0

w2,h(j), n = 0, . . . ,Mm(h).
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Therefore, if
Np(h)∑
j=0

jw2,h(j)−
Mm(h)∑
j=0

jw1,h(j) < 1,

we have

lim sup
n→∞

Xh(n)√
2(nh) log log(nh)

=
σ

1−
∑Np(h)
j=0 jw2,h(j) +

∑Mm(h)
j=0 jw1,h(j)

, a.s.

lim inf
n→∞

Xh(n)√
2(nh) log log(nh)

= − σ

1−
∑Np(h)
j=0 jw2,h(j) +

∑Mm(h)
j=0 jw1,h(j)

, a.s.

while if
Np(h)∑
j=0

jw2,h(j)−
Mm(h)∑
j=0

jw1,h(j) > 1,

we have

lim
n→∞

Xh(n)
α(h)n

exists and is finite a.s.

where α(h) > 1 is the unique solution of

α(h) = 1 + h

 m∑
j=1

αjα(h)−[θj/h] −
p∑
j=1

βjα(h)−[τj/h]

 .

Noting that

Mm(h)∑
j=0

jw1,h(j) =
m∑
j=1

αjhMj(h),
Np(h)∑
j=0

jw2,h(j) =
p∑
j=1

βjhNj(h).

The discrete analogue of m(ν) is:

mh(ν) :=
p∑
j=1

βjhNj −
m∑
j=1

αjhMj =
p∑
j=1

βjh[τj/h]−
m∑
j=1

αjh[θj/h].

Therefore

−(mh(ν)−m(ν)) = −

 p∑
j=1

βj(τj − h[τj/h]) +
m∑
j=1

αj(θj − h[θj/h])

 .

which implies

|mh(ν)−m(ν)| ≤
p∑
j=1

βj |τj − h[τj/h]|+
m∑
j=1

αj |θj − h[θj/h]|,

≤
p∑
j=1

hβj |τj/h− [τj/h]|+
m∑
j=1

hαj |θj/h− [θj/h]|,

≤ h

 p∑
j=1

βj +
m∑
j=1

αj

 .

If m(ν) < 1, and h < h1 where

h1

 p∑
j=1

βj +
m∑
j=1

αj

 = 1−m(ν), (6.2.8)
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then

mh(ν) = mh(ν)−m(ν) +m(ν) ≤ h

 p∑
j=1

βj +
m∑
j=1

αj

+m(ν) < 1.

On the other hand if m(ν) > 1 and h < h2 where

h2

 p∑
j=1

βj +
m∑
j=1

αj

 = m(ν)− 1, (6.2.9)

then

mh(ν) = mh(ν)−m(ν) +m(ν) ≥ −h

 p∑
j=1

βj +
m∑
j=1

αj

+m(ν) > 1.

Theorem 6.2.1. Suppose that (6.2.2), (6.2.1) hold and that m(ν) < 1. Suppose g obeys (6.2.3). Let T be
given by (6.2.6). Let 0 < h < d(T ) ∧ h1, where h1 > 0 is defined by (6.2.8). If Xh is the solution of
(6.2.7), we have

lim sup
n→∞

Xh(n)√
2(nh) log log(nh)

=
σ

1−
∑p
j=1 βjh[τj/h] +

∑m
j=1 αjh[θj/h]

, a.s. (6.2.10)

lim inf
n→∞

Xh(n)√
2(nh) log log(nh)

= − σ

1−
∑p
j=1 βjh[τj/h] +

∑m
j=1 αjh[θj/h]

, a.s. (6.2.11)

while the solution X of (6.2.4) obeys

lim sup
t→∞

X(t)√
2t log log(t)

=
σ

1−
∑p
j=1 βjτj +

∑m
j=1 αjθj

, a.s. (6.2.12)

lim inf
t→∞

X(t)√
2t log log(t)

= − σ

1−
∑p
j=1 βjτj +

∑m
j=1 αjθj

, a.s. (6.2.13)

We notice that the asymptotic behaviour of the solutionXh of the discrete scheme (6.2.7) enjoys the same
almost sure iterated logarithm rate of growth of the large fluctuations as the solution X of (6.2.4), provided
that the step size h is less than some critical size h∗ which can be determined from data associated with the
original equation (6.2.4). Moreover, it can be seen that as h→ 0+, the size of the limiting constants on the
righthand side of (6.2.10) and (6.2.11) converges to the limiting constants on the righthand side of (6.2.12)
and (6.2.13).

We now consider what happens when the moment m(ν) > 1 for the continuous equation.

Theorem 6.2.2. Suppose that (6.2.2), (6.2.1) hold and that m(ν) > 1. Suppose g obeys (6.2.3). Suppose
also that there exists a non–decreasing continuous γ0 : [0,∞) → (0,∞) such that

|g(x)− x| ≤ γ0(|x|), x ∈ R;
∫ ∞

1

γ0(x)
x2

dx < +∞. (6.2.14)

Let T be given by (6.2.6). Let 0 < h < d(T )∧ h2, where h2 > 0 is defined by (6.2.9). If Xh is the solution
of (6.2.7), there exists a unique λ(h) > 0 satisfying

eλ(h)h − 1
h

=
m∑
j=1

αje
−λ(h)[θj/h]h −

p∑
j=1

βje
−λ(h)[τj/h]h (6.2.15)

such that there exists an almost surely finite random variable Λ(h) such that

lim
n→∞

Xh(n)
eλ(h)nh

= Λ(h), a.s. (6.2.16)

If X is the solution of (6.2.4), there exists a unique positive λ > 0 satisfying

λ =
m∑
j=1

αje
−λθj −

p∑
j=1

βje
−λτj (6.2.17)
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such that there exists an almost surely finite random variable Λ such that

lim
t→∞

e−λtX(t) = Λ, a.s. (6.2.18)

Once again the asymptotic behaviour of the solution Xh of the discrete scheme (6.2.7) enjoys exact
almost sure real exponential growth, just as the solution X of (6.2.4) does, provided that the step size h is
less than some critical size h∗. As before, the critical step size h∗ can be determined from data associated
with the original equation (6.2.4). Finally, it can be seen from (6.2.15) and (6.2.17) that as h → 0+, the
exponential rate of growth λ(h) > 0 of the solution of (6.2.7) converges to the exponential rate of growth
λ > 0 of the solution X of the continuous equation (6.2.4).

6.3 Euler Scheme for Continuous Weights
In this section we consider whether a uniform Euler discretisation will reproduce the long–time behaviour
of the SFDE in the case when the weights attached to values of the process in the past are continuously
distributed. This is in contrast to the equations considered in the last section, in which a discrete weighted
average of past values are taken. In broad terms, by means of a mixture of analysis and numerical ex-
periments, we show that an Euler scheme which is implemented directly will not mimic the asymptotic
behaviour of the SFDE, despite the fact that this scheme enables us to control with arbitrary accuracy the
mean square error on any compact interval, given sufficient computational effort. Furthermore, we are able
to detect the presence of these spurious computational features even in absence of noise or of nonlinear
terms in the space variable. Consequently, in our discussion in this section, we tend to study the properties
of discretisations of the underlying linear deterministic equation.

More specifically, we show the following:

(i) The Euler scheme applied directly to the SFDE will in general not accurately reproduce the presence
of the zero solution of the characteristic equation of the underlying linear deterministic equation;
this will lead to spurious asymptotic behaviour in the case when this zero is the solution of the
characteristic equation with largest real part.

(ii) It is possible to modify the standard uniform Euler method in (i) in such a manner that the underlying
discrete linear resolvent has characteristic equation with a unit solution, which now correctly mimics
the presence of the zero solution of the characteristic equation of the underlying linear continuous
equation. However, numerical experiments seem to suggest that errors arising from round–off, trun-
cation (or both) in the computer implementation do not hold the solution of the discrete characteristic
equation with largest modulus at unity. This leads once again to spurious long run asymptotic be-
haviour of the discrete time solution. Moreover, it is not clear that these problems can be alleviated
easily by reducing the step size.

(iii) The Euler scheme in (ii) can be further modified in such a way to remove the unit solution of the
characteristic equation entirely. However, this changes the structure of the Euler scheme to one more
reminiscent of a Volterra summation equation with finite memory. Numerical experiments in this
case confirm that this adjustment leads to more satisfactory long–run discrete dynamics. However,
the positivity of a sequence depending on the weights is not assured by this method. This is an
undesirable feature from a modelling perspective because this positivity is instrumental in causing
the presence of a positive correlation in the returns at all time horizons, a feature of the economic
model which is responsible for the excess volatility and bubbles. This is unsatisfactory because these
properties are among the advantageous characteristics of the dynamics. Moreover, in the absence of
such positivity, it is more difficult to conduct an analysis of the long–run discrete dynamics of the
scheme.

The findings of (i)–(iii) tend to suggest that we should approach the question of long–term simulation of
equations with continuous weights by means of standard Euler methods with extreme caution. However,
the satisfactory performance of the algorithm in (iii) suggests that it might be feasible to rehabilitate such
schemes by exploiting the presence of the zero solution of the characteristic equation at the outset and
developing an Euler scheme in which the associated unit solution of the discrete characteristic equation has
been removed. The analysis and experiments also suggest that it would be sensible from both theoretical and
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modelling perspectives to impose a positivity restriction on an analogue of the sequence which depends on
the weights in (iii), provided that this adjustment neither incurs excessive error nor introduces a systematic
bias into the long–run simulations. A major part of the remainder of the thesis is devoted to showing that
these issues can be successfully addressed.

In this section, the Euler methods employed are all explicit. However, there is no reason to exclude a
priori the use of implicit methods on the drift term. We have not considered implicit methods for these
simulations because the contribution from the implicit term in the drift will be of small order, since it
arises from a continuously distributed weighted average. The evidence of (i)–(iii) suggests that it is not the
presence or absence of such small terms which are of main importance, since the correction to force the
unit solution of the characteristic equation at unity does not fix the underlying numerical instability when
the solution is simulated on a computer. Rather, the problem seems to stem from the presence of this unit or
near unit solution in the discrete scheme in the first place. Thus, it appears from (iii) that the removal of this
unit solution of the discrete characteristic equation greatly improves the performance of the simulation and
because explicit schemes are more readily implemented, our priority is to remove this unit root above all
other considerations; then, if an explicit scheme proves satisfactory, we need not consider implicit schemes
on the grounds of simplicity.

In the next section, we distil the evidence gained from implementing standard Euler methods to the case
where the weights are continuous. Our experience suggests that we seek a method which has the following
properties:

• The method converts the zero solution of the continuous linear resolvent to a unit solution of the
discrete linear resolvent and then removes it. This suggests that the final form of the difference
scheme might be a Volterra summation equation with finite memory.

• The method preserves positivity properties of the original continuous time equation, aiding both anal-
ysis of the method and preserving in discrete time salient economic properties of returns’ dynamics.

• The method is robust in the sense that it preserves the essential type of the long run dynamics (i.e.,
either iterated logarithm large fluctuations, or real exponential explosion of solutions) regardless of
the underlying model parameters, once the step size is chosen less than some critical level.

• The method recovers key growth parameters (e.g., exponential growth rate or normalising constant
for iterated logarithm growth) with arbitrary accuracy for sufficiently small and uniform step size.

• The method can still be used for numerical analysis on finite time intervals with mean square error
tending to zero with an explicitly computable bound as the step size tends to zero.

It transpires that we can develop an alternative numerical method which is based on discretising a random
continuous time Volterra equation satisfied by the solution of the continuous time SFDE. Despite this non-
standard approach, it is nonetheless interesting to note that the form of the Volterra summation equation
satisfied by the discrete equation is very similar to that satisfied by the Euler scheme in (ii) above. Therefore,
this nonstandard approach is in practice closely related to the standard Euler method but incorporates some
special features which improve reliability and exploit the particular structure of the SFDE.

6.4 Standard Euler Scheme and Modifications
Let τ2 > τ1 > 0, and define τ = max(τ1, τ2) = τ2. Let w1 and w2 be continuous, non–negative functions
on [0, τ1] and [0, τ2] respectively, and suppose that∫ τ1

0

w1(s) ds =
∫ τ2

0

w2(s) ds = 1, (6.4.1)

as well as ∫ t

0

w1(s) ds ≥
∫ t

0

w2(s) ds, t ∈ [0, τ1]. (6.4.2)

We presume moreover that w1 and w2 are not identically equal, so that continuity ensures that there is a
subinterval of [0, τ1] interval on which the inequality (6.4.2) is strict. Let ψ ∈ C([−τ, 0]; R), σ 6= 0, and g
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be a locally Lipschitz continuous function that obeys

lim
|x|→∞

g(x)
x

= β

for some β > 0. LetB be a standard one–dimensional Brownian motion. Then there is a unique continuous
adapted process X which obeys

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt

+ σ dB(t), t ≥ 0. (6.4.3)

The long–time behaviour of solutions of (6.4.3) has been determined in Chapter 4 . Specifically, we show
that if

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
< 1 (6.4.4)

then

lim sup
t→∞

X(t)√
2t log log t

=
σ

1− β(
∫ τ2
0
sw2(s) ds−

∫ τ1
0
sw1(s))

, a.s.

lim inf
t→∞

X(t)√
2t log log t

= − σ

1− β(
∫ τ2
0
sw2(s) ds−

∫ τ1
0
sw1(s))

, a.s.

while under the condition that g obeys∫ ∞

1

max0≤|s|≤x |g(s)− s|
x2

dx < +∞

and

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
> 1 (6.4.5)

we have that

lim
t→∞

X(t)
eλt

exists and is a.s. finite

where λ is given by the unique positive solution of the characteristic equation

λ = β

(∫ τ1

0

w1(s)e−λs ds−
∫ τ2

0

w2(s)e−λs ds
)
. (6.4.6)

In order to determine the essential problems associated with the behaviour of discretised versions of
(6.4.3), we focus on the equation in which g is linear, the noise term is absent (i.e., σ = 0 and the initial
function ψ is zero on [−τ, 0) and obeys ψ(0) = 1. When we have determined potential problems and
solutions related to the discretisation of the underlying deterministic problem, we will show in the next
chapter that the appropriate numerical methods for the fully nonlinear and stochastic equation resolves all
the problems outlined.

The resulting simplified and deterministic equation is

x′(t) = β

(∫ τ1

0

w1(s)x(t− s) ds−
∫ τ2

0

w2(s)x(t− s) ds
)
, t > 0; (6.4.7)

x(0) = 1, x(t) = 0, t ∈ [−τ, 0). (6.4.8)

We note that in the case when (6.4.4) holds, x(t) tends to a nonzero finite limit as t → ∞, while in the
case when (6.4.5) holds, x(t) tends to infinity at the rate eλt as t → ∞ where λ > 0 is the unique positive
solution of (6.4.6). We wish any numerical method to reproduce this qualitative behaviour.
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6.4.1 Naive explicit Euler scheme
Suppose that h > 0 and that we allow, for n ∈ N, xh(n) to be the approximation to x(t) at time t = nh.
Define the integers

N1 = bτ1/hc, N2 = bτ2/hc (6.4.9)

in such a way that N2 > N1 > 1. This can be arranged for h > 0 sufficiently small. We define xh(n) by

xh(n+ 1) = xh(n)

+ βh

N1−1∑
j=0

w1(jh)xh(n− j)h−
N2−1∑
j=0

w2(jh)xh(n− j)h

 , n ≥ 0; (6.4.10a)

xh(0) = 1, xh(n) = 0, n ∈ [−N2 + 1, 0). (6.4.10b)

Examination of the characteristic equation associated with (6.4.10) shows that the characteristic equation
has a solution at unity if and only if

N1−1∑
j=0

w1(jh) =
N2−1∑
j=0

w2(jh). (6.4.11)

This is not automatically implied by (6.4.1). Therefore, the zero eigenvalue of the characteristic equation
(6.4.6) is not necessarily transformed exactly to a unit solution of the characteristic equation associated with
(6.4.10). In the case when (6.4.4) holds, but (6.4.11) does not, we cannot have that xh(n) tends to a positive
limit as n →∞, and therefore the asymptotic behaviour of the solution of (6.4.7) cannot be reproduced in
this case.

Simulations confirm that this problem arises in the case when (6.4.11) fails to hold, and the simple Euler
method (6.4.10) is employed.

Example 6.4.1. We consider the case when τ1 = 1, τ2 = 2

w1(t) = C1e
−t, t ∈ [0, 1], w2(t) = C2e

−t, t ∈ [0, 2]. (6.4.12)

We pick h = 0.001 and therefore N1 = 1000, N2 = 2000. In this case in order that w1 and w2 obey (6.4.1)
we require C1 = 1/(1− e−1) and C2 = 1/(1− e−2). Noting that

∫ t
0
se−s ds = 1− e−t − te−t, we have∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds = C2

∫ 2

0

se−s ds− C1

∫ 1

0

se−s ds,

=
1− 3e−2

1− e−2
− 1− 2e−1

1− e−1
=

1
e+ 1

.

In the first simulation, we have β = 1.2, in which case

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)

=
1.2
e+ 1

< 1.

In the second simulation, we have β = 2e2/(e− 1), in which case

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)

=
2e2

(e− 1)(e+ 1)
= 2

e2

e2 − 1
> 1.
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In this situation, we note with λ = 1 that

λ− β

(∫ τ1

0

w1(s)e−λs ds−
∫ τ2

0

w2(s)e−λs ds
)

= 1− 2
e

e− 1
e

(
C1

∫ 1

0

e−2s ds− C2

∫ 2

0

e−2s ds

)
,

= 1− 2
e

e− 1
e

(
C1

2
(−e−2 + 1)− C2

2
(
−e−4 + 1

))
,

= 1− e

e− 1
e

(
1− e−2

1− e−1
− 1− e−4

1− e−2

)
,

= 1− e

e− 1
e

(
(e− 1)(e+ 1)
e(e− 1)

− (e2 − 1)(e2 + 1)
e2(e2 − 1)

)
,

= 1− e

e− 1
e
1
e

(
1− 1

e

)
= 1− e

e− 1

(
e− 1
e

)
= 0.

Therefore, when β = 2e2/(e− 1), we have that

lim
t→∞

x(t)
et

is positive and finite.

Our analysis predicts in the case when h = 0.1 and β = 1.2 that xh(n) does not tend to the correct limit
as confirmed by the figure on the left. On the other hand when β = 2e2

1−e and h = 0.1 that equation does not
display exponential growth as indicated by the diagram on the right.

Figure 6.2: Stable and Exponential growth of Naive Euler

6.4.2 Weighted Euler scheme
In order to rectify the problem that the characteristic equation associated with (6.4.11) has a unit solution,
we weight the terms in the approximation of the drift in (6.4.10) by the discrete sums of w1 and w2 in
(6.4.11).

Once again we suppose that xh(n) is the approximation to x(t) at time t = nh. Define the integers N1

and N2 as in (6.4.9) so that once again N2 > N1 > 1. Define

W1(h) =
N1−1∑
j=0

w1(jh)h, W2(h) =
N2−1∑
j=0

w2(jh)h. (6.4.13)
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We define xh(n) for n ≥ 0 by

xh(n+ 1) = xh(n)

+ βh

 1
W1(h)

N1−1∑
j=0

w1(jh)xh(n− j)h− 1
W2(h)

N2−1∑
j=0

w2(jh)xh(n− j)h

 , (6.4.14)

with initial conditions
xh(0) = 1, xh(n) = 0, n ∈ [−N2 + 1, 0).

In contrast with (6.4.10), the characteristic equation associated with (6.4.14) always has unity as a solution.
Suppose that (6.4.4) holds, so that the solution of (6.4.7) is asymptotically constant. Since the solution

of the characteristic equation (6.4.6) with largest real part has been mapped to the unit solution of the
characteristic equation of (6.4.14), for sufficiently small h > 0, we might expect the solution of the equation
(6.4.14) to reproduce the asymptotic behaviour of (6.4.7). However, for small step size h, the number of
terms in each of the sumsW1 andW2 as well as in the sums in (6.4.14) are of order 1/h, and the increasingly
large number of terms (each of which makes a smaller and smaller contribution as h decreases) increases the
possibility of roundoff or truncation error, so that in practice the unit solution of the characteristic equation
associated with (6.4.14) does not always give rise to an asymptotically constant solution of (6.4.14). This
supposition is given credence by the result of the simulation below.

Figure 6.3: Stable and Exponential growth of Weighted Euler

For the above graphs we have used the exponential weights as defined by (6.4.12). Our analysis predicts
in the case when h = 0.1 and β = 1.2 that xh(n) does not tend to the correct limit as confirmed by the
figure on the left. Also when β = 2e2

1−e and h = 0.1 the graph on the right does not display exponential
growth as would be expected.

6.4.3 Removal of the unit solution of the characteristic equation
The results of the last two subsections suggests that numerical stability of the long run behaviour can only
be achieved by removing unit solution of the characteristic equation associated with the discrete scheme.
We start with equation (6.4.14) because its characteristic equation has such a unit solution.

We have that xh(n) is given by (6.4.14) viz.,

xh(n+ 1) = xh(n)

+ h

 1
W1(h)

N1−1∑
j=0

w1(jh)g(xh(n− j))h− 1
W2(h)

N2−1∑
j=0

w2(jh)g(xh(n− j))h


+ σ

√
hξ(n+ 1), n ≥ 0,
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with initial conditions xh(n) = ψh(n) for n ∈ [−N2 + 1, 0). We let xh(0) = ψ(0). With W1 and W2

defined by (6.4.13), define

Wh(j) =

{
w1(jh)
W1(h)

− w2(jh)
W2(h)

, j ∈ {0, . . . , N1 − 1},
−w2(jh)
W2(h)

, j ∈ {N1, . . . , N2 − 1},
(6.4.15)

With N = max(N1, N2) = N2 ≥ 2, we have

xh(n+ 1) = xh(n) + h
N−1∑
j=0

Wh(j)g(xh(n− j))h+ σ
√
hξ(n+ 1), n ≥ 0.

Moreover, we have

N−1∑
j=0

Wh(j) =
N1−1∑
j=0

(
w1(jh)
W1(h)

− w2(jh)
W2(h)

)
−
N2−1∑
j=N1

w2(jh)
W2(h)

,

= 1−
N1−1∑
j=0

w2(jh)
W2(h)

−
N2−1∑
j=N1

w2(jh)
W2(h)

= 1−
N2−1∑
j=0

w2(jh)
W2(h)

= 0.

Next we get

n∑
j=0

(xh(j + 1)− xh(j)) =
n∑
j=0

h
N−1∑
l=0

Wh(l)g(xh(j − l))h+ σ
√
h

n∑
j=0

ξ(j + 1), n ≥ 0.

Therefore for n ≥ 0, we have

xh(n+ 1)− ψ(0) =
N−1∑
l=0

hWh(l)
n∑
j=0

g(xh(j − l))h+ σ
√
h

n∑
j=0

ξ(j + 1),

=
N−1∑
l=0

hWh(l)
n−l∑
k=−l

g(xh(k))h+ σ
√
h

n∑
j=0

ξ(j + 1),

=
n∑

k=−N+1

g(xh(k))h
(n−k)∧(N−1)∑

l=0∨−k

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1),

=
−1∑

k=−N+1

g(ψh(k))h
(n−k)∧(N−1)∑

l=−k

hWh(l)

+
n∑
k=0

g(xh(k))h
(n−k)∧(N−1)∑

l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1).

Therefore with

I(ψh, n) := ψ(0) +
−1∑

k=−N+1

g(ψh(k))h
(n−k)∧(N−1)∑

l=−k

hWh(l), n ≥ 0, (6.4.16)

we have

xh(n+ 1) = I(ψh, n) +
n∑
k=0

g(xh(k))h
(n−k)∧(N−1)∑

l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1).

