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Abstract

We apply Random Matrix Theory �RMT� on an empirically�measured �nancial cor�
relation matrix� C� and show that this matrix contains a large amount of noise� In
order to determine the sensitivity of the spectral properties of a random matrix to
noise� we simulate a set of data and add di�erent volumes of random noise� Hav�
ing ascertained that the eigenspectrum is independent of the standard deviation of
added noise� we use RMT to determine the noise percentage in a correlation matrix
based on real data from S	P
��� Eigenvalue and eigenvector analyses are applied
and the experimental results for each of them are presented to identify qualitatively
and quantitatively di�erent spectral properties of the empirical correlation matrix
to a random counterpart� Finally we attempt to separate the noisy part from the
non�noisy part of C� We apply an existing technique to cleaning C and then dis�
cuss its associated problems� We propose a technique of �ltering C that has many
advantages� from the stability point of view� over the existing method of cleaning�

Key words� Random Matrix Theory� Portfolio Optimization� Correlation Matrix�
Eigenvalues and Eigenvectors

� INTRODUCTION

Random Matrix Theory �RMT�� originally developed for use in nuclear physics� has been
described by Mehta and Dyson ������� Mehta ������ as the matrix representation of the
average of all possible interactions in a nucleus	 It can be used to identify non
random
properties which are deviations from the universal predictions of RMT� properties that
are speci�c to the considered system	 Close agreement between the distribution of the
eigenvalues of a matrix M � with those from a matrix made up of random entries implies
that M has entries that contain a considerable degree of randomness as has been shown
in the literature �Plerou et al	 ������� �
���a�� �
���b�� �
���b��	 This matrix consisting
of random elements with unit variance and zero mean is called a random matrix �Mehta
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distribution and those of a random matrix� represents the amount of randomness �or
noise� in C and thus� deviations from RMT represent genuine correlation �c	f	 Plerou
et al	 ������� �
���a�� �
���b��	 This is precisely the problem that we wish to address� i	e	
the identi�cation of the true information �correlated assets� in a noisy �nancial correlation
matrix	 The method tests the null hypothesis that the distribution of eigenvalues of the
correlation matrix is random	 Since the correlation matrix is symmetric� the random
matrix� with which it is compared� should also be symmetric �Plerou et al	 �
���b��	

Before applying the cleaning method to real correlation matrices� we need to determine
the role of the amount of random noise on the spectral properties of a random matrix	
This is done by examining di�erence of the eigenspectrum of a correlation matrix made up
of simulated data with di�erent amounts of random noise from that of a random matrix	
We can then proceed with con�dence to examine the stability of real correlation matrices
using real data	 The empirical data set consists of ��
minute intraday prices from S�P���
from the beginning of April ���� to the beginning of April ����	

In this paper our initial objective� therefore� is to separate the noisy part from non
noisy
part in C	 Removal of the noise makes the optimization process more reliable� leaving the
analyst in a better position to estimate the risk associated with the constructed portfolio	
However� the techniques for removing noise from C should be considered carefully	 A
standard technique is initially applied to clean C but assessment of the results achieved
reveal that it is not particularly satisfactory on the grounds of stability	 We therefore� go
on to discuss a �ltering technique that takes account of the stability in a more precise
way	 Advantages of the new approach are validated by application to a �nancial data set
from the S�P���	

� BACKGROUND � THEORY

��� Introduction� Applications of RMT

Recently� a growing number of physicists have attempted to analyse and model �nancial
markets	 The history of this interest goes back to the work of Majorana ����
� on analogies
between statistical laws in physics and in the social sciences	 In nuclear physics� the
problem of understanding properties of matrices with random entries �which attempt to
describe the interactions between sub
atomic particles� has a rich history �e	g	 �Wigner
�����a��� �����b�� ������� Dyson and Mehta �����
��������� ������� �������� in these� the
assumption is made that the interactions between nuclear components are so complex
that they can be taken as random	 In Wigner �����a� the statistics of the eigenvalue
properties of a random matrix were found to agree well with experimental data	 In recent
years authors such as Plerou et al	 �
���a� have concentrated on comparing correlations
between large movements of stocks and molecular motion in gases	 RMT has also been
applied to portfolio optimization �e	g	 Laloux et al	 �������� where co
movements among
stocks are measured using the correlation �or� sometimes� covariance� matrix	 Based on
the results in Laloux et al	 ������� Bouchaud and Potters �
���� point to the inadequacies



