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Abstract — In this paper, we propose the Fukunaga-Koontz Trans-
form (FKT) as applied to Small-Sample Size (SSS) problems and
formulate a feature scatter matrix based equivalent of the FKT. We
establish the classical Linear Discriminant Analysis (LDA) analogy
of the FKT and apply it to a SSS situation. We demonstrate the sig-
nificant computational savings and robustness associated with our
approach using a multi-class face detection problem.
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I Introduction

In high-dimensional signal processing applications
such as state-space analysis, image and array
processing, etc. it is necessary to analyse the data
in a low dimensional subspace. Algorithms based
on the Karhunen-Loève Transform (KLT) or eigen
analysis are widely used in subspace signal process-
ing, e.g. PCA, MUSIC, ESPRIT etc. These algo-
rithms are computationally efficient in generating
a low-dimensional eigen subspace from the avail-
able signal samples to which new signal samples
could be projected to process them quickly and
efficiently.

a) The KLT in Two-Class Problems

In signal processing and pattern recognition, we
often encounter the two-class problem where it is
necessary to separate or classify the two classes of
either the signal, noise or noise corrupted signal
from one another. The KLT as used in two-class
problems take the following general form: using
the samples from one of the two classes C1 or C2,
an eigen subspace is generated which is expected to
capture almost all the variability of that particular
class of samples, say C1. A new signal belonging to
C1 is statistically expected to fit well into this eigen
subspace. In many problems such as face recogni-
tion, direction-of-arrival estimation, etc., the sig-
nal belonging to C1 would respond very differently
from that of C2 enabling good signal classifica-
tion performance. The KLT does not tell where
in the eigen subspace created using the samples
from C1, would the projections of samples from C2

might fall. As a result, in many cases when there

is considerable overlap between the projection of
samples from C1 and C2 in the low-dimensional
eigen subspace, the KLT-based signal classification
might fail.

b) Organisation of the Paper

In this paper we analyse the Fukunaga-Koontz
Transform (FKT) which uses the KLT to gener-
ate a shared eigenspace for both C1 and C2 where
their principal eigen subspaces are orthogonal com-
plements of each other. Since the principal eigen
subspaces generated using FKT do not overlap, it
could be used for effective classification in many
difficult two-class problems.

Throughout signal and image processing litera-
ture, we can see numerous successful applications
of FKT. In this paper, our emphasis is on the small
sample size (SSS) problems which are situations
where the dimensionality of the signal is larger
than the number of signal samples. Such situa-
tions are very common in image processing where
it is often not possible to get, say for e.g., over
ten thousand image samples for 100×100 pixel im-
ages. Our motivation is that in SSS situations, the
definition of FKT simply does not exist.

In this paper, we first introduce the FKT and ex-
amine the properties of its eigen subspaces and ex-
plain the process of classification using them. We
then see the computational requirements of FKT
in high-dimensional problems and discuss the ef-
fect of SSS problems. We go on to define the
various scatter matrices associated with the avail-
able data and derive the FKT equivalent for a SSS
problem using the “feature scatter matrix”. Next,
for addressing the computational requirements of
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the FKT for high-dimensional problems, we bor-
row the concepts from classical linear discriminant
analysis (LDA). We establish the equivalence of
LDA and FKT and use the results obtained from
the SSS-FKT problem to derive a computationally
simple FKT.

II Fukunaga-Koontz Transform

Let Ci, i = 1, 2 be the classes in a two-class sig-
nal identification problem with a priori probabil-
ities Pi and class autocorrelation matrices Ri =
PiE(xxT |x ∈ Ci). Let Q = VQΛQVT

Q denote the
eigenvalue decomposition of Q where Q = R1+R2

is the sum of the class autocorrelation matrices.
The Fukunaga-Koontz transform (FKT) matrix[1]

is defined as 1

S = VQΛ−1/2
Q (1)

which transforms a signal x to xz = ST x. From
equation (1), it can be easily observed that

ST QS = I. (2)

Certain applications of the FKT can be seen in
[2], [3] and [4] and [5] discusses some of the statis-
tical properties of the FKT.

III Classification using FK Transform

a) Orthogonality of FK Principal Subspaces

The class autocorrelation matrices for the FK
transformed signals xz are Rzi = PiE(xzxT

z |xz ∈
Ci) = PiE(ST xxT S|x ∈ Ci) = ST RiS, or

Rzi = ST RiS. (3)

With the aid of equation (2), it is easy to see that

Rz1 + Rz2 = ST (R1 + R2)S = ST QS = I (4)

Let the columns of Vzi be the eigenvectors of Rzi

arranged in descending order of their correspond-
ing eigenvalues and let V̂zi denote the first few
columns 2 of Vzi corresponding to the principal
eigenvectors of Rzi .

