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Abstract 

Molecular photoswitches like spiropyrans derivatives offer exciting possibilities for 

the development of analytical platforms incorporating photo-responsive materials for 

functions such as light-activated guest uptake and release and optical reporting on 

status (passive form, free active form, guest bound to active form).  In particular, 

these switchable materials hold tremendous promise for microflow-systems, in view 

of the fact that their behaviour can be controlled and interrogated remotely using light 

from LEDs, without the need for direct physical contact.  We demonstrate the 

immobilisation of these materials on microbeads which can be incorporated into a 

microflow system to facilitate photoswitchable guest uptake and release.  We also 

introduce novel hybrid materials based on spiropyrans derivatives grafted onto a 

polymer backbone which, in the presence of an ionic liquid, produces a gel-like 

material capable of significant photoactuation behaviour.  We demonstrate how this 

material can be incorporated into microfluidic platforms to produce valve-like 

structures capable of controlling liquid movement using light. 

Introduction 

Chemical sensors are devices that provide information about binding events 

happening at the interface between a sensitive film/membrane and a sample phase. 

The function of the sensitive film/membrane is to ensure that the binding at this 

interface is as selective as possible usually by means of entrapped or covalently bound 

receptor sites. The binding event is further coupled with a transduction mechanism of 

some kind; such as a change in the colour or fluorescence of the film or a change in 

electrochemical potential. Clearly, these materials are ‘active’ as binding events must 

occur for them to be of any analytical use. However, it is self-evident that these 

sensitive interfaces will change over time, for example due non-specific binding and 

biofouling in real samples that can lead to surface poisoning or occlusion, or leaching 

of active components into the sample phase. Consequently, the response 

characteristics of chemical sensors and biosensors will change with time, leading to 

gradual decrease in sensitivity, loss of selectivity and baseline drift. In practice, these 

effects are compensated for by regular calibration, until the device deterioration 

reaches some limiting level. In recent years, physical transducers have been 

increasingly deployed in sensor networks. However, for equivalent widely distributed 

chemical sensing to happen, there must be a revolution in the way chemical 

sensors/biosensors are employed, as conventional calibration is inappropriate for 

large-scale deployments due to the cost of ownership (particularly maintenance) of 

these rather complex devices. In this paper, we consider the use of materials that can 

be switched reversibly between two or more different 'personalities with radically 
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different characteristics. For example, materials that can exist in a passive form (non-

binding) until a measurement is required, at which point the material is switched to an 

‘active’ or binding form. Once a measurement is made, the material is switched back 

to the ‘passive’ form. This effect may have important potential applications in 

sensors, purification resins, separation science and drug delivery. We will also suggest 

how polymer actuators may provide routes to new active components in microfluidic 

manifolds, such as pumps and valves, that could form the basis of soft-polymer based 

circulation systems for handling samples, reagents, and standards in futuristic 

analytical devices that have a distinct biomimetic character. 

Sensornets 

‘Sensornets’ are large-scale distributed sensing networks comprised of many small 

sensing devices equipped with memory, processors, and short-range wireless 

communications capabilities.[1]  These devices, known as ‘Motes’ can gather and 

share sensor data from multiple locations through in-built wireless communications 

capabilities.  The vision of incorporating chemical and biological sensing dimensions 

into these platforms is very appealing, and the potential applications in areas critical 

to society are truly revolutionary.[2]  For example, the ‘environmental nervous 

system’ concept likens the rapid access and response capabilities of widely distributed 

sensor networks to the human nervous system; i.e. it is able to detect and categorise 

events as they happen, and organise an appropriate response.[3]  Sensors monitoring 

air and water quality will be able to provide early warning of pollution events arising 

at industrial plants, landfill sites, reservoirs, and water distribution systems at remote 

locations.   

The crucial missing part in this scenario is the gateway through which these 

worlds will communicate; how can the digital world sense and respond to changes in 

the molecular world? Unfortunately, it would appear from the lack of field deployable 

devices in commercial production that attempts to integrate molecular sensing science 

into portable devices have failed to bear the fruits promised; this problem is what we 

call ‘the chemo-/ bio-sensing paradox’,[4] i.e.‘Chemo/bio-sensors must have an 

‘active’ or responsive surface incorporating sites that are pre-designed to bind with 

specific target species in order to generate the chemically or biologically inspired 

signal; at the same time, these surfaces should be passive, in that they should be 

resistant to effects that cause signal drift and loss of sensitivity. 

