

In-situ and remote monitoring of environmental water quality

John Cleary, Jer Hayes*, Dermot Diamond

CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland

*IBM Centre of Excellence in Water Management

Overview

- Introduction
 - Water quality monitoring
- · Autonomous monitoring systems
 - Phosphate sensor
- · Remote monitoring
- · Integration of data from in-situ and remote
 - Status and challenges

Introduction

- Water pollution affects human health and reduces the quality of our natural water ecosystems and resources.
- · Clean water resources are likely to be of increasing scarcity and importance in the future
- Increasing need for monitoring of environmental water quality

Legislation

- · Major driver for protecting and improving the state of our natural water resources
- EU Water Framework Directive
 - Aims to achieve "good status" of all European water bodies (lakes, rivers, transitional, coastal & groundwater) by 2015

 - Implemented on a catchment level
 Related directives on Nitrates, Urban Waste Water Treatment, Drinking Water, Dangerous Substances, Bathing Water etc.
- **US Clean Water Act**
 - Restoring polluted surface waters with the goal of making US waters fishable and swimable

 - Total maximum daily loads (TMDLs) for polluted waters
 Shift from a source-by-source, pollutant-by-pollutant approach to
 more holistic watershed-based strategies

In situ monitoring - a long history

- Nilometer at Aswan, Egypt
- Water level → likelihood of successful crops → tax rates!

Sampling based monitoring

- · Current approach
 - Manual collection of samples, followed by laboratory analysis using high-spec instruments
 - High manpower costs → Low measurement frequency, limited number of sites
 - Standards-based, highly accurate... IF appropriate sampling, storage and analysis protocols are followed
- Portable instruments & reagent kits
 - Still require human presence to collect sample & operate device

Autonomous monitoring devices

- Autonomous sensing systems can play key role by allowing high-frequency monitoring of remote locations at lower cost
- Even if in situ sensors do not achieve the same analytical performance as laboratory methods, the increased temporal and geographical resolution is likely to outweigh this
- · Complementary to standard techniques

Challenges

- · Based on availability of large numbers of miniaturised, low cost, autonomous sensing devices
- · Reliability over long-term deployments
 - Robustness in severe conditions

 - Changes in reactivity of surfaces / reagents over long periods → Need for calibration
- · Deployment of large-scale wireless sensor networks in unpredictable and lossy environments

Challenges

- · Adaptive sampling
- E.g. higher frequency based on trigger levels
- Link to other devices measuring related parameters
- · Data streams from a large variety of heterogeneous sources, with varying volumes and accuracies
- · Need to develop a networked sensing infrastructure that can support the effective capture, filtering, aggregation and analysis of such data

Microfluidic sensors

- Microfluidic technology provides a route to the development of miniaturised analytical instruments that could be deployed remotely, and operate autonomously over relatively long periods of time (months-years).
- Autonomous phosphate sensor developed at DCU
- Combination of technologies

 - Colorimetric chemistry (molybdenum yellow)
 Microfluidic chip for performing mixing and reaction on micro-scale (22µL per analysis) - Optical detection based on UV-LED light source and
 - photodiode detector
 - Wireless communications (GSM modem, Zigbee radio, Bluetooth)

Phosphate sensor

- Can operate for 3 months at hourly frequency
- System has been successfully trialled at wastewater treatment plants and in environmental settings

SmartBay project

- SmartBay is a next-generation water management system (both marine and freshwater) established by the Marine Institute of Ireland.
- Key technological aspects currently under development by CLARITY and IBM's Global Centre of Excellence for Water Management
- Sensors
- Communications
- Data management systems

CANTE CONTROL OF THE CONTROL OF THE

INIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITUT

Combining in-situ & remote sensing

- Remote observations from satellites and aircraft can provide significant amounts of information on the state of the aquatic environment over large areas
- As in-situ deployments of sensor networks become more widespread and reliable, and satellite data becomes more widely available, information from each of these sources can complement and validate the other
- Increased ability to rapidly detect potentially harmful events, and to assess the impact of environmental pressures on scales ranging from small river catchments to the open ocean.

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITUT

Remote sensing

- · "the science of observation from a distance"
- Detection of
 - Acoustic waves
 - Force fields
 - Electromagnetic energy
- Techniques
 - Visible imaging (photography / videography)
 - Infrared (imaging / spectrometers)
 - Microwave radiometers
 - Microwave radar (RAR / SAR / SLAR)
 - Lidar (Laser radar)
 - Scatterometers

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITU

Remote sensing

- Platforms
 - Surface (ground / vehicles / masts)
 - Airborne (unmanned drones to heavy aircraft)
 - Space (orbiting satellites, deep space probes)
- Applications
 - Meteorology, Climatology, Geology, Soil studies, Agriculture, Land use, Built environment, Ecology, Conservation, Resource management
 - Water in the environment

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITU

Examples

- Wetlands monitoring
 - Surface water area
 - Plant communities
- Water quality parameters
 - Turbidity
 - Suspended sediment
 - Chlorophyll / Phytoplankton
 - Water temperature
 - Salinity
- Flood monitoring & management

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITUTE

Limitations of remote monitoring

- Data available for limited range of parameters
 - In situ data essential for in depth analysis / chemical speciation
- Availability can be limited by natural factors
 - Cloud cover / flying conditions
- Frequency limited / fixed
- Resolution
 - Varies with source, measurement technique and parameter
 - Limits ability to monitor freshwater bodies

Data management / distribution issues CLARITY

- Many national monitoring services are well developed, but they are customised to their country's territorial waters, and often based on proprietary or nonstandard solutions preventing smooth data exchange
- Need systems to provide access to data, including observations, derived parameters and model predictions of future conditions, and systems to retrieve, compare and analyze different types of data
- · Range of users with different requirements
- Projects such as InterRisk and ECOOP moving towards pan-European systems

Conclusions

- · Combination of in-situ and remote data has huge potential for improving environmental monitoring
- · Need to improve data availability
- Interoperability of data systems to allow efficient access by users with varying requirements
- Need for mathematical models with the ability to utilise data from various sources to deliver reliable forecasts at scales from river catchments to the open ocean