Define

W ∗
h (j) =

j∑
l=0

hWh(l), j = 0, . . . , N − 2. (6.4.17)
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Then we have for 1 ≤ N − 1 ≤ n

xh(n+ 1) = I(ψh, n) +
n−N+1∑
k=0

g(xh(k))h
(n−k)∧(N−1)∑

l=0

hWh(l)

+
n∑

k=n−N+2

g(xh(k))h
(n−k)∧(N−1)∑

l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1),

= I(ψh, n) +
n−N+1∑
k=0

g(xh(k))h
N−1∑
l=0

hWh(l)

+
n∑

k=n−N+2

g(xh(k))h
n−k∑
l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1),

= I(ψh, n) +
n∑

k=n−N+2

g(xh(k))h
n−k∑
l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1),

= I(ψh, n) +
N−2∑
j=0

g(xh(n− j))hW ∗
h (j) + σ

√
h

n∑
j=0

ξ(j + 1).

For n = 0, . . . , N − 2 we have

xh(n+ 1) = I(ψh, n) +
n∑
j=0

g(xh(n− j))h
j∧(N−1)∑
l=0

hWh(l) + σ
√
h

n∑
j=0

ξ(j + 1),

= I(ψh, n) +
n∑
j=0

g(xh(n− j))hW ∗
h (j) + σ

√
h

n∑
j=0

ξ(j + 1).

Therefore we have

xh(n+ 1) = I(ψh, n) +
N−2∑
j=0

g(xh(n− j))hW ∗
h (j)

+ σ
√
h

n∑
j=0

ξ(j + 1), n ≥ N − 1 ≥ 1,

xh(n+ 1) = I(ψh, n) +
n∑
j=0

g(xh(n− j))hW ∗
h (j)

+ σ
√
h

n∑
j=0

ξ(j + 1), 0 ≤ n ≤ N − 2.

Notice from (6.4.16) that I(ψh, n) is equal to

I(ψh, n) = ψ(0) +
N−1∑
j=1

g(ψh(−j))h
(n+j)∧(N−1)∑

l=j

hWh(l),

so that for n ≥ N − 2, we have

I(ψh, n) = ψ(0) +
N−1∑
j=1

g(ψh(−j))h
N−1∑
l=j

hWh(l) =: I∗(ψh). (6.4.18)

Hence I(ψh, n) is constant for all n ≥ N − 2. This implies that

xh(n+ 1) = I∗(ψh) +
N−2∑
j=0

g(xh(n− j))hW ∗
h (j) + σ

√
h

n∑
j=0

ξ(j + 1), 1 ≤ N − 1 ≤ n, (6.4.19)
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and

xh(n+ 1) = I(ψh, n) +
n∑
j=0

g(xh(n− j))hW ∗
h (j) + σ

√
h

n∑
j=0

ξ(j + 1), 0 ≤ n ≤ N − 2. (6.4.20)

We will observe in the next chapter that another discretisation of (6.4.3) gives rise to a Volterra summation
equation of the form (6.4.19) and (6.4.20) for the discrete approximation xh of X . In that method, we
endow an analogue of the sequence W ∗

h with a positivity property which does not change on compact
intervals the order of the mean square of the sup norm of the approximation error. This positivity also
enables us to recover the asymptotic behaviour of the continuous equation (6.4.3) for sufficiently small step
size h irrespective of whether the stability condition (6.4.4) or the instability condition (6.4.5) holds.

In a following example, the discretisation (6.4.19), (6.4.20) in the case of the exponential weights defined
in (6.4.12) gives rise to positive weights W ∗

h (j) for all j ∈ {0, . . . , N − 2}. This positivity allows us to
use analysis applied to discrete–time equations in previous chapters to determine the asymptotic behaviour
of xh, and to show that it is consistent with the asymptotic behaviour of the continuous time solution X
of (6.4.3). This in part motivates the imposition of positivity on the analogue of the weights in the next
chapter.

In the linear deterministic case when g(x) = βx, ψh(n) = 0 for n < 0, ψ(0) = 1 and σ = 0, we have
from (6.4.16) that I(ψh, n) = 1 for all n ≥ 0 and so

xh(n+ 1) = 1 +
N−2∑
j=0

βxh(n− j)hW ∗
h (j), 1 ≤ N − 1 ≤ n,

xh(n+ 1) = 1 +
n∑
j=0

βxh(n− j)hW ∗
h (j), 0 ≤ n ≤ N − 2.

Therefore

xh(n+ 1) = 1 +
n∧(N−2)∑
j=0

βxh(n− j)hW ∗
h (j), n ≥ 0. (6.4.21)

It is sometimes convenient for asymptotic analysis to extendW ∗
h (j) := 0 forN−1 ≤ j. Then forN−1 ≤ n

(6.4.21) reads

xh(n+ 1) = 1 +
n∧(N−2)∑
j=0

βxh(n− j)hW ∗
h (j),

= 1 +
N−2∑
j=0

βxh(n− j)hW ∗
h (j),

= 1 +
N−2∑
j=0

βxh(n− j)hW ∗
h (j) +

n∑
j=N−1

βxh(n− j)hW ∗
h (j),

= 1 +
n∑
j=0

βxh(n− j)hW ∗
h (j).

Therefore, by extending W ∗
h to N \ {0, 1, · · · , N − 2} as above, (6.4.21) is equivalent to

xh(n+ 1) = 1 +
n∑
j=0

βxh(n− j)hW ∗
h (j), n ≥ 0. (6.4.22)

Example 6.4.2. Since

W1(h) =
N1−1∑
j=0

C1e
−jhh, W2(h) =

N2−1∑
j=0

C2e
−jhh.
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we have

Wh(j) =


(

1∑N1−1
l=0 e−lhh

− 1∑N2−1
l=0 e−lhh

)
e−jh, j ∈ {0, . . . , N1 − 1},

− e−jh∑N2−1
l=0 e−lhh

, j ∈ {N1, . . . , N2 − 1},

Therefore for j ∈ {0, . . . , N1 − 1} we have

W ∗
h (j) =

j∑
l=0

hWh(l) =

(
1∑N1−1

m=0 e−mh
− 1∑N2−1

m=0 e−mh

)
j∑
l=0

e−lh > 0.

On the other hand for j ∈ {N1, . . . , N2 − 2} we have

W ∗
h (j) =

N1−1∑
l=0

hWh(l) +
j∑

l=N1

hWh(l),

=

(
1∑N1−1

m=0 e−mh
− 1∑N2−1

m=0 e−mh

)
N1−1∑
l=0

e−lh − 1∑N2−1
m=0 e−mh

j∑
l=N1

e−lh,

= 1−
∑N1−1
l=0 e−lh∑N2−1
m=0 e−mh

−
∑j
l=N1

e−lh∑N2−1
m=0 e−mh

= 1−
∑j
l=0 e

−lh∑N2−1
m=0 e−mh

> 0.

Therefore W ∗
h (j) > 0 for all j ∈ {0, . . . , N − 2}.

We now consider the long–run dynamics of
∑N−2
j=0 hW ∗

h (j) for these choices of w1 , w2 and h. When
we do simulations for this example it turns out that positivity is always ensured. In fact as the figure below
shows the simulated W ∗

h even has the property that it is increasing on {0, . . . , N1 − 1} and decreasing on
{N1, . . . , N2 − 2} just as the formula indicates.

Figure 6.4:
∑N−2

j=0 hW ∗
h (j)

Suppose that

β
N−2∑
j=0

W ∗
h (j)h < 1. (6.4.23)

Then we can use arguments of Chapter 2 to deduce that

lim
n→∞

xh(n) =
1

1− β
∑N−2
j=0 W ∗

h (j)h
.

Simulations seem to confirm that this limit is attained under the condition (6.4.23). In fact, since we can
show that

lim
h→0+

N−2∑
j=0

W ∗
h (j)h =

∫ τ2
0
se−s ds∫ τ2

0
e−s ds

−
∫ τ1
0
se−s ds∫ τ1

0
e−s ds

, (6.4.24)
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it follows that the resolvent (which is the solution of (6.4.21)) approaches a limit as n → ∞ that itself
approaches a limit as h → 0+. Moreover, this latter limit is exactly that attained by the linear differential
resolvent (6.4.7). Therefore, it can be seen that by increasing the computational effort (by reducing h), we
obtain a better approximation of the asymptotic behaviour of the continuous time equation.

Suppose on the other hand that

β
N−2∑
j=0

W ∗
h (j)h > 1. (6.4.25)

Then we can use arguments of Chapter 4 to deduce that there is a unique α = α(h) > 1 such that

β
N−2∑
j=0

W ∗
h (j)α(h)−(j+1)h = 1,

and that α(h) determines the asymptotic behaviour in the sense that

lim
n→∞

xh(n)
α(h)n

exists and is positive and finite.

This is also confirmed by simulations in the case that (6.4.25) holds. In the next chapter, we will show that
if we write logα(h)/h = λ(h), then not only can the rate of growth of (6.4.21) be written as

lim
n→∞

xh(n)
eλ(h)nh

which exists and is positive and finite,

but
lim
h→0+

λ(h) = λ > 0 (6.4.26)

where λ is the unique positive solution of (6.4.6). Therefore, the rate of real exponential growth (or Lia-
punov exponent) predicted by the discrete scheme (6.4.21) converges (as the step size h → 0+) to the real
exponential rate of growth of the linear differential resolvent x which solves (6.4.7), and obeys

lim
t→∞

x(t)
eλt

exists and is finite.

Simulations also seem to confirm (6.4.26); in the case where β = 2e2/(e − 1), λ = 1. When we have
taken h = 0.001, we find that λ̂(h) = 1.05 after 5, 000 iterations and when we take h = 0.0001 we have
λ̂(h) = 1.08 after 30, 000 iterations where we have approximated the Liapunov exponent λ̂ by

λ̂(h) =
1

nmaxh
log xh(nmax)

where nmax > N is the maximum number of iterations.
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We now confirm that (6.4.24). We first compute

N−2∑
j=0

W ∗
h (j)h =

N1−1∑
j=0

W ∗
h (j)h+

N2−1∑
j=N1

W ∗
h (j)h,

=

(
1∑N1−1

m=0 e−mh
− 1∑N2−1

m=0 e−mh

)
N1−1∑
j=0

j∑
l=0

e−lhh

+
N2−1∑
j=N1

(
1−

∑j
l=0 e

−lh∑N2−1
m=0 e−mh

)
h,

=

(
1∑N1−1

m=0 he−mh
− 1∑N2−1

m=0 he−mh

)
N1−1∑
l=0

e−lhh(N1 − l)h

+
1∑N2−1

m=0 e−mhh

N2−1∑
j=N1

(
N2−1∑
l=0

e−lh −
j∑
l=0

e−lh

)
h2,

=

(
1∑N1−1

m=0 he−mh
− 1∑N2−1

m=0 he−mh

)
N1−1∑
l=0

e−lhh(N1h− lh)

+
1∑N2−1

m=0 e−mhh

N2−1∑
j=N1

N2−1∑
l=j+1

e−lhh2,

=

(
1∑N1−1

m=0 he−mh
− 1∑N2−1

m=0 he−mh

)
N1−1∑
l=0

e−lhh(N1h− lh)

+
1∑N2−1

m=0 e−mhh

N2−1∑
l=N1+1

e−lhh(lh−N1h).

Hence

lim
h→0+

N−2∑
j=0

W ∗
h (j)h =

(
1∫ τ1

0
e−s ds

− 1∫ τ2
0
e−s ds

)
lim
h→0+

N1−1∑
l=0

e−lh(τ1 − lh)h

+
1∫ τ2

0
e−s ds

lim
h→0+

N2−1∑
l=N1+1

e−lhh(lh− τ1).

Next we have
N1−1∑
l=0

e−lh(τ1 − hl)h = τ1

N1−1∑
l=0

e−lhh−
N1−1∑
l=0

e−lhlhh→ τ1

∫ τ1

0

e−s ds−
∫ τ1

0

e−ss ds,

and
N2−1∑
l=N1+1

e−lhh(lh− τ1) = −τ1
N2−1∑
l=N1+1

e−lhh+
N2−1∑
l=N1+1

e−lhhlh

→ −τ1
∫ τ2

τ1

e−s ds+
∫ τ2

τ1

e−ss ds.

Therefore we have

lim
h→0+

N−2∑
j=0

W ∗
h (j)h =

(
1∫ τ1

0
e−s ds

− 1∫ τ2
0
e−s ds

)(
τ1

∫ τ1

0

e−s ds−
∫ τ1

0

e−ss ds

)

+
1∫ τ2

0
e−s ds

(
−τ1

∫ τ2

τ1

e−s ds+
∫ τ2

τ1

e−ss ds

)
.
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Hence

lim
h→0+

N−2∑
j=0

W ∗
h (j)h =

τ1
∫ τ1
0
e−s ds∫ τ1

0
e−s ds

−
τ1
∫ τ1
0
e−s ds∫ τ2

0
e−s ds

−
∫ τ1
0
se−s ds∫ τ1

0
e−s ds

+

∫ τ1
0
e−ss ds∫ τ2

0
e−s ds

−
τ1
∫ τ2
τ1
e−s ds∫ τ2

0
e−s ds

+

∫ τ2
τ1
e−ss ds∫ τ2

0
e−s ds

.

Therefore we get

lim
h→0+

N−2∑
j=0

W ∗
h (j)h =

∫ τ2
0
se−s ds∫ τ2

0
e−s ds

−
∫ τ1
0
se−s ds∫ τ1

0
e−s ds

.

Our analysis predicts in the case when h = 0.1 and β = 1.2 that xh(n) → 1
1−β

∑N
0 hW∗

h (j)
=

1.4765153710910428 and this seems to be confirmed by the figure below on the left hand side. On the
other hand when β = 2e2

e−1 and h = 0.1 we expect that xh(n) → Cheλ(h)nh as n → ∞, where λ(h) → 1
as h → 0+. Since we have chosen h relatively small we expect that limn→∞

1
nh log xh(n) = λ(h) to be

close to 1 which is consistent with the figure on the right which give λ(0.0) = 1.03.

Figure 6.5: Stable Growth and Liapunov Exponent of Modified Euler
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Chapter 7

Asymptotically Consistent Long–Run Behaviour from
Numerical Methods for SFDEs with Continuous Weight

Functions

7.1 Introduction
In this chapter we show that it is possible to perform a h > 0 uniform discretisation of the stochastic
differential equation with memory given by

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt+ σdB(t), t ≥ 0 (7.1.1)

in such a way that the asymptotic behaviour of the discretisation (X̂h(n))n≥0 captures that of the solution
of (7.1.1). Here w1 and w2 are positive continuous functions with unit integrals over their domains of
definition and which obey ∫ t

0

w1(s) ds ≥
∫ t

0

w2(s) ds, t ∈ [0, τ1]

with w1 6= w2. Also g is asymptotically linear at infinity in the sense that there exists β ≥ 0 such that

lim
x→∞

g(x)
x

= lim
x→−∞

g(x)
x

= β.

In the case when a stability condition holds, it can be shown that for all step sizes h sufficiently small
that the discretisation is recurrent on R just as is the continuous process X , and enjoys the same iterated
logarithmic large fluctuations as X , namely

lim sup
n→∞

X̂h(n)√
2(nh) log log(nh)

= A(h) = − lim inf
n→∞

X̂h(n)√
2(nh) log log(nh)

, a.s.

Moreover, as h→ 0+, the constant A(h) → A > 0, which is exactly the normalising constant that appears
in X

lim sup
t→∞

X(t)√
2t log log t

= A = − lim inf
t→∞

X(t)√
2t log log t

, a.s.

Therefore, by increasing the computational effort the asymptotic behaviour of X̂h better approximates that
of X .

In the case when the stability condition does not hold and an additional condition on g(x) is imposed
which restricts the degree of its asymptotic departure from βx as |x| → ∞, we show that, provided h is
sufficiently small, X̂h inherits the exact a.s. exponential rate of growth of X

lim
n→∞

X̂h(n)
eλ(h)nh

= L(h), a.s.

where λ(h) → λ∗ > 0 as h→ 0+, and λ∗ is the almost sure deterministic rate of growth of the solution X
of (7.1.1) i.e.,

lim
t→∞

X(t)
eλ∗t

= L, a.s.

The method used to discretise the problem is interesting because it can be shown that simple Euler
discretisations of (7.1.1) do not preserve the asymptotic behaviour, at least in the case when the stability
condition holds. Moreover, the discretisation also preserves the positivity and exponentially fading memory
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present in the autocovariance function of increments of the process X . In the final chapter we even show
that the discretisation method outlined here obeys

lim
h→0+

E
[

max
0≤t≤T

|X̄h(t)−X(t)|2
]

= 0, for any T > 0, (7.1.2)

where X̄h is a piecewise constant process defined on [0, T ] for which X̄h(t) = X̂h([t/h]) for t ≥ 0. The
condition (7.1.2) is enjoyed by conventional Euler–Maruyama methods for stochastic functional differen-
tial equations, so although our discretisation method is designed to reproduce asymptotic behaviour, it is
sufficiently robust to also control the mean square of the error on any compact interval [0, T ].

7.1.1 Connection with dynamic consistency
The work in this chapter is in the theme of analysis suggested by Mickens on the dynamic consistency of
finite difference methods for differential equations. Roughly speaking, the discretisation of a differential
equation exhibits dynamic consistency if the original equation (or its solution) has a property P and the
discretised equation (or its solution) also has property P . It is assumed that the system is convergent.
In relation to our equation this refers to the Law of the Iterated Logarithm and bubble,crash dynamics.
Some surveys of this work can be found in [56, 57, 59, 58]. Results pertaining to deterministic differential
equations with delay are [60] and [44].

The emphasis in the work of Mickens and his school is, in the first instance, to recover property P
in their discretisation: error control is considered secondary, although still of importance. This is our
perspective here, as standard methods will guarantee strong convergence of a uniform mesh E-M scheme to
the true solution: a new discretisation is only developed in order to recover the asymptotic behaviour of the
continuous equation.

Our work differs from that of Mickens in some regards: he highlights, for instance, the importance
of making non–standard (sometimes non–uniform) discretisations and of using implicit or semi–implicit
methods. It turns out that we do not need to be so sophisticated here. Rather, our method hinges on
rewriting the differential equation as an integral equation and using properties of the equation to explicitly
remove certain terms from the discretisation.

Results in the spirit of dynamic consistency abound for stochastic differential equations without de-
lay. However, there seems to be less literature for SDDEs. An example in which dynamic consistency
is demonstrated is in Appleby and Kelly [8, 7], in which it is shown that correct discretisation of SDDEs
with vanishing delay requires a non–uniform mesh and, in common with our analysis here, reformulates
the differential equation before discretising it.

7.2 Conversion to Integral Equation
As in the previous chapter, suppose that τ := τ2 > τ1 > 0 and that

w1 ∈ C([0, τ1]; [0,∞)), w2 ∈ C([0, τ2]; [0,∞)) (7.2.1)

We also request that ∫ τ1

0

w1(s) ds = 1,
∫ τ2

0

w2(s) ds = 1 (7.2.2)

and that ∫ t

0

w1(s) ds ≥
∫ t

0

w2(s) ds, t ∈ [0, τ1]. (7.2.3)

Assume that the function g : R → R obeys

g is locally Lipschitz continuous, (7.2.4)

and that there exists β ≥ 0 such that

lim
x→∞

g(x)
x

= lim
x→−∞

g(x)
x

= β. (7.2.5)
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Let σ 6= 0 and B be a standard one–dimensional Brownian motion. Let ψ ∈ C([−τ, 0]; R). Then there is a
unique continuous adapted process X which satisfies

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt (7.2.6a)

+σdB(t), t ≥ 0,
X(t) = ψ(t), t ∈ [−τ, 0]. (7.2.6b)

We rewrite (7.2.6) as a Volterra integral equation. In doing so, we find it convenient to introduce some
auxiliary functions. Define W1, W2 and W by

Wi(t) =
∫ t∧τi

0

wi(s) ds, t ≥ 0 i = 1, 2, W (t) := W1(t)−W2(t), t ≥ 0. (7.2.7)

We also introduce the functions I1 and I2 which depend on the function ψ

Ii(ψ, t) =
∫ 0

−τi

(∫ τi∧(t−s)

−s
wi(u) du

)
g(ψ(s)) ds, t ≥ 0, i = 1, 2, (7.2.8)

and the constants

I∗i (ψ) =
∫ 0

−τi

(∫ τi

−s
wi(u) du

)
g(ψ(s)) ds, i = 1, 2. (7.2.9)

Lemma 7.2.1. Suppose that w1 and w2 obey (7.2.1), (7.2.2) and that g obeys (7.2.4) and (7.2.5). Then
there is a unique continuous adapted process X which obeys (7.2.6).

(i) Ii(ψ, t) = I∗i , where t ≥ τi and

(ii) If W is given by (7.2.7) and Ii by (7.2.8) then X obeys

X(t) = ψ(0) + I1(ψ, t)− I2(ψ, t) +
∫ t

0

W (s)g(X(t− s)) ds+ σB(t), t ≥ 0,

X(t) = ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ τ2

0

W (s)g(X(t− s)) ds+ σB(t), t ≥ τ2.

Remark 7.2.1. No outline of the proof is given because although the calculations are long they are straight-
forward.

7.3 Construction of the Numerical Scheme
We now discretise the Volterra integral equation just derived. Since w1 and w2 are continuous and defined
on compact intervals, both possess moduli of continuity. More precisely there exist functions δ1 : [0,∞) →
[0,∞) and δ2 : [0,∞) → [0,∞) such that δi(0) = 0 and limh→0+ δi(h) = 0 for i = 1, 2 and

max
|t−s|≤h,s,t∈[0,τi]

|wi(t)− wi(s)| ≤ δi(h) for all h ∈ [0, τi], i = 1, 2. (7.3.1)

We pick h > 0 so small that we may define N2 = N2(h) ∈ N, N2 ≥ 2 such that

N2 ≤ τ2/h < 1 +N2. (7.3.2)

Extend w1(t) = 0 for t ∈ [τ1, τ2]. We now define the sequence Ŵh parameterised h > 0 by

Ŵh(0) = τ2 (δ1(h) + δ2(h)) (7.3.3a)

Ŵh(j) = τ2 (δ1(h) + δ2(h)) +
j−1∑
l=0

w1(lh)h−
j−1∑
l=0

w2(lh)h, j = 1, · · · , N2(h) (7.3.3b)

Ŵh(N2 + 1) = 0. (7.3.3c)
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It is implicit here that Ŵh(n) is an approximation to W (nh). However, in order to recover the positivity of
W in the approximation, we have added a correction term to the naive approximation

Ŵnaive(n) :=
n−1∑
l=0

w1(lh)h−
n−1∑
l=0

w2(lh)h.

The following lemma shows that this can be achieved in such a way that any resulting biasses or errors
introduced by the correction can be controlled. Also in the lemma, we record some estimates on the ap-
proximation of Ŵ to W .

Lemma 7.3.1. Let h > 0, and suppose that τ2 > τ1. Let wi have modulus of continuity δi given by (7.3.1).
Suppose that N2 = N2(h) obeys (7.3.2). Define Ŵh by (7.3.3).

(i) For j = 0, . . . , N2, Ŵh(j) ≥ 0.

(ii) With wi = supt∈[0,τi] wi(t), we have∣∣∣∣∣∣
N2∑
j=0

Ŵh(j)h−
(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)∣∣∣∣∣∣

≤ 3
2
τ2
2 (δ1(h) + δ2(h)) + h {4 + τ2 (w1 + w2) + 2τ2 (δ1(h) + δ2(h))} := η(h). (7.3.4)

(iii) If

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
< 1, (7.3.5)

then there is h1 > 0 which obeys

βη(h1) = 1− β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
, (7.3.6)

such that for h < h1 we have β
∑N2
j=0 Ŵh(j)h < 1.

(iv) If

β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
> 1, (7.3.7)

then there is h2 > 0 which obeys

βη(h2) = β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
− 1, (7.3.8)

such that for h < h2 we have β
∑N2
j=0 Ŵh(j)h > 1.