 

The interactions involved in these binding events can be very subtle, and even slight 

changes in the surface or bulk characteristics through processes like leaching, fouling, 

or decomposition, can have a significant effect on the output signal, and the overall 

performance of the device.  This is in contrast to physical transducers, as they can 

function without having to make direct physical contact with the ‘real world’.  For 

example, thermistors are completely enclosed in a tough protective epoxy coating that 

enables heat to pass through from the real world, and light sensors, which are also 

completely enclosed, leaving a transparent window through which light can penetrate 

from the region under observation. When chemo/bio-sensors are exposed to the real 

world, their sensitive surfaces immediately begin to change, and hence they suffer 

from baseline drift and variations (usually reduction) in sensitivity, as well as cross-

response to interferents that may be present in the sample. 

In analytical science, we deal with this issue through regular calibration, meaning 

that the sensing surface is periodically removed from the sample and exposed to 

standards, the response characteristics checked, and any baseline drift or change in 
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sensitivity compensated.  However, if this type of capability is to be provided to an 

autonomous chemo/bio-sensing platform, it requires that a liquid flow system is 

integrated, comprising pumps, valves, and interconnects. This drives up the 

complexity, price and power requirements of these platforms, and makes the 

realisation of small, autonomous, reliable, chemical sensing/biosensing devices 

impractical at present. 

Therefore, the traditional vision of the ‘chemo/bio-sensor’ as a device with an 

active membrane attached to a pen-like probe is outdated, and needs to be completely 

rethought. In particular, the issue of how to predict and control surface characteristics 

at the interface between the device and the real world needs fresh thinking, as this is 

where the molecular interactions that generate the observed sensor signal happen. The 

key to progress will require breakthroughs arising from new concepts in fundamental 

materials science, such as the development of adaptive or stimuli-responsive 

materials that have externally or locally controllable characteristics.  These materials 

could be regarded as having capability to switch between several completely different 

‘personalities’ – schizophrenics at the molecular level! 

In this paper, we shall show how certain photochromic molecules display 

intriguing switchable characteristics, and suggest ways in which this can be used to 

control the function and behaviour of sensing devices and platforms. 

Experimental 

Materials and instruments 

(1’-(3-carboxypropyl)-3’,3’-dimethyl-6-nitrospiro(2H-1)benzopyran-2, 2’-(2H)-

indole) (SPCOOH, Figure 1) was synthesized as reported elsewhere [5]. Polybead 

carboxylate microbeads 2.035 µm diameter, 2.79% solid contents, were purchased 

from PolySciences Inc. Plain silica microspheres (5 ± 0.35 µm diameter, 5 % solid 

contents), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC 

hydrochloride), (3-Aminopropyl)triethoxysilane (APTES), 2-(N-

morpholino)ethanesulfonic acid hydrate (MES hydrate), 1,8-diaminooctane, calcium 

nitrate hydrate, copper(II) nitrate trihydrate and zinc chloride were purchased from 

Sigma Aldrich (Ireland). Ammonia solution 25% was purchased from Sharlau 

Chemie (Spain). Homogeneous suspensions of microbeads were generated using a 

Bransonic Ultrasonic Cleaner 5510 from Branson Ultrasonics Corporation, USA. UV 

(375 nm), white (430-760 nm), blue (430 nm), green (525 nm), red (630 nm) LEDs 

were purchased from Roithner Laser Technik, Austria. The UV light source used for 

the solution studies was a BONDwand UV-365nm obtained from Electrolyte 

Corporation, USA. Sample spinning was carried out using a ROTOFIX 32 centrifuge 

(Global Medical Instrumentation, Inc., USA.).  Absorbance spectra were recorded 

using a Well Plate Spectrometer (Medical Supply Co., Ireland). Reflectance spectra 

were recorded using a miniature diode array spectrophotometer (S2000
®
) combined 

with an FCR-7UV200-2 reflection probe (7 X 200 micron cores) and a DH-2000-FSH 

deuterium halogen light source (215-1700 nm, Ocean Optics Inc., Eerbeek, 

Netherlands). A white reflectance standard WS-1-SL was used to standardise the 

measurements at 100% reflectance (Ocean Optics Inc., Eerbeek, Netherlands).  
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Figure 1. 1’-(3-carboxypropyl)-3’,3’-dimethyl-6-nitrospiro(2H-1)benzopyran-2, 2’-

(2H)-indole (SPCOOH). 