It has been proven[1] that the principal eigen-
vectors of Rz1 are the least principal eigenvectors
of Rz2 and vice-versa. We evaluate this fact in the
form of the following theorem that we propose as
follows.

Theorem III.1. The FK autocorrelation matrices
Rz1 and Rz2 share the same eigenspace such that
their principal eigen spaces are orthogonal comple-
ments of each other.

1ΛA = diag(λA1 . . . λAN
) is the diagonal eigenvalue

matrix of A, where λAi
≥ λAj

for i < j and Λp
A =

diag(λp
A1

. . . λp
AN

) for p ∈ R.
2A = [ÂǍ] implies column partitioning of A and for

eigenvector matrix VA = [V̂AV̌A], columns of V̂A are prin-
cipal and columns of V̌A are least principal eigenvectors

Proof. Let e be an eigenvector of Rz1 with
eigenvalue λ. This implies Rz1e = λe. But ac-
cording to equation (4), Rz2e = (I − Rz1)e =
e − Rz1e = e − λe = (1 − λ)e. This shows
that if e is an eigenvector of Rz1 with eigen-
value λ, then e is also an eigenvector of Rz2 with
eigenvalue (1− λ). Since autocorrelation matri-
ces are positive definite, the eigenvalues of Rz1

and Rz2 are all positive. For eigenvalues λ and
1 − λ to be simultaneously positive, 1 ≥ λ ≥
0 for all eigenvalues of Rz1 and Rz2 . Let us
retain M principal normalized eigenvectors of Rz1

and form V̂z1 =
[
vz11

. . .vz1M

]
corresponding to

the eigenvalues λ̂z1 = (λz11
. . . λz1M

) such that
1 ≥ λz11

≥ . . . ≥ λz1M
> 0. Then from KLT,

the best approximation of a vector x ∈ C1 in the
least square sense using any linear combination of
M vectors is obtained using V̂z1 .

Similarly, suppose we retain N − M principal
normalized eigenvectors of Rz2 and form V̂z2 =[
vz21

. . .vz2N−M

]
corresponding to the eigenval-

ues λ̂z2 = (λz21
. . . λz2N−M

) such that 1 ≥ λz21
≥

. . . ≥ λz2N−M
> 0. Then from KLT, the best ap-

proximation of a vector x ∈ C2 in the least square
sense using any combination of N −M vectors is
obtained using Vz2 .

Because, an eigenvector of Rz1 with eigen-
value λ is also an eigenvector of Rz2 with eigen-
value 1 − λ, we can write λ̂z2 as: λ̂z2 =(
(1− λz1M+1

) . . . (1− λz1N
)
)
. Hence, λ̂z2 corre-

sponds to the set of least important N −M ortho-
normal eigenvectors of Vz1 which we denote 2 as
Ṽz1 . So we can write

V̂z2 = Ṽz1 . (5)

But because of the orthogonality of the eigenvec-
tors in Ṽz1 and V̂z1 , we have 3

(span(V̂z1))
⊥ = span(Ṽz1). (6)

Using equation (5), we write the above equation
as

(span(V̂z1))
⊥ = span(V̂z2) (7)

We note that the columns of V̂z1 is a set of bases
for span(V̂z1) ⊂ RN . Similarly, the columns of
V̂z2 is a set of bases for span(V̂z2) ⊂ RN . From
linear algebra, we understand that this is possible
if and only if span(V̂z1) and span(V̂z2) are com-
plementary subspaces of RN :
(
span(V̂z1)⊕ span(V̂z2)

)
⊂ RN . (8)

3span(A) is the vector space generated by all the linear
combinations of the columns of A
V⊥ is the orthogonal complement of vector space V
V ⊕ U means the direct sum of vector spaces V and U



From equations (7) and (8) , we deduce that
V̂z1 and V̂z2 span two spaces which are orthog-
onal to each other and their direct sum spans RN .
But the spaces spanned by V̂z1 and V̂z2 are the
principal subspaces of Rz1 and Rz2 respectively
and hence the proof.

b) Classification Schemes using V̂zi

From linear algebra[6], the best reconstruction of
x ∈ Ci in the subspace spanned by V̂zi

is given by

x̂zi
= V̂ziV̂

T
zi

ST x. (9)

