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Abstract 

Predictable behaviour is a critical factor when developing a sensor for potential 

deployment within a wireless sensor network (WSN). The work presented here details the 

fabrication and performance of an optical chemical sensor for gaseous acetic acid 

analysis, which was constructed using inkjet printed deposition of a colorimetric 

chemical sensor. The chemical sensor comprised a pH indicator dye (bromophenol blue), 

phase transfer salt tetrahexylammonium bromide and polymer ethyl cellulose dissolved in 

1-butanol. A paired emitter-detector diode (PEDD) optical detector was employed to 

monitor responses of the colorimetric chemical sensor as it exhibits good sensitivity, low 

power consumption, is low cost, accurate and has excellent signal to noise ratios. The 

chemical sensor formulation was printed directly onto the surface the emitter LED, and 

the resulting chemical sensors characterised with respect to their layer thickness, response 

time and recovery time. The fabrication reproducibility of inkjet printed chemical sensors 

in comparison to drop casted chemical sensors was investigated. Colorimetric chemical 

sensors produced by inkjet printing, exhibited an improved reproducibility for the 

detection of gaseous acetic acid with a relative standard deviation of 5.5 % in comparison 

to 68.0 % calculated for drop casted sensors (n = 10). The stability of the chemical sensor 

was also investigated through both intra and inter-day studies. 
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1. Introduction 

The broad reaching implications of global warming throughout the world have placed the 

spotlight on gas sensing within the scientific community, as monitoring of contaminants 

in air is critical in understanding and managing potential risks to human health and 

indeed the environment. Consequently, there is an expanding need for simple, rapid, 

accurate, cost-effective field-deployable sensors incorporating wireless communication 

capabilities [1, 2]. The use of ion-selective electrodes, electrochemical sensors, optical 

chemical sensors, chemical sensor arrays and biosensors in WSNs has been reviewed 

recently by Diamond et al. [3, 4] and Janata [5]. The main challenges lie in the 

production of inexpensive, reproducible and reliable devices with adequate sensitivities 

and selectivities [6]. All of these criteria must be met for scale-up and mass production of 

sensors, which ultimately enables widespread field deployment and real-time monitoring. 

Due to developments within the last decade with regard to the availability of inexpensive 

optical components such as light emitting diodes (LEDs) and the development of existing 

chemistries for the detection of a wide variety of gases, optical chemical sensors now 

lend themselves well to potential field-deployable devices.  

Issues with regard to sensitivity and reproducibility still persist however, as a result of the 

both the fabrication method and optical detection system employed. One way to address 

the issue of sensitivity is to select the most appropriate optical detection system used in 

conjunction with the chemical sensing layer. Optical detectors typically employed within 

optical chemical sensors include LEDs as the light source coupled with a charge coupled 

device (CCD) [7, 8], light wave multimeter [8] and photodiode [9-11]. Other optical 

chemical sensors reported have employed a tungsten-halogen light source coupled with a 

CCD [12] in addition to flatbed scanners [13-15]. While some of these systems can be 

incorporated into portable handheld devices, they are not suitable for scale-up within a 

WSN. Previous work carried out by Shepherd et al. [16-20] demonstrated the advantages 

of employing a paired emitter-detector diode (PEDD) as the detection system of choice 

within a WSN. A PEDD consists of two LEDs, whereby one serves as the light source 
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and the other in reverse bias mode as the light detector. Instead of measuring the 

photocurrent directly, a simple timer circuit is used to measure the time taken for the 

photocurrent generated by the emitter LED to discharge the detector LED from 5 V (logic 

1) to 1.7 V (logic 0) to give digital output directly without using an A/D converter or 

operation amplifier [21, 22]. This method achieves excellent sensitivity and signal-to-

noise ratio in comparison to the more commonly employed method of coupling an LED 

to a photodiode [23]. The low cost, size (3.2 x 1.6 mm), low power consumption, ease of 

fabrication and simplicity of the PEDD make it an ideal optical detector for the real time 

monitoring of target gases and it was successfully deployed within a WSN for the 

detection of plumes of gaseous acetic acid achieving a limit of detection of 0.03 ppm 

[19]. 

The colorimetric pH chemical sensor formulation employed within the WSN system for 

the detection of acetic acid was adapted from pH chemical sensors developed by Crowley 

et al. which were applied to the real time monitoring of spoilage in fish packaging [9]. 