Remark 7.3.1. Part (iii) of the above lemma is saying that if the stability parameter is less than one in the
continuous case then this parameter will also hold for the discretised equation for small h. In other words
the asymptotic behaviour is preserved for small h. The same holds for part (iv).

It is standard that

lim
h→0+

∣∣∣∣∣∣
N2∑
j=0

Ŵh(j)h−
(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)∣∣∣∣∣∣ = 0

thus ensuring the existence of h1 and h2 in parts (iii) and (iv). However, it is convenient to have an explicit
bound on ∣∣∣∣∣∣

N2∑
j=0

Ŵh(j)h−
(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)∣∣∣∣∣∣
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in terms of h so that we can determine a bound on a value of h which will guarantee that the asymptotic
behaviour of the continuous–time process X given by (7.2.6) and its discrete approximation X̂h. In the
case when w1 and w2 are Lipschitz continuous there exists K3 > 0 such that |wi(t)− wi(s)| ≤ K3|t− s|
for all 0 ≤ s ≤ t ≤ τi. Therefore we can choose δi in such a way that δi(h) ≤ K3h for i = 1, 2. Then we
have

η(h) ≤ h
{
4 + 3τ2

2K3 + τ2 (w1 + w2) + 4τ2K3h
}
, (7.3.9)

From this estimate and parts (iii) and (iv) of Lemma 7.3.1 we can deduce an explicit estimate on the critical
values of h (h1 if (7.3.5) holds and h2 if (7.3.7) holds) because the righthand side is a quadratic in h. Indeed
it can even be estimated by a linear function in h, because the requirement that N2 ≥ 2 and (7.3.2) forces
h ≤ τ2/2.
Remark 7.3.2. Part (i) of the Lemma is proved by using the properties of the moduli of continuity. We
prove part (ii) by deriving an equation for

∑N2
j=0 Ŵh(j)h −

∫ τ2
0
W (s) ds which comprises of five terms.

We simplify these five terms further to obtain the desired result. Parts (iii) and (iv) are proved by exploiting
the continuity and the monotonicity of the moduli of continuity.

We are now in a position to discretise X . Let Ŵh be defined by (7.3.3). Suppose that

(ξ(n))n≥1 is a sequence of i.i.d.N(0, 1) random variables. (7.3.10)

We suppose for n ≥ 0 that X̂(n) is an approximation for X(nh). Suppose we approximate Ii(ψ, nh) by
I∗i (ψ, n) . Define (X̂h(n))n≥0 by

X̂h(n+ 1) = ψ(0) + I∗1 (ψ, n)− I∗2 (ψ, n) +
n∑
j=0

Ŵh(j)g(X̂h(n− j))h (7.3.11a)

+ σ
√
h

n∑
j=0

ξ(j + 1), n = 0, · · · , N2 − 1,

X̂h(n+ 1) = ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
N2∑
j=0

Ŵh(j)g(X̂h(n− j))h (7.3.11b)

+ σ
√
h

n∑
j=0

ξ(j + 1), n ≥ N2,

where X̂h(0) = ψ(0).

7.4 Statement and Discussion of Main Results for Discrete Equation
It is convenient to introduce the discrete resolvent r̂ defined by

r̂(n+ 1) = β

N2∑
j=0

Ŵh(j)hr̂(n− j), n ≥ 0, (7.4.1a)

r̂(0) = 1; r̂(n) = 0, n = −N2,−N2 + 1, . . . ,−1. (7.4.1b)

We can prove the following result concerning asymptotic behaviour of solutions of (7.3.11) under the con-
dition (7.3.5).

Theorem 7.4.1. Let h > 0, τ2 > τ1 > 0 and define N2 by (7.3.2). Suppose that w1 and w2 obey (7.2.1),
(7.2.3) and (7.2.3), and that g obeys (7.2.4) and (7.2.5). Suppose β > 0 is such that (7.3.5) holds. Let
h1 > 0 be defined by (7.3.6) and suppose that h < h1. Suppose that X̂h is defined by (7.3.11). Then

lim sup
n→∞

X̂h(n)√
2(nh) log2(nh)

=
|σ|

1− β
∑N2
j=0 Ŵh(j)h

=: A(h), a.s.

lim inf
n→∞

X̂h(n)√
2(nh) log2(nh)

= − |σ|
1− β

∑N2
j=0 Ŵh(j)h

, a.s.
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Moreover
lim
h→0+

A(h) =
σ

1− β
(∫ τ2

0
sw2(s) ds−

∫ τ1
0
sw1(s) ds

) .
Remark 7.4.1. First we prove the result for the linear equation. Then we rewrite X̂h(n) = Ẑh(n) + Ŷh(n)
where Ẑh(n) is a bounded function whose limit tends to zero. Subsequently the limit of the nonlinear
equation is equal to the limit of the linear equation.

This result is consistent with the asymptotic behaviour of the solution X of (7.2.6); Not only does The-
orem 7.4.1 show that X̂h mimics the almost sure iterated logarithmic rate of growth of the partial maxima
of X , but that the normalising constant A(h) converges as h → 0+ to the normalising constant on the
righthand side of the continuous process X . The relevant continuous–time result appears in Chapter 4, and
is restated here for ease of comparison.

Theorem 7.4.2. Let τ2 > τ1 > 0. Suppose that w1 and w2 obey (7.2.1), (7.2.3) and (7.2.3), and that g
obeys (7.2.4) and (7.2.5). Suppose β > 0 is such that (7.3.5) holds. Then the solution X of (7.2.6) satisfies

lim sup
t→∞

X(t)√
2t log log t

=
|σ|

1− β
(∫ τ2

0
sw2(s) ds−

∫ τ1
0
sw1(s) ds

) , a.s.

lim inf
t→∞

X(t)√
2t log log t

= − |σ|
1− β

(∫ τ2
0
sw2(s) ds−

∫ τ1
0
sw1(s) ds

) , a.s.

In the case when β obeys (7.3.7), we have that X̂h grows at an exact a.s. exponentially rate; moreover
the rate at which X̂h grows converges to a limit as h→ 0+

Theorem 7.4.3. Let h > 0, τ2 > τ1 > 0 and define N2 by (7.3.2). Suppose that w1 and w2 obey (7.2.1),
(7.2.3) and (7.2.3), and that g obeys (7.2.4) and (7.2.5) and also∫ ∞

1

max|s|≤x |g(s)− βs|
x2

dx < +∞. (7.4.2)

Suppose β > 0 is such that (7.3.7) holds. Let h2 > 0 be defined by (7.3.8) and suppose that h < h2.
Suppose that X̂h is defined by (7.3.11). Then there exists a λ(h) > 0 and a finite Fξ(∞)–measurable
random variable L∗(h) such that

lim
n→∞

X̂h(n)
eλ(h)nh

= L∗(h), a.s. (7.4.3)

Moreover λ(h) > 0 obeys
lim
h→0+

λ(h) = λ∗, (7.4.4)

where λ∗ > 0 is the unique positive solution of

λ∗ = β

(∫ τ1

0

w1(s)e−λ
∗s ds−

∫ τ2

0

e−λ
∗sw2(s) ds

)
. (7.4.5)

The asymptotic behaviour of X̂h is consistent with that the solution X of (7.2.6), in that X grows at an
exact a.s. exponential rate provided the nonlinearity g satisfies (7.4.2) and that the discrete exponential a.s.
rate of growth λ(h) of X̂h converges to the almost sure exponential rate of growth λ∗ > 0 ofX . Once again,
the corresponding continuous–time result is proven in Chapter 4, and is restated here to aid comparison.

Theorem 7.4.4. Let τ2 > τ1 > 0. Suppose that w1 and w2 obey (7.2.1), (7.2.3) and (7.2.3), and that g
obeys (7.2.4) and (7.2.5) and also (7.4.2). Suppose β > 0 is such that (7.3.7) holds. Then the solution X of
(7.2.6) satisfies

lim
t→∞

X(t)
eλ∗t

= L, a.s. (7.4.6)

where λ∗ > 0 is the unique positive solution of (7.4.5) and L is an a.s. finite and FB(∞)–measurable
random variable.

Remark 7.4.2. To prove Theorem 7.4.3 we first show that |X̂h| is bounded by the function x∗. We then
prove that the limit of x∗ is finite and subsequently the limit of |X̂h| is finite.
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7.5 Proofs of Supporting Results

7.5.1 Proof of Lemma 7.2.1
Written in integral form (7.2.6a) is

X(t) = ψ(0) +
∫ t

0

∫ τ1

0

w1(u)g(X(s− u)) du ds−
∫ t

0

∫ τ2

0

w2(u)g(X(s− u)) du ds

+ σB(t), t ≥ 0.

Let t ≥ τi,∫ t

0

∫ τi

0

wi(u)g(X(s− u)) du ds =
∫ t

0

∫ s

s−τi

wi(s− v)g(X(v)) dv ds

=
∫ τi

0

∫ s

s−τi

wi(s− v)g(X(v)) dv ds+
∫ t

τi

∫ s

s−τi

wi(s− v)g(X(v)) dv ds.

Now ∫ t

τi

∫ s

s−τi

wi(s− v)g(X(v)) dv ds

=
∫ t

0

∫ (v+τi)∧t

v∨τi

wi(s− v) ds g(X(v)) dv

=
∫ t

0

(∫ τi∧(t−v)

0∨(τi−v)
wi(u) du

)
g(X(v)) dv

=
∫ τi

0

(∫ τi∧(t−v)

0∨(τi−v)
wi(u) du

)
g(X(v)) dv +

∫ t

τi

(∫ τi∧(t−v)

0∨(τi−v)
wi(u) du

)
g(X(v)) dv

=
∫ τi

0

(∫ τi∧(t−v)

τi−v
wi(u) du

)
g(X(v)) dv +

∫ t

τi

(∫ τi∧(t−v)

0

wi(u) du

)
g(X(v)) dv.

On the other hand∫ τi

0

∫ s

s−τi

wi(s− v) g(X(v)) dv ds

=
∫ τi

−τi

∫ (v+τi)∧τi

v∨0

wi(s− v) dsg(X(v)) dv

=
∫ 0

−τi

(∫ (v+τi)∧τi

0

wi(s− v) ds

)
g(ψ(v)) dv

+
∫ τi

0

(∫ (v+τi)∧τi

v

wi(s− v) ds

)
g(X(v)) dv

=
∫ 0

−τi

(∫ v+τi

0

wi(s− v) ds
)
g(ψ(v)) dv +

∫ τi

0

(∫ τi

v

wi(s− v) ds
)
g(X(v)) dv

=
∫ 0

−τi

(∫ τi

−v
wi(u) du

)
g(ψ(v)) dv +

∫ τi

0

(∫ τi−v

0

wi(u) du
)
g(X(v)) dv.
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Therefore for t ≥ τi∫ t

0

∫ τi

0

wi(u)g(X(s− u)) du ds = I∗i (ψ) +
∫ τi

0

(∫ τi∧(t−v)

0

wi(u) du

)
g(X(v)) dv

+
∫ t

τi

(∫ τi∧(t−v)

0

wi(u) du

)
g(X(v)) dv

= I∗i (ψ) +
∫ t

0

Wi(t− v)g(X(v)) dv

= I∗i (ψ) +
∫ t

0

Wi(s)g(X(t− s)) ds.

Let t ∈ [0, τi], then∫ t

0

∫ s

s−τi

wi(s− v)g(X(v)) dv ds

=
∫ t

−τi

(∫ (v+τi)∧t

v∨0

wi(s− v) ds

)
g(X(v)) dv

=
∫ 0

−τi

(∫ (v+τi)∧t

v∨0

wi(s− v) ds

)
g(ψ(v)) dv

+
∫ t

0

(∫ (v+τi)∧t

v∨0

wi(s− v) ds

)
g(X(v)) dv

=
∫ 0

−τi

(∫ (v+τi)∧t

0

wi(s− v) ds

)
g(ψ(v)) dv +

∫ t

0

(∫ t

v

wi(s− v) ds
)
g(X(v)) dv

=
∫ 0

−τi

(∫ (t−v)∧τi

−v
wi(u) du

)
g(ψ(v)) dv +

∫ t

0

(∫ t−v

0

wi(u) du
)
g(X(v)) dv

= Ii(ψ, t) +
∫ t

0

(∫ t−v

0

wi(u) du
)
g(X(v)) dv,

because t− v ≤ t ≤ τi for v ∈ [0, t] and t ≤ τi, then∫ t

0

∫ s

s−τi

wi(s− v)g(X(v)) dv ds = Ii(ψ, t) +
∫ t

0

Wi(s)g(X(t− s)) ds.

For t ≥ τi, t− s ≥ τi, if s ∈ [−τi, 0], hence τi ∧ (t− s) = τi, so Ii(ψ, t) = I∗i (ψ). For t ≥ 0∫ t

0

∫ τi

0

wi(u)g(X(s− u)) du ds = I∗i (ψ, t) +
∫ t

0

Wi(s)g(X(t− s)) ds.

Therefore

X(t) = ψ(0) + I1(ψ, t) +
∫ t

0

W1(s)g(X(t− s)) ds− I2(ψ, t)

−
∫ t

0

W2(s)g(X(t− s)) ds+ σB(t)

which proves (ii). Let t ≥ τ2, then

X(t) = ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ t

0

(W1(s)−W2(s)) g(X(t− s)) ds+ σB(t)

= ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ τ2

0

(W1(s)−W2(s)) g(X(t− s)) ds

+ σ B(t) +
∫ t

τ2

(W1(s)−W2(s)) g(X(t− s)) ds.
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For t ≥ τ2, Wi(t) =
∫ t∧τi

0
wi(s) ds =

∫ τi

0
wi(s) ds = 1, then for t ≥ τ

X(t) = ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ τ2

0

(W1(s)−W2(s)) g(X(t− s)) ds+ σB(t),

which completes the proof.

7.5.2 Proof of Lemma 7.3.1
Clearly Ŵh(0) ≥ 0, and Ŵh(N2 + 1) = 0 by (7.3.3c). For j = 1, . . . , N2 we have 0 ≤ j − 1 ≤ N2 − 1.
Therefore 0 ≤ (j − 1)h ≤ (N2 − 1)h ≤ N2h ≤ τ2 and both terms on the right hand side of (7.3.3b) are
well–defined. For each j = 1, . . . , N2 we have jh ≤ N2h ≤ τ2, so for i = 1, 2∣∣∣∣∣

∫ jh

0

wi(s) ds−
j−1∑
l=0

wi(lh)h

∣∣∣∣∣ =
∣∣∣∣∣
j−1∑
l=0

(∫ (l+1)h

lh

wi(s) ds−
∫ (l+1)h

lh

wi(lh) ds

)∣∣∣∣∣
≤

j−1∑
l=0

∫ (l+1)h

lh

|wi(s)− wi(lh)| ds

≤
j−1∑
l=0

hδi(h) ≤
N2−1∑
l=0

hδi(h) = δi(h)hN2 ≤ δi(h)τ2.

Therefore ∣∣∣∣∣
∫ jh

0

w1(s) ds−
j−1∑
l=0

w1(lh)h

∣∣∣∣∣ ≤ δ1(h)τ2, j = 1, . . . , N2, (7.5.1)∣∣∣∣∣
∫ jh

0

w2(s) ds−
j−1∑
l=0

w2(lh)h

∣∣∣∣∣ ≤ δ2(h)τ2, j = 1, . . . , N2. (7.5.2)

Hence we have
j−1∑
l=0

w1(lh)h−
j−1∑
l=0

w2(lh)h ≥
∫ jh

0

w1(s) ds− δ1(h)τ2 −
∫ jh

0

w2(s) ds− δ2(h)τ2

=
∫ jh

0

w1(s) ds−
∫ jh

0

w2(s) ds− τ2(δ1(h) + δ2(h)).

Therefore for j = 1, . . . , N2 as jh ∈ [0, N2h] ⊆ [0, τ2] by (7.3.3b) and (7.2.3) we have

Ŵh(j) ≥
∫ jh

0

w1(s) ds−
∫ jh

0

w2(s) ds ≥ 0,

as required. To prove part (ii), define w(t) := w1(t)− w2(t) for t ∈ [0, τ ], and note from (7.3.3) that

N2∑
j=0

Ŵh(j)h−
∫ τ2

0

W (s) ds

=
N2∑
j=0

hτ2(δ1(h) + δ2(h)) +
N2−1∑
j=1

h

j−1∑
l=0

w(lh)h−
N2−1∑
j=1

∫ (j+1)h

jh

W (s) ds

+ h

N2−1∑
l=0

w(lh)h−
∫ h

0

W (s) ds−
∫ τ2

N2h

W (s) ds

= (N2 + 1)hτ2(δ1(h) + δ2(h)) +
N2−1∑
j=1

∫ (j+1)h

jh

(
j−1∑
l=0

w(lh)h−W (s)

)
ds

+ h

N2−1∑
l=0

w(lh)h−
∫ h

0

W (s) ds−
∫ τ2

N2h

W (s) ds.
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Now we estimate the first term and the last three terms on the righthand side. By (7.3.2) we have

(N2 + 1)hτ2 (δ1(h) + δ2(h)) ≤ (τ2 + h) τ2 (δ1(h) + δ2(h)) . (7.5.3)

Next by (7.5.1), (7.5.2), (7.3.2) and (7.2.2) we have∣∣∣∣∣
N2−1∑
l=0

w(lh)h

∣∣∣∣∣ =
∣∣∣∣∣
N2−1∑
l=0

w1(lh)h−
N2−1∑
l=0

w2(lh)h

∣∣∣∣∣ (7.5.4)

≤
N2−1∑
l=0

w1(lh)h+
N2−1∑
l=0

w2(lh)h

≤
∫ N2h

0

w1(s) ds+ τ2δ1(h) +
∫ N2h

0

w2(s) ds+ τ2δ1(h)

≤ 2 + τ2(δ1(h) + δ2(h)).

Now W (t) = W1(t)−W2(t) =
∫ t∧τ1
0

w1(s) ds−
∫ t∧τ2
0

w2(s) ds so W (t) ≤ 1. Hence∫ h

0

W (s) ds ≤ h. (7.5.5)

Also as N2 obeys (7.3.2) we have∫ τ2

N2h

W (s) ds ≤ τ2 −N2h < (1 +N2)h−N2h = h. (7.5.6)

Therefore by (7.5.3), (7.5.4), (7.5.5) and (7.5.6) we have∣∣∣∣∣∣
N2∑
j=0

Ŵh(j)h−
∫ τ2

0

W (s) ds

∣∣∣∣∣∣ ≤ (τ2 + h)τ2 (δ1(h) + δ2(h))

+ h (2 + τ2(δ1(h) + δ2(h))) + 2h+

∣∣∣∣∣∣
N2−1∑
j=1

∫ (j+1)h

jh

(
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

)
ds

∣∣∣∣∣∣ . (7.5.7)

We estimate the last term on the righthand side of (7.5.7). For s ∈ [jh, (j + 1)h]

j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

=
j−1∑
l=0

∫ (l+1)h

lh

w(lh) du−
j−1∑
l=0

∫ (l+1)h

lh

w(u) du−
∫ s

jh

w(u) du

=
j−1∑
l=0

∫ (l+1)h

lh

(w(lh)− w(u)) du−
∫ s

jh

w(u) du.

Hence for s ∈ [jh, (j + 1)h]∣∣∣∣∣
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

∣∣∣∣∣ ≤
j−1∑
l=0

∫ (l+1)h

lh

|w(lh)− w(u)| du+
∫ s

jh

|w(u)| du.

Now for u ∈ [lh, (l + 1)h] by (7.3.1) we have

|w(lh)− w(u)| ≤ |w1(lh)− w1(u)|+ |w2(lh)− w2(u)| ≤ δ1(h) + δ2(h).

Therefore for s ∈ [jh, (j + 1)h]∣∣∣∣∣
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

∣∣∣∣∣ ≤ jh (δ1(h) + δ2(h)) +
∫ s

jh

w1(u) du+
∫ s

jh

w2(u) du

≤ jh (δ1(h) + δ2(h)) + (w1 + w2)h,
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where we have defined wi = supt∈[0,τi] wi(t). Therefore∣∣∣∣∣∣
N2−1∑
j=1

∫ (j+1)h

jh

(
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

)
ds

∣∣∣∣∣∣
≤
N2−1∑
j=1

∫ (j+1)h

jh

∣∣∣∣∣
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

∣∣∣∣∣ ds
≤
N2−1∑
j=1

∫ (j+1)h

jh

jh (δ1(h) + δ2(h)) + (w1 + w2)h ds

≤
N2−1∑
j=1

{
jh2 (δ1(h) + δ2(h)) + (w1 + w2)h2

}
.

Therefore∣∣∣∣∣∣
N2−1∑
j=1

∫ (j+1)h

jh

(
j−1∑
l=0

w(lh)h−
∫ s

0

w(u) du

)
ds

∣∣∣∣∣∣
≤ h2 (δ1(h) + δ2(h))

N2−1∑
j=1

j + (N2 − 1)h (w1 + w2)h. (7.5.8)

Thus by (7.5.7) and (7.5.8) we have∣∣∣∣∣∣
N2∑
j=0

Ŵh(j)h−
∫ τ2

0

W (s) ds

∣∣∣∣∣∣
≤ (τ2 + h)τ2 (δ1(h) + δ2(h)) + h (4 + τ2(δ1(h) + δ2(h)))

+ h2 (δ1(h) + δ2(h))
N2(N2 − 1)

2
+ (N2 − 1)h (w1 + w2)h

= (τ2
2 + hτ2) (δ1(h) + δ2(h)) + 4h+ τ2h(δ1(h) + δ2(h))

+ (δ1(h) + δ2(h))
N2h(N2h− h)

2
+ (N2h− h) (w1 + w2)h

≤
(

3
2
τ2
2 + 2hτ2

)
(δ1(h) + δ2(h)) + 4h+ τ2 (w1 + w2)h.

Therefore we have (7.3.4). Because we can deduce the identity∫ τ2

0

W (s) ds =
∫ τ2

0

∫ s∧τ1

0

w1(u) du ds−
∫ τ2

0

∫ s

0

w2(u) du ds

=
∫ τ1

0

∫ τ1

u

w1(u) ds du+
∫ τ2

τ1

1 ds−
∫ τ2

0

∫ τ2

u

w2(u) ds du

=
∫ τ1

0

(τ1 − u)w1(u) du+ τ2 − τ1 −
∫ τ2

0

(τ2 − u)w2(u) du

=
∫ τ2

0

uw2(u) du−
∫ τ1

0

uw1(u) du,

using the fact that
∫ τi

0
wi(u) du = 1, together with the continuity of w1 and w2 and the fact that w1(t) = 0

for t ∈ (τ1, τ2]. Suppose that (7.3.5) holds. We note that the moduli of continuity are non–decreasing.
Therefore h 7→ η(h) is an increasing function. Since δi is continuous, we have that η is continuous and we
also have η(0+) = 0. Therefore there exists h1 > 0 which obeys (7.3.6). Hence for h < h1, by (7.3.6) we
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have

β

N2∑
j=0

Ŵh(j)h ≤ β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)

+ βη(h)

< β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)

+ βη(h1) = 1.

This proves part (iii). To prove part (iv), suppose that (7.3.7) holds. Once again by the continuity and
monotonicity of the moduli of continuity δ1 and δ2 there exists h2 > 0 such that h2 obeys (7.3.8). Since
h 7→ η(h) is an increasing function, by (7.3.8) for h < h2 we have

β

N2∑
j=0

Ŵh(j)h ≥ β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)
− βη(h)

> β

(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)

+ βη(h1) = 1,

which proves part (iv).