 

Covalent immobilisation of spiropyran on the surface of silica microspheres  

1) Amino groups coating of the silica microsphere surface 

A sample of a suspension of silica microspheres (0.1 g in 2 ml of water) was diluted 

with 22.5 ml ethanol. 2.5 ml of ammonia solution 25% and 2 ml of APTES were 

added and the mixture stirred under reflux for 48 hours. The microspheres suspension 

was then cooled, separated from the reaction mixture by centrifugation, suspended in 

4 ml of ethanol and washed 6 times with fresh ethanol. The washing procedure 

consists of a four step process:  

1. Centrifugation of the suspension for 3 minutes at 4000 rpm. 

2. Removal of the supernatant, addition of 4 ml of fresh solvent. 

3. Sonication of the suspension for 5 minutes. 

4. Subsequent further centrifugation. 

 

2) Covalent immobilization of Spiropyran on the surface of amino groups 

functionalised silica microbeads 

3 ml of a 15 mg ml
-1

 solution of SPCOOH in ethanol was added to 2 ml of an 11 mg 

ml
-1

 solution of EDC in ethanol. The reaction mixture was stirred for half an hour at 

room temperature in the dark.  A 1 ml suspension of 0.1 g of the amino 

functionalised microspheres in ethanol was added to the spiropyran/EDC solution 

and the reaction mixture stirred for 72 hours at room temperature in the dark.  

Finally, the spiropyran functionalised microbeads were profusely washed 10 times 

with ethanol following the above procedure and stored at 4 ºC in the dark. 

 

Evaluation of metal interactions with SP-coated microspheres 

Spiropyran coated silica and polystyrene microspheres suspended in ethanol were 

exposed to the same concentrations (10
-4

 M) of ethanolic solutions of Ca
2+ 

and Cu
2+

 

(polystyrene microspheres) and Ca
2+

, Cu
2+ 

and Zn
2+

 (silica microspheres) in order to 

evaluate the complex formation at the bead surface.  

Each experiment was carried out using the following procedure: 

1. Exposure of the microspheres to a white LED  for 1 minute (promotes MC 

conversion to the SP form) 

2. Recording of the spectrum of the colourless SP form. 

3. Exposure of the microspheres to a UV LED for 1 minute (promotes SP 

conversion to the MC form). 

4. Recording of the spectrum of the coloured MC form. 

5. Addition of 10
-4

 M metal solution in ethanol to the microspheres. 

6. Recording of the spectrum. 

Page 4 of 15



7. Exposure of the microspheres to a white LED  for 1 minute (promotes metal 

expulsion and MC conversion to the SP form 

8. Recording of the spectrum of the colourless SP form. 

 

 

Preparation of photo-responsive phosphonium based ionogel 

The ionogel consists of three monomeric units; N-isopropylacrlamide (NIPAAm), 

N,N-methylene-bis(acrylamide) (MBAAm) and acrylated benzospiropyran in the ratio 

100:5:1, respectively (Scheme 1). The acrylated benzospiropyran is synthesised as 

described elsewhere [6]. A reaction mixture solution placed in the micro-fluidic 

reservoir was prepared by dissolving the NIPAAm monomer (452 mg, 4.0 mmol), the 

MBAAm (10.8 mg, 0.07 mmol), acrylated spirobenzopyran monomer (14.0 mg, 0.04 

mmol), and the photo-initiator dimethoxy-phenylacetophenone (DMPA) (10.2 mg, 

0.04 mmol) into 1-buthanol (1.0 mL). These monomers were photo-polymerised 

within an ionic liquid matrix. For this example, the ionic liquid matrix used was 

trihexyltetradecylphosphonium dicyanoamide [P6,6,6,14][dca]. UV irradiation source 

for polymerization (365 nm) was placed 8 cm far from the monomers. When the 

polymerization was completed, the gels were washed with ethanol and 0.1 mM HCl 

aqueous solution for 10 min to remove the unpolymerised liquid and the excess of 

ionic liquid. Finally the ionogels were kept for two hours in 0.1 mM HCl aqueous 

solution, where the ionogel exhibits a drastic and rapid swelling effect. 
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Scheme 1. a) Photo-responsive polymer poly(N-isopropylacrylamide), N,N-

methylene-bis(acrylamide) and acrylated benzospiropyran in the ratio 100:5:1, 

respectively. b) trihexyltetradecylphosphonium dicyanoamide [P6,6,6,14][dca] ionic 

liquid. 