�������	 In Laloux et al	 �
����� the authors introduce a technique �described below� to
remove noise from the �nancial correlation matrix	 For the resulting cleaned correlation
matrix� Plerou et al	 �
���b�� �
���b� and Mount�eld and Ormerod �
���� discuss the
stability of the eigenvectors of the correlation matrix by examining their overlap over two
consecutive temporal subperiods	 For those eigenvectors showing higher overlap over two
sub
periods� stability is assumed to be higher and vice versa	 The evidence suggests that
the noisy part of C �as predicted by RMT� tends to show lower levels of stability	

��� Financial Underpinning

Normally� the price changes �or return� of stocks are employed to quantify the empirical
correlation matrix Plerou et al	 �
���a�	 Therefore� we need to calculate the price changes
of assets i � �� � � � � N over a time scale �t	 For the price Si�t� of the ith asset at time t�
one can de�ne its �price change� or �return� Gi�t� as�

Gi�t� � lnSi�t��t�� lnSi�t� ���

It should be noted that the terms �return� and �price changes� are sometimes used
interchangeably �as in Plerou et al	 �
���a� for instance� but� strictly speaking� they
are di�erent	 It is usual to de�ne a normalised return to standardise the di�erent stock
volatilities	 Therefore� we normaliseGi with respect to its standard deviation �i as follows�

gi�t� �
Gi�t�� dGi�t�

�i
�
�

where �i is the standard deviation of Gi for assets i � �� � � � � N and cGi is the time average
of Gi over the period studied	 It should be noted that the asset risk is taken to be �

�
i since

we assume� as do Bouchaud and Potters �
����� that the risk and variance are the same
�as is implied by assuming Gaussian assets�	 It can be shown �c	f	 Plerou et al	 �
���b��
�
���b�� �
���a��� that the correlation matrix C can be de�ned by

C �
�

T
GGt ���

where G is an N � T matrix with elements �gi�m� � i � �� � � � � m�m � �� � � � � T � �� and
t denotes matrix transpose	 The so
called e�cient frontier �the boundary between the
possible and impossible portfolios in a risk
return graph� is given by�

�

�pi
�Dp � �Gp�

�����
pi�p�

i

� � ���

where pi� p
�

i denote the asset weights and those corresponding to the optimal portfolio
�represented by the e�cient frontier��Dp� Gp are the mean risk and return for the portfolio
respectively and � is some parameter	 Note that for correlated assets� Dp �

PN
i�j�� pipjCij



Laloux et al	 ������� Plerou et al	 ������	 Subsequently� Plerou et al	 �
���b� speci�cally�
de�ne a random correlation matrix as one which is the product of N time series of T ran

dom elements with zero mean and unit variance	 Statistical properties of random matrices
have been known for many years in physical literature �c	f	 Dyson ������� Edelman �������
Sengupta and Mitra �������	 In particular� under the restriction of T ��� N ��� pro

viding that q � T�N � � is �xed� it was shown by these authors that the distribution of
eigenvalues � of the random correlation matrix is given by�

Pr��� �

�BB�
�

q
����

p
��max�������min�

�

�
�min � � � �max

� elsewhere
���

where �� is the variance of the elements of G� �in the case of a normalised matrix G� it is
therefore equal to unity�� and �min and �max are the minimum and maximum eigenvalues
of the correlation matrix respectively� given by

�max�min � ��
�
� �

�

q
� 


s
�

q

�
���

These are the theoretical maximum and minimum eigenvalues� that determine the bounds
of the theoretical eigenvalue distribution	 If the eigenvalues of C are beyond these bounds
it is said that they deviate from the random �or theoretical� bound	 To evaluate the
practical bene�t of RMT we apply it �rst to generated data Section �	� and on a set of
real data Section �	
	