By the orthogonal complementary property of the
principal eigenspaces, viz., V̂zi

= V̂⊥
zj

; i, j ∈
{1, 2}; i 6= j; we could use several schemes to per-
form classification. Either we could use the neigh-
bourhood of the coordinates of the projection as a
classification scheme. Or, for xz = ST x, we could
evaluate the reconstruction error ||xz − x̂zi

|| based
classification criterion i.e,

if ||xz − x̂zi || < ||xz − x̂zj ||, classify x ∈ Ci (10)

IV Limitations of FK Transform

Though robust features can be extracted using it,
there are two fundamental limitations of FKT.

First, there are certain very expensive opera-
tions that have to be performed, for e.g., the com-
plete eigenvalue decomposition Q = VQΛQVT

Q

of the sum of the class autocorrelation matrices
Q and then the computing of the FKT matrix
S = VQΛ−1/2

Q . This has to be followed by the
computing of the FKT class autocorrelation ma-
trices Rzi = SRiST and then its complete eigen-
value decomposition Rzi = VRzi

ΛRzi
VT

Rzi
to ob-

tain the principal eigenvectors of VRzi
onto which

we need to project xz = ST x to perform classi-
fication. These computations are prohibitive for
high-dimensional signals.

Secondly for an SSS problem, Q is rank-deficient
and hence some of its eigenvalues occurring as di-
agonal elements of ΛQ would be zeros. Conse-
quently, the inverse Λ−1

Q does not exist and we

cannot define the FKT matrix S = VQΛ−1/2
Q .

V Finding S using Feature Scatter

a) Scatter Matrices

Assuming that the mixture mean of the data is
subtracted from all the signal samples in the data-
base, we could compute the scatter matrices[7]

from the zero mean data as follows. The
‘between class’ scatter matrix signals is ζb =∑

i=1,2 Piµiµ
T
i , where µi is the mean of the class

Ci. The ‘within class’ scatter matrix is defined as

ζw =
∑

i=1,2

PiE((x− µi)(x− µi)
T | (x ∈ Ci))

=
∑

i=1,2

PiE(xxT |x ∈ Ci)−
∑

i=1,2

Piµiµ
T
i

= (R1 + R2)−
∑

i=1,2

Piµiµ
T
i

= Q− ζb. (11)

The mixture scatter matrix is defined as

ζm = ζw + ζb (12)

which means that for a mixture mean subtracted
dataset, we have

ζm = Q. (13)

and by substituting equation (13) in equation (2),
we get

ST ζmS = I (14)

b) Small Sample Size Eigenvalue Decomposition

Let Hm denote the matrix whose columns corre-
spond to samples from some database with zero
mixture mean. The signal mixture scatter matrix
for these samples is defined as

ζm = HmHT
m (15)

and the feature scatter matrix for these samples is
defined as

χm = HT
mHm. (16)

We write the eigenvalue decomposition of the fea-
ture scatter matrix as follows

χm = VχmΛχmVT
χm

(17)

where Λχm is diagonal, and Vχm is orthogonal.
Post-multiplying equation (17) by Vχm followed
by pre-multiplying by Hm, we see that

(
HmHT

m

)
(HmVχm) = (HmVχm)Λχm

or ζm (HmVχm) = (HmVχm)Λχm . (18)

Hence, we can write equation (18) in the form

ζmEm = EmΛχm (19)

where

Em = HmVχm (20)

which means that the columns of Em constitute
the orthogonal eigenvectors of ζm.



c) Singular Eigenvalues in SSS Problems

Since the eigenvectors corresponding to singular
values of χm will also be eigenvectors correspond-
ing to the singular values of ζm, we do not need
to include those eigenvectors in Vχm

. As will be
discussed later, all eigenvectors in the nullspace of
ζm could be safely eliminated.

We have to emphasize here that the feature scat-
ter matrix eigenvalue decomposition is computa-
tionally simpler than finding the complete eigen-
value decomposition of ζm and subsequent elimi-
nation of its eigenvectors corresponding to singular
eigenvalues.

d) Small Sample Size FKT

Due to the equivalence of ζm and Q in equation
(13), we understand that the columns of Em are
the eigenvectors of Q corresponding to the non-
singular eigenvalues of Q found as the diagonal
elements of Λχm

. Hence we define the small sam-
ple size equivalent of the FKT matrix of equation
(1) as

Ŝ = EmΛ−1/2
χm

. (21)

VI LDA equivalent of FK Transform

a) Equivalence of S and Θ

In classical linear discriminant analysis(LDA), the
quantities trace(ζb) and trace(ζw) measure the sep-
aration ‘between classes’ and ‘within classes’, re-
spectively. The direction of the set of optimal dis-
criminants Θ should satisfy[7]:

Θ =
(
max
Θ

trace(ΘT ζbΘ)
)
∩

(
min
Θ

trace(ΘT ζwΘ)
)

.

