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Abstract 

 

The extraction of the gradient information from 3D surfaces plays an important role 

for many applications including 3D graphics and medical imaging. The extraction of 

the 3D gradient information is performed by filtering the input data with high pass 

filters that are typically implemented using 3×3×3 masks. Since these filters extract the 

gradient information in small neighborhood, the estimated gradient information will be 

very sensitive to image noise. The development of a 3D gradient operator that is robust 

to image noise is particularly important since the medical datasets are characterized by 

a relatively low signal to noise ratio. The aim of this paper is to detail the 

implementation of an optimized 3D gradient operator that is applied to sample the local 

curvature of the colon wall in CT data and its influence on the overall performance of 

our CAD-CTC method. The developed 3D gradient operator has been applied to 

extract the local curvature of the colon wall in a large number CT datasets captured 

with different radiation doses and the experimental results are presented and discussed. 
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1 Introduction 
 

Computer Tomography Colonagraphy (CTC) [1-4] is a rapidly evolving minimally invasive 

technique for early detection of colorectal polyps and nowadays the medical community views this 

medical procedure as a viable alternative to optical colonoscopy. As the performance of the CT 
imaging modalities is constantly improving, recent studies have demonstrated that the sensitivity in 

polyp detection offered by the CTC compares favorably with the sensitivity offered by the optical 

colonoscopy [5,6]. With the introduction of the new generation of multi-slice CT scanners that are 
able to produce high resolution CT data, the CT datasets generate a sheer volume of information 

required to be interpreted by the radiologist and this task is performed by analyzing either the 2D 

axial views or the 3D surface of the colon wall. The visual analysis of the CT data is a time 
consuming procedure and the examination results are biased by the subjectivity and the experience 

of the radiologists. This fact encouraged the development of automated computer aided detection 

(CAD)-CTC systems that are able to produce reproducible results with high sensitivity in detection 

of clinically significant polyps (>5mm). The main problem associated with the current range of 

developed CAD-CTC systems is the large number of false positives that are generated by other 

colon structures that mimic the shapes of the polyps (haustral folds, residual material, etc) [7-9]. 

The large number of false positives is generated by the subtle difference in shape between the 

polyps and other colon structures but also by the errors in the assessment of the local curvature 

(convexity) of the colon wall. In this paper we attempt to evaluate the contribution of the image 
noise (and the partial volume effects generated by the relatively low resolution in the z axis) in the 

estimation of the local curvature of the colon wall.    

 
In order to determine the surface orientation we need to extract first the local derivatives from the 

3D data. In 2D data the normal vector to a curve can be calculated by computing the local 

derivatives in the x and y direction using high pass local operators. The CTC datasets are 3D and 
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most algorithms that perform automatic identification of colorectal polyps evaluate the local 

curvature of the colon wall by calculating in 3D the partial derivatives [7]. As the polyps are 

structures with a well-defined convex appearance we need to evaluate the measure of convexity by 

evaluating the normal intersection around suspicious colon structures. Nonetheless, this method 
will be successful if we are able to accurately extract the surface orientation, i.e. the normal vector. 

In this regard an elegant solution to this problem is the extension of the calculation of the normal 

vector in 2D to 3D data. In this regard, Zucker and Hummel [10] proposed a mathematical model 
to determine the optimal 3D gradient operators. In their formulation they determined the masks of 

the gradient operator using a functional analysis and their theory was just in fact the generalization 

of the ubiquitous 2D Sobel operator [11]. The optimal gradient operator described in their paper is 

a 3×3×3 anti-symmetric operator that is applied in 3 different directions (the Zucker-Hummel 

operator uses radial functions that smooth the calculated gradient. This will have a positive effect in 

cases where the Zucker-Hummel operator is applied to noisy data). One limitation of this operator 

is the small kernel that is used to sample the gradient in x, y, z directions and as a consequence the 

results are only modest in extracting the local orientation for complex surfaces such as roofs or 

cavities. This is highlighted in our experiments where is indicated that the Zucker-Hummel 

operator is in many cases outperformed by the standard 3D Sobel operator