��� Noise removal from correlation matrix

In order to separate the noisy from the non
noisy parts of C� we divide it into two parts�
That which conforms to the properties of a random correlation matrix ��noise�� and
that which contains deviations from RMT predictions �the �information� part�	 In the
�rst approximation �Laloux et al	 �������� the location of the theoretical �or random�
bounds� determined by the theoretical maximum and minimum eigenvalues� allows us
to distinguish �information� from �noise�	 To separate the noisy and non
noisy parts of
C we use the method of Bouchaud and Potters �
����	 The whole idea is to obtain a
background measure for the noise element while retaining the information trace� based
on the fact that the eigenvalues corresponding to the noise band are not expected to
contain real information� they are all equally useless	 In e�ect� they suggest �attening
�see Fig	 �� the noise part by replacing it with the identity matrix� while keeping the
trace the same	 We assess this idea in practice� using Bouchaud and Potters �
�����s
suggestion where the prediction of risk obtained using Cnoisy is compared with that of
Cclean	 We divide the total available time period into two equal sub
periods� so that the
dataset from the �rst sub
period generates an estimate of the future return which can be
compared with the actual return in the second sub
period	 In the return in the second
sub
period� we assume that the investor has �perfect� prediction on the future average
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Fig� �� Bouchaud and Potters �
�����s procedure for cleaning 	 removing the noise from C

returns i	e	 we ignore random error over the second subperiod	 The data set we used for
RMT prediction tests is also used for the rest of the experiments� but with the restriction
that a smaller window of the set is considered	 The reason for this restriction is the heavy
computational overhead associated with the tests	 First of all� we construct the correlation
matrix using the �rst ��� data points for 
�� stocks from S�P��� Intraday data	 Next�
we clean the matrix by following the procedure above �Fig	 ��	 Subsequently� we need to
extract the optimal portfolios and e�cient frontiers of both Cnoisy �original C� and Cclean	
Here� we restate the expressions predicted risk and realised risk� Bouchaud and Potters
�
����� which will be used frequently in the remainder of this paper	 The e�cient frontier
calculated using the return on the second sub
period and the correlation matrix for the
�rst sub
period� is called prediction of the portfolio and the associated risk is called the
predicted risk	 Using this return and the correlation matrix� calculated using the second
sub
period combined with the weights of the same family of portfolios as the predicted
ones� we design another set of portfolios� known as the realisation of the portfolio Laloux
et al	 �
����	 The associated risk is denoted the realised risk	 Bouchaud and Potters �
����
argued that the predicted and realised risks are closer when the cleaned matrix is used in
delineating the e�cient frontier	 They attribute the closeness of the mentioned curves to
the power of Cclean in predicting the future risk and conclude that the stability of Cclean

is higher than the stability of the original C	 However� �as we go on to show� we believe
that� not only does this suggested technique not improve the stability of C� it can actually
reduce it	

��� Stability of the Correlation Matrix

The stability of the correlation matrix is an important aspect� e	g	 Jolli�e ������� who has
stated that eigenvectors and principal components can only be con�dently interpreted if
they are stable	 The issue is thus how to determine the stability of C after cleaning it�
In particular� we need to know if the stability of Cclean higher or lower	 The aim clearly
is to remove noisy elements from C in such a way that maximum stability is conserved	
The majority of work in this area �e	g	 Laloux et al	 �
���� and Lee �
����� indicates
that the overlap of the eigenvectors of two consecutive time sub
periods determines the
consistency �or convergence� of the eigenvectors	 �The overlap of two vectors gives the



vectors are normalised� the dot product of the vectors represents the cosine of the angle
between them and gives a measure of the overlap	 If the directions of the eigenvectors
remain similar over the two sub
periods� then the cosine value should be large	 Otherwise�
it will be small	

The �rst eigenvectors� as argued earlier� are those which deviate from the random bound
and provide most of the information	 As expected� these eigenvectors have the highest
stability and the degree of overlap is signi�cant	 To measure the stability of the matrix
as a whole and its eigenvectors� we employ a principal component technique �Krzanowski
�������	 This examines the e�ect on vk �the kth eigenvector� of small changes in the as

sociated eigenvalue �k and argues that this is important because it gives information on
the stability of the principal components	 The principal components can only be securely
interpreted if they are stable with respect to small changes in the values of the �k �s	
Speci�cally� the technique permits investigation of the perturbation of an eigenvector de

rived for a small reduction� increase� 	� in the corresponding eigenvalues	 The component�
v�i� is determined� where this is the one that diverges the most from the ith eigenvector�
vi� but has an eigenvalue which is at most 	 greater� less than that of vi� such that the
angle 
 between v�i� and vi can be calculated by�

cos
 �

�B�
	
� � �

�i��i��



�
�

� 	 decreased from �i	
� � �

�i����i



�
�

� 	 increased to �i
���

where �� � �� � �� � � � � � �n	 This equation demonstrates that the e�ect on vi of
an 	 change in �i is an inverse function of �i � �i��	 Thus it is not the absolute size of
the eigenvalue which determines whether that component is stable or not but rather its
separation in terms of eigenvalue size from the next component	 Relatively isolated �early�
components with large eigenvalues should therefore be fairly stable� but later components�
all of which have similar non
zero variances� will not be stable	 So the largest non
zero
eigenvalue and corresponding eigenvector can be used to �nd the smallest perturbation
in vi which leads to a change 	 in �i	

� DATA� SIMULATED � REAL

��� Simulated Data

In order to see the results of RMT �and in particular the in�uence on the spectral prop

erties of a random matrix of the amount of added random noise� on a correlation matrix
made up of simulated data we proceeded as follows	 A set of ��� sinusoidal time series
with ���� observations �i	e	 the same size as our real data set� is generated with random
amplitude and random phase	 Next� we add random noise normally distributed with zero
mean and a given standard deviation to the time series Z � N��� ���	 The standard devi

ation � is chosen to be some value �xed for a given simulation	 We control the amount of
noise added to the generated data by varying �	 We study the behaviour of the correlation



of di�erent volumes of noise in the time series on the noise content in the correlation
matrix	 First by using Eqn	 �� the correlation matrix C is constructed	 Since the number
of observations is T � ���� and the number of time series is N � ��� the inequality
q � T�N � � is satis�ed	 Therefore� we can apply the RMT to our generated data and
plot the distribution of the eigenvalues of C	 Using Eqn	 �� the theoretical distribution of
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Fig� 
� Eigenspectrum of C from generated data �dotted line� 	 theoretical distribution �dia�
monds�

the eigenvalues of the correlation matrix is calculated for a given value of added noise	 The
actual �empirical� distribution of the eigenvalues of C is also calculated and together with
the theoretical one is shown in Fig	 
 for a single value of added noise	 Some eigenvalues
in the empirical set deviate from the theoretical graph� these are non
noisy eigenvalues
corresponding to that part of the correlation matrix which has real information	 Inter

estingly� we have observed that the variance of added noise has little or no e�ect on the
distribution of the eigenvalues	 This shows that the amount of meaningful information
to be gained from C is independent of the standard deviation of the added noise for the
implication that RMT can be used with con�dence with the real data	

��� Real Data

The data relate to more than ��� companies �N is su�ciently large�� and over ����
observations �T ���	 Firstly� we construct the empirically
measured correlation matrix�
C� by using Eqn � as in the previous section� and then compute the eigenvalues �k where
k � �� � � � � N is in ascending order	

����� Eigenvalue Analysis

The distribution of the eigenvalues of the corresponding random correlation matrix is also
calculated using Eqn �	 Fig	 � shows the results of our experiments on the ��
minute data



can observe two things from Fig	 �	

��� The bulk of the eigenvalues of C conform to those of the random matrix Fig	 
 �main
graph�	 This consistency means that there is a measure of randomness in the bulk
majority of the eigenvalues	 Therefore� in agreement with Laloux et al	 ������� we
conclude that the corresponding eigenvalues are random and we take this part of C
as the noisy band	

�
� Fig	 ��inset� illustrates the same quantity but on di�erent scales� with deviations
from RMT for a small number of the largest eigenvalues visible	 Our experiments
indicate that 

 eigenvalues are outside the noise band and the rest can be seen to
be consistent with RMT results	 In other words� just �	� of the eigenvalues deviate
from the RMT prediction	
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�a� Partial spectral distribution
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�b� Full spectral distribution �a�

Fig� �� Eigenvalue Distribution for the Correlation Matrix C from S	P
�� Data from ���� to
���� �diamonds indicate eigenvalues from RMT�

Again� this is in agreement with Laloux et al	 ������ who argue that at most � of the
eigenvalues are non
noisy	 Thus� less than � of the eigenvalues appear to carry most
of the information� as found in Laloux et al	 ������ Plerou et al	 �
���b�� �
���b�	 In
the next section� the noise and information content of the correlation matrix is examined
qualitatively using eigenvector analysis	