Issues of sensor reproducibility were evident in both the WSN [18] and fish packaging 

[11] manifolds as a result of the manual drop-casting method employed to deposit the 

chemical sensing layer. Common methods which have typically been employed in the 

fabrication of chemical sensors include dip-coating [12, 24, 25], drop-casting [16-18, 26], 

spin-coating [11, 27, 28] and screen printing [9]. Disadvantages associated with these 

methods can include limited deposition control with regard to film thickness, positioning 

and patterning capabilities [29]. The emerging technology of inkjet printing for chemical 

sensor deposition addresses these issues, as the film thickness and consistency is 

potentially very uniform and hence the resulting sensors should have greatly improved 

reproducibility in terms of characteristics such as sensitivity, zero setting and drift. Inkjet 

printing has gradually become a versatile tool for accurately depositing very small 

quantities (tens of picoliters) of materials at defined positions on the surface of a wide 

variety of substrates. So far within scientific research, inkjet printing has been mostly 

applied to the manufacture of polymer light emitting diodes [29-32], deposition of 

conducting polymers [6, 33-35] and fluorescent nanoparticles [36] and fabrication of 

biosensors [37, 38]. Inkjet printing offers advantages over other methods of deposition of 

thin films, such as patterning capability, reduction in waste products, high speed 
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production, low cost fabrication, room temperature deposition, printing on large area and 

flexible substrates [6]. Additional advantages include direct patterning of a substrate 

surface as inkjet printing does not rely on the use of a specific mask, compared to the 

multistep process of photolithography [32]. It also allows the operator great freedom with 

regard to the pattern that can be printed, and the thickness at which the material is 

deposited. The design template is also simple to create using the associated printer 

software, compared to the individually designed masks required for screen printing or the 

complex programming for some other deposition instruments [35]. Also inkjet printing is 

a non-contact method which, in contrast to contact based methods such as pin spotting 

systems, has the advantages of reduced contamination and no risk of substrate damage 

[32, 39, 40]. The prospect of deposition of more than one material is also a definite 

possibility with multiple ink reservoirs available in standard inkjet printers [35]. By 

employing inkjet printing it is possible to dispense specific volumes of chemical sensor 

formulation quickly and accurately, and hence this has huge potential as a suitable scale-

up and mass production fabrication method for chemical sensors.  

The work presented herein will demonstrate improved fabrication reproducibility than 

previously achieved for the detection of gaseous acetic acid, particularly with regard to 

baseline signal and response slope (sensitivity), by employing inkjet printing as the 

method through which the chemical sensor will be deposited [18]. As discussed by Reis 

et al. there are several parameters associated with inkjet printing which will have a 

significant effect on the film produced [41]. The parameters which were optimised within 

this work for the direct printing onto an LED surface included temperature, drop spacing, 

print head height and print design. The effect of film thickness on the resulting sensor’s 

sensitivity, response time and recovery time was investigated, in addition to inter and 

intra-day reproducibility within a sensor. 

 

2. Experimental 

 

2.1 Chemical Sensor Formulation  

All chemicals used were of reagent grade and purchased from Sigma Aldrich, Dublin, 

Ireland. Deionised water obtained from a Millipore Milli-Q water purification system 
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(Millipore Ireland B.V., Cork, Ireland) was used for all analysis. The colorimetric 

chemical sensor formulation previously employed for the detection of acetic acid [18] 

was optimised for drop cast deposition and was therefore not suitable for inkjet printing. 

The modified chemical sensing polymer for inkjet printing was prepared by preparing a 

0.25 % solution of ethyl cellulose (4 cP: Catalogue No. 200646) in 1-butanol. The 

viscosity of the solution was specifically tailored to enable inkjet printing of the chemical 

sensor. To 10 mL of this solvent, 20 mg of the pH indicator dye bromophenol blue (BPB) 

sodium salt was added. The phase transfer salt tetrahexylammonium bromide (THABr), 

which acts as a solid state pH buffer in the polymer formulation was added to the solution 

in a 2.5:1 (salt to dye) molar ratio. The solution was then sonicated for approximately 3 

hours to ensure full dissolution.  

 

2.2 Inkjet Printing Optimisation and Fabrication of Sensors 

Inkjet printing of the colorimetric chemical sensor was performed using a Fujifilm 

Dimatix DMP-2811 printer. 1.5 mL of the chemical sensor formulation was placed into 

the printer cartridge using a syringe. Print designs were created using the pattern editor in 

the Dimatix Drop Manager software. Priming of the printhead with the chemical sensor 

formulation, in addition to cleaning cycles prior, during and after the printing process 

were carried out to ensure a high quality, uniform sensor film was achieved.  

Several parameters associated with the Fujifilm Dimatix DMP-2811 inkjet printer were 

optimised specific to the BPB chemical sensor formulation. These included substrate and 

printhead temperature, drop spacing, print head height and print design. Temperature 

became an important issue when printing more than one layer, as increasing it ensured 

each deposited layer was dry before the addition of subsequent layers. An optimum 

temperature of 45 
o
C was determined experimentally, as beyond this temperature 

excessive drying of the polymer film was observed. In combination with increasing the 

temperature, allowing sufficient time (5 minutes) between the printing of each layer also 

aided the process of drying, compensating for the inability to use extreme temperatures. 

A drop spacing of 30 µm was employed as this achieved a high quality film while using a 

minimum volume of chemical sensor formulation. A print head height of 1.7 mm was 

selected as non-uniformity of the film was observed on increasing the head height (i.e. 
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the distance between the print head and the substrate). The chemical sensor formulation 

was printed directly onto the lens surface of the light source which was a 1206 surface 

mount (3.2 mm x 1.6 mm) LED (Radionics, Ireland: Part No. 466-3942) after initially 

cleaning the surface with ethanol. The printed pattern was designed to cover the entire 

surface of the LED.     