7.6 Proof of Theorem 7.4.1
The asymptotic analysis of the nonlinear equation (7.3.11) is facilitated by studying an auxiliary linear
equation. To this end we define c = ψ(0) + Î∗1 (ψ)− Î∗2 (ψ)

7.6.1 Linear stochastic equation

Ŷ (n+ 1) = c+
N2∑
j=0

βŴh(j)hŶ (n− j) +
n∑
j=0

ξh(j + 1), n ≥ N2, (7.6.1a)

Ŷ (n) = X̂h(n), n = 0, . . . , N2, (7.6.1b)

where ξh(j + 1) = σ
√
hξ(j + 1) for j ≥ 0.

Lemma 7.6.1. Let h > 0, τ2 > τ1 > 0 and define N2 by (7.3.2). Suppose that w1 and w2 obey (7.2.1),
(7.2.3) and (7.2.3). Suppose β > 0 is such that (7.3.5) holds. Let h1 > 0 be defined by (7.3.6) and suppose
that h < h1. Suppose that Ŷ is defined by (7.6.1). Then

lim sup
n→∞

Ŷ (n)√
2(nh) log2(nh)

=
|σ|

1− β
∑N2
j=0 Ŵh(j)h

=: A(h), a.s.

lim inf
n→∞

Ŷ (n)√
2(nh) log2(nh)

= −A(h), a.s.

Moreover
lim
h→0+

A(h) =
σ

1− β
(∫ τ2

0
sw2(s) ds−

∫ τ1
0
sw1(s) ds

) .
Proof. Define F (n + 1) = c +

∑n
j=0 ξh(j + 1) where n ≥ N2. Then Ŷ (n) = X̂h(n) for n = 0, . . . , N2

and

Ŷ (n+ 1) =
N2∑
j=0

βŴh(j)hŶ (n− j) + F (n+ 1), n ≥ N2. (7.6.2)

Define also ŷ by

ŷ(n+ 1) =
N2∑
j=0

βŴh(j)hŷ(n− j), n ≥ N2; ŷ(n) = X̂h(n), n = 0, 1, . . . , N2. (7.6.3)
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Define U(n) := Ŷ (n)− ŷ(n) for n ≥ 0. Then U(n) = 0 for n = 0, 1, . . . , N2 and

U(n+ 1) =
N2∑
j=0

βŴh(j)hU(n− j) + F (n+ 1), n ≥ N2.

For n ≥ N2 + 1 by the variation of constants formula we have U(n) =
∑n−1
j=N2

r̂(n − j − 1)F (j + 1).
Then for n ≥ N2 + 1 we have

Ŷ (n) = ŷ(n) +
n−1∑
j=N2

r̂(n− j − 1)

(
c+

j∑
l=0

ξh(l + 1)

)

= ŷ(n) + c
n−1∑
j=N2

r̂(n− j − 1) +
n−1∑
j=N2

r̂(n− j − 1)
j∑
l=0

ξh(l + 1).

Define

R̂(n) :=
n∑
j=0

r̂(j), n ≥ 0, (7.6.4)

and

y1(n) = ŷ(n) + c
n−1∑
j=N2

r̂(n− j − 1), n ≥ N2 + 1.

Therefore for n ≥ N2 + 1, we obtain

Ŷ (n) = y1(n) +
n−1∑
j=N2

r̂(n− j − 1)
j∑
l=0

ξh(l + 1)

= y1(n) +
n−1∑
l=0

 n−1∑
j=l∨N2

r̂(n− j − 1)

 ξh(l + 1)

= y1(n) +
N2−1∑
l=0

 n−1∑
j=l∨N2

r̂(n− j − 1)

 ξh(l + 1)

+
n−1∑
l=N2

 n−1∑
j=l∨N2

r̂(n− j − 1)

 ξh(l + 1)

= y1(n) +
N2−1∑
l=0

(
n−N2−1∑
k=0

r̂(k)

)
ξh(l + 1) +

n−1∑
l=N2

n−l−1∑
k=0

r̂(k)ξh(l + 1).

Define for n ≥ N2 + 1

y2(n) := ŷ(n) + c
n−1∑
j=N2

r̂(n− j − 1) +
N2−1∑
l=0

(
n−N2−1∑
k=0

r̂(k)

)
ξh(l + 1),

so

y2(n) = ŷ(n) + c

n−N2−1∑
l=0

r̂(l) +
N2−1∑
l=0

(
n−N2−1∑
k=0

r̂(k)

)
ξh(l + 1), n ≥ N2 + 1. (7.6.5)

Therefore

Ŷ (n) = y2(n) +
n−1∑
l=N2

R̂(n− l − 1)ξh(l + 1), n ≥ N2 + 1. (7.6.6)

Since β
∑N2
j=0 Ŵh(j)h < 1, we have

lim
n→∞

R̂(n) =: R∗ =
1

1− β
∑N2
j=0 Ŵh(j)h

.
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and ŷ(n) → L as n→∞. Therefore

lim
n→∞

y2(n) = L+ cR∗ +R∗
N2−1∑
l=0

ξh(l + 1) =: L2.

From (7.6.6) we have for n ≥ N2 + 1

Ŷ (n) = y2(n) +R∗
n−1∑
l=N2

ξh(l + 1)−
n−1∑
l=N2

(R∗ − R̂(n− l − 1))ξh(l + 1). (7.6.7)

Since ξh are independently and identically distributed with zero mean and variance σ2h, by the Law of the
Iterated Logarithm we have

lim sup
n→∞

∑n−1
l=N2

ξh(l + 1)√
2n log2 n

= |σ|
√
h, lim inf

n→∞

∑n−1
l=N2

ξh(l + 1)√
2n log2 n

= −|σ|
√
h, a.s. (7.6.8)

Define V (n) =
∑n−1
l=N2

(R∗ − R̂(n− l − 1))ξh(l + 1). Let b(x) =
√
x, x ≥ 0. Then b : [0,∞) → [0,∞)

is increasing and b−1(x) = x2. If ξ is a random variable with the same distribution as ξh(n), by Corollary
4.1.3 in [28], we have

∞∑
n=1

P[|ξh(n)| >
√
n] ≤ E[b−1(|ξ|)] = E[ξ2] <∞.

By the Borel–Cantelli lemma, lim supn→∞ |ξh(n)|/
√
n ≤ 1, a.s. which implies that

limn→∞ |ξh(n)|/
√

2n log log n = 0 a.s. Thus, there is an a.s. event Ω∗ such that for all ω ∈ Ω∗, and all
ε > 0, there is C(ε, ω) > 0 such that

|ξh(n, ω)| < C(ε, ω) + ε
√

2n log log(n+ ee) =: γ(n, ω), n ∈ N.

By β
∑N2
j=0 jŴh(j)h < 1, R∗ − R̂ ∈ `1(N; R), so we have

lim sup
n→∞

|V (n, ω)|
γ(n, ω)

≤ lim sup
n→∞

∑n−1
j=N2

|R∗ −R(n− j − 1)|γ(ω, j)
γ(n, ω)

=
∞∑
j=0

|R∗ −R(j)|;

thus lim supn→∞ |V (n, ω)|/
√

2n log log n < ε
∑∞
j=0 |R∗ −R(j)|, hence

lim
n→∞

∑n−1
l=N2

(R∗ − R̂(n− l − 1))ξh(l + 1)
√

2n log log n
= 0, a.s. (7.6.9)

Therefore by (7.6.7), (7.6.8), and (7.6.9) we have

lim sup
n→∞

Ŷ (n)√
2n log2 n

=
|σ|
√
h

1− β
∑N2
j=0 Ŵ (j)h

= − lim inf
n→∞

Ŷ (n)√
2n log2 n

a.s

and therefore

lim sup
n→∞

Ŷ (n)√
2(nh) log2(nh)

=
|σ|

1− β
∑N2
j=0 hŴh(j)

= − lim inf
n→∞

Ŷ (n)√
2(nh) log2(nh)

,

almost surely, as required.

7.6.2 Proof of Theorem 7.4.1
Define

γ(x) = g(x)− βx, for all x ∈ R, (7.6.10)
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and let c = ψ(0) + Î∗1 (ψ)− Î∗2 (ψ). Then by (7.3.11b) we have

X̂h(n+ 1) = c+
N2∑
j=0

Ŵh(j)hg(X̂h(n− j)) +
n∑
j=0

ξh(j + 1), n ≥ N2,

where ξh(j+ 1) := σ
√
hξ(j+ 1) for j ≥ 0. Define Ẑ(n) = X̂h(n)− Ŷ (n) for n ≥ 0. Then Ẑ(n) = 0 for

n ∈ {0, 1, · · · , N2}. For n ≥ N2,

Ẑ(n+ 1) =
N2∑
j=0

Ŵh(j)h
(
g(X̂h(n− j))− βŶ (n− j)

)

=
N2∑
j=0

Ŵh(j)h
(
g(X̂h(n− j))− βX̂h(n− j)

)
+

N2∑
j=0

βŴh(j)hẐ(n− j)

= G(n+ 1) +
N2∑
j=0

βŴh(j)hẐ(n− j),

where G(n+ 1) :=
∑N2
j=0 Ŵh(j)hγ(X̂h(n− j)). Therefore we have

Ẑ(n+ 1) = G(n+ 1) +
N2∑
j=0

βŴh(j)hẐ(n− j), n ≥ N2, Ẑ(n) = 0, n = 0, 1, . . . , N2.

Define Z−(n) = Ẑ(n+N2) for n ≥ −N2 and G−(n) = G(n+N2) for n ≥ 0, then

Z−(n+ 1) = G−(n+ 1) +
N2∑
j=0

βŴh(j)hZ−(n− j), n ≥ 0

Z−(n) = 0, n = −1,−2, . . . ,−N2.

Now for n ≥ 1 we have Z−(n) =
∑n−1
j=0 r̂(n− 1− j)G−(j + 1) and so

Ẑ(n+N2) =
∑n−1
j=0 r̂(n− 1− j)G(j + 1 +N2) for n ≥ 1. Therefore for m ≥ N2 + 1 we have

Ẑ(m) =
m−N2−1∑
j=0

r̂(m−N2 − 1− j)G(j + 1 +N2) =
m−1∑
l=N2

r̂(m− l − 1)G(l + 1).
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For n ≥ N2 + 1

Ẑ(n) =
n−1∑
j=N2

r̂(n− j − 1)G(j + 1)

=
n−1∑
j=N2

r̂(n− j − 1)
N2∑
l=0

Ŵh(l)hγ(X̂h(j − l))

=
n−1∑
j=N2

r̂(n− j − 1)
j∑

k=j−N2

Ŵh(j − k)hγ(X̂h(k))

=
n−1∑
k=0

(N2+k)∧(n−1)∑
j=k∨N2

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

=
N2−1∑
k=0

(N2+k)∧(n−1)∑
j=N2

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

+
n−1∑
k=N2

(N2+k)∧(n−1)∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

= f1(n) +
n−1∑
k=N2

(N2+k)∧(n−1)∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k)),

where

f1(n) :=
N2−1∑
k=0

(N2+k)∧(n−1)∑
j=N2

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k)) (7.6.11)

obeys f1(n) → 0 as n→∞. Next let n ≥ 2N2 + 1. Then

n−1∑
k=N2

(N2+k)∧(n−1)∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

=
n−1−N2∑
k=N2

N2+k∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

+
n−1∑

k=n−N2

n−1∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k)).

Define η(j) =
∑j−1
l=0 r̂(j − l − 1)Ŵh(l)h for 1 ≤ j ≤ N2. Then for j ∈ {1, . . . , N2} we have

η(j) =
j−1∑
l=0

r̂(j − l − 1)Ŵh(l)h

=
N2∑
l=0

r̂(j − l − 1)Ŵh(l)h−
N2∑
l=j

r̂(j − l − 1)Ŵh(l)h

=
1
β

N2∑
l=0

βr̂(j − l − 1)Ŵh(l)h =
1
β
r̂(j),

where we used (7.4.1a) at the last step and (7.4.1b) at the first. Therefore

n−1∑
j=k

r̂(n− j − 1)Ŵh(j − k)h =
n−k−1∑
l=0

r̂(n− k − l − 1)Ŵh(l)h = η(n− k).
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Consider the first term on the righthand side, where k ∈ {N2, . . . , n− 1−N2}. Then

N2+k∑
j=k

r̂(n− j − 1)Ŵh(j − k)h =
1
β

N2∑
l=0

r̂(n− k − 1− l)βŴh(l)h.

Since k ≤ n− 1−N2, we have n− k − 1 ≥ n− 1− n+ 1 +N2 = N2 > 0. Hence

N2+k∑
j=k

r̂(n− j − 1)Ŵh(j − k)h =
1
β
r̂(n− k) := η(n− k)

where we have defined
η(j) =

1
β
r̂(j), j ≥ 1. (7.6.12)

For n ≥ 2N2 + 1 by (7.6.12) we have

n−1∑
k=N2

(N2+k)∧(n−1)∑
j=k

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k))

=
n−1−N2∑
k=N2

η(n− k)γ(X̂h(k)) +
n−1∑

k=n−N2

η(n− k)γ(X̂h(k)).

Thus

Ẑ(n) = f1(n) +
n−1∑
k=N2

η(n− k)γ(X̂h(k)), n ≥ 2N2 + 1, (7.6.13)

and because r̂ is summable, we have η ∈ L1(N; R) and also η(k) ≥ 0 for all k ≥ 1. Let ε > 0 be so small
that ε

∑∞
l=1 η(l) <

1
2 . Also by (7.2.5), for every ε > 0 there exists L(ε) > 0 such that |γ(x)| ≤ L(ε) + ε|x|

for all x ≥ 0. Therefore for n ≥ 2N2 + 1,

|Ẑ(n)| ≤ |f1(n)|+
n−1∑
k=N2

η(n− k)
(
L(ε) + ε|X̂h(k)|

)

= |f1(n)|+ L(ε)
n−1∑
k=N2

η(n− k) + ε

n−1∑
k=N2

η(n− k)|Ŷ (k)|

+ ε
n−1∑
k=N2

η(n− k)|Ẑ(k)|

≤ f2 + ε
n−1∑
k=N2

η(n− k)|Ŷ (k)|+ ε
n−1∑
k=N2

η(n− k)|Ẑ(k)|

≤ f2 + ε
n−1∑
k=0

η(n− k)|Ŷ (k)|+ ε
n−1∑
k=0

η(n− k)|Ẑ(k)|,

where f2 ≥ 0 is defined so that |f1(n)| + L(ε)
∑n−1
k=N2

η(n − k) ≤ f2 for all n ≥ 2N2 + 1. Let f3 =
max0≤j≤2N2+1 |Ẑ(j)| and f4 := f2 + f3. Then for n ≥ 1

|Ẑ(n)| ≤ f4 + ε
n−1∑
k=0

η(n− k)|Ŷ (k)|+ ε
n−1∑
k=0

η(n− k)|Ẑ(k)|.

Define f5(n) := f4 + ε
∑n−1
k=0 η(n− k)|Ŷ (k)| for n ≥ 1. Therefore

lim sup
n→∞

f5(n)√
2n log2(n)

≤ ε
∞∑
k=1

η(k)
|σ|
√
h

1−
∑N2
j=0 βŴh(j)h

=: εK(h), a.s. (7.6.14)
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Define η−(n) := η(n+ 1), n ≥ 0. Then for n ≥ 0 we have

|Ẑ(n+ 1)| ≤ f5(n+ 1) + ε
n∑
k=0

η(n+ 1− k)|Ẑ(k)| = f5(n+ 1) + ε
n∑
k=0

η−(n− k)|Ẑ(k)|.

Define (Zε(n))n≥0 so that Zε(0) = |Ẑ(0)| and define

Zε(n+ 1) = f5(n+ 1) + ε
n∑
k=0

η−(n− k)Zε(k), n ≥ 0.

Then |Ẑ(n)| ≤ Zε(n) for n ≥ 1. Clearly
∑∞
j=0 η−(j) =

∑∞
j=1 η(j) < ∞, and

∑∞
j=0 εη−(j) < 1

2 . Let
(ρε(n))n≥0 be defined by ρε(0) = 1 and

ρε(n+ 1) = εη−(n+ 1) + ε
n∑
k=0

η−(n− k)ρε(k), n ≥ 0.

Note that
∑∞
n=0 ρε(n) is finite, because

∑∞
j=0 εη−(j) < 1/2. In fact we have

∞∑
n=0

ρε(n) = 1 +
∞∑
n=1

ρε(n) = 1 + ε
∞∑
n=1

η−(n) + ε
∞∑
n=0

η−(n)
∞∑
n=0

ρε(n).

Therefore
∞∑
n=0

ρε(n) =
1 + ε

∑∞
n=1 η−(n)

1− ε
∑∞
n=0 η−(n)

,

and Zε(n) = f5(n) +
∑n
k=0 ρε(n− k)f5(k) for n ≥ 0. Then by (7.6.14) we have

lim sup
n→∞

|Zε(n)|√
2n log2 n

≤ εK(h) +
∞∑
k=0

ρε(k)εK(h)

= εK(h)
(

1 +
1 + ε

∑∞
n=1 η−(n)

1− ε
∑∞
n=0 η−(n)

)
≤ εK1(h),

for all ε ∈ (0, ε(h)) so small that
∑∞
j=1 εη−(j) < 1/2. Therefore we have

lim sup
n→∞

|Ẑ(n)|√
2n log2 n

≤ lim sup
n→∞

|Zε(n)|√
2n log2 n

≤ εK1(h).

Therefore as ε > 0 is chosen arbitrarily, we have that

lim sup
n→∞

|Ẑ(n)|√
2(nh) log2(nh)

= 0

on each sample path. Thus

lim sup
n→∞

|X̂h(n)− Ŷ (n)|√
2(nh) log2(nh)

= 0, a.s.

Combining this with Lemma 7.6.1, we obtain

lim sup
n→∞

X̂h(n)√
2(nh) log2(nh)

=
|σ|

1− β
∑N2
j=0 hŴh(j)

= − lim inf
n→∞

X̂h(n)√
2(nh) log2(nh)

,

almost surely, proving the first part of the result. The second part follows from Lemma 7.3.1.
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7.7 Proof of Theorem 7.4.3
We start with a preliminary lemma which tells us that the exponential rate of growth of the discretised
equation mirrors that of the continuous equation. Also as the step size tends to zero the rate of growths in
the two systems will concur.

Lemma 7.7.1. Let h > 0, τ2 > τ1 > 0 and define N2 by (7.3.2). Suppose that w1 and w2 obey (7.2.1),
(7.2.3) and (7.2.3). Suppose that β > 0 is such that (7.3.7) holds. Suppose also that h < h2 where h2 > 0
is defined by (7.3.8).

(i) There exists a λ∗ > 0 such that

β

∫ τ2

0

W (s)e−λ
∗s ds = 1. (7.7.1)

(ii) There exists a unique α(h) > 1 such that

α(h) =
N2∑
j=0

βŴh(j)hα(h)−j , (7.7.2)

and therefore r̂ defined by (7.4.1) obeys

lim
n→∞

r̂(n)
α(h)n

= R∗(h) > 0. (7.7.3)

(iii) With α(h) given by (7.7.2), define

λ(h) =
1
h

logα(h) > 0. (7.7.4)

Then
lim
h→0+

λ(h) = λ∗, (7.7.5)

where λ∗ > 0 is given by (7.7.1).

Remark 7.7.1. The proofs of (i) and (ii) are short and straightforward and no outline is given. To prove
(iii) we establish the bound |I(λ) − Fh(λ)| < βC2(h). Then we use properties of the functions I and F
combined with the bound to show that |λ(h)− λ∗| < ε. Hence the required result.

Proof. (i) has already been proven. For (ii) define

Gh(α) = β

N2(h)∑
j=0

Ŵh(j)hα−(j+1), α ≥ 1.

Recall that Ŵh(j) ≥ 0 for all j = 0, . . . , N2 and in particular that Ŵh(0) > 0. Then (a)Gh(1) > 1 because
β
∑N2(h)
j=0 Ŵh(j)h > 1; (b) α 7→ Gh(α) is decreasing and continuous in α; (c) limα→∞Gh(α) = 0.

Therefore there exists a unique α(h) > 1 such that Gh(α(h)) = 1 which gives (7.7.2). (iii) If λ(h) is given
by (7.7.4) we have α(h) = e(λ(h)h). Define

Fh(λ) = β

N2(h)∑
j=0

Ŵh(j)he−λh(j+1), λ ≥ 0.

Then Fh(λ(h)) = 1; note also that λ 7→ Fh(λ) is decreasing and continuous. Define

C2(h) = 2h+
N2(h)−1∑
j=0

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds

= 2h+
∫ N2(h)h

0

∣∣W (s)−Wh(s)
∣∣ ds,
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where Wh(s) := Ŵh(j) for jh ≤ s < (j + 1)h. Then C2(h) → 0, as h→ 0+. Define

I(λ) = β

∫ τ2

0

W (s)e−λs ds.

Then (a) I(λ∗) = 1, (b) λ 7→ I(λ) is decreasing. Let ε ∈ (0, λ∗) be fixed. Then as I(λ∗ − ε) > 1 and
I(λ∗ + ε) < 1, there is h2(ε) > 0 such that βC2(h) < I(λ∗ − ε) − 1 where h < h2(ε) and h3(ε) > 0
such that βC2(h) < 1 − I(λ∗ + ε), h < h3(ε). Define also h∗(ε) = min(h2(ε), h3(ε), h2). Therefore for
h < h∗(ε) we have

Fh(λ(h)) = 1; βC2(h) < I(λ∗ − ε)− 1; βC2(h) < 1− I(λ∗ + ε). (7.7.6)

I(λ)− Fh(λ) = β

∫ τ2

0

W (s)e−λs ds− β

N2(h)∑
j=0

Ŵh(j)he−λ(j+1)h

= β

∫ N2h

0

W (s)e−λs ds−
N2−1∑
j=0

∫ (j+1)h

jh

Ŵh(j)e−λ(j+1)h ds


+ β

∫ τ2

N2h

W (s)e−λs ds

= β

N2−1∑
j=0

∫ (j+1)h

jh

(
W (s)e−λs −Wh(s)e−λ(j+1)h

)
ds

+ β

∫ τ2

N2h

W (s)e−λs ds

= β

N2−1∑
j=0

∫ (j+1)h

jh

(
e−λ(j+1)h

(
W (s)−Wh(s)

)
+W (s)

(
e−λs − e−λ(j+1)h

))
ds

+ β

∫ τ2

N2h

W (s)e−λs ds.

Thus as λ ≥ 0 and W (s) ≤ 1 we have

|I(λ)− Fh(λ)|

≤ β

N2−1∑
j=0

e−λ(j+1)h

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds

+ β

N2−1∑
j=0

∫ (j+1)h

jh

(
e−λs − e−λ(j+1)h

)
ds+ βhe−λN2h

≤ β

N2−1∑
j=0

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds+ β

N2−1∑
j=0

h
(
e−λjh − e−λ(j+1)h

)
+ βh

= β

N2−1∑
j=0

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds+ βh

N2−1∑
j=0

e−λjh
(
1− e−λh

)
+ βh

= β

N2−1∑
j=0

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds+ βh

(
1− e−λh

) 1− e−λhN2

1− e−λh
+ βh

≤ 2βh+ β

N2−1∑
j=0

∫ (j+1)h

jh

∣∣W (s)−Wh(s)
∣∣ ds

=: βC2(h).
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In the case when λ = 0 the second sum on the righthand side is zero and the estimate holds. Therefore for
all λ ≥ 0 and h > 0 we have

|I(λ)− Fh(λ)| ≤ βC2(h).