(22)

We propose the following modification to the above
criterion: using equation (12), we understand that
we will get the same set of optimal discriminants
above if we choose:

Θ =
(
max
Θ

trace(ΘT ζmΘ)
)
∩

(
min
Θ

trace(ΘT ζwΘ)
)

.

(23)

It is widely known and has been proven in refer-
ence [7] that the equation (22) is invariant under
any non-singular linear transformation Θ. Hence,
we can write the equivalent form of (23) above:

Θ = min
Θ

trace
(
(ΘT ζmΘ)−1(ΘT ζwΘ)

)

= min
Θ

trace(ζ−1
m ζw). (24)

According to KLT, the set of discriminants Θ can
be obtained by solving the eigenvalue problem:

ζ−1
m ζwθ = γθ (25)

where γ is the eigenvalue corresponding to the
eigenvector θ of ζ−1

m ζw. The eigenvalue problem
in equation (25) can be written as

ΘT ζwΘ = Γ (26)

and

ΘT ζmΘ = I (27)

where Γ is a diagonal matrix whose diagonal en-
tries are the eigenvalues γ and I is the identity
matrix.

Comparing equation (14) with equation (27), we
observe the equivalence

Θ ≡ S (28)

of the set of discriminant vectors Θ and the FKT
matrix S.

b) Feature Scatter based FKT

If we post-multiply equation (19) by Λ−1/2
χm and

compare it with equation (21), we find that

ζmŜ = ŜΛχm (29)

so that Ŝ constitutes the orthonormal eigenvec-
tor matrix of ζm; orthonormal because Ŝ−1 = ŜT .
From equation (29), now we are able to find the
inverse of ζm = ŜΛχm

ŜT by just inverting the di-
agonal entries of Λχm so that

ζ−1
m = ŜΛ−1

χm
ŜT

=
(
EmΛ−1/2

χm

)
Λ−1

χm

(
EmΛ−1/2

χm

)T

which can be written as

ζ−1
m = EmΛ−2

χm
ET

m. (30)

For SSS problems, equation (30) gives the solution
of the inverse of the mixture scatter matrix ζm by
ignoring the space spanned by its singular eigen-
vectors. The inverse ζ−1

m thus computed could be
used in equation (25) to obtain the set of discrim-
inant vectors Θ or equivalently the FKT matrix
S. This simply establishes the existence of LDA
equivalent of SSS-FKT.

VII Advantages of the Feature-Scatter
based FKT

a) Analysis of Discriminant Information

The feature scatter approach eliminates the null-
spaceN (ζm) of the mixture pattern scatter matrix
completely. In order to analyse the loss of discrim-
inant information caused by avoiding N (ζm), we
re-write the eigenvalue problem in equation (25) as
ζwθj = γjζmθj and hence, search for the optimal
discriminants θj in either of these two cases:

Case 1 : {θj ∈ N (ζm); θj ∈ N (ζw)} (31)



where we have an no changes in the quan-
tities trace(ΘT ζwΘ) =

∑
θT

j ζwθj and
trace(ΘT ζwΘ) =

∑
θT

j ζmθj .

Case 2 : {θj ∈ N (ζm); θj /∈ N (ζw)} (32)

where we have an increase in the quantity
trace(ΘT ζwΘ) =

∑
θT

j ζwθj and no change in
trace(ΘT ζmΘ) =

∑
θT

j ζmθj .
Since neither of the two cases further minimises

the quantity trace(ζ−1
m ζw) of the condition in equa-

tion (24), we do not lose any discriminant informa-
tion by using the feature scatter based approach
which eliminates N (ζm).

b) Computing the SSS-FKT

From the section (a) above, we understand that
there is no loss in ignoring the null-space N (ζm).
This would mean that one can proceed with the di-
rect implementation of the FKT which overcomes
the limitation of the SSS problem and finds a lower
order matrix Ŝ which reduces the computation in
finding the SSS-FKT class autocorrelation matri-
ces

R̂zi = ŜT RiŜ. (33)

where we use SSS-FKT matrix Ŝ in equation (3)
instead of the complete FKT matrix S.