 

Micro-fluidic device fabrication 

The micro-fluidic device shown in Figure 2 (4 x 4 cm) was easily fabricated in 

poly(methyl methacrylate) (PMMA) and pressure-sensitive adhesive (PSA) in four 

layers using CO2 ablation laser and it consist of five independent micro-channels. The 

ionogel valve is placed in a square reservoir (300 × 300 µm), fabricated using the CO2 

laser, within the PMMA 125 µm and the PSA 80 µm thickness layers.  It is important 

to mention here that micro-valves can be easily relocated simply by varying the layer 

layout. A second PSA layer with the channel structures (80 µm deep, 150 µm width, 

and 20 mm length) was fabricated using the CO2 laser and terminally glued to the 
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previous PSA layer to generate the micro-fluidic structure. Finally the upper PMMA 

layer, which contains the inlets and outlets, closes the micro-fluidic structure. 

 
Figure 2. Picture of three micro-fluidic devices fabricated in PMMA:PSA polymer by 

CO2 ablation laser system. Channels were filled with different dyes to improve 

channel visualization. 

Characterization of the photo-responsive phosphonium based ionogel 

Volume phase transition behaviour of the photo-responsive phosphonium based 

ionogel was investigated using visible light irradiation. The physical shrinking by 

photo-induced dehydration of the ionogel was measured on-line by contact 

profilometer experiments when visible light is applied, Figure 3, and by visual 

observation using a PARISS: "Prism and Reflector Imaging Spectroscopy System” 

equipped with a CCD camera. 

 

(a)                                                (b)(a)                                                (b)
 

Figure 3. a) Schematic representation of the set-up used for the profilometer 

measurements. b) Ionogel shrinking process: 1- during white light irradiation, 2- two 

seconds after white light irradiation, size decrease 29 % in volume. 

Evaluation of micro-valve function 

In order to evaluate the function of the ionogel micro-valves fabricated on the micro-

fluidic device, a red dye, B12 vitamin 1 µM concentration in water was placed into the 

inlet reservoir. In the outlet, a constant vacuum was applied as the driving force. 
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Visible light irradiation was carried out at 5 mm separation from the valve. When 

light is applied the polymer decreases in volume and the valve opens, letting the 

coloured liquid pass through the channel. The liquid movement was observed with a 

CCD camera. 

Results and Discussion 

There is considerable interest in spiropyrans and similar photochromic molecules due 

to their potential applications in areas such as light-sensitive eyewear,[7] information 

recording and processing,[8] optical memory,[9] and molecular devices.[10] We are 

interested in their optical sensing applications [11-14] and in particular their potential 

for playing multiple roles within a chemical sensor (photoswitch, ligand, transducer). 

Utilizing photo-switchable molecules such as spiropyrans, which can be switched 

between active or passive forms, may enable such behaviour to be realised. Upon 

exposure to UV light, the colourless spiropyran (SP) molecule undergoes a 

heterocyclic ring cleavage that results in the formation of the merocyanine (MC) form 

(Scheme 2), which has a deep purple colour as it is a planar, highly conjugated 

chromophore with a strong absorbance in the visible spectrum. It is well known that, 

after removal of UV light, the predominant MC form generated will thermally 

isomerize back to its equilibrium state; and this decay in absorbance typically follows 

first-order kinetics. [15] Furthermore, the MC isomer has a phenolate anion site to 

which ions, protons and amino acids can bind, giving rise to new absorption bands in 

the visible spectrum. [16-18] By shining white light on the colored complex, the guest 

species is released, and the spiropyran form is regenerated.  

 
Scheme 2. Structures of nitrobenzospiropyran (SP), left, and merocyanine (MC), 

right.  