Now let h < h∗(ε). Then Fh(λ∗ + ε)− I(λ∗ + ε) ≤ βC2(h) and by (7.7.6)

Fh(λ∗ + ε) ≤ βC2(h) + I(λ∗ + ε) < 1. (7.7.7)

Also for h < h∗(ε) we have Fh(λ∗ − ε)− I(λ∗ − ε) ≥ −βC2(h) and by (7.7.6)

Fh(λ∗ − ε) ≥ I(λ∗ + ε)− βC2(h) > 1 + βC2(h)− βC2(h) = 1. (7.7.8)

Therefore for all ε ∈ (0, λ∗) there exists h∗(ε) > 0 such that for all h < h∗(ε)

Fh(λ∗ − ε) > 1 = Fh(λ(h)) = 1 > Fh(λ∗ + ε).

Since λ 7→ Fh(λ) is decreasing, λ∗− ε < λ(h) < λ∗ + ε or |λ(h)− λ∗| < ε. Thus for all ε ∈ (0, λ∗) there
is h∗(ε) > 0 so that for all h < h∗(ε) we have |λ(h)− λ| < ε. But this is equivalent to (7.7.5).

Lemma 7.7.2. Let h > 0, τ2 > τ1 > 0 and define N2 by (7.3.2). Suppose that w1 and w2 obey (7.2.1),
(7.2.3) and (7.2.3). Suppose that β > 0 is such that (7.3.7) holds. Suppose also that h < h2 where h2 > 0
is defined by (7.3.8). Then there exists a unique α(h) > 1 obeying (7.7.2) and therefore r̂ defined by (7.4.1)
obeys (7.7.3) for some R∗(h) > 0. Moreover the solution ŷ of (7.6.3) obeys

lim
n→∞

ŷ(n)
αn

= R∗(h)α(h)−N2

(
X̂h(N2)

+
N2−1∑
j=0

α(h)−(1+j)
N2∑

l=j+1

βhŴh(l)X̂h(j − l +N2)

)
.

Remark 7.7.2. In this lemma we calculate an explicit formula for the exponential rate of growth of the linear
deterministic equation. Proof of the lemma is standard.

Proof. Define y−(n) = ŷ(n+N2) for n ≥ −N2, x−(n) = X̂h(n+N2) for n = −N2, . . . , 0 and extend
x−(n) for n ≤ −N2 − 1 by x−(n) = 0 for n ≤ −N2 − 1. Define v(j) = βŴh(j)h for j = 0, . . . , N2 and
v(j) = 0 for j ≥ N2 + 1. Therefore y−(n) = x−(n) for n = −N2, . . . , 0 and by (7.6.3) we have

y−(n+ 1) =
N2∑
j=0

v(j)y−(n− j) =
∞∑
j=0

v(j)y−(n− j), n ≥ 0.

Taking z−transforms yields

ỹ−(z) =
∞∑
n=0

z−(n+1)y−(n+ 1) + y−(0) = y−(0) + z−1
∞∑
n=0

z−n
∞∑
j=0

v(j)y−(n− j),

so with a(n) :=
∑∞
j=n+1 v(j)x−(n− j) for n ≥ 0 we have

zỹ−(z) = zy−(0) +
∞∑
n=0

z−n
n∑
j=0

v(j)y−(n− j) +
∞∑
n=0

z−n
∞∑

j=n+1

v(j)x−(n− j)

= zy−(0) + ṽ(z)ỹ−(z) +
∞∑
n=0

z−na(n) = zy−(0) + ṽ(z)ỹ−(z) + ã(z).

Hence ỹ−(z)(z − ṽ(z)) = zy−(0) + ã(z). On the other hand ˜̂r(z)(z − ṽ(z)) = z, so zỹ−(z) =
ỹ−(z)˜̂r(z)(z − ṽ(z)) = z˜̂r(z)y−(0) + ˜̂r(z)ã(z), which implies for z 6= 0 that

ỹ−(z) = ˜̂r(z)y−(0) + z−1˜̂r(z)ã(z).
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Therefore with b(n) := (r ∗ a)(n− 1) for n ≥ 1 and b(0) := 0, we have

b̃(z) =
∞∑
n=1

b(n)z−n = z−1
∞∑
n=1

(r ∗ a)(n− 1)z−(n−1) = z−1
∞∑
l=0

(r ∗ a)(l)z−l,

so b̃(z) = z−1˜̂r(z)ã(z). Therefore we have y−(n) = r̂(n)y−(0) + b(n) for n ≥ 0, or

y−(n) = r̂(n)y−(0) + (r̂ ∗ a)(n− 1) = r̂(n)y−(0) +
n−1∑
j=0

r̂(n− 1− j)a(j), n ≥ 1.

Since v(j) = 0 for j ≥ N2 + 1 for n ≥ N2 we have a(n) = 0. For n ∈ {0, . . . , N2 − 1} we get

a(n) =
N2∑

j=n+1

v(j)x−(n− j) +
∞∑

j=N2+1

v(j)x−(n− j) =
N2∑

j=n+1

v(j)x−(n− j)

Therefore for n ≥ N2 + 1 we have

ŷ(n+N2) = y−(n) = r̂(n)y−(0) +
N2−1∑
j=0

r̂(n− 1− j)a(j) +
n−1∑
j=N2

r̂(n− 1− j)a(j)

= r̂(n)ŷ(N2) +
N2−1∑
j=0

r̂(n− 1− j)a(j).

Hence for n ≥ 2N2 + 1 we have ŷ(n) = r̂(n−N2)ŷ(N2) +
∑N2−1
j=0 r̂(n−N2 − 1− j)a(j) which yields

the limit

lim
n→∞

ŷ(n)
α(h)n

= lim
n→∞

r̂(n−N2)
α(h)n−N2

α(h)−N2 ŷ(N2)

+ lim
n→∞

N2−1∑
j=0

r̂(n−N2 − 1− j)
α(h)n−N2−1−j α(h)−N2−1−ja(j)

= R∗(h)α(h)−N2

ŷ(N2) +
N2−1∑
j=0

α(h)−(1+j)a(j)


= R∗(h)α(h)−N2

ŷ(N2) +
N2−1∑
j=0

α(h)−(1+j)
N2∑

l=j+1

v(l)x−(j − l)


= R∗(h)α(h)−N2

(
X̂h(N2)

+
N2−1∑
j=0

α(h)−(1+j)
N2∑

l=j+1

βhŴh(l)X̂h(j − l +N2)

)
,

as required.

7.7.1 Proof of Theorem 7.4.3
We start by determining the asymptotic behaviour of Ŷ defined by (7.6.1), recalling the formulae

y2(n) = ŷ(n) + c

n−N2−1∑
l=0

r̂(l) +
N2−1∑
l=0

(
n−N2−1∑
k=0

r̂(k)

)
ξh(l + 1), n ≥ N2 + 1,

and

Ŷ (n) = y2(n) +
n−1∑
l=N2

R̂(n− l − 1)ξh(l + 1), n ≥ N2 + 1.
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Under the hypothesis that h < h2 we have that Ŵh(j) ≥ 0 for all j ≥ 0 and that β
∑N2
j=0 Ŵh(j)h > 1.

Therefore by part (ii) of Lemma 7.7.1, there exists α = α(h) > 1 which obeys (7.7.2) and R∗(h) > 0 such
that r̂ obeys (7.7.3). Therefore, with R̂ defined by (7.6.4) we have

lim
n→∞

R̂(n)
α(h)n

= lim
n→∞

∑n
j=0 r̂(j)
α(h)n

= lim
n→∞

n∑
j=0

r̂(j)
α(h)j

· α(h)−(n−j) = R∗(h)
∞∑
j=0

α(h)−j

= R∗(h)
1

1− α(h)−1
.

Next for n ≥ N2 + 1 we have

y2(n)
α(h)n

=
ŷ(n)
α(h)n

+
R(n−N2 − 1)

α(h)n

(
c+

N2−1∑
l=0

ξh(l + 1)

)
.

By Lemma 7.7.2 there exists a finite y∗ such that ŷ defined by (7.6.3) obeys

lim
n→∞

ŷ(n)/α(h)n =: y∗. (7.7.9)

Since Ŷ obeys (7.7.9), we have

lim
n→∞

y2(n)
α(h)n

= y∗ +R∗(h)
1

1− α(h)−1

1
α(h)N2+1

(
c+

N2−1∑
l=0

ξh(l + 1)

)
=: y∗2 .

Therefore as

Ŷ (n)
α(h)n

=
y2(n)
α(h)n

+
n−1∑
l=0

R̂(n− l − 1)
α(h)n−l−1

1
α(h)l+1

ξh(l + 1)

−
N2−1∑
l=0

R̂(n− l − 1)
α(h)n−l−1

1
α(h)l+1

ξh(l + 1),

we have

lim
n→∞

Ŷ (n)
α(h)n

= y∗2 +R∗(h)
1

1− α(h)−1

∞∑
l=N2

α(h)−(l+1)ξh(l + 1)

= y∗ +
R∗(h)

1− α(h)−1

(
1

α(h)N2+1

(
c+

N2−1∑
l=0

ξh(l + 1)

))

+
R∗(h)

1− α(h)−1

( ∞∑
l=N2

α(h)−(l+1)ξh(l + 1)

)
=: Y ∗.

We now turn our attention to the nonlinear equation (7.3.11). Let γ be defined by (7.6.10) and define γ0 by
γ0(x) := max|s|≤x |γ(s)| where x ≥ 0. Then

|γ(y)| ≤ max
|s|≤|y|

|γ(s)| = γ0(|y|), for all y ∈ R (7.7.10)

and γ0 is non–decreasing. Therefore (7.4.2) implies∫ ∞

1

γ0(x)
x2

dx =
∫ ∞

1

max|s|≤x |γ(s)|
x2

dx =
∫ ∞

1

max|s|≤x |g(s)− βs|
x2

dx < +∞. (7.7.11)

For n ≥ 2N2 + 1, by (7.6.13) and (7.6.12) we have

Ẑ(n) = f1(n) +
n−1∑
k=N2

η(n− k)γ(X̂h(k))

= f1(n) +
n−1∑
k=N2

1
β
r̂(n− k)γ(X̂h(k)).
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Define F1(n) := Ŷ (n) + f1(n) then for n ≥ 2N2 + 1,

X̂h(n) = F1(n) +
n−1∑
k=N2

1
β
r̂(n− k)γ(X̂h(k)).

If n− 1 ≥ 2(N2 − 1) then by (7.6.11) we have

f1(n) =
N2−1∑
k=0

N2+k∑
j=N2

r̂(n− j − 1)Ŵh(j − k)h

 γ(X̂h(k)).

Therefore as r̂ obeys (7.7.3) we have

lim
n→∞

f1(n)
αn

= lim
n→∞

N2−1∑
k=0

N2+k∑
j=N2

r̂(n− j − 1)
αn−j−1

α−(j+1)Ŵh(j − k)h

 γ(X̂h(k))

=
N2−1∑
k=0

N2+k∑
j=N2

R∗(h)α−(j+1)Ŵh(j − k)h

 γ(X̂h(k)) =: f∗1 .

Therefore

lim
n→∞

F1(n)
α(h)n

= f∗1 + Y ∗ =: F ∗1 . (7.7.12)

Let X̃h(n) = X̂h(n)/αn and F̃1(n) = F1(n)/αn. Then for n ≥ 2N1 + 1,

X̃h(n) = F̃1(n) +
n−1∑
k=N2

1
β

r̂(n− k)
αn−k

γ(X̂h(k))
αk

.

Therefore with r̃(n) := r̂(n)/αn we get

X̃h(n) = F̃1(n) +
1
β

n−1∑
k=N2

r̃(n− k)α−kγ(αkX̃h(k)).

Since r̃, F̃1 are bounded sequences and (7.7.10) holds, there exists u∗ > 0 and
F ∗1 > 0 such that

|X̃h(n)| ≤ F ∗1 + u∗
n−1∑
j=0

α−jγ0

(
αj |X̃h(j)|

)
, n ≥ 2N2 + 1. (7.7.13)

Define I(n) =
∑n−1
j=0 α

−jγ0(αj |X̃h(j)|), when n ≥ 1. For n ≥ 2(N1 + 1)

I(n)− I(n− 1) =
n−1∑
j=0

α−jγ0(αj |X̃h(j)|)−
n−2∑
j=0

α−jγ0

(
αj |X̃h(j)|

)
= α−(n−1)γ0

(
αn−1|X̃h(n− 1)|

)
≤ α−(n−1)γ0

(
αn−1 (F ∗1 + u∗I(n− 1))

)
,

where we have used the monotonicity of γ0 at the last step. By (7.7.11) we have that x 7→ γ0(x)/x2 is in
L1(1,∞). Therefore as α > 1 we may define F ∗2 > F ∗1 such that∫ ∞

F∗
2

1
x2
γ0(x) dx ·

u∗α2

α− 1
<

1
2
.

For n ≥ 2N2 + 2,
n∑

j=2N2+2

(I(j)− I(j − 1)) ≤
n∑

j=2N2+2

α−(j−1)γ0

(
αj−1 (F ∗1 + u∗I(j − 1))

)
,
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so

I(n) ≤ I(2N2 + 1) +
n∑

j=2N2+2

α−(j−1)γ0

(
αj−1 (F ∗1 + u∗I(j − 1))

)
≤ I(2N2 + 1) +

n∑
j=2N2+2

α−(j−1)γ0

(
αj−1 (F ∗2 + u∗I(n− 1))

)
≤ I(2N2 + 1) +

n∑
j=2N2+2

α−(j−1)γ0

(
αj−1 (F ∗2 + u∗I(n))

)
.

Define y∗ = F ∗2 + u∗I(n). Then for n ≥ 2N1 + 1 and α > 1

I(n) ≤ I(2N2 + 1) +
n∑

j=2N2+2

α−(j−1)γ0

(
αj−1y∗

)

= I(2N1 + 1) +

 n∑
j=2N2+2

γ0

(
αj−1y∗

)
y∗αj−1

 (F ∗2 + u∗I(n)) .

As x 7→ γ0(x) is non–decreasing∫ ∞

y∗αm+1

γ0(x)
x2

dx =
∞∑

j=m+2

∫ y∗αj

y∗αj−1

γ0(x)
x2

dx

≥
∞∑

j=m+2

γ0

(
y∗αj−1

)
y∗2α2j

(
y∗αj − y∗αj−1

)
=

∞∑
j=m+2

γ0

(
y∗αj−1

)
y∗α2jα−1

(
αj−1(α− 1)α−1

)
=

∞∑
j=m+2

γ0(y∗αj−1)
y∗αj−1

α− 1
α2

.

Thus ∫ ∞

y∗α2N2+1

γ0(x)
x2

dx ≥ α− 1
α2

∞∑
j=2N2+2

γ0

(
y∗αj−1

)
y∗αj−1

.

So for n ≥ 2N1 + 2,

I(n) ≤ I(2N1 + 1) +
α2

α− 1

∫ ∞

y∗α2N2+1

γ0(x)
x2

dx (F ∗2 + u∗I(n))

≤ I(2N1 + 1) +
∫ ∞

y∗

γ0(x)
x2

dx
α2

α− 1
(F ∗2 + u∗I(n))

≤ I(2N1 + 1) +
∫ ∞

F∗
2

γ0(x)
x2

dx

(
α2F ∗2
α− 1

+
α2u∗

α− 1
I(n)

)
= I(2N1 + 1) +

∫ ∞

F∗
2

γ0(x)
x2

dx · α
2F ∗2

α− 1
+
∫ ∞

F∗
2

γ0(x)
x2

dx
α2u∗

α− 1
I(n)

≤ I(2N1 + 1) +
F ∗2
u∗

· 1
2

+
1
2
I(n).

Thus for n ≥ 2N1 + 2,

I(n) ≤ 2I(2N1 + 1) +
F ∗2
u∗
.

Hence I is bounded. By the definition of I and (7.7.13), this implies |X̃h| is bounded; therefore there
exists an almost surely finite random variable x∗ > 0 such that |X̃h(n)| ≤ x∗ for all n ≥ 0 a.s. Now for
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n ≥ 2N1 + 1 we have

X̃h(n) = F̃1(n) +
1
β

n−1∑
k=N2

r̃(n− k)α−kγ
(
αkX̃h(k)

)
.

By (7.7.12), and the fact that r̃(n) = r̂(n)/αn tends to a finite limit as n → ∞, we have that X̃h(n) tends
to a finite limit as n→∞ provided

∞∑
k=N2

α−k
∣∣∣γ (αkX̃h(k)

)∣∣∣ < +∞, a.s, (7.7.14)

but as |X̃h(k)| ≤ x∗ for all k ≥ 0, by (7.7.10), and γ0 is non–decreasing, we have

n∑
k=N2

α−k
∣∣∣γ(αkX̃h(k))

∣∣∣ ≤ n∑
k=N2

α−2γ0

(
αk|X̃h(k)|

)
≤

n∑
k=N2

α−kγ0

(
αkx∗

)
≤

n∑
k=0

γ0

(
αkx∗

)
αkx∗

· x∗.

By (7.7.11) and the fact that γ0 is non–decreasing, we have

+∞ >

∫ ∞

x∗

γ0(x)
x2

dx =
∞∑
k=0

∫ x∗αk+1

x∗αk

γ0(x)
x2

dx ≥
∞∑
k=0

γ0(x∗αk)
x∗2α2k

· x∗αk(α− 1)

= (α− 1)
∞∑
k=0

γ0(x∗αk)
x∗αk

,

which proves

n∑
k=N2

α−k
∣∣∣γ(αkX̃h(k))

∣∣∣ ≤ n∑
k=0

γ0

(
αkx∗

)
αkx∗

· x∗

≤ 1
α− 1

∫ ∞

x∗

γ0(x)
x2

dx < +∞,

which proves (7.7.14). We have shown that there exists a finite L∗(h) such that

lim
n→∞

X̂h(n)
α(h)n

= lim
n→∞

X̃h(n) = L∗(h), a.s.

By the definition of λ(h) > 0 in (7.7.4) we have (7.4.3). By Lemma 7.7.1 it follows that
λ(h) → λ∗ > 0 where λ∗ obeys (7.7.1). But such a λ∗ is also the unique solution of (7.4.5)
by the definition of W .
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Chapter 8

Convergence of Euler Scheme for an Asymptotically
Consistent Numerical Methods for SFDEs with

Continuous Weight Functions

8.1 Introduction
In the previous chapter, we developed a discrete process Xh as the solution of a Volterra summation equa-
tion, which reproduced the main asymptotic features of the stochastic delay differential equation

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt+ σ dB(t), t ≥ 0 (8.1.1)

provided that the step size h is chosen sufficiently small. The construction of the process Xh was motivated
by the fact Euler discretisations of (8.1.1) do not faithfully reproduce the almost sure asymptotic behaviour
of X . However, the results on Xh concentrate on the pathwise asymptotic behaviour of Xh rather than
moment error on finite intervals. It is known that Euler discretisations obey

E
[

sup
0≤t≤T

|X(t)−Xh(t)|2
]
≤ C(h, T ), C(h, T ) → 0 as h→ 0+ for each T > 0. (8.1.2)

where Xh is an extension of Xh to continuous time. It is therefore reasonable to ask: can we similarly
extend the solution of our asymptotically consistent scheme Xh to continuous time in such a way that we
can show the continuous time extensionXh obeys (8.1.2)? In this chapter we show that the answer is “yes”,
and provide an estimate on C(h, T ) which depends on problem data. Moreover, we can show that it obeys
C(h, T ) → 0 as h → 0 for each fixed T > 0. In fact, in the case when each of w1, w2 and ψ is Hölder
continuous of order 1/2 or greater, and g is globally Lipschitz continuous, we can show that the error is of
the from

E
[

sup
0≤t≤T

|X(t)−Xh(t)|2
]
≤ c1h(1 + c2e

c3T ), for all h < h∗,

where c1, c2, c3 > 0 are constants independent of h and T .

8.1.1 Discussion of Literature
The problem of constructing satisfactory numerical methods for stochastic functional and delay differential
equations has been investigated vigorously over the last ten years, and many fundamental results have been
obtained. One of the most important issues is to establish that any approximation converges (in a suitable
sense) over finite intervals to the true solution, to determine a rate at which this convergence takes place,
and to find an upper bound on the error incurred. These are the questions addressed in this chapter for the
non–standard discretisation we have chosen to employ. In order to demonstrate how our results compare
with the literature, we briefly review some of the known results.

One of the early works by Küchler and Platen [45] which develops discrete time approximations for
solutions of SDDEs with fixed time delays which converge in a strong sense. Other early work on the nu-
merical approximation of hereditary equations was considered by Tudor [67]. An explicit one–step Euler–
Maruyama method for SFDEs with discrete delays was considered in Baker and Buckwar [16], and strong
convergence was obtained. Interestingly, this error depends on the index of Holder continuity of the initial
function, as in one of our main results. An extension of the results in [16] to SDDEs with variable delay, in-
cluding interpolation between meshpoints, was conducted by Mao and Sabanis [55], and to general SFDEs
by Mao [50]. The paper [50] also extends these results to equations with both locally and globally Lipschitz
continuous functionals. The order of strong convergence and Holder continuity condition on the initial
function are the same as those found and required, respectively, in our analysis. The strong convergence
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order is improved to unity in a Milstein scheme in Hu, Mohammed and Yan [39] where there are discrete
delays. The error is bounded according to

sup
−τ≤t≤T

E[|X(t)−Xh(t)|2] ≤ ch2

given initial data which is Holder–continuous with exponent 1/2, rather than Mao’s estimate of

E
[

sup
−τ≤t≤T

E[|X(t)−Xh(t)|2
]
≤ ch.

A relationship between p–th order mean–square consistency and p–th order mean square convergence for
very general SFDEs is established in Buckwar [23]; in particular, it is shown (under some natural and mild
conditions) for that p–th order consistency implies p–th order convergence. Moreover, [23] considers drift
implicit as well as explicit methods.

Weak convergence for general SFDEs is considered in Buckwar, Mohammed, Kuske and Shardlow [24].
Results on consistency of the methods are obtained in many of the above–mentioned papers also. Linear
multistep methods are analysed in [25]. However, neither weak convergence nor consistency analysis are
considered here, and we restrict our attention here to one–step methods.

Despite the special structure of the original continuous equation, our results shown that the strong con-
vergence of the numerical solution, as well as the convergence rate and error estimate do not improve what
is already known in the literature. However, this is not of primary concern, because standard methods do not
seem to preserve the appropriate continuous time asymptotic behaviour. Thus, even though our convergence
results might be crude, they show that the nonstandard method not only preserves asymptotic behaviour,
but behaves acceptably in comparison to standard methods because it exhibits mean–square convergence of
order 1/2.

8.1.2 Limitations of results and future work
The method of discretisation employed in the last two chapters deals satisfactorily with the long–run dy-
namics, and recovers results with are at least comparable with the error analysis in the literature. However,
it must be admitted that the error estimates are obtained with greater effort, and for a much more limited
class of equations. Indeed, we have not attempted to employ implicit schemes, have not studied finite–
dimensional equations, nor considered equations with non–constant diffusion coefficient. This is due to
constraints of time and space: in any event, to do so would lead away from the main direction of the thesis.

Despite this, we feel for equations exhibiting the type of positivity properties seen here, that it may be
possible to again reformulate the SDDE to a Volterra integral equation. Then it would be necessary to
discretise in order to retain the dominant real solutions of the characteristic equation of the underlying
differential resolvent. As regards non–constant noise, an analysis of the continuous–time equation would
first be required to determine the asymptotic behaviour, and this to date is absent. An example of an
SFDE for which the exact exponential behaviour of the underlying deterministic equation is preserved for
unbounded noise is given in [13]. Given that we have been able to recover the asymptotic behaviour for
constant noise given in [13] in Chapter 5, there is some reason to be confident that we could once again
perform the asymptotic analysis in discrete–time.