����� Eigenvector Analysis

The eigenvector analysis looks at the structure of the eigenvectors and compares the
eigenvector component distribution with those of the corresponding random matrix	 The
eigenvector components of the random matrix are normally distributed with zero mean�
Laloux et al	 ������� so the expectation is that the eigenvectors corresponding to the
noise band of the correlation matrix follow a similar distribution	 Fig	 � represents the
distribution of the eigenvector components corresponding to our empirical correlation
matrix	 The eigenvectors associated with the largest eigenvalue� and some of the smaller
ones are shown	 It is seen that the distribution of the corresponding �market� eigenvector�
in black� does not follow the same structure as the others	 The components of the market
eigenvector are distributed around a mean of �	��� and a variance of �	��� whereas the



In fact the dispersion of the components around the mean increases as one examines
eigenvectors associated with progressively smaller eigenvalues	 Although this eigenvector
analysis is not as precise as the eigenvalue analysis above� it suggests that the market
eigenvector does not behave similarly to the eigenvectors of the random matrix� and
therefore implicitly� it represents the most information
rich as well as reliable part of the
correlation matrix	
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Fig� �� Eigenvector Components of C �largest in black�

� OPTIMAL PORTFOLIOS� A STABILITY APPROACH

��� Stability of the correlation matrix

In this section we study the empirical correlation matrix from a stability point of view	 As
mentioned above� various authors �e	g	 Laloux et al	 �
���� and Lee �
����� have studied
eigenvector convergence in terms of their overlap	 We compare the overlap of eigenvectors
over two consecutive sub
periods	 The �rst sub
period is the �rst ��� records of our
S�P��� data for 
�� stocks and the second is the next ��� records	 Fig	 � shows that
after the initial few eigenvectors �corresponding to the largest eigenvalues�� the overlap
�measured by cos
� falls into the noise level �Laloux et al	 �
���� and Strongin et al	
�
����� indicated by the line ��

p
N � for N eigenvectors	 This indicates again the presence

of a large quantity of noise in the correlation matrix	 In this section we study the stability
of C using the Krzanowski ������ model� Eqn	 �	 The angle between the eigenvector i of
the original correlation matrix C and v�i� is calculated� where v�i� is the perturbation of
the ith eigenvector derived for a small change 	 in �i �Fig ��	 Thus 	 is determined by the
empirical changes in the average value of �i from the �rst sub period to the second sub
period and approximates to ��
 in our experiments	

As expected� Fig	 � demonstrates that the largest eigenvectors are the most stable ones
�i	e	 cos 
 large�	 Further� the last �smallest� eigenvectors show higher stability than those
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Fig� �� Overlap �cos�� V Rank for C� � represents the perturbation of vi for a ��
� change in �i

in the middle since the former approach zero and consequently� cos 
 in Eqn	 � is larger	
Examining Fig	 � �which shows the predicted and realised risk of the family of optimal
portfolios calculated using ��
min returns from ���������� to ���������� it can be seen
that the top end of the predicted and realised curves are further apart whereas in the
lower and middle areas are closer	 Since the area of the e�cient frontier associated with
the highest risk� �Fig	 �� top area� corresponds to the largest eigenvalues �the most stable
ones�� then we can conclude that� as stability decreases� the curves get progressively
closer	 This contradicts the conclusion of Bouchaud and Potters �
���� who attribute the
closeness of these curves to higher stability	 We discuss this in greater detail in the next
section which deals with the stability of the cleaned correlaton matrix	
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Fig� �� E�cient frontiers optimal portfolios from the original matrix C� top curve gives predicted
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Fig� �� Overlap �cos�� V Rank for the original S	P
�� Data Correlation matrix� C� and Cclean

using �a� Bouchaud and Potters �
���� 	 �b� Krzanowski ������ techniques

��� Stability of the Cleaned Correlation Matrix Cclean

We examine the stability of Cclean using the method of Bouchaud and Potters �
����
for cleaning	 It can be seen from Fig	 ��a� that the stability �measured by their overlap�
of the eigenvectors of Cclean has declined noticably to its lowest position after the ��th
eigenvector �the edge of noisy and non
noisy components as determined by RMT predic

tion�	 This re�ects the fact that the noisy band of eigenvalues is replaced by their average�
which means no separations between eigenvalues at all	 Fig	 � also illustrates the negative
relationship between stability of eigenvectors �and therefore C� and the distance between
the predicted and realised curves	 As the stability increases� the distance between the two
curves decreases	 The implication is important� the cleaning method of Bouchaud and
Potters �
���� seems to adverse the stability of the eigenvectors after the initial few� a
new method described below maintains the stability for low rank� but also increase that