 

2.3 Absorbance Measurement using a Paired Emitter-Detector Diode (PEDD) 

The absorbance spectra of BPB in both acidic and basic form (Figure 1) were acquired 

using a µQuant™ platewell reader (Bio – Tek Instruments, Inc., USA). The BPB in 

acidic (pH 2) and basic (pH 10) form had a λmax at 422 nm and 617 nm respectively. The 

absorbance measurements of printed colorimetric sensing films were acquired employing 

a paired emitter-detector diode (PEDD) optical detector. The PEDD was constructed as 

previously reported by Shepherd et al. [16, 18] by arranging a pair of facing 1206 orange 

surface mount LEDs on a 2.0 mm header. An emitter LED with a λmax at 590 nm was 

selected as the light source as the overlap between the absorbing species BPB and the 

light source provide high sensitivity. The emission spectra of the emitter LED was 

obtained using an Ocean Optic spectrometer (OOIBase 32™, Ocean Optics. Inc., 

Dunedin, USA). The detector used was a red LED with a λmax at 660 nm (Radionics, 

Ireland Part No. 466-3914). To facilitate comparison, the emission and absorption spectra 

were normalized to a 0-1 range by dividing values by the maximum emission and 

absorbance achieved. 

 

The sensing technique employed with the PEDD sensor was as previously reported [21, 

22]. The detector LED in output mode was charged up to 5 V for 100 µs and then 

switched to high impedance input mode. Photons from the emitter LED generate a 

photocurrent in the reverse biased detector LED, which discharges a capacitance based 

voltage from an initial value of 5 V (logic 1) to a preset value of 1.7 V (logic 0) [21, 22]. 

The time taken for discharge was measured with a simple comparator and timer circuit. A 

voltage regulator running from a 9V battery was used to provide a stable +5 V source to 

drive the circuit and LEDs. This method achieves excellent sensitivity with the added 

benefit of eliminating the need for an A/D converter or operational amplifier. The signal 
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was captured using HyperTerminal software (Microsoft Inc., USA), saved as a text file 

and then analysed using MS Excel. 

 

As shown in Figure 2, using a SKC Aircheck Sampler (Model 224-PCXR3: Air-met 

Scientific, Australia) air was drawn in through a 50:50 acetic acid to deionised water 

solution at a constant flow rate of 2 L min
-1

 for 20 seconds. The switch value was then 

alternated and air was purged through the system at the same flow rate for 2 minutes. 

 

3. Results and Discussion 

 

3.1 Effect of Layer Thickness on Response Characteristics 

Response characteristics such as the magnitude of the response and the time taken to both 

respond and recover are essential elements to consider when optimising a chemical 

sensor. To investigate the effect of layer thickness on response magnitude and 

response/recovery time chemical sensors with varying numbers of layers were fabricated 

and tested. 

 

3.1.1 Effect on Response Magnitude – Peak Height 

PEDD chemical sensors of varying layer thickness were made in triplicate. Each PEDD 

chemical sensor was then tested by exposing it to gaseous acetic acid for 20 seconds 

followed by air for 2 minutes. This procedure was repeated 4 times and the results 

obtained are illustrated in Figure 3. The number of layers printed onto the PEDD was 

directly proportional to the peak height (change in discharge time, µs) obtained.  

 

Figure 3 shows a linear increase in the peak height calculated for the detection of gaseous 

acetic acid with increasing number of chemical sensing layers (R
2
 = 0.9967). As outlined 

in Table 1 the peak height calculated for 1 inkjet printed layer (ca. 100 nm) of chemical 

sensor was 102 ± 0.5 µs, which had a relative standard deviation of 0.5 % (n = 3). The 

peak height achieved for 15 inkjet printed layers was 2327.6 ± 147.2 µs. The relative 

standard deviation calculated was 6.3 % (n = 3). This showed a 2181 % increase in the 

peak height obtained using a 15 layer PEDD in comparison to a 1 layer PEDD.  



 - 8 - 

 

3.1.2 Effect on Response Time 

To investigate the effect of layer thickness on time taken to achieve a response 

maximum, PEDD chemical sensors of varying layer thickness were tested by this time 

exposing them to gaseous acetic acid for 2 minutes followed by air for 20 minutes. The 

increased exposure time to acetic acid and air was sufficient to allow a plateau in signal 

for both the response and recovery. Figure 4 demonstrates the effect the number of inkjet 

printed layers on the surface of a PEDD chemical sensor has on the time taken to achieve 

a maximum response. The percentage response data was determined by calculating the 

percentage ratio of the response after 1 minute over the response observed at 2 minutes.  