8.2 Recapitulation of Results from Previous Chapter
As in the previous chapter, suppose that τ := τ2 > τ1 > 0 and that

w1 ∈ C([0, τ1]; [0,∞)), w2 ∈ C([0, τ2]; [0,∞)) (8.2.1)

We also request that ∫ τ1

0

w1(s) ds = 1,
∫ τ2

0

w2(s) ds = 1 (8.2.2)

and that ∫ t

0

w1(s) ds ≥
∫ t

0

w2(s) ds, t ∈ [0, τ1]. (8.2.3)
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Assume that the function g : R → R obeys

g is globally Lipschitz continuous with |g(x)− g(y)| ≤ K2|x− y| for all x, y ∈ R; (8.2.4)
g is globally linearly bounded with |g(x)| ≤ K2(1 + |x|) for all x ∈ R, (8.2.5)

and that there exists

β ≥ 0 such that lim
x→∞

g(x)
x

= lim
x→−∞

g(x)
x

= β. (8.2.6)

Let σ 6= 0 and B be a standard one–dimensional Brownian motion. Let ψ ∈ C([−τ, 0]; R). Then there is a
unique continuous adapted process X which satisfies

dX(t) =
(∫ τ1

0

w1(s)g(X(t− s)) ds−
∫ τ2

0

w2(s)g(X(t− s)) ds
)
dt (8.2.7a)

+σdB(t), t ≥ 0,
X(t) = ψ(t), t ∈ [−τ, 0]. (8.2.7b)

We rewrite (8.2.7) as a Volterra integral equation. In doing so, we find it convenient to introduce some
auxiliary functions. Define W1, W2 and W by

Wi(t) =
∫ t∧τi

0

wi(s) ds, t ≥ 0 i = 1, 2, W (t) := W1(t)−W2(t), t ≥ 0. (8.2.8)

We also introduce the functions I1 and I2 which depend on the function ψ

Ii(ψ, t) =
∫ 0

−τi

(∫ τi∧(t−s)

−s
wi(u) du

)
g(ψ(s)) ds, t ≥ 0, i = 1, 2, (8.2.9)

and the constants

I∗i (ψ) =
∫ 0

−τi

(∫ τi

−s
wi(u) du

)
g(ψ(s)) ds, i = 1, 2. (8.2.10)

We have already shown under these hypotheses that X can be written as the solution of a Volterra integral
equation.

Lemma 8.2.1. Suppose that w1 and w2 obey (8.2.1), (8.2.2) and that g obeys (8.2.4) and (8.2.6). Then
there is a unique continuous adapted process X which obeys (8.2.7).

(i) Ii(ψ, t) = I∗i , where t ≥ τi and

(ii) If W is given by (8.2.8) and Ii by (8.2.9) then X obeys

X(t) = ψ(0) + I1(ψ, t)− I2(ψ, t) +
∫ t

0

W (s)g(X(t− s)) ds+ σB(t), t ≥ 0,

X(t) = ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ τ2

0

W (s)g(X(t− s)) ds+ σB(t), t ≥ τ2.

Since w1 and w2 are continuous and defined on compact intervals, both possess moduli of continuity.
More precisely there exist functions δ1 : [0,∞) → [0,∞) and δ2 : [0,∞) → [0,∞) such that δi(0) = 0
and limh→0+ δi(h) = 0 for i = 1, 2 and

max
|t−s|≤h,s,t∈[0,τi]

|wi(t)− wi(s)| ≤ δi(h) for all h ∈ [0, τi], i = 1, 2. (8.2.11)

Moreover each δi is non–decreasing. It is also useful to introduce the notation

w̄i = max
0≤t≤τi

wi(t), i = 1, 2. (8.2.12)
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Since ψ is continuous and defined on a compact interval, it also possesses a modulus of continuity. More
precisely, there exists a function δ3 : [0,∞) → [0,∞) such that δ3(0) = 0 and δ3 is non–decreasing with
limh→0+ δ3(h) = 0 and

max
0<t−s≤h;s,t∈[0,τ ]

|ψ(t)− ψ(s)| ≤ δ3(h) for all h ∈ [0, τ ]. (8.2.13)

Define also
G := max

−τ≤s≤0
|g(ψ(s))|. (8.2.14)

We pick h ∈ (0, τ1) so small that we may define N2 = N2(h) ∈ N, N2 ≥ 2 such that

N2h ≤ τ2 < (1 +N2)h. (8.2.15)

This automatically forces h < τ2. Extend w1(t) = 0 for t ∈ [τ1, τ2]. We now define the sequence Ŵh

parameterised h > 0 by

Ŵh(0) = τ2 (δ1(h) + δ2(h)) (8.2.16a)

Ŵh(j) = τ2 (δ1(h) + δ2(h)) +
j−1∑
l=0

w1(lh)h−
j−1∑
l=0

w2(lh)h, j = 1, · · · , N2(h) (8.2.16b)

Ŵh(N2 + 1) = 0. (8.2.16c)

It is implicit here that Ŵh(n) is an approximation to W (nh). However, in order to recover the positivity of
W in the approximation, we have added a correction term to the naive approximation

Ŵnaive(n) :=
n−1∑
l=0

w1(lh)h−
n−1∑
l=0

w2(lh)h.

The following lemma shows that this can be achieved in such a way that any resulting biasses or errors
introduced by the correction can be controlled. Also in the lemma, we record some estimates on the ap-
proximation of Ŵ to W .

Lemma 8.2.2. Let h > 0, and suppose that τ2 > τ1. Letwi have modulus of continuity δi given by (8.2.11).
Suppose that N2 = N2(h) obeys (8.2.15). Define Ŵh by (8.2.16).

(i) For j = 0, . . . , N2, Ŵh(j) ≥ 0.

(ii) With wi defined by (8.2.12), we have∣∣∣∣∣∣
N2∑
j=0

Ŵh(j)h−
(∫ τ2

0

sw2(s) ds−
∫ τ1

0

sw1(s) ds
)∣∣∣∣∣∣

≤ 3
2
τ2
2 (δ1(h) + δ2(h)) + h {4 + τ2 (w1 + w2) + 2τ2 (δ1(h) + δ2(h))} := η(h). (8.2.17)

We recall the discretisation of X . Let Ŵh be defined by (8.2.16). Suppose that

(ξ(n))n≥1 is a sequence of i.i.d. N(0, 1) random variables. (8.2.18)

We suppose for n ≥ 0 that X̂(n) is an approximation for X(nh). Suppose we approximate Ii(ψ, nh)
by Îi(ψ, n) and I∗i (ψ) by Î∗i (ψ). Suitable formulae for Î∗i and Îi are given at the end, in (8.6.2). Define
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(X̂h(n))n≥0 by

X̂h(n+ 1) = ψ(0) + Î1(ψ, n)− Î2(ψ, n) +
n∑
j=0

Ŵh(j)g(X̂h(n− j))h (8.2.19a)

+ σ
√
h

n∑
j=0

ξ(j + 1), n = 0, · · · , N2 − 1,

X̂h(n+ 1) = ψ(0) + Î∗1 (ψ)− Î∗2 (ψ) +
N2∑
j=0

Ŵh(j)g(X̂h(n− j))h (8.2.19b)

+ σ
√
h

n∑
j=0

ξ(j + 1), n ≥ N2,

where X̂h(0) = ψ(0). The construction of Î∗i and Îi in (8.6.2) uses implicitly the identification X̂h(n) =
ψ(nh) for n = −N2, . . . , 0.

8.3 Discussion and Statement of Main Result
The equations (8.2.19a) and (8.2.19b) define a sequence of random variables approximating the continuous–
time process X which is the solution of (8.2.7) at a sequence of times. We would like however to be able
to estimate the error between the true solution of (8.2.7) and its approximation at all times on any given
interval [0, T ]. To this end, we introduce a piecewise continuous interpolationXh associated with a uniform
step size h > 0. Our main result, which we now state, demonstrates that this interpolant converges to X as
h→ 0+ in the sense that (8.1.2) holds.

Moreover, an explicit estimate is known for C(h, T ) in (8.1.2) in terms of the data. Of course, such
results have already been established for a wide range of general stochastic functional differential equations,
so such a result does not add to the state of the art; the convergence rate of solutions is no faster than
that of standard methods on any compact interval [0, T ]. Indeed, as the scheme (8.2.19) exploits some
idiosyncratic features of (8.2.7), and the proof of convergence exploits these features, it would seem that we
have constructed a more complicated scheme, whose effectiveness is more difficult to establish, and which
supplies a more conservative error bound than general, simpler existing methods. Therefore, the merit of
establishing afresh such convergence result would seem to be severely limited.

We attempt now to justify our interest in such a result. We remember that we have already demonstrated
by means of sample simulations that standard Euler–Maruyama methods for discretising (8.2.7) do not
reliably reproduce the asymptotic behaviour of the solution of (8.2.7), even though the mean–square error in
(8.1.2) can be made arbitrarily small on any interval [0, T ] by choosing h > 0 sufficiently small. Therefore,
we may think of the method (8.2.19) as being more robust than standard Euler schemes: not only does
it reproduce the asymptotic behaviour of (8.2.7) (a purpose for which it has been designed) in contrast to
simple Euler schemes, but it also satisfies (8.1.2) (for which it has not been designed), albeit with greater
error for a given amount of computational effort than an Euler scheme.

With Xh defined by (8.2.19), we define the piecewise continuous approximation Xh to X by

Xh(t) = X̂h

([
t

h

])
, t ≥ 0. (8.3.1)

Theorem 8.3.1. Suppose that g obeys (8.2.5), (8.2.4) thatw1 andw2 are non–negative continuous functions
which obey (8.2.2) and (8.2.3). and that ψ is continuous. Let X be the unique continuous adapted process
which obeys (8.2.7). Let T > 0 and h > 0 be such that h < τ1 ∧ T . Let Xh be defined by (8.3.1) where
X̂h is the solution of (8.2.19). Then there exists a h∗ > 0 independent of T such that there exists a function
C : [0, h∗)× [0,∞) : (h, T ) 7→ C(h, T ) such that

E
[

sup
0≤t≤T

|X(t)−Xh(t)|2
]
≤ C(h, T ), 0 < h < h∗, (8.3.2)
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where C(h, T ) → 0 as h→ 0+ for each fixed T > 0. Furthermore, if w1, w2 and ψ are Hölder continuous
of order 1/2 or greater, there exist h and T independent positive constants c1, c2 and c3 such that

E
[

sup
0≤t≤T

|X(t)−Xh(t)|2
]
≤ c1h(1 + c2e

c3T ), h ∈ (0, h∗). (8.3.3)

Remark 8.3.1. For equations with Lipschitz continuous coefficients with additive noise (such as (8.2.7))
standard uniform Euler methods with step size h gives an error O(h2) in the sense that

max
1≤n≤N3

E[|X(nh)− X̂h(n)|2] ≤ Ch2, (8.3.4)

for some constant C > 0, which can depend on T , where N3 is defined by (8.5.1). Our estimate in (8.3.3)
is only O(h), however. The reason for this is that the estimate in (8.3.4), which can be estimated with
arbitrarily small error by Monte Carlo simulation, considers only the values of the error at the meshpoints.
On the other hand, the error considered in (8.3.3) deals with the error over the whole interval. To derive an
error estimate in this case, it is necessary to have estimates for the interpolation error over intervals of length
h for both the true solution X and the continuous extension Xh of X̂h. However, the relevant interpolation
error in the former case is of order h only, owing to the estimates of |B(t)−B(nh)| for t ∈ [nh, (n+1)h].
The relevant estimate is

E
[

max
nh≤t≤(n+1)h

|B(t)−B(nh)|2
]
≤ 4h,

and this error propagates into the corresponding error estimates for |X(t)−X(nh)| on [nh, (n+1)h]. This
“forcing term” in the Volterra difference inequality for the error on each interval leads to the O(h) estimate
in (8.3.3).

Remark 8.3.2. The construction of h∗ > 0 in the proof of Theorem 8.3.1 is technical. Here is an estimate.
Let K3 > 0 be defined by

K3 := 5K2
2

(∫ τ2

0

W (s) ds+ η∗
)
, (8.3.5)

where W is defined by (8.2.8), K2 is the constant in (8.2.5) and (8.2.4), η∗ > 0 is given by

η∗ :=
3
2
τ2
2 (δ1(τ1) + δ2(τ2)) + h {4 + τ2 (w1 + w2) + 2τ2 (δ1(τ1) + δ2(τ2))} , (8.3.6)

w1, w2 are given by (8.2.12), and δ1, δ2 by (8.2.11). Define C4 by

C4(h) = (τ2 + h) (2 (δ1(h) + δ2(h)) τ2 + h(w1 + w2)) , for h ≥ 0, (8.3.7)

and C3 by
C3(h) := 2K3h+K3C4(h) + 2K3τ2(δ1(h) + δ2(h))h, for h ≥ 0. (8.3.8)

Then we may choose h∗ > 0 such that
C3(h∗) ≤ 1/4. (8.3.9)

Remark 8.3.3. We also give an estimate on C(h) in (8.3.2). Let C2 be defined by

C2(T ) =
(

1
2

+
33σ2

4
√

2K2

+ 3 max
−τ≤s≤t

ψ(s)2
)
e8
√

2K2T , T ≥ 0. (8.3.10)

Also define
C1(T ) = 12K2

2τ1 + 12K2
2τ1C2(2T ) + 12σ2, T ≥ 0, (8.3.11)

where K2 is the linear growth and Lipschitz constant of g from (8.2.5) and (8.2.4). With δ3 defined by
(8.2.13), δ1 and δ2 defined by (8.2.11), and G defined by (8.2.14), define

εi(h) = K2δ3(h)τi + 2Gτi (τiδi(h) + hw̄i) + hG+ 2(2 + τiδi(h))Gh, i = 1, 2, (8.3.12)
ε∗i (h) = K2δ3(h)τi +Gτi (τiδi(h) + hw̄i) +Gh+ (2 + τiδi(h))Gh, i = 1, 2. (8.3.13)
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Also define

ε(h) =

{
5C1(T ∨ τ2)h+ 5 (ε∗1(h) + ε∗2(h))

2 ∨ 5 (ε1(h) + ε2(h))
2 (8.3.14)

+
(
5K2

2 + 5K2
2C2(T ∨ τ2)

)
C4(h)2

}∨{
12K2

2h
2 + 12σ2h+ 12K2

2h
2C2(h)

}

It turns out that we obtain the estimate for the mean square error with step h to be

C(h) = ε(h)
{

1 + 2K3

(∫ τ2

0

W (s) ds+ η∗
)
e4K3(T+τ1∧T )

}
,

where η∗ is defined by (8.3.6) and K3 by (8.3.5). Thus we have the error bound

E
[

max
t∈[0,T ]

∣∣X(t)−Xh(t)
∣∣2] ≤ ε(h)

{
1 + 2K3

(∫ τ2

0

W (s) ds+ η∗
)
e4K3(T+τ1∧T )

}
. (8.3.15)

Remark 8.3.4. It can be seen that if w1, w2 and ψ are Hölder continuous of order greater than or equal to
1/2, then the estimate (8.3.15) is of the form

E
[

max
t∈[0,T ]

∣∣X(t)−Xh(t)
∣∣2] ≤ C5(T )h,

where C5 is independent of h. This is because in this case ε(h) is order h for small h. To see this, the
assumption on the Hölder continuity implies |w1(t)−w1(s)| ≤ K5|t−s|1/2, |w2(t)−w2(s)| ≤ K6|t−s|1/2,
|ψ(t)− ψ(s)| ≤ K7|t− s|1/2. These facts force δi(h) ≤ K8h

1/2 for i = 1, 2, 3, from which we can infer
that εi(h) and ε∗i (h) are order

√
h for small h and i = 1, 2. The fact that δi(h) ≤ K8h

1/2 for i = 1, 2 also
implies that C4(h) is order h for small h. These estimates show that ε(h) in (8.3.14) is order h, as required.
We also note that C5 cannot grow faster than exponentially in T . This follows from exponential growth
bounds in T in the h–independent factor in (8.3.15), provided that C1 and C2 grow exponentially fast in T .
We see that an exponential bound on C2 implies an exponential bound on C1. An exponential bound on C1

is true by e.g., Theorem 5.4.1 in [52]. An estimate for the equation (8.2.7) is given in Lemma 8.4.1 below.

Remark 8.3.5. The proof of this theorem involves deriving six Lemmas. The six Lemmas calculate bounds:
Lemma 8.4.1 calculates the bound on the second moment; Lemma 8.4.2 calculates a bound on the difference
between the resolvent X(t) and the resolvent evaluated at the mesh point X(nh); Lemma 8.4.3 calculates a
bound on the difference between the continuous and discrete weights; Lemma 8.5.1 calculates a bound for
the moment error on the three intervals [0, h], [nh, (n + 1)h] for T < τ2, and [nh, (n + 1)h] for T > τ2.
Lemma 8.5.2 we calculate α∗ which enables us to calculate the bound h∗ on the mesh size h. Lemma 8.5.3
calculates a single bound for the moment error. Combining all this information together we are able to
prove Theorem 8.3.1.

8.4 Preliminary Results
Lemma 8.4.1. Let X be the solution of (8.2.7) and let T > 0. Then

E
[

max
t∈[−τ2,T ]

|X(t)|2
]
≤ C2(T ), (8.4.1)

where C2 is defined in (8.3.10).

Proof. The proof that (8.4.1) holds can be deduced by an argument similar to that of Theorem 5.4.1 in [52].
We give the revised argument in full. Let φ ∈ C([−τ, 0]; R) and define f by

f(φ) :=
∫ τ1

0

w1(s)g(φ(−s)) ds−
∫ τ2

0

w2(s)g(φ(−s)) ds.
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Then X obeys dX(t) = f(Xt) dt+ σ dB(t). Suppose temporarily there exists K > 0 such that |f(φ)|2 ≤
K(1 + ‖φ‖2). Then for any c > 0 we have

X2(t) = X2(0) +
∫ t

0

(
2X(s)f(Xs) + σ2

)
ds+

∫ t

0

2σX(s) dB(s)

≤ X2(0) +
∫ t

0

(
cX2(s) +

1
c
f2(Xs) + σ2

)
ds+

∫ t

0

2σX(s) dB(s)

≤ X2(0) +
∫ t

0

(
cX2(s) +

K

c
(1 + ‖Xs‖2) + σ2

)
ds+ 2σ

∫ t

0

X(s) dB(s).

Hence we have

E
[

sup
0≤t≤T

X2(t)
]
≤ X2(0) + E

∫ T

0

(
cX2(s) +

K

c
(1 + ‖Xs‖2) + σ2

)
ds

+ 2|σ|E
[

sup
0≤t≤T

∫ t

0

X(s) dB(s)
]
.

Now by the Burkholder Davis Gundy inequality for any α > 0 and for any b > 0 we get

E
[

sup
0≤t≤T

∫ t

0

X(s) dB(s)
]
≤ 4E

(∫ T

0

X(s)2 ds

)1/2


≤ 2E

2
(

sup
0≤t≤T

X(s)2
)1/2

(∫ T

0

1 ds

)1/2


≤ 2E
[
α sup

0≤t≤T
X(s)2 +

1
α
T

]
.

Hence

E
[

sup
0≤t≤T

X2(t)
]
≤ X2(0) + E

∫ T

0

(
cX2(s) +

K

c
(1 + ‖Xs‖2) + σ2 +

4|σ|
α

)
ds

+ 4α|σ|E
[

sup
0≤t≤T

X(s)2
]
.

Therefore with c =
√
K, b = 1

2
√
K

(√
K + σ2 + 4|σ|

α

)
and 1− 4α|σ| > 0 we have

E
[

sup
0≤t≤T

X2(t)
]

≤ X2(0) + E
∫ T

0

(
c sup

0≤u≤s
X(u)2 +

K

c
sup

−τ≤u≤s
X(u)2 +

(
K

c
+ σ2 +

4|σ|
α

))
ds

+ 4|σ|αE
[

sup
0≤t≤T

|X(t)|2
]

≤ X2(0) + E
∫ T

0

((
c+

K

c

)
sup

−τ≤u≤s
X(u)2 +

(
K

c
+ σ2 +

4|σ|
α

))
ds

+ 4|σ|αE
[

sup
0≤t≤T

|X(t)|2
]

≤ 1
1− 4α|σ|

X2(0) +
2
√
K

1− 4α|σ|
E
∫ T

0

(
b+ sup

−τ≤u≤s
|X(u)|2

)
ds.

Also because

E
[

max
−τ≤s≤t

X(s)2
]
≤ max

−τ≤s≤t
ψ(s)2 + E

[
max

−τ≤s≤t
X(s)2

]
,
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we get

b+ E
[

sup
−τ≤t≤T

X2(t)
]
≤ b+ max

−τ≤s≤t
ψ(s)2 +

1
1− 4α|σ|

ψ2(0)

+
2
√
K

1− 4α|σ|

∫ T

0

(
b+ E sup

−τ≤u≤s
|X(u)|2

)
ds.

Let x(t) = b+ E
[
sup−τ≤u≤t |X(u)|2

]
for T ≥ 0. Then

x(T ) ≤ b+ max
−τ≤s≤t

ψ(s)2 +
1

1− 4α|σ|
ψ2(0) +

2
√
K

1− 4α|σ|

∫ T

0

x(s) ds, T ≥ 0.

Hence by Gronwall’s inequality, we have for T ≥ 0

b+ E
[

sup
−τ≤u≤t

|X(u)|2
]

= x(T ) ≤
(
b+ max

−τ≤s≤t
ψ(s)2 +

1
1− 4α|σ|

ψ2(0)
)
e

2
√

K
1−4α|σ|T ,

so by fixing α = 1/(8|σ|) we get 1− 4|σ|α = 1/2 and so

E
[

sup
−τ≤u≤t

|X(u)|2
]

≤
(

1
2
√
K

(√
K + 33σ2

)
+ max
−τ≤s≤t

ψ(s)2 + 2ψ2(0)
)
e4
√
KT

≤
(

1
2

+
33σ2

2
√
K

+ 3 max
−τ≤s≤t

ψ(s)2
)
e4
√
KT .

It remains to estimate K. By (8.2.5), (8.2.1) and (8.2.2) we have

|f(φ)| ≤
∫ τ1

0

w1(s)K2(1 + |φ(−s)|) ds+
∫ τ2

0

w2(s)K2(1 + |φ(−s)| ds

≤ K2

∫ τ1

0

w1(s)|φ(−s)| ds+ 2K2 +K2

∫ τ2

0

w2(s)|φ(−s)| ds

≤ K2‖φ‖
∫ τ1

0

w1(s) ds+ 2K2 +K2‖φ‖
∫ τ2

0

w2(s) ds

≤ 2K2(1 + ‖φ‖).

Therefore |f(φ)|2 ≤ 4K2
2 (1+‖φ‖)2 ≤ 8K2

2 (1+‖φ‖2). Hence we may setK = 8K2
2 ; thus

√
K = 2

√
2K2.

This together with the definition of C2 from (8.3.10) gives the estimate (8.4.1) as required.

Lemma 8.4.2. Let X be the solution of (8.2.7). Let T > 0. If h ∈ (0, τ1 ∧ T ), we have

E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]
≤ C1(T )h, for all n ≤ T/h. (8.4.2)

where the increasing function t 7→ C1(t) is defined by (8.3.11).

Remark 8.4.1. We begin this proof by directly calculating |X(t)−X(nh)|. Combining Doob’s and Cauchy–
Schwarz inequality we get an explicit estimate for the bound.

The estimate supplied by this Lemma is much less sharp than comparable results available in the litera-
ture. However, as it enables us to establish simpler estimates later on, and we have not attempted throughout
to optimise the upper bound on the mean square error estimate, we do not press the argument here either.
Part of our motivation here is to avoid analysing separately the cases where T < τ2 and T ≥ τ2.