 

Therefore these photoswitchable molecules possess some of the characteristics we are 

interested in employing in next generation analytical platforms.  However, it is a 

significant challenge to manifest these characteristics in a materials format that is 

compatible with the microfluidic platforms we employ.  In order to achieve this, we 

need to incorporate the switchable moiety within a polymeric matrix through a range 

of approaches such as physical entrapment within bulk polymers,[19] grafting to 

monomers,[5] or standard surface immobilisation chemistries like EDC coupling.[20]  

We are particularly interested in bringing addition innovation to this process, for 

example, by generating novel hybrid materials such as photoswitchable ionogels (see 

below). 

 

Computational analysis 

In order to assist with this research, and to better understand the molecular basis for 

observed characteristics, we have recently employed computational analysis 

techniques to aid in the design of innovative hybrid materials comprising of 

spiropyran derivatives and ionic liquids.  Standard ab initio molecular orbital theory 

and density functional theory (DFT) calculations were carried out using GAUSSIAN 
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03 [21], which enabled excitation energies of the MC isomer to be computed at 

CIS(D)/6-31+G(d,p) level. All molecular orbitals were plotted using the HF/6-

31+G(d,p) electron density. The molecular orbitals on the MC isomer are shown in 

Figure 4. The first excitation arising from the HOMO has an energy of 569 nm, and as 

this excitation is allowed by symmetry, it is clearly evident in the visible spectrum.  

 
Figure 4. HOMO-1 molecular orbital of the MC isomer. 

 

We have also studied the interactions of organic cations and anions with the MC 

isomer, such as imidazolium [emim]
+
 and dicyanoamine [dca]

-
. For [emim]

+
 , we 

found that the [emim]
+
 cation appears to interact predominantly via the C2 carbon 

which resides only 2.92 Ǻ (the C---O distance, Figure 5a) away from the phenolate 

oxygen.  The sum of the van der Waals radii of the carbon and oxygen atoms is 3.22 

Ǻ and hence, the C---O separation appears to be considerably shorter than a normal 

close contact. This C2 hydrogen is in fact known to be quite acidic.[22] The C2 

hydrogen atom sits in between the carbon and oxygen atoms (CHO bond angle close 

to linear) introducing a very short/strong hydrogen bond of just 1.865 Ǻ  (H–O 

distance).  As a comparison, a strong hydrogen bond, e.g. O–H--O, is slightly longer 

in length, around 1.9 Ǻ.[23] Moreover, such a close proximity of the two ions results 

in a through-space orbital interaction, with molecular orbitals on both oxygen and 

carbon atoms overlapping, and forming a strong interaction between the two 

molecules. Due to the through-space interaction, the species formed is likely to be 

quite stable and will thus hinder conversion of the MC form back to the aplanar SP 

isomer.[24] The optimised structures of MC with the [dca]
-
 anion are shown in Figure 

5b. This suggests that the two conjugated systems are tilted away from one another, a 

feature which will also inhibit the thermal relxation of MC back to SP state, as the 

two conjugated systems have a much lower degree of interaction. These calculations 

have led us to prepare similar systems and investigate these materials experimentally, 

as described below.  

 

(a)                                  (b)(a)                                  (b)
 

Figure 5. Optimized structures of MC isomer with the (a) [emim]
+
 and (b) [dca]

- 
at 

B3LYP/6-31+G(d). 
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Chemical Sensing utilizing bead technology 

In the past we have utilized polymeric supports for photo-regenerable chemical 

sensing applications. [20, 25] Bead based systems are particularly interesting from the 

chemical sensing perspective as they have higher surface area compared to flat 

surfaces, which can enhance kinetics compared to conventional surfaces.[26] In 

addition beads can be moved like a fluid but are easily separated from the liquid phase 

and hence their incorporation into flow systems for separation science holds many 

advantages.[27, 28] Recently spiropyran has been covalently immobilised on the 

surface of silica and polystyrene microspheres and their light-modulated 

characteristics including ion-binding capability have been investigated.[29] Covalent 

functionalisation involves the use of a carboxylated spiropyran derivative (Figure 1) 

which is attached to the bead surface via EDC coupling chemistry.[20] The resulting 

SP-functionalised microspheres can be switched back and forth between a pink 

coloured MC form and a colourless SP form using a 375 nm UV-LED (SP⇒MC 

switching) and a 430-760nm white LED (MC⇒SP switching) (Figure 6).  

 

Figure 6. Spiropyran switching between the colourless SP and the pink MC form on 

the surface of the silica functionalised microspheres. 
 

