

Towards the development of adaptive nanostructured platforms

Emer Lahiff, <u>Silvia Scarmagnani</u> and Dermot Diamond

CLARITY National Centre for Sensor Research, Dublin City University.

<u>Outline</u>

- > Adaptive materials
- > Conducting polymer nanofibres
- > Chemical modification of nanofibres
- > Characterisation of functionalised fibres
- Conclusions
- > Acknowledgements

Conducting Polymers

Stimuli responsive

materials capable of reacting in an intelligent way to changes in environmental conditions – thus act as *sensors*.

✓ Change **colour** in response to immediate environment.

✓ Spectrocopic fingerprint changes.

✓ **Conductivity** can be switched reversibly $(10^{-10} \text{ S/m} \rightarrow 10^{0} \text{ S/m}).$

✓ Chemical **structure** changes.

✓ Volume changes.

Polyaniline nanofibres

Nanofibre Synthesis

- Inexpensive and convenient to produce.

- Polymerisation complete within 24hrs.
- Yield can be easily
 scaled up by 1 volume of reactants.
- Convenient purification.

Chemical modification of nanofibres

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITUTE

Surface-modified nanofibres switch

Functionalised nanomaterial is responsive to its environment

Evidence for covalent attachment

PAni-COOH

PAni + COOH (no covalent bonding)

NMR evidence

- strongly supports covalent attachment of the MA chain to an electron-withdrawing group.

- Triplet @ 2.11 p.p.m. assigned to thiol proton disappears for PAni-MA.
- General downfield shift for protons in PAni-MA suggests deshielding consistent with covalent attachment to electron withdrawing units (quinoid ring).
- The shift is accompanied by a change from multiplet to triplet, consistent with the loss of the S-H bond in the PAni-MA.

Self-Doping behaviour

- **Protonation** can occur due to the presence of covalently bound acid side-groups.

- Self-doped nanofibres show enhanced **conductivity** in an alkaline environment.

Controlling the extent of functionalisation CLARITY

 $\sim V$

The intensity of -COOH bands scales linearly with the amount of thiol added.

The degree of side-chain attachment can be controllably altered.

PAni nanomorphology is affected _ by excess functionalisation.

Shown: 0, 44, 109, 218 mg COOH, added to 45mg PAni.

Quantifying the extent of functionalisation

- PAni-COOH fibres show two significant decompositions.
- First peak: a modified PAni-COOH surface component.
- Second peak: unmodified PAni.

TGA confirms a linear trend in the level of functionalisation

Platforms for further modification

Spiropyran attachment

- SP switches to MC form characteristic peak at 550cm⁻¹.
 This switching can be repeated for three cycles with no observable degradation.
- FTIR support covalent attachment of the carboxylic acid group of SP to the amine group attached to PAni.
- UV (in ethanol) shows SP switching. Swtiching is immediately reversible using white light.

Nanofibres can still be switched

PAni nanofibres can be surface functionalised with spiropyran to produce a nanomaterial with a photoswitchable surface.

Functionalised nanofibres retain the **ability to switch optical properties** in response to changes in the pH of the local environment.

Range of applications for responsive nano-platforms....

Chemo/ bio sensing

- Anti-body/ virus detection
- Glucose oxidase detection
- Medical and industrial gas monitoring

Energy storage devices Transducers (eg, for immunoassays) Catalyst supports Hydrogen storage Flexible electronics eg. OLEDs Fuel cell electrodes Drug release membrane Actuators Batteries Separation membranes

Conclusions

- Carboxylate/amine terminated side-chains can be attached to nanofibres.
- The degree of covalent attachment can be controllably altered.
- Thus provide a template which can be further modififed to develop more sophisticated structures, for applications such as biosensing.

Acknowledgements

<u>DCU</u>

Prof. Dermot Diamond Silvia Scarmagnani Dr. Nameer Alhashimy All the members of Clarity

Funding Sources:

Science Foundation Ireland

Intelligent Polymer Research Institute (Australia) Prof. Gordon Wallace

Transforming Irish Industry