Proof of Lemma 8.4.2. We show that (8.4.1) implies (8.4.2). Let t ∈ [nh, (n+ 1)h]. Then

X(t)−X(nh) =
∫ t

nh

(∫ τ1

0

w1(u)g (X(s− u)) du−
∫ τ2

0

w2(u)g (X(s− u)) du
)
ds

+ σ(B(t)−B(nh)).
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Therefore by (8.2.5)

|X(t)−X(nh)|

≤ K2

∫ t

nh

(∫ τ1

0

w1(u)(1 + |X(s− u)|) du+
∫ τ2

0

w2(u)(1 + |X(s− u)|) du
)
ds

+ |σ||B(t)−B(nh)|,

which by (8.2.2) yields

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|

≤ K2

∫ (n+1)h

nh

(
2 +

∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du
)
ds

+ |σ| max
nh≤t≤(n+1)h

∣∣∣∣∫ t

nh

dB(s)
∣∣∣∣

≤ 2K2h+K2

∫ (n+1)h

nh

∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du ds

+ |σ| max
nh≤t≤(n+1)h

∣∣∣∣∫ t

nh

dB(s)
∣∣∣∣ .

Using Doob’s and Cauchy–Schwarz inequalities we get

E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]

≤ 12K2
2h

2 + 3K2
2E
[(∫ (n+1)h

nh

[∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du
]
ds

)2 ]

+ 3σ2E

[
max

nh≤t≤(n+1)h

∣∣∣∣∫ t

nh

dB(s)
∣∣∣∣2
]

≤ 12K2
2h

2 + 3K2
2hE

[ ∫ (n+1)h

nh

[∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du
]2

ds

]
+ 3σ2E

[
max

nh≤t≤(n+1)h

∣∣∣∣∫ t

nh

dB(s)
∣∣∣∣2
]

≤ 12K2
2h

2 + 3K2
2h

∫ (n+1)h

nh

2
∫ τ2

0

(w1(u) + w2(u))E
[
|X(s− u)|2

]
du ds

+ 12σ2h

≤ 12K2
2h

2 + 12K2
2h

2C2((n+ 1)h) + 12σ2h

≤ h
(
12K2

2h+ 12K2
2hC2(T + h) + 12σ2

)
≤ h

(
12K2

2τ1 + 12K2
2τ1C2(2T ) + 12σ2

)
,

where we have used the fact that h < T ∧ τ1 and that C2 is increasing. The definition of C1 gives the
result.

Lemma 8.4.3. Let W be defined by (8.2.8). Let h ∈ (0, τ1) and N2 be given by (8.2.15). Define Wh by

Wh(t) = Ŵh

([
t

h

])
, t ≥ 0, (8.4.3)

and η∗ > 0 by (8.3.6). Then

(i) ∫ (N2+1)h

0

Wh(s) ds ≤
∫ τ2

0

W (s) ds+ η∗, (8.4.4)
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(ii) If C4 is defined by (8.3.7) then C4(h) → 0 as h→ 0+ and∫ (N2+1)h

0

|Wh(s)−W (s)| ds ≤ C4(h). (8.4.5)

Remark 8.4.2. This lemma provides some uniform bounds on the difference between W and Wh. As this
proof is short no outline is given.

Proof. Recalling that
∫ τ2
0
W (s) ds =

∫ τ2
0
sw2(s) ds −

∫ τ1
0
sw1(s) ds, and by using (8.4.3) and (8.2.17),

we obtain∫ (N2+1)h

0

Wh(s) ds =
N2∑
j=0

∫ (j+1)h

jh

Wh(s) ds =
N2∑
j=0

Ŵh(j)h ≤
∫ τ2

0

W (s) ds+ η(h),

where η is defined as the righthand side of (8.2.17). Since the moduli of continuity of w1 and w2 are non–
decreasing in their arguments, and w1 and w2 are restricted to [0, τ1] and [0, τ2] respectively, inspection of
the formula for η reveals that η(h) ≤ η∗, where η∗ is given by (8.3.6). Therefore (8.4.4) holds. To prove
(8.4.5) we start by noting∫ (N2+1)h

0

|W (s)−Wh(s)| ds =
N2∑
j=0

∫ (j+1)h

jh

|W (s)− Ŵh(j)| ds.

We estimate |W (s) − Ŵh(j)| for s ∈ [jh, (j + 1)h] and j = 0, · · · , N2. Recall from the extension of w1

to (τ1, τ2] and the definition w(s) = w1(s)− w2(s) that W (s) =
∫ s∧τ2
0

w(u) du. It can be shown that

|W (s)− Ŵh(j)| ≤ 2(δ1(h) + δ2(h))τ2 + h(w1 + w2).

Thus ∫ (j+1)h

jh

|W (s)− Ŵh(j)| ds ≤ h {2 (δ1(h) + δ2(h)) τ2 + h(w1 + w2)} ,

and so ∫ (N2+1)h

0

|W (s)− Ŵh(j)| ds ≤ h(N2 + 1) (2 (δ1(h) + δ2(h)) τ2 + h(w1 + w2))

≤ (τ2 + h) (2 (δ1(h) + δ2(h)) τ2 + h(w1 + w2)) ,

which by the definition of C4(h) in (8.3.7), proves (8.4.5). The fact that δi(h) → 0 as h → 0+ shows that
C4(h) → 0 as h→ 0+.

8.5 Proof of Theorem 8.3.1
The proof of Theorem 8.3.1 is the result of a sequence of lemmata. We first introduce the integer
N3 = N3(h) defined by

N3h ≤ T < (N3 + 1)h. (8.5.1)

Our first (and most important) lemma shows that the error (An)n≥0 defined by

An+1 = E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2] , n = 0, . . . , N3 (8.5.2)

obeys a linear Volterra difference inequality.

Lemma 8.5.1. Let h > 0 such that h < τ1 ∧ T . Define

εi(h) = max
n=1,...,N2

∣∣∣Ii(ψ, nh)− Îi(ψ, n)
∣∣∣ , i = 1, 2, (8.5.3)
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and
ε∗i (h) =

∣∣∣I∗i (ψ)− Î∗i (ψ)
∣∣∣ , i = 1, 2. (8.5.4)

Let η∗ > 0 be given by (8.3.6) and W by (8.2.8) and define K3 > 0 by (8.3.5). Also define ε(h) > 0 by
(8.3.14), where C4(h) is defined by (8.3.7), and C1 and C2 are defined by (8.3.11) and (8.4.1) respectively.
Then (An) defined by (8.5.2) obeys

A1 ≤ ε(h), (8.5.5)

An+1 ≤ ε(h) +K3

n−1∑
j=0

Ŵh(j)hAn−j , n = 1, . . . , N2, (8.5.6)

An+1 ≤ ε(h) +K3

N2∑
j=0

Ŵh(j)hAn−j , n = N2 + 1, . . . , N3. (8.5.7)

We have assumed in the proof that T > τ2 in which case we can choose N3 > N2 such that h > 0.

Remark 8.5.1. We begin this proof by deriving two estimates for Xh((n + 1)h) on the two intervals n =
0, · · · , N2− 1 and n ≥ N2. Combining this information with the definition of X(t) we compute the bound
on the first interval i.e. 8.5.5. Next we switch out attention to the interval [n, (n + 1)h] when T < τ2.
For 1, · · · , N2 we calculate the formula for maxt∈[nh,(n+1)h] |X(t) −Xh(t)| and subsequently the bound
for the second moment. We follow a similar procedure to calculate the bound on the third interval i.e.
[n, (n+ 1)h] where T > τ2

Proof. By the definition of (8.3.1) and (8.4.3) we haveXh(nh) = X̂h ([n]) = X̂h(n) as well asWh(nh) =
Ŵh ([n]) = Ŵh(n). For n = 0, . . . , N2 − 1 we have∫ (n+1)h

0

Wh(s)g(Xh((n+ 1)h− s)) ds

=
n∑
j=0

∫ (j+1)h

jh

Wh(s)g(Xh((n+ 1)h− s)) ds

=
n∑
j=0

Ŵh(j)
∫ (j+1)h

jh

g(Xh((n+ 1)h− s)) ds

=
n∑
j=0

Ŵh(j)
∫ (n+1−j)h

(n−j)h
g(Xh(u)) du

=
n∑
j=0

Ŵh(j)hg(X̂h(n− j)).

Therefore for n = 0, . . . , N2 − 1, by (8.2.19a), because Xh((n+ 1)h) = X̂h(n+ 1) we have

Xh((n+ 1)h) = ψ(0) + Î1(ψ, n)− Î2(ψ, n) +
∫ (n+1)h

0

Wh(s)g(Xh((n+ 1)h− s)) ds

+ σB((n+ 1)h), n = 0, . . . , N2 − 1. (8.5.8)
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Let N2 ∈ N. Then ∫ (N2+1)h

0

Wh(s)g(Xh((n+ 1)h− s)) ds

=
N2∑
j=0

∫ (j+1)h

jh

Wh(s)g(Xh((n+ 1)h− s)) ds

=
N2∑
j=0

Ŵh(j)
∫ (j+1)h

jh

g(Xh((n+ 1)h− s)) ds

=
N2∑
j=0

Ŵh(j)
∫ (n−j+1)h

(n−j)h
g(Xh(u)) du

=
N2∑
j=0

Ŵh(j)g(X̂h(n− j))h.

Then for n ≥ N2, since Xh((n+ 1)h) = X̂h(n+ 1), by (8.2.19b) we have

Xh((n+ 1)h) = ψ(0) + Î∗1 (ψ)− Î∗2 (ψ)

+
∫ (N2+1)h

0

Wh(s)g(Xh(n+ 1)h− s) ds+ σB((n+ 1)h), n ≥ N2. (8.5.9)

We start by estimating the error on the interval [0, h]. Let t ∈ [0, h). Then

X(t)−Xh(t) = X(t)− X̂h(0) = X(t)− ψ(0)

=
∫ t

0

(∫ τ1

0

w1(u)g(X(s− u)) du−
∫ τ2

0

w2(u)g(X(s− u)) du
)
ds

+ σB(t).

Therefore by (8.2.2) and (8.2.5)

max
0≤t≤h

∣∣X(t)−Xh(t)
∣∣

≤
∫ h

0

(∫ τ1

0

w1(u) |g(X(s− u))| du+
∫ τ2

0

w2(u) |g(X(s− u))| du
)
ds

+ |σ| max
0≤t≤h

|B(t)|

≤
∫ h

0

(∫ τ1

0

w1(u)K2(1 + |X(s− u)|) du+
∫ τ2

0

w2(u)K2(1 + |X(s− u)|) du
)
ds

+ |σ| max
0≤t≤h

|B(t)|

≤ K2

∫ h

0

(
2 +

∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du
)
ds+ |σ| max

0≤t≤h
|B(t)|

= 2K2h+K2

∫ h

0

∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du ds+ |σ| max
t∈[0,h]

∣∣∣∣∫ t

0

dB(s)
∣∣∣∣ .
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Then by (8.2.2) and (8.4.1) and using Doob’s inequality we have

E
[

max
0≤t≤h

∣∣X(t)−Xh(t)
∣∣2]

≤ 12K2
2h

2 + 3K2
2h

∫ h

0

E
[∫ τ2

0

(w1(u) + w2(u)) |X(s− u)| du
]2

ds

+ 3σ2E

[
max

0≤t≤h

∣∣∣∣∫ t

0

dB(s)
∣∣∣∣2
]

≤ 12K2
2h

2 + 12σ2h+ 3K2
2h

∫ h

0

2
∫ τ2

0

(w1(u) + w2(u))E
[
|X(s− u)|2

]
du ds

≤ 12K2
2h

2 + 12σ2h+ 6K2
2h

∫ h

0

2C2(h) ds,

so by the definition of A1 we have

A1 = E
[

max
0≤t≤h

∣∣X(t)−Xh(t)
∣∣2] ≤ 12K2

2h
2 + 12σ2h+ 12K2

2h
2C2(h) ≤ ε(h), (8.5.10)

where we note the definition of ε(h) in (8.3.14). This proves (8.5.5). Next we develop an estimate for the
error on the interval [nh, (n + 1)h] for 1 ≤ n ≤ N2. Let n ∈ {1, · · · , N2}. Then by (8.2.15) we have
h ≤ nh ≤ N2h ≤ τ2. Let t ∈ [nh, (n+ 1)h). Then by (8.5.8) and Lemma 8.2.1 we have

X(t)−Xh(t)

= X(t)−X(nh) +X(nh)− X̂h(n)
= X(t)−X(nh)

+ ψ(0) + I1(ψ, nh)− I2(ψ, nh) +
∫ nh

0

W (s)g (X(nh− s)) ds+ σB(nh)

−

(
ψ(0) + Î1(ψ, n)− Î2(ψ, n) +

∫ nh

0

Wh(s)g
(
Xh(nh− s)

)
ds+ σB(nh)

)
.

Thus for t ∈ [nh, (n+ 1)h) where n ∈ {1, · · · , N2},

X(t)−Xh(t)

= X(t)−X(nh) + I1(ψ, nh)− Î1(ψ, n)−
(
I2(ψ, nh)− Î2(ψ, n)

)
+
∫ nh

0

W (s)g (X(nh− s)) ds−
∫ nh

0

Wh(s)g
(
Xh(nh− s)

)
ds. (8.5.11)
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We consider first the last two terms on the righthand side of (8.5.11). By (8.2.4) and (8.2.5) we have∣∣∣∣∣
∫ nh

0

W (s)g(X(nh− s))−Wh(s)g(Xh(nh− s)) ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ nh

0

(
W (s)−Wh(s)

)
g(X(nh− s)) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ nh

0

Wh(s)
(
g(X(nh− s))− g(Xh(nh− s))

)
ds

∣∣∣∣∣
≤
∫ nh

0

∣∣W (s)−Wh(s)
∣∣ |g(X(nh− s))| ds

+K2

∫ nh

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds
≤ K2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ (1 + |X(nh− s)|) ds

+K2

∫ nh

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds.
Then ∣∣∣∣∣

∫ nh

0

W (s)g(X(nh− s))−Wh(s)g(Xh(nh− s)) ds

∣∣∣∣∣
≤ K2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds+K2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ |X(nh− s)| ds

+K2

∫ nh

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds. (8.5.12)

Recall the definition of εi given in (8.5.3). Then by (8.5.3), (8.5.11), and (8.5.12) for 1 ≤ n ≤ N2 we have

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣

≤ max
t∈[nh,(n+1)h]

|X(t)−X(nh)|+ ε1(h) + ε2(h)

+K2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds+K2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ |X(nh− s)| ds

+K2

∫ nh

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds.
Therefore as (a1 + a2 + a3 + a4 + a5)2 ≤ 5(a2

1 + a2
2 + a2

3 + a2
4 + a2

5) then by (8.4.2)

E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2]

≤ 5E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]

+ 5 (ε1(h) + ε2(h))
2

+ 5K2
2

(∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds ∫ nh

0

∣∣W (s)−Wh(s)
∣∣E|X(nh− s)2| ds

+ 5K2
2E

[∫ nh

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds]2

.
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The estimate of the first term on the righthand side is straightforward but noteworthy. Since n ≤ N2, the
definition (8.2.15) implies n ≤ N2 ≤ τ2/h. Also, h < τ2 by construction. Therefore by Lemma 8.4.2
(specifically by making the choice T = τ2 in (8.4.2)), we get

E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]
≤ C1(τ2)h.

Therefore for n = 1, . . . , N2, by the definition of C2 (viz., (8.4.1)), we have

E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2]

≤ 5C1(τ2)h+ 5 (ε1(h) + ε2(h))
2

+
(
5K2

2 + 5K2
2C2(τ2)

)(∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ nh

0

Wh(s) ds
∫ nh

0

Wh(s)E
[
|X(nh− s)−Xh(nh− s)|2

]
ds. (8.5.13)

For n = 0, . . . , N2 let An+1 be given by (8.5.2). Then∫ nh

0

Wh(s)E
[∣∣X(nh− s)−Xh(nh− s)

∣∣2] ds
=
n−1∑
j=0

∫ (j+1)h

jh

Wh(s)E
[∣∣X(nh− s)−Xh(nh− s)

∣∣2] ds
≤
n−1∑
j=0

∫ (j+1)h

jh

Wh(s)E
[

max
jh≤u≤(j+1)h

∣∣X(nh− u)−Xh(nh− u)
∣∣2] ds

=
n−1∑
j=0

∫ (j+1)h

jh

Wh(s)E
[

max
(n−j−1)h≤v≤(n−j)h

∣∣X(v)−Xh(v)
∣∣2] ds

=
n−1∑
j=0

∫ (j+1)h

jh

Wh(s)An−j ds =
n−1∑
j=0

Ŵh(j)hAn−j .

Using this estimate, (8.5.2) and (8.5.13) we obtain for n = 1, . . . , N2

An+1 ≤ 5C1(τ2)h+ 5 (ε1(h) + ε2(h))
2

+
(
5K2

2 + 5K2
2C2(τ2)

)(∫ nh

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ nh

0

Wh(s) ds ·
n−1∑
j=0

Ŵh(j)hAn−j , n = 1, . . . , N2. (8.5.14)

Finally, we deduce an estimate for the error on [nh, (n+1)h] forN2 +1 ≤ n ≤ N3. In this case by (8.2.15)
we have τ2 < (N2 + 1)h ≤ nh. Let t ∈ [nh, (n+ 1)h]. Then by (8.5.9) and Lemma 8.2.1 we have

X(t)−Xh(t)

= X(t)−X(nh) +X(nh)− X̂h(n)

= X(t)−X(nh) + ψ(0) + I∗1 (ψ)− I∗2 (ψ) +
∫ τ2

0

W (s)g (X(nh− s)) ds+ σB(nh)

−

(
ψ(0) + Î∗1 (ψ)− Î∗2 (ψ) +

∫ (N2+1)h

0

Wh(s)g(Xh(nh− s)) ds+ σB(nh)

)
= X(t)−X(nh) + I∗1 (ψ)− Î∗1 (ψ)−

(
I∗2 (ψ)− Î∗2 (ψ)

)
+
∫ τ2

0

W (s)g(X(nh− s)) ds−
∫ (N2+1)h

0

Wh(s)g(Xh(nh− s)) ds. (8.5.15)
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Next as W (t) = 0 for t ≥ τ2 and τ2 < (N2 + 1)h we have∫ τ2

0

W (s)g(X(nh− s)) ds−
∫ (N2+1)h

0

Wh(s)g(Xh(nh− s)) ds

=
∫ (N2+1)h

0

(
W (s)g(X(nh− s))−Wh(s)g(Xh(nh− s))

)
ds

=
∫ (N2+1)h

0

(
W (s)−Wh(s)

)
g(X(nh− s)) ds

+
∫ (N2+1)h

0

Wh(s)
(
g(X(nh− s))− g(Xh(nh− s))

)
ds.

Therefore by (8.2.4) and (8.2.5) we have∣∣∣∣∣
∫ τ2

0

W (s)g(X(nh− s)) ds−
∫ (N2+1)h

0

Wh(s)g(Xh(nh− s)) ds

∣∣∣∣∣
≤ K2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ (1 + |X(nh− s)|) ds

+K2

∫ (N2+1)h

0

Wh(s)|X(nh− s)−X(nh− s)| ds

so ∣∣∣∣∣
∫ τ2

0

W (s)g(X(nh− s)) ds−
∫ (N2+1)h

0

Wh(s)g(Xh(nh− s)) ds

∣∣∣∣∣
≤ K2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds

+K2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ |X(nh− s)| ds

+K2

∫ (N2+1)h

0

Wh(s)|X(nh− s)−Xh(nh− s)| ds. (8.5.16)

Recall the definition of ε∗i (h), i = 1, 2, from (8.5.4). Then for n ≥ N2 +1, by (8.5.15), (8.5.16), and (8.5.4)
we have

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣

≤ max
t∈[nh,(n+1)h]

|X(t)−X(nh)|+ ε∗1(h) + ε∗2(h)

+K2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds

+K2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ |X(nh− s)| ds

+K2

∫ (N2+1)h

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds.
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Therefore as (a1 + a2 + a3 + a4 + a5)2 ≤ 5(a2
1 + a2

2 + a2
3 + a2

4 + a2
5) then by (8.4.2)

E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2]

≤ 5E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]

+ 5 (ε∗1(h) + ε∗2(h))
2

+ 5K2
2

(∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds ∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣E|X(nh− s)2| ds

+ 5K2
2E

[∫ (N2+1)h

0

Wh(s)
∣∣X(nh− s)−Xh(nh− s)

∣∣ ds]2

.

Since N3 is defined by (8.5.1) and we have n ≤ N3, it follows that n ≤ T/h. Also, h < T by construction.
Therefore by Lemma 8.4.2 (specifically (8.4.2)), we get

E
[

max
t∈[nh,(n+1)h]

|X(t)−X(nh)|2
]
≤ C1(T )h.

Therefore for n = 1, . . . , N2, by the definition of C2 (viz., (8.4.1)), we have

E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2]

≤ 5C1(T )h+ 5 (ε∗1(h) + ε∗2(h))
2

+
(
5K2

2 + 5K2
2C2(T )

)(∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ (N2+1)h

0

Wh(s) ds
∫ (N2+1)h

0

Wh(s)E
[
|X(nh− s)−Xh(nh− s)|2

]
ds. (8.5.17)

We estimate the last term on the righthand side of (8.5.17)∫ (N2+1)h

0

Wh(s)E
[∣∣X(nh− s)−Xh(nh− s)

∣∣2] ds
=

N2∑
j=0

∫ (j+1)h

jh

Wh(s)E
[∣∣X(nh− s)−Xh(nh− s)

∣∣2] ds
≤

N2∑
j=0

∫ (j+1)h

jh

Wh(s)E
[

max
jh≤u≤(j+1)h

∣∣X(nh− u)−Xh(nh− u)
∣∣2] ds

=
N2∑
j=0

∫ (j+1)h

jh

Wh(s)E
[

max
(n−j−1)h≤v≤(n−j)h

∣∣X(v)−Xh(v)
∣∣2] ds

=
N2∑
j=0

∫ (j+1)h

jh

Wh(s)An−j ds =
N2∑
j=0

Ŵh(j)hAn−j .

Using this estimate, (8.5.2) and (8.5.17) we obtain for n = N2 + 1, . . . , N3

An+1 ≤ 5C1(T )h+ 5 (ε∗1(h) + ε∗2(h))
2

+
(
5K2

2 + 5K2
2C2(T )

)(∫ (N2+1)h

0

∣∣W (s)−Wh(s)
∣∣ ds)2

+ 5K2
2

∫ (N2+1)h

0

Wh(s) ds ·
N2∑
j=0

Ŵh(j)hAn−j , n = N2 + 1, . . . , N3. (8.5.18)
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We now simplify and consolidate the estimates (8.5.14) and (8.5.18). By (8.4.4) and (8.3.5) we have

K3 = 5K2
2

(∫ τ2

0

W (s) ds+ η∗
)
≥ 5K2

2

∫ (N2+1)h

0

Wh(s) ds. (8.5.19)

By (8.3.14) and (8.4.5) we have

ε(h) ≥ 5C1(T ∨ τ2)h+ 5 (ε∗1(h) + ε∗2(h))
2 ∨ 5 (ε1(h) + ε2(h))

2 (8.5.20)

+
(
5K2

2 + 5K2
2C2(T ∨ τ2)

)
C4(h)2

≥ 5C1(T ∨ τ2 + h)h+ 5 (ε∗1(h) + ε∗2(h))
2 ∨ 5 (ε1(h) + ε2(h))

2

+
(
5K2

2 + 5K2
2C2(T ∨ τ2)

)(∫ (N2+1)h

0

|Wh(s)−W (s)| ds

)2

,

where C4(h) is defined by (8.3.7). Then by using the estimates (8.5.14), (8.5.18) together with (8.5.19) and
(8.5.20) we obtain the estimates (8.5.6) and (8.5.7) as required. This completes the proof of the lemma.

Our next lemma is technical and short. For this reason no explanation of the proof is given. Amongst
other things, it enables us to estimate an upper bound on the step size i.e. h∗ for which an explicit estimate
can be given on the mean square error in (8.3.2). It also prepares an estimate which will be of importance
in deriving an explicit upper bound on the errors An defined in (8.5.2).