The colour changes have been detected using reflectance spectroscopy (in the case of 

polystyrene microspheres, due to their high scattering effect) and absorbance 

spectroscopy (in the case of silica microspheres, due to their higher transparency). 

Upon irradiation with UV-LED for 1 minute, the pink MC form is generated on the 

microsphere surface, and the characteristic 560 nm band appears,  further exposure of 

the MC-microspheres to a white LED for 1 minute causes reconversion to the 

colourless SP form and the disappearance of the characteristic MC band, as seen in 

Figure 7. When the MC-microspheres are exposed to certain metal ion solutions, they 

undergo further spectral and visible colour changes, due to the formation of MC2-M
2+

 

complexes. Subsequently exposure of the beads to illumination with a white LED 

causes the metal-ion guest to be expelled and the SP form is restored, ready for 

another ion-binding event. In the case of the silica microspheres the greatest ion 

binding effects were observed in the presence of Zn
2+

 and Cu
2+

 ions (Figure 7).  

Under exposure of the MC-microspheres to Zn
2+

, a clear visual colour change from 

purple (MC) to light pink (MC2-Zn
2+

) can be observed. This is caused by a decrease 

in the MC absorbance band around 560 nm and the emergence of a new absorbance 

band centred around 525 nm arising from the MC-metal ion complex, consistent with 

the replacement of free MC by the ion-complex on the microsphere surface. 
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Figure 7. Absorbance spectra and visual colour changes on the surface of silica 

microspheres in the presence of the MC and SP form and after exposure of the MC 

form to metal ions (Cu
2+

, Zn
2+

 and Ca
2+

). 
 

 

Similarly, the addition of Cu
2+

 ions to the MC-microsphere sample results in a colour 

shift from purple to orange (formation of MC2-Cu
2+

 complex), which arises from the 

disappearance of the 560 nm MC peak and the simultaneous appearance of two new 

absorbance bands at 440 nm and 750 nm. In both cases, after the formation of the 

MC-metal ion complex, replacement of the metal ion solution with clean ethanol, 

followed by irradiation of the microbeads for 4 minutes with a white LED, leads to 

expulsion of the bound Cu
2+

 ions and complete reformation of the SP form on the 

beads. Following this, irradiation of the microspheres for 2 minutes with the UV-LED 

converts the SP back to the MC form, ready for another metal ion uptake and release 

cycle. This light-modulated ion retention and release behaviour, coupled with visible 

indication of the bead state, opens the possibility of developing photocontrolled 

stationary phases that can be activated and deactivated using light. These results show 

that spiropyran modified beads can be used for the photo-controlled selective 

accumulation and release of ions.  Furthermore, the system is inherently self-

indicating, as each form (SP, MC, MC2-M
2+

 complex) has a different colour and UV-

vis spectrum. Clearly, this behaviour could have many interesting applications in 

selective pre-concentration on certain ions, transport of bound ions to remote 

locations, and controlled release of bound ions, using light as the external controlling 

stimulus. Figure 8 shows functionalised polystyrene microspheres packed into an 

optically transparent silica capillary being switched between the two forms (SP and 

MC).  In this form, the beads can clearly be applied to photocontrolled metal-ion 

uptake and release in a capillary flow system.  
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Figure 8. Switching of SP-modified polystyrene microspheres between the SP and 

MC forms in a silica microcapillary using UV and white LEDS.  

Polymeric Actuation using light- Applications in Microvalve Technology. 

Even with their impressive physical changes, electro-actuators employing soft 

polymer materials like conducting polymers have not solved the micro-actuator 

problem within the field of microfluidics. This is due to the complex fabrication 

schemes required to incorporate these materials into microfluidic manifolds. 

Therefore, controlling physical properties with temperature,[6, 30]  photon 

irradiation,[31, 32] or specific chemical (pH, ionic strength)[33, 34] stimulii would be 

of great benefit for rapid prototyping.  

We have developed a photo-responsive microvalve from a hybrid material 

(ionogel), see Scheme 1. In an acidic aqueous system in the dark, the ionogel (MC-

H
+
) is in a protonated open-ring form. When irradiated by blue light, the MC-H

+
 

isomerizes immediately to a closed-ring form (SP), dissociating protons and losing 

positive charges. When the light is turned off, the chromophore returns spontaneously 

to the protonated open-ring form, which is more thermodynamically stable in the dark 

than the closed-ring form. The photoisomerization affects the hydration of the ionogel 

significantly. Under dark conditions, the MC-H
+
 form (hydrophilic) ionogel is yellow. 

When the ionogel is irradiated with blue light, the ionogel decolorizes, indicating the 

SP form (hydrophobic) is present. Simultaneously, the gel reduces in size due to loss 

of charge, and associated induced dehydration of water from the polymer. This photo-

induced dehydration results in a physical shrinkage of the ionogel, as seen in the 

images within Figure 3b. Our results indicate that the photo-induced ionogel 

shrinkage proceeds through two distinct steps; at first, the isomerization of the MC-H
+
 

to closed-ring SP (uncharged) form take place under white light irradiation for 3 s, 

calculated experimentally to be 2.5 x10
-2

s
-1

. The resultant hydrophobic isomer induces 

the dehydration of polymer main chain.  After 150 seconds of exposure to visible 

light, there is a 73 % decrease in the ionogel height, Figure 3a, as monitored using a 

physical contact profilometer. The rate constant for the slower (shrinkage) stage was 

experimentally calculated to be 0.457 s
-1

.[35] Optical control of a microvalve 

structure built into a microfluidic channel was demonstrated as shown in Figure 9. A 

drop of a solution containing a red dye was placed in the inlet of the channel while at 

the outlet a vacuum was applied (Figure 9a). The microvalve was irradiated with 

white light as shown in Figure 9b, and the micro-valve opened after 3 s, allowing 

liquid to pass trough the channel to the outlet, Figure 9c-e. The light intensity 

necessary to control the ionogel micro-valve is not particularly intense, for example, a 

simple white LED ca. 1 mW cm
-2

 [19] can be used to actuate the valve.  
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Figure 9. Performance of the ionogel micro-fluidic valve. a) Micro-valve is closed; 

vacuum is unable to draw the red dye through the micro-channel. b) White light is 

applied opening the micro-valve. c-e) The red dye moves along the micro-channel. 

The isomerization of the MC-H
+
 induced by white light irradiation is a reversible 

phenomenon. The closed-ring form returns spontaneously to the protonated open-ring 

form, which induces the swelling of the ionogel. Therefore, it is possible to reuse the 

micro-valves repeatedly, although the ionogel in its present form requires more than 

30 min to swell again and block the whole channel. Nevertheless, a large number of 

micro-valves can be fabricated simultaneously using the same process described 

above and therefore, the method is suitable for large-scale integration of micro-valves 

on microfluidic manifolds. The micro-valve control by light irradiation provides non-

contact operation and independent manipulation of multiple fluids on microfluidic 

devices, as well as parallel control of multiple micro-valves. It is expected that such 

photoresponsive polymer gel micro-valves will be an advantageous technique for 

integrated multifunctional micro-fluidic devices.[36] 

Conclusions 

 

The key to many new technologies lies in the development of materials that exhibit 

stimulus-responsive behaviour.  This area has undergone rapid growth in recent years, 

as the science and technology of molecular and nano-scale control and 

characterization of materials continues to develop.  The range of materials that can be 

switched between dramatically different modes of behaviour is expanding rapidly, 

and in this paper, we have only been able to provide an introduction into some of the 

exciting possibilities that can arise from materials containing spiropyran derivatives.  

Even within the limits of this particular paper, it is clear that these materials could 

revolutionise the capabilities of analytical platforms, facilitating light modulated 

uptake and release of molecular guests on channel surfaces and beads, transport of 

bound species to other locations on beads, photo-switchable separation of sample 

components, light-actuated valves and pumps to control liquid flow, which, if 

integrated with simple optical detection, could provide a route to low-cost analytical 

platforms with whose characteristics are completely controlled using light.  And 
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beyond the analytical world, these materials have the potential to be incorporated into 

a wide range of specialist and consumer products within the next 5 years that could 

dramatically impact on society.  Furnishings and clothes that change colour, textiles 

that can sense and communicate, chemical sensors whose surface binding activity can 

be turned on/off, and materials with light switchable hydrophobicity/permeability.  

All in all, it seems clear that there are exciting times ahead in sensor science aligned 

with adaptive or stimuli-responsive materials! 
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