 

As shown in Figure 4 the initial increase in the number of inkjet printed layers has a 

minimal effect on the percentage ratio of response achieved. The PEDD chemical sensors 

with inkjet printed layers up to 3 reach on average 99.4 % of the full response after 1 

minute. As the number of layers increase from 4 onwards there is a decrease in the 

percentage of response obtained. The decrease in the percentage response calculated from 

1 inkjet printed layer to 15 was 11.5 %. Figure 4 demonstrates that while increasing the 

number of print layers will significantly increase the magnitude of the response observed 

it will also increase the time necessary to achieve a maximum response. The response at 

15 layers still exhibits however, a relatively fast response for a chemical sensor, 

achieving 88.0 % of the full response after 1 minute. 

 

3.1.3 Effect on Recovery Time 

The investigation of the effect on recovery time was carried out similarly to that of the 

effect on response time. PEDD chemical sensors of varying layer thickness were tested 

by exposing them to gaseous acetic acid for 2 minutes followed by air for 20 minutes. 

The percentage recovery data was determined by calculating the percentage of the 

recovery after 2 minutes over the maximum recovery observed at 20 minutes.  

 

Figure 5 shows that the number of inkjet printed layers is indirectly proportional to the 

percentage of full recovery achieved. A PEDD chemical sensor with 1 inkjet printed layer 
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achieves 99.2 % of full recovery to the original baseline after 2 minutes. A linear 

decrease in the percentage recovery is observed up to 10 layers after which the decrease 

begins to tail off. There is a 19.8 % decrease in the percentage of chemical sensor 

recovery from 1 inkjet printed layer to 15 inkjet printed layers. A PEDD chemical sensor 

with a 15 inkjet printed layer achieves 79.5 % of full recovery after 2 minutes, which 

demonstrates a fast recovery time in comparison to typical bulk optical membrane 

recovery times. 

Results obtained for the investigation of the effect of layer thickness on response 

magnitude, response/recovery time (Figures 3-5 respectively) show that all three factors 

must be considered when selecting the optimum layer thickness for a chemical sensor. 

While Figures 4 and 5 both demonstrate that increasing the number of inkjet printed 

layers increases the time required to achieve a 100 % chemical sensor response and 

recovery, it is clear that the increase in layer numbers has a greater effect on chemical 

sensor recovery than on the response. Response and recovery time are important factors 

in field deployable sensors for real-time monitoring. Should a sensor take to long to 

respond or recover, it may result in the sensor missing any sudden or momentary 

fluctuations in the target analyte detection.   

  

3.2 Fabrication Reproducibility 

Fabrication reproducibility is a critical issue when developing chemical sensors for 

deployment within a WSN. Issues arising when insufficient reproducibility is obtained 

include the requirement for individual sensor calibration, non-accuracy and imprecision. 

Colorimetric gas sensors previously developed by Shepherd et al. [16-18] were fabricated 

by drop casting (< 5 µL) the chemical sensor formulation directly onto surface of the 

surface mount LED using a micropipette. To determine if inkjet printing the chemical 

sensor formulation directly onto the LED surface would improve fabrication 

reproducibility in comparison to drop casting the chemical sensor formulation, multiple 

PEDDs were prepared employing both methods.   

 

3.2.1 Drop Casted Colorimetric PEDD Chemical Sensors 
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To investigate the fabrication reproducibility of drop casted colorimetric chemical 

sensors, 10 PEDDs were prepared. Approximately 5 µL of the chemical sensor 

formulation was drop cast directly onto the surface of the emitter LED. The chemical 

sensor was dispensed from a manual micropipette. On examination of the LED under a 

microscope it was evident that a non-uniform film was achieved employing this method. 

In addition it was also noted that due to the small surface area of the LED (3.2 mm x 1.6 

mm) it was difficult to position the sensor drop in exactly the same location every time, 

which would inevitably lead to variability within a batch.     

 

Figure 6A illustrates the variability between 10 drop casted colorimetric PEDD chemical 

sensors. The troughs in Figure 6A and 6B represent the exposure of the colorimetric 

PEDD chemical sensors to gaseous acetic acid and the peaks represent the recovery of the 

sensors in the presence of air purged through the system. Figure 6A demonstrates that 

there are significant discrepancies with regard to both the baseline of each individual 

colorimetric PEDD chemical sensor and the response magnitude. The mean peak height 

(µs) and standard deviation calculated for each individual colorimetric PEDD chemical 

sensor (Listed PEDD 1 – 10) outlined in Table 2 were determined from multiple 

injections of gaseous acetic acid (n = 4). The relative standard deviation within an 

individual drop casted PEDD chemical sensor was comparable to those calculated within 

an individual inkjet printed PEDD chemical sensor (Table 2). The mean peak height (µs) 

obtained for the 10 drop casted colorimetric PEDD chemical sensors was 418.2 ± 284.4 

µs. The relative standard deviation calculated was 68 %, which would reinforce the 

variations of the colorimetric PEDD chemical sensors observed under a microscope. 

Reproducibility within individual colorimetric PEDD chemical sensors also varied, with 

relative standard deviations from 1.0 to 5.7 % (Table 2).    