Lemma 8.5.2. Let α∗ > 0 be such that

K3

∫ τ2

0

W (s)e−α
∗s ds <

1
4
. (8.5.21)

Define C3 by (8.3.8), and let h∗ > 0 be such that (8.3.9) holds. Let h < h∗. Then there exists λ = λ(h) > 1
such that

N2∑
j=0

Ŵh(j)hK3λ(h)−(j+1) ≤ 1
2
. (8.5.22)

Remark 8.5.2. We notice that α∗ = 4K3 > 0 suffices in (8.5.21). Since W (t) ≤ 1 for all t ≥ 0 we have

K3

∫ τ2

0

W (s)e−α
∗s ds ≤ K3

∫ τ2

0

e−α
∗s ds < K3

∫ ∞

0

e−α
∗s ds =

K3

α∗
=

1
4
,

as required.

Proof of Lemma 8.5.2. With α∗ > 0 defined as in (8.5.21), let λ(h) = eα
∗h > 1. We have the identity∫ (N2+1)h

0

Wh(s)e−α
∗s ds =

N2∑
j=0

∫ (j+1)h

jh

Wh(s)e−α
∗s ds

=
N2∑
j=0

Ŵh(j)
∫ (j+1)h

jh

e−α
∗s ds

=
1− e−α

∗h

α∗h

N2∑
j=0

Ŵh(j)h
(
eα

∗h
)−j

=
1− e−α

∗h

α∗h

N2∑
j=0

Ŵh(j)hλ(h)−j .

Thus ∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds =

1− e−α
∗h

α∗h
λ(h)

N2∑
j=0

K3Ŵh(j)hλ(h)−(j+1)

=
eα

∗h − 1
α∗h

N2∑
j=0

K3Ŵh(j)hλ(h)−(j+1).
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Hence if ∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds ≤ 1

2
eα

∗h − 1
α∗h

, (8.5.23)

then (8.5.22) holds, as required. Then∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds−K3

∫ τ2

0

W (s)e−α
∗s ds

= K3

(∫ N2h

0

Wh(s)e−α
∗s ds+

∫ (N2+1)h

N2h

Wh(s)e−α
∗s ds

)

−K3

(∫ N2h

0

W (s)e−α
∗s ds+

∫ τ2

N2h

W (s)e−α
∗s ds

)

= K3

∫ N2h

0

(
Wh(s)−W (s)

)
e−α

∗s ds

+K3

∫ (N2+1)h

N2h

Wh(s)e−α
∗s ds−K3

∫ τ2

N2h

W (s)e−α
∗s ds.

By (8.2.8) we have W (t) ≤ 1 for all t ≥ 0; moreover by (8.2.3), W (t) ≥ 0 for all t ≥ 0. Thus as α∗ > 0
and the definition of C4(h), C3(h) and using the fact that h < h∗, we have∣∣∣∣∣

∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds−K3

∫ τ2

0

W (s)e−α
∗s ds

∣∣∣∣∣
≤ K3

∫ N2h

0

∣∣Wh(s)−W (s)
∣∣ ds+K3Ŵh(N2)h+K3h

≤ K3C4(h) +K3Ŵh(N2)h+K3h

≤ K3C4(h) +K3|W (N2h)− Ŵh(N2)|h+K3W (N2h)h+K3h

≤ 2K3h+K3C4(h) +K3|W (N2h)− Ŵh(N2)|h

≤ 2K3h+K3C4(h) + 2K3τ2(δ1(h) + δ2(h))h = C3(h) ≤
1
4
.

Therefore by (8.5.21) and the last estimate, we obtain∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds ≤ K3

∫ τ2

0

W (s)e−α
∗s ds+ C3(h) <

1
4

+
1
4

=
1
2
. (8.5.24)

We now use this estimate to prove (8.5.23). Since x 7→ x/(ex − 1) is decreasing on (0,∞), we have
α∗h/(eα

∗h − 1) < 1, so by (8.5.24) we have

α∗h

eα∗h − 1

∫ (N2+1)h

0

K3Wh(s)e−α
∗s ds <

1
2

which is (8.5.23). Hence (8.5.22) holds and the lemma is proven.

The construction of α∗ and h∗ > 0 in Lemma 8.5.2 along with the inequality (8.5.22) enable us to derive
an explicit exponential upper bound on the growth of An defined in (8.5.2). The form of this bound will
eventually allow us to derive an estimate for the error in (8.3.2) which remains under control as h→ 0+.

Lemma 8.5.3. Let α∗ > 0 obey (8.5.21). Let h∗ be defined by (8.3.9). Then for h < h∗, λ(h) = eα
∗h > 1

satisfies (8.5.22). Define

S(h) = K3

N2∑
j=0

Ŵh(j)h. (8.5.25)

If An obeys (8.5.5), (8.5.6), and (8.5.7), then

An ≤ ε(h) (1 + 2S(h)λ(h)n) , n = 1, . . . , N3. (8.5.26)
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The estimate (8.5.6) holds in the case when T ≤ τ2. In that case we need only consider n ≤ N2 ≤ N3

in the proof below.

Remark 8.5.3. As the proof is short no outline is given.

Proof. For n = 1, the proof is trivial. Suppose that (8.5.26) is true for m ≤ n i.e., suppose that

Am ≤ ε(h) (1 + 2S(h)λ(h)m) , for all 1 ≤ m ≤ n. (8.5.27)

We now show that the same estimate holds for An+1. Let n = 1, . . . , N2. By (8.5.6) we get

An+1 ≤ ε(h) +K3

n−1∑
j=0

Ŵh(j)hAn−j = ε(h) +K3

n∑
j=1

Ŵh(n− j)hAj

≤ ε(h) + ε(h)K3

n∑
j=1

Ŵh(n− j)h
(
1 + 2S(h)λ(h)j

)

≤ ε(h)

1 +K3

n∑
j=1

hŴh(n− j)

+ ε(h)K32S(h)
n∑
j=1

hŴh(n− j)λ(h)j

= ε(h)

(
1 +K3

n−1∑
l=0

Ŵh(l)h

)
+ ε(h)2S(h)

n−1∑
l=0

K3hŴh(l)λ(h)−(l+1)λ(h)n+1

≤ ε(h)

(
1 +K3

N2∑
l=0

Ŵh(l)h

)
+ ε(h)2S(h)

N2∑
l=0

K3hŴh(l)λ(h)−(l+1)λ(h)n+1.

Thus by (8.5.25) and (8.5.22) we get

An+1 ≤ ε(h) (1 + S(h)) + 2ε(h)S(h)
N2∑
l=0

K3hŴh(l)λ(h)−(l+1)λ(h)n+1

≤ ε(h) (1 + S(h)) + 2ε(h)S(h)
1
2
λ(h)n+1

= ε(h)
(
1 + S(h) + S(h)λ(h)n+1

)
≤ ε(h)

(
1 + S(h)λ(h)n+1 + S(h)λ(h)(n+1)

)
= ε(h)

(
1 + 2S(h)λ(h)n+1

)
.

Hence An+1 ≤ ε(h)
(
1 + 2S(h)λ(h)n+1

)
, where n ∈ {1, . . . , N2}. Therefore (8.5.26) holds for all

n ≤ N2 + 1. Now let n ≥ N2 + 1 and suppose that (8.5.27) holds. Then by (8.5.7) we get

An+1 ≤ ε(h) +K3

N2∑
j=0

Ŵh(j)hAn−j

≤ ε(h) +K3

N2∑
j=0

Ŵh(j)hε(h)
(
1 + 2S(h)λ(h)n−j

)

= ε(h)

1 +K3

N2∑
j=0

Ŵh(j)h

+K3

N2∑
j=0

Ŵh(j)h2S(h)ε(h)λ(h)−(j+1)λ(h)n+1

≤ ε(h) (1 + S(h)) + 2S(h)ε(h)
1
2
λ(h)n+1

= ε(h)
(
1 + S(h) + S(h)λ(h)n+1

)
≤ ε(h)

(
1 + S(h)λ(h)n+1 + S(h)λ(h)n+1

)
= ε(h)

(
1 + 2S(h)λ(h)n+1

)
,

which proves the result.

168



We are finally in a position to prove Theorem 8.3.1.

Proof of Theorem 8.3.1. For h < h∗, by Lemma 8.5.3, we have for n = 0, . . . , N3 that

E
[

max
t∈[nh,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2] = An+1 ≤ ε(h)(1 + 2S(h)λ(h)n+1).

Since λ(h) = eα
∗h > 1 and n ≤ N3 we have

E
[

max
t∈[0,(n+1)h]

∣∣X(t)−Xh(t)
∣∣2] ≤ ε(h)

(
1 + 2S(h)eα

∗h(n+1)
)
.

Since N3 obeys N3h ≤ T < (N3 + 1)h, we have

E
[

max
t∈[0,T ]

∣∣X(t)−Xh(t)
∣∣2] ≤ E

[
max

t∈[0,(N3+1)h]

∣∣X(t)−Xh(t)
∣∣2]

≤ ε(h)
(
1 + 2S(h)eα

∗h(N3+1)
)

≤ ε(h)
(
1 + 2S(h)eα

∗(T+h)
)
.

Next, as h < τ1 and S(h) = K3

∑N2
j=0 Ŵh(j)h, by (8.4.4), we have

S(h) ≤ K3

(∫ τ2

0

W (s) ds+ η∗
)
,

where η∗ > 0 is given by (8.3.6). Therefore as h < τ1 ∧ T , we have

E
[

max
t∈[0,T ]

∣∣X(t)−Xh(t)
∣∣2] ≤ ε(h)

{
1 + 2K3

(∫ τ2

0

W (s) ds+ η∗
)
eα

∗(T+τ1∧T )

}
.

We call the righthand side C(h). This proves the estimate (8.3.2). We note that C(h) → 0 as h → 0+

provided ε(h) → 0 as h → 0+ where ε(h) is defined by (8.3.14). Since C4(h) → 0 as h → 0+, we have
that

lim
h→0+

εi(h) = 0, lim
h→0+

ε∗i (h) = 0 for i = 1, 2 (8.5.28)

implies ε(h) → 0 as h→ 0+.

It remains to prove that (8.5.28) holds. In the next section we give discrete approximations to Ii and I∗i
for which this can be achieved.

8.6 Proof of (8.5.28)

We now give approximations to Ii(ψ, ·) and I∗i (ψ) which are parameterised by h and which possess the
property (8.5.28). First note that Ii(ψ, ·) and I∗i (ψ) can be rewritten according to

Ii(ψ, t) =
∫ τi

0

(Wi(t+ u)−Wi(u))g(ψ(−u)) du, 0 ≤ t ≤ τi, (8.6.1a)

I∗i (ψ) =
∫ τi

0

(1−Wi(u))g(ψ(−u)) du, (8.6.1b)

where Ii(ψ, t) = I∗i (ψ) for t ≥ τi. Consider the approximations

Îi(ψ, nh) =
Ni∑
j=0

{(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

}
h, 1 ≤ n ≤ Ni, (8.6.2a)

Î∗i (ψ) =
Ni∑
j=0

(
1− Ŵh,i(j)

)
g(ψ(−jh))h, (8.6.2b)
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where

Ŵh,i(n) = 0, n = 0, (8.6.3a)

Ŵh,i(n) =
n−1∑
l=0

wi(lh)h, n = 1, . . . , Ni(h), (8.6.3b)

Ŵh,i(n) = 1, n ≥ Ni(h) + 1. (8.6.3c)

Lemma 8.6.1. Let i = 1, 2. Let Ii(ψ, ·) be defined by (8.6.2a) where Ŵi,h obeys (8.6.3). Suppose that G is
defined by (8.2.14) and δ3 by (8.2.13). Then

|Ii(ψ, nh)− Îi(ψ, n)| ≤ K2δ3(h)τi
+ 2Gτi (τiδi(h) + hw̄i) + hG+ 2(2 + τiδi(h))Gh, n = 1, . . . , Ni. (8.6.4)

Therefore, by (8.5.3), we can define εi(h) by (8.3.12). Moreover

lim
h→0+

εi(h) = lim
h→0+

max
h=1,...,N2(h)

|Ii(ψ, nh)− Îi(nh, ψ)| = 0.

Remark 8.6.1. We begin the proof by calculating an explicit estimate for |Ii(ψ, nh) − Îi(ψ, n)| which
comprises of three terms. We then simplify the form of the first term. These calculations are not difficult
but are long and take up the rest of the proof.

Proof. Let 1 ≤ n ≤ N2. Now as nh ≤ τi by (8.6.2a) and (8.6.1a) we have

Ii(ψ, nh)− Îi(ψ, n) =
∫ τi

0

(Wi(nh+ u)−Wi(u))g(ψ(−u)) du

−
Ni∑
j=0

{(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

}
h

=
Ni−1∑
j=0

∫ (j+1)h

jh

(Wi(nh+ u)−Wi(u))g(ψ(−u)) du

+
∫ τi

Nih

(Wi(nh+ u)−Wi(u))g(ψ(−u)) du

−
Ni−1∑
j=0

{(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

}
h

−
{(
Ŵh,i(n+Ni)− Ŵh,i(Ni)

)
g(ψ(−Nih))

}
h.

Therefore as Wi(t) ∈ [0, 1] for all t ≥ 0, Ŵh,i(j) = 1 for all j ≥ Ni + 1, and (8.2.14) holds, we have

|Ii(ψ, nh)− Îi(ψ, n)|

≤
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(Wi(nh+ u)−Wi(u))g(ψ(−u))

−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
+
∫ τi

Nih

|Wi(nh+ u)−Wi(u))|Gdu+
{
|Ŵh,i(n+Ni)− Ŵh,i(Ni)|G

}
h

≤
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(Wi(nh+ u)−Wi(u))g(ψ(−u))

−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du+ hG+ |1− Ŵh,i(Ni)|Gh. (8.6.5)
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The rest of the proof is devoted to estimating the first term on the righthand side of (8.6.5). We first estimate
the integrand. Let j = 0 . . . Ni − 1, u ∈ [jh, (j + 1)], 1 ≤ n ≤ Ni. Then

(Wi(nh+ u)−Wi(u))g(ψ(−u))−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

= (Wi(nh+ u)−Wi(u)) {g(ψ(−u))− g(ψ(−jh))}

+
(
Wi(nh+ u)−Wi(u))− (Ŵh,i(n+ j)− Ŵh,i(j))

)
g(ψ(−jh)).

Thus by (8.2.14), (8.2.4) and (8.2.13) we have

|(Wi(nh+ u)−Wi(u))g(ψ(−u))−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))|

≤ |Wi(nh+ u)−Wi(u)| |g(ψ(−u))− g(ψ(−jh))|

+
∣∣∣Wi(nh+ u)−Wi(u))− (Ŵh,i(n+ j)− Ŵh,i(j))

∣∣∣G
≤ K2|ψ(−u)− ψ(−jh)|

+ |Wi(nh+ u)− Ŵh,i(n+ j)|G+ |Wi(u)− Ŵh,i(j)|G

≤ K2δ3(h) + |Wi(nh+ u)− Ŵh,i(n+ j)|G+ |Wi(u)− Ŵh,i(j)|G.

Hence∫ (j+1)h

jh

|(Wi(nh+ u)−Wi(u))g(ψ(−u))−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))| du

≤ K2δ3(h)h+G

∫ (j+1)h

jh

|Wi(nh+ u)− Ŵh,i(n+ j)| du

+G

∫ (j+1)h

jh

|Wi(u)− Ŵh,i(j)| du.

If Ni−n+ 1 ≤ j, then Ni + 1 ≤ j +n, so Ŵh,i(n+ j) = 1. Also τi < (Ni + 1)h ≤ (n+ j)h ≤ nh+ u.
Therefore Wi(nh+ u) = 1. Therefore

Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(Wi(nh+ u)−Wi(u)) g(ψ(−u))

−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
≤ K2δ3(h)τi +G

Ni−1∑
j=0

∫ (j+1)h

jh

|Wi(nh+ u)− Ŵh,i(n+ j)| du

+G

Ni−1∑
j=0

∫ (j+1)h

jh

|Wi(u)− Ŵh,i(j)| du. (8.6.6)

We now estimate the second term on the righthand side of (8.6.6). If 0 ≤ j ≤ Ni−n−1, then Ŵh,i(n+j) =∑n+j−1
l=0 wi(lh)h. Also nh+ u ≤ (n+ j + 1)h ≤ Nih ≤ τi. Therefore Wi(nh+ u) =

∫ nh+u
0

wi(s) ds.
Hence

Ni−1∑
j=0

∫ (j+1)h

jh

|Wi(nh+ u)− Ŵh,i(n+ j)| du

≤
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣∣
∫ nh+u

0

wi(s) ds−
n+j−1∑
l=0

wi(lh)h

∣∣∣∣∣ du.
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The integrand can be estimated by∣∣∣∣∣
∫ nh+u

0

wi(s) ds−
n+j−1∑
l=0

wi(lh)h

∣∣∣∣∣
≤

∣∣∣∣∣
∫ nh+jh

0

wi(s) ds−
n+j−1∑
l=0

wi(lh)h

∣∣∣∣∣+
∫ nh+u

(n+j)h

wi(s) ds

≤

∣∣∣∣∣
n+j−1∑
l=0

∫ (l+1)h

lh

wi(s)− wi(lh) ds

∣∣∣∣∣+ hw̄i

≤
n+j−1∑
l=0

∫ (l+1)h

lh

|wi(s)− wi(lh)| ds+ hw̄i

≤
n+j−1∑
l=0

δi(h)h+ hw̄i = (n+ j)δi(h)h+ hw̄i

≤ (Ni − 1)δi(h)h+ hw̄i ≤ τiδi(h) + hw̄i.

Therefore

G

Ni−n−1∑
j=0

∫ (j+1)h

jh

|Wi(nh+ u)− Ŵh,i(n+ j)| du

≤ G

Ni−n−1∑
j=0

h(τiδi(h) + hw̄i) = G(Ni − n)h(τiδi(h) + hw̄i)

≤ GNih(τiδi(h) + hw̄i),

so

G

Ni−n−1∑
j=0

∫ (j+1)h

jh

|Wi(nh+ u)− Ŵh,i(n+ j)| du

≤ Gτi (τiδi(h) + hw̄i) , n = 1, . . . , Ni. (8.6.7)

This estimate holds for n = 0 also. Inserting this estimate into (8.6.6) yields
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(Wi(nh+ u)−Wi(u)) g(ψ(−u))

−
(
Ŵh,i(n+ j)− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
≤ K2δ3(h)τi +G

∫ (Ni−n+1)h

(Ni−n)h

|Wi(nh+ u)− Ŵh,i(Ni)| du+ 2Gτi (τiδi(h) + hw̄i)

≤ K2δ3(h)τi + hG max
v∈[Nih,(Ni+1)h]

|Wi(v)− Ŵh,i(Ni)|+ 2Gτi (τiδi(h) + hw̄i) .

Inserting this estimate into (8.6.5) we get

|Ii(ψ, nh)− Îi(ψ, n)| ≤ K2δ3(h)τi + 2Gτi (τiδi(h) + hw̄i) + hG+ 2(1 + Ŵh,i(Ni))Gh, (8.6.8)

where we also use the bounds |Wi(v)− Ŵh,i(Ni)| ≤ 1 + Ŵh,i(Ni) and |1− Ŵh,i(Ni)| ≤ 1 + Ŵh,i(Ni).
Finally we estimate Ŵh,i(Ni) purely in terms of h. Using (8.6.3b) we have

|Ŵh,i(Ni)−Wi(Nih)| =

∣∣∣∣∣
∫ Nih

0

wi(s) ds−
Ni−1∑
l=0

wi(lh)h

∣∣∣∣∣
≤
Ni−1∑
l=0

∫ (l+1)h

lh

|wi(s)− wi(lh)| ds ≤
Ni−1∑
l=0

δi(h)h = Niδi(h)h ≤ τiδi(h).
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Thus Ŵh,i(Ni) ≤ 1 + τiδi(h). Using this together with (8.6.8) gives the estimate (8.6.4) as required.

Lemma 8.6.2. Let i = 1, 2. Let I∗i (ψ) be defined by (8.6.2a) where Ŵi,h obeys (8.6.3). Suppose that G is
defined by (8.2.14) and δ3 by (8.2.13). Then

|I∗i (ψ)− Î∗i (ψ)| ≤ K2δ3(h)τi +Gτi (τiδi(h) + hw̄i) + hG+ (2 + τiδi(h))Gh. (8.6.9)

Therefore, by (8.5.4), we can define ε∗i (h) by (8.3.13). Moreover

lim
h→0+

ε∗i (h) = lim
h→0+

|Ii(ψ)− Î∗i (ψ)| = 0.

Remark 8.6.2. As proof is short no outline is given.

Proof. By (8.6.1b) and (8.6.2b), we have

I∗i (ψ)− Î∗i (ψ)

=
Ni−1∑
j=0

∫ (j+1)h

jh

(1−Wi(u))g(ψ(−u)) du+
∫ τi

Nih

(1−Wi(u))g(ψ(−u)) du

−
Ni−1∑
j=0

{(
1− Ŵh,i(j)

)
g(ψ(−jh))

}
h−

{(
1− Ŵh,i(Ni)

)
g(ψ(−Nih))

}
h.

Therefore by (8.2.14), and the fact that Wi(t) ∈ [0, 1] for all t ≥ 0 we have,

|I∗i (ψ)− Î∗i (ψ)|

≤
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(1−Wi(u))g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
+
∫ τi

Nih

|1−Wi(u))|Gdu+
{
|1− Ŵh,i(Ni)|G

}
h

≤
Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(1−Wi(u))g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
+ hG+ |1− Ŵh,i(Ni)|Gh. (8.6.10)

We now estimate the first term on the righthand side of (8.6.10). Let j = 0 . . . Ni − 1, u ∈ [jh, (j + 1)],
1 ≤ n ≤ Ni. Then

(1−Wi(u))g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))

= (1−Wi(u)) {g(ψ(−u))− g(ψ(−jh))}+
(
Ŵh,i(j)−Wi(u))

)
g(ψ(−jh)).

Thus as Wi(t) ∈ [0, 1] for all t ≥ 0, g obeys (8.2.4), ψ obeys (8.2.13), and (8.2.14) holds, we get

|(1−Wi(u))g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))|

≤ |1−Wi(u)| |g(ψ(−u))− g(ψ(−jh))|+
∣∣∣−Wi(u)) + Ŵh,i(j))

∣∣∣G
≤ K2|ψ(−u)− ψ(−jh)|+ |Wi(u)− Ŵh,i(j)|G

≤ K2δ3(h) + |Wi(u)− Ŵh,i(j)|G.

Therefore

Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(1−Wi(u)) g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
≤ K2δ3(h)τi +G

Ni−1∑
j=0

∫ (j+1)h

jh

|Wi(u)− Ŵh,i(j)| du. (8.6.11)
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Recalling that the estimate (8.6.7) holds for n = 0, we can use (8.6.7) with n = 0 and (8.6.11) to get

Ni−1∑
j=0

∫ (j+1)h

jh

∣∣∣∣(1−Wi(u)) g(ψ(−u))−
(
1− Ŵh,i(j)

)
g(ψ(−jh))

∣∣∣∣ du
≤ K2δ3(h)τi +Gτi (τiδi(h) + hw̄i) .

Therefore using this bound in conjunction with by (8.6.10) we get

|I∗i (ψ)− Î∗i (ψ)| ≤ K2δ3(h)τi +Gτi (τiδi(h) + hw̄i) + hG+ (1 + Ŵh,i(Ni))Gh. (8.6.12)

Substituting the bound Ŵh,i(Ni) ≤ 1 + τiδi(h) into (8.6.12) gives (8.6.9) as required.
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