It is now required to perform complete eigen-
value decomposition of R̂z1 and R̂z1 and as ex-
plained in section III, arbitrary number of their
dominant eigenvectors have to be selected to form
the matrices V̂z1 and V̂z2 .

Classification of a mixture mean subtracted sig-
nal x can be performed by first computing its best
reconstruction according to equation (9)

x̂zi = V̂ziV̂
T
zi

ŜT x (34)

where we use SSS-FKT matrix Ŝ instead of com-
plete FKT matrix S and the reconstruction error
scheme explained in III(b) can be used to perform
signal classification.

VIII Experiments with SSS-FKT

In order to verify the robustness of the SSS-FKT,
we chose the AT&T Database of Faces4 to con-
duct experiments on all 15C2 = 105 combinations
{{Ci, Cj} : i, j ∈ {1, . . . , 15}; i 6= j} of images of 15
individuals viz., C1, . . . , C15 of the database. Each
class consists of 10 various poses of the sample im-
age. By combining two classes at a time, a set of
5 poses from each class was used for building the
SSS-FKT. The remaining set of 5 poses from each
class was used for testing. The size of each image
in the database was 92× 112 pixels, with 256 grey
levels per pixel.

4AT&T Laboratories, Cambridge

Fig. 1: Sample images from the 15 classes used in our
experiments. A total of 15C2 = 105 two-class tests were
performed to evaluate the robustness of the SSS-FKT.

Stage 1: Each of the images were first converted
to a 1× 10304 dimensional array by lexicographi-
cally scanning the image. The mixture mean cal-
culated from all 10 images (5 poses each from a
class) was subtracted from the data before any fur-
ther processing. The matrix of the zero mixture
mean data matrix Hm of equation (15) was used
to calculate the feature scatter matrix. The eigen-
value decomposition of feature scatter matrix was
used to obtain the SSS-FKT matrix Ŝ according
to equations (17) to (21). Any singular eigenvec-
tors could be safely eliminated at this stage as ex-
plained in section V(c). The SSS-FKT class auto-
correlation matrices R̂zi are constructed next us-
ing the equation (33). It can be verified at this
stage that even the SSS-FKT autocorrelation ma-
trices R̂zi satisfies equation (4).

We are now able to validate the computational
benefits discussed in sections V(c) and VII(b). The
mixture scatter matrix ζm in this problem has an
order 10304 × 10304. It would be prohibitive, if
not impossible, to perform eigenvalue decomposi-
tion of ζm = Q to obtain the FKT matrix ac-
cording to equation (1). On the other hand, the
SSS-FKT requires the eigenvalue decomposition of
the feature scatter matrix χm which is of the or-
der 10× 10 due to the 10 various poses of face im-
ages we consider. Again, at this stage any singular



eigenvectors of χm could be discarded as explained
in VII(b) further reducing the subsequent compu-
tations. Building of the SSS-FKT completes the
first stage of the problem and the time elapsed for
all the processes till we find the eigenvectors V̂zi

of Rzi is not more than 7 seconds on a standard
PC for all the 105 tests that we conducted.

Stage 2: In the second stage of the classification
problem, the matrix V̂zi is used to reconstruct any
mixture mean subtracted image according to equa-
tion (34). Now, the simple criterion in equation
(10) could be used to perform classification using
the reconstructed image.

On testing with the mixture mean subtracted
images of the remaining poses of a particular class
which were originally not used for creating the
SSS-FKT matrix, we were able to achieve an av-
erage classification error rate of 4% for the 105
tests that we performed on the different classes
C1, . . . , C15 of the database. The computations re-
quired for this stage is much simpler than that re-
quired for the first stage and we were able to per-
form classification for a set of 5 test poses from
each of the classes in an average time of 0.7 sec-
onds on a standard PC for all the 105 two-class
tests that we conducted.

IX Conclusion

In this paper, we have defined the FKT for SSS
problems. We derived the LDA equivalent of the
FKT and used the concept to prove that by ignor-
ing the nullspace of the mixture scatter matrix to
obtain the SSS-FKT, we do not eliminate any use-
ful discriminant information. Also, we have imple-
mented the technique for face detection, which is
a high-dimensional SSS problem, and we achieved
very good classification results. Though we started
with a two-class problem, we foresee that the LDA
equivalent of FKT can extend the FKT to multi-
class problems.
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