 

3.2.2 Inkjet Printed Colorimetric PEDD Chemical Sensors 

As drop casted colorimetric PEDD chemical sensors were not comparable to 1 layer 

inkjet printed sensors with regard to response magnitude, hence inkjet printed sensors of 

7 layers were prepared for the investigation. As shown in Figure 6B the reproducibility of 

inkjet printed chemical sensors is much better than that of drop casted chemical sensors. 
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The data illustrated in Figure 6B has not been baseline adjusted and the mean peak height 

calculated for the 10 inkjet printed colorimetric PEDD chemical sensors was 976.8 ± 54.8 

µs (Table 2). The relative standard deviation calculated was 5.6 %, which is a 91.8 % 

decrease in the relative standard deviation determined for the 10 drop casted colorimetric 

PEDD chemical sensors. These figures demonstrate excellent reproducibility in the 

fabrication of inkjet printed colorimetric PEDD chemical sensors especially when taking 

into consideration that the data was acquired from a 7 layer sensor. Fabrication 

reproducibility is improved further when investigating 1 layer colorimetric PEDD 

chemical sensors. Mean peak height data outlined in Table 1 for 3 x 1 layer colorimetric 

PEDD chemical sensors was 102.0 ± 0.5 µs which had a relative standard deviation of 

0.5 %. The results outlined in Table 2 have implications of a highly reproducible 

fabrication method for colorimetric chemical sensors. The reproducibility of the baseline 

and sensitivity reduce the need for individual sensor calibration, which in turn makes 

them ideal for scale up and mass production. 

The comparison between drop casted and inkjet printed deposition methods highlights the 

improved accuracy achieved with inkjet printing, however, relative standard deviations 

obtained with spin coated sensors reinforce more effectively the advantages of inkjet 

printing over alternative deposition methods. While the fabrication method of spin 

coating in comparison to drop casting demonstrates improved reproducibility with regard 

to film thickness, it still does not match the reproducibility of inkjet printed chemical 

sensors. Previous work published within our group by Pacquit et al. employing pH 

chemical sensors fabricated through spin coating reported the standard deviations 

associated with this deposition method [10]. Spin coated sensors of various thicknesses 

(2.6, 1.4 and 1.0 micron) demonstrated relative standard deviations of 5.5 %, 9.6 % and 

19.8 % respectively (n = 2). Data outlined in Table 2 for inkjet printed chemical sensors 

of 7 layer thickness (0.7 micron) report relative standard deviations of %. Although these 

spin coated reproducibility results show a marked improvement when compared to the 

relative standard deviations of drop casted sensors (Table 2) they still demonstrate poorer 

reproducibility than that achieved with inkjet printed pH chemical sensors.  

 

3.3 Intra and Inter-day Reproducibility of Inkjet Printed Chemical Sensors 
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Stability of a chemical sensor is an important characteristic for field deployment as 

sensors which loose stability in a relatively short time can introduce false 

positive/negative readings and hence are not viable for reliable real-time monitoring. To 

investigate intra and inter-day reproducibility, an individual 10 layer PEDD chemical 

sensor was exposed to gaseous acetic acid. The same PEDD was used for all experiments 

to prevent introduction of errors due to chemical sensor fabrication or LED variability.  

 

3.3.1 Intra-Day Reproducibility 

Figure 7A demonstrates the intra-day reproducibility of a 10 layer PEDD chemical sensor 

which was exposed to injections of gaseous acid 5 times with 1 hour intervals. As 

outlined in Table 3 the peak heights calculated demonstrate good reproducibility with a 

relative standard deviation of 1.5 %. The peak height (change in discharge time, µs) data 

obtained from each injection of gaseous acetic acid was plotted against peak number 

(injection number). The line bar in Figure 7A represents the average peak height of 

1170.7 µs calculated for the detection of gaseous acetic acid. The dots represent how the 

individual injections deviated from the average peak height calculated. 

 

3.3.2 Inter-Day Reproducibility 

To investigate the inter-day reproducibility, an inkjet printed PEDD chemical sensor was 

exposed to injections of gaseous acid 4 times. This was repeated for ten consecutive days 

employing the same 10 layer PEDD chemical sensor from the intra-day study and 

experimental conditions. The data obtained for the mean peak height calculated over 10 

days is given in Table 3. An increased relative standard deviation of 6.7 % was calculated 

however this was still lower than the generally accepted limit of 10 %. The line bar in 

Figure 7B represents the average peak height of 1090.4 µs calculated for the detection of 

gaseous acetic acid. The dots represent how the daily average peak height deviated from 

the overall average peak height calculated for 10 days. The error bars represent the 

standard deviations calculated for the 4 injections which were performed daily. 
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The intra and inter-day reproducibility calculated for a 10 layer PEDD chemical sensor 

highlighted its suitability as a field deployable sensor within a WSN with relative 

standard deviations of less than 10 % over a period of 10 days.  