��� A new approach to matrix 	ltering

We propose a new method of �ltering C �based on the work of Krzanowski ������ to
preserve the stability of the matrix as much as possible	 The principle is to replace the
noisy eigenvalues with components that have maximal separation from each other while
maintaining a �xed sum	 In Fig	 � the noisy part of the graph is changed to an oblique
line	 These eigenvalues are indicated by a dotted line	 The slope is determined so that on
one hand the most separation between components is attained and on the other hand none
of the eigenvalues is replaced by negative values �as all the eigenvalues of the correlation
matrix are positive�	 The matrix Cclean is reconstructed using Cclean � V DnewV

t �V is
the matrix of eigenvectors� Dnew the reconstructed diagonal matrix of eigenvalues given
by the oblique line in Fig	 �� and the resulting eigenvalue distribution of Cclean is shown
by a solid line in Fig	 �	

Fig� �� Eigenvalue Magnitude V Rank for Cclean �solid line� 	 C �dashed line�

To observe the stability of this new Cclean we compute cos
 �in Eqn	 �� again� �see
Fig	 ��b��	 As can be seen the stability of noisy eigenvectors of the original matrix is
higher than those of the �ltered matrix up to approximately ���th eigenvector and is
lower thereafter	 Clearly� this method gives higher stability in comparison with �atten

ing the eigenvalues �Bouchaud and Potters �
�����	 In this context� we expect that the
predicted and realised risk
return curves are closer in the interval between ��th to ���th
in comparison to those of the original C	 Again the largest eigenvalues correspond to the
riskiest portfolios exposed in the top area of the e�cient frontier in Fig	 ���c�	 Equally
the smallest eigenvalues correspond to the least risky portfolios �lower area of the e�

cient frontier Fig	 ���b��	 As can be seen� distance between the upper ends of the curves
decreases whereas that at the central part is greater than that for the original C matrix	
This supports our assertion that stability is inversely related to the distance between
the predicted and realised risks	 As the stability increases� the distance between curves
decreases and vice versa	

We conclude from this and the results in Fig	 � that our method is superior to that of
Bouchaud and Potters �
���� from the point of view of impact of cleaning a correlation



and realised curves does not necessarily represent the strength of future risk prediction	
Indeed� when the correlation matrix is less stable the predicted and realised curves are
closer than the case with more stability	
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� CONCLUSIONS

We have applied RandomMatrix Theory to determine the noise in an empirically
measured
correlation matrix� C	 As a preliminary� we examined RMT results on simulated data with



the volume of added noise implies that results of RMT are also independent of the amount
of noise in the data	 For a set of actual data from S�P��� we deduced that less than � 
of the eigenvalues carry useful information with the rest re�ecting noise	 This is in agree

ment with previous work of Bouchaud and Potters �
���� which indicates that at most
� of C is information	 These results were obtained principally by eigenvalue analysis
and con�rmed in outline by complementary eigenvector analysis which indicated that
the market eigenvector �the eigenvector corresponding to the largest eigenvalue� has a
di�erent construction to the other eigenvectors� implying that most information in C is
measured by this quantity	 Finally we have examined the well
known and commonly
used
technique for noise removal from a correlation matrix� Bouchaud and Potters �
����	 But�
however� �nd that it decreases the level of stability of C	 We have alternatively applied
the Krzanowski ������ model to study the stability of the �nancial correlation matrix af

ter removal of noise and conclude that this o�ers real improvement on the usual method	
The improvement was tested by comparing the realised and the predicted optimal port

folios �Bouchaud and Potters �
������ with expectation of a shorter distance between the
realised and the predicted risk for Cclean than that of the original C �attributed by the au

thors to the higher stability of Cclean�	 We show that this is not the case and in fact there
is a negative relationship between the stability of C and the closeness of the predicted
and realised risks	 This assertion is also demonstrated by the experiments of �ltering C�
based on the Krzanowski ������ model	 The commonly
used technique of noise removal
not only fails to assure stability� but can actually lead to a considerable deterioration	
This �nding o�ers valuable insight for portfolio optimization	
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