 

4. Conclusion 

The results obtained using the inkjet printed PEDD chemical sensor have demonstrated 

improved fabrication, intra and inter-day reproducibility than previously reported for the 

detection of gaseous acetic acid. This was achieved by employing inkjet printing to 

deposit the chemical sensor as opposed to drop casting, which to date has been one of the 

common methods of choice to deposit chemical sensing films. Fabrication reproducibility 

is essential when developing sensors for WSN deployment. Inkjet printed chemical 

sensors developed within the work presented here demonstrated a staggering 91.8 % 

decrease in the relative standard deviation calculated for 10 (7 layer) inkjet printed PEDD 

chemical sensors in comparison to 10 drop casted PEDD chemical sensors. The benefits 

of inkjet printing are not only the reduction in relative standard deviations within a batch 

but the removal of the need for individual sensor calibration which ultimately saves time 

and hence money.  

Intra and inter-day reproducibility within an individual (10 layer) PEDD chemical sensor 

were also investigated. Relative standard deviations of 1.5 % (n = 5) and 6.7 % (n = 10) 

were achieved for intra and inter-day reproducibility studies respectively.  

The effects of increasing layer thickness were also investigated with respect to response 

magnitude, time to respond and recover back to baseline. Increasing the number of layers 

printed resulted in a linear increase in the magnitude of response observed. The response 

obtained for 15 layer inkjet printed PEDD chemical sensor demonstrated a 2181 % 

increase in comparison to the response calculated for a 1 layer inkjet printed PEDD 

chemical sensor. While increasing the layer thickness increased the response magnitude it 

must be noted that it also increased the time required reach a maximum response and to 

fully recover. The decrease in the percentage ratio of response observed after 1 minute 

over the maximum response calculated from 1 inkjet printed layer to 15 was 11.5 %. 

Recovery time observed a similar reduction with a decrease of 19.8 % in the percentage 
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of recovery calculated after 2 minutes over the maximum chemical sensor recovery from 

1 inkjet printed layer to 15 inkjet printed layers. 

The results presented within in this work, demonstrate enormous potential for the use of 

an inkjet printed PEDD chemical sensor for the purpose of in situ gas monitoring within a 

WSN. The PEDD offers advantages of sensitivity, low cost, low power consumption, 

miniaturisation capabilities, precision with excellent signal-to-noise characteristics, in 

addition to availability in a broad spectral range down into the deep UV (247 nm to > 

1000 nm). This paper has demonstrated that inkjet printing offers not only a significant 

increase in fabrication reproducibility but a multitude of advantages such as reduction in 

waste volume and cross contamination as it is a non-contact deposition method, precision 

with regard to exact location of the sensor deposition and patterning capabilities. 

Surprisingly, even with advantages such as these, the application of inkjet printing of 

colorimetric chemical sensors is still relatively in its infancy.  

The highly reproducible inkjet printing deposition method coupled with the advantages of 

the PEDD result in optical chemical sensor which can be applied to the detection of a 

broad spectrum of target analytes. 

 

Acknowledgements 

The authors wish to thank Dr. King Tong Lau and Dr. Stephen Beirne from the National 

Centre for Sensor Research who contributed to the earlier development of this work. The 

authors also gratefully acknowledge financial support from Science Foundation Ireland 

(SFI) under the CLARITY: Centre for Sensor Web Technologies Award (07/CE/1147). 

 

References 

1. K. R. Rogers, Recent advances in biosensor techniques for environmental 

monitoring, Anal. Chim. Acta 568 (2006) 222-231. 

2. P. Kim, J. D. Albarella, J. R. Carey, M. J. Placek, A. Sen, A. E. Wittrig and W. B. 

McNamara III, Towards the development of a portable device for the monitoring 

of gaseous toxic industrial chemicals based on a chemical sensor array Sens. 

Actuators, B 134 (2008) 307-312  

3. D. Diamond, F. J. S. de Viteri, J. F. Cassidy, A. P. Doherty, J. G. Vos, T. 

McCormack, G. Keating, A. J. Killard, B. M. Manning, R. O'Kennedy, B. 

McCraith, R. J. Forster and H. McCabe, Principles of Chemical and Biological 

Sensors, John Wiley & Sons, Inc., New York, 1998. 



 - 15 - 

4. D. Diamond, S. Coyle, S. Scarmagnani and J. Hayes, Wireless Sensor Networks 

and Chemo-/Biosensing, Chemical Reviews 108 (2008) 652-679. 

5. J. Janata, Principles of Chemical Sensors, Plenum Press, New York & London, 

1989. 

6. M. F. Mabrook, C. Pearson and M. C. Petty, An inkjet-printed chemical fuse, 

Appl. Phys. Lett. 86 (2005) 0135071-0135073   

7. J. C. Carter, R. M. Alvis, S. B. Brown, K. C. Langry, T. S. Wilson, M. T. 

McBride, M. L. Myrick, W. R. Cox, M. E. Grove and B. W. Colston, Fabricating 

optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-

of-concept, Biosensors and Bioelectronics 21 (2006) 1359-1364. 

8. B. H. Weigl and O. S. Wolfbeis, Sensitivity studies on optical carbon dioxide 

sensors based on ion pairing, Sens. Actuators, B 28 (1995) 151-156. 

9. K. Crowley, A. Pacquit, J. Hayes, K. T. Lau and D. Diamond, A gas-phase 

colorimetric sensor for the detection of amine spoilage products in packaged fish 

IEEE Sensors 2  (2005 ) 754-757. 

10. A. Pacquit, K. T. Lau, H. McLaughlin, J. Frisby, B. Quilty and D. Diamond, 

Development of a volatile amine sensor for the monitoring of fish spoliage, 

Talanta 69 (2006) 515-520. 

11. A. Pacquit, J. Frisby, D. Diamond, K. T. Lau, A. Farrell, B. Quilty and D. 

Diamond, Development of a smart packaging for the monitoring of fish spoilage, 

Food Chem. 102 (2007) 466-470. 

12. T. Grady, T. Butler, B. D. MacCraith, D. Diamond and M. A. McKervey, Optical 

Sensor for Gaseous Ammonia With Tuneable Sensitivity, Analyst 122 (1997) 

803-806. 

13. N. A. Rakow, A. Sen, M. C. Janzen, J. B. Ponder and K. S. Suslick, Molecular 

Recognition and Discrimination of Amines with a Colorimetric Array 

Angewandte Chemie International Edition 44 (2005) 4528-4532. 

14. N. A. Rakow and K. S. Suslick, A colorimetric sensor array for odour 

visualization Nature 406 (2000) 710-713. 

15. M. C. Janzen, J. B. Ponder, D. P. Bailey, C. K. Ingison and K. S. Suslick, 

Colorimetric Sensor Arrays for Volatile Organic Compounds, Anal. Chem. 78 

(2006) 3591-3600. 

16. R. L. Shepherd, W. S. Yerazunis, K. T. Lau and D. Diamond, Novel surface 

mount LED ammonia sensors, IEEE Sensors 2 (2004) 951-954. 

17. R. L. Shepherd, W. S. Yerazunis, K. T. Lau and D. Diamond, Low-Cost Surface-

Mount LED Gas Sensor, IEEE Sensors 6 (2006) 861-866. 

18. R. Shepherd, S. Beirne, K. T. Lau, B. Corcoran and D. Diamond, Monitoring 

chemical plumes in an environmental sensing chamber with a wireless chemical 

sensor network, Sens. Actuators, B 121 (2007) 142-149. 

19. S. Beirne, B. Corcoran, K.-T. Lau and D. Diamond, Chemical event tracking 

using a low-cost wireless chemical sensing network, IEEE Sensors (2008) 1615-

1618. 

20. J. Hayes, S. Beirne, B. M. Kiernan, C. Slater, K. T. Lau and D. Diamond, 

Chemical species concentration measurement via wireless sensors, World 

Academy of Science, Engineering and Technology 34 (2008) 158-162. 



 - 16 - 

21. M. O'Toole, K. T. Lau and D. Diamond, Photometric detection in flow analysis 

systems using integrated PEDDs, Talanta 66 (2005) 1340-1344. 

22. K. T. Lau, S. Baldwin, M. O'Toole, R. Shepherd, W. J. Yerazunis, S. Izuo, S. 

Ueyama and D. Diamond, A low-cost optical sensing device based on paired 

emitter-detector light emitting diodes, Anal. Chim. Acta 557 (2006) 111-116. 

23. M. O'Toole, K. T. Lau, R. Shepherd, C. Slater and D. Diamond, Determination of 

Phosphate using a Highly Sensitive Paired Emitter-Detector Diode Photometric 

Detector, Anal. Chim. Acta 597 (2007) 290-294. 

24. D. A. Nivens, M. V. Schiza and S. M. Angel, Multilayer sol–gel membranes for 

optical sensing applications: single layer pH and dual layer CO2 and NH3 

sensors, Talanta 58 (2002) 543-550. 

25. D. A. Nivens, Y. Zhang and S. M. Angel, A fiber-optic pH sensor prepared using 

a base-catalyzed organo-silica sol–gel, Anal. Chim. Acta 376 (1998) 235-245. 

26. L. Byrne, K. T. Lau and D. Diamond, Monitoring of headspace total volatile basic 

nitrogen from selected fish species using reflectance spectroscopic measurements 

of pH sensitive films, Analyst 127 (2002) 1338-1341. 

27. N. Leopold, S. Busche, G. Gauglitz and B. Lendl, IR absorption and 

reflectometric interference spectroscopy (RIfS) combined to a new sensing 

approach for gas analytes absorbed into thin polymer films, Spectrochim. Acta, 

Part A 72 (2009) 994-999. 

28. J. Spadavecchia, G. Ciccarella, P. Siciliano, S. Capone and R. Rella, Spin-coated 

thin films of metal porphyrin–phthalocyanine blend for an optochemical sensor of 

alcohol vapours, Sens. Actuators, B 100 (2004) 88-93. 

29. J. Bharathan and Y. Yang, Polymer electroluminescent devices processed by 

inkjet printing: I. Polymer light-emitting logo, Appl. Phys. Lett. 72 (1998) 2660-

2662. 

30. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu and J. C. Sturm, Ink-jet printing of 

doped polymers for organic light emitting devices, Appl. Phys. Lett. 72 (1998) 

519-521. 

31. H. M. Haverinen, R. A. Myllylä and G. E. Jabbour, Inkjet printing of light 

emitting quantum dots, Appl. Phys. Lett. 94 (2009) 0731081-0731083. 

32. K. Abe, K. Suzuki and D. Citterio, Inkjet-Printed Microfluidic Multianalyte 

Chemical Sensing Paper, Anal. Chem. 80 (2008) 6928-6934. 

33. B. Li, S. Santhanam, L. Schultz, M. Jeffries-EL, M. C. Iovu, G. Sauvé, J. Cooper, 

R. Zhang, J. C. Revelli, A. G. Kusne, J. L. Snyder, T. Kowalewski, L. E. Weiss, 

R. D. McCullough, G. K. Fedder and D. N. Lambeth, Inkjet printed chemical 

sensor array based on polythiophene conductive polymers, Sens. Actuators, B 123 

(2007) 651-660. 

34. K. Crowley, A. Morrin, A. Hernandez, E. O'Malley, P. G. Whitten, G. G. 

Wallace, M. R. Smyth and A. J. Killard, Fabrication of an ammonia gas sensor 

using inkjet-printed polyaniline nanoparticles, Talanta 77 (2008) 710-717. 

35. K. Crowley, E. O'Malley, A. Morrin, M. R. Smyth and A. J. Killard, An aqueous 

ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified 

electrode, Analyst 133 (2008) 391-399. 

36. S. Magdassi and M. B. Moshe, Patterning of Organic Nanoparticles by Ink-jet 

Printing of Microemulsions, Langmuir 19 (2003) 939-942. 



 - 17 - 

37. Y. M. Bae, B.-K. Oh, W. Lee, W. H. Lee and J.-W. Choi, Immunosensor for 

Detection of Yersinia enterocolitica Based on Imaging Ellipsometry, Anal. Chem. 

76 (2004) 1799-1803. 

38. T. N. Stewart, B. E. Pierson, R. Aggarwal and R. J. Narayan, Piezoelectric inkjet 

printing of a cross-hatch immunoassay on a disposable nylon membrane 

Biotechnol. J. 4 (2009) 206-209. 

39. L. R. Allain, D. N. Stratis-Cullum and T. Vo-Dinh, Investigation of 

microfabrication of biological sample arrays using piezoelectric and bubble-jet 

printing technologies, Anal. Chim. Acta 518 (2004) 77-85. 

40. M. S. Hasenbank, T. Edwards, E. Fu, R. Garzon, T. F. Kosar, M. Look, A. 

Mashadi-Hossein and P. Yager, Demonstration of multi-analyte patterning using 

piezoelectric inkjet printing of multiple layers, Anal. Chim. Acta 611 (2008) 80-

88. 

41. N. Reis, C. Ainsley and B. Derby, Ink-jet delivery of particle suspensions by 

piezoelectric droplet ejectors, J. Appl. Phys. 97 (2005) 0949031-0949036   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 18 - 

Table 1 Data outlining the effect of increasing the number of inkjet printed layers of 

chemical sensor on the peak height (µs) obtained (n = 3). 
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Table 2 Comparative data outlining the mean peak height (n = 4) and relative 

standard deviation obtained for the detection of gaseous acetic acid employing 10 

drop casted and 10 inkjet printed colorimetric PEDD chemical sensors. 
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Table 3 Intra and inter-day reproducibility study of a (10 layer) inkjet printed 

colorimetric PEDD sensor for the detection of gaseous acetic acid. 
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Figure 1 Emission spectrum (bold line) of the emitter LED (λmax 590 nm) and the 

absorption spectra of BPB (dashed line) at pH 10 (λmax 617 nm) and (bold grey line) 

pH 2 (λmax 422 nm)  
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Figure 2 Schematic of the experimental set-up for the detection of gaseous acetic 

acid 
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Figure 3 Calibration plot representing the number of inkjet printed layers on the 

surface of a PEDD sensor versus the peak height (µs) obtained. The error bars 

represent the standard deviations for n = 3. 
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Figure 4 Calibration plot representing the number of inkjet printed layers on the 

surface of a PEDD chemical sensor versus the percentage of full response achieved 

after 1 minute. The error bars represent the standard deviations for n = 3. 
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Figure 5 Calibration plot representing the number of inkjet printed layers on the 

surface of a PEDD sensor versus the percentage of full recovery achieved after 2 

minutes. The error bars represent the standard deviations for n = 3. 
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Figure 6 Plot obtained from multiple (n = 4) injections of gaseous acetic acid 

employing 10 (A) drop casted and (B) inkjet printed colorimetric PEDD chemical 

sensors. 
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Figure 7 Mean peak height (µs) data for the detection of gaseous acetic acid using a 

10 layer PEDD chemical sensor for (A) intra-day (n = 5) and (B) inter-day (n = 10) 

reproducibility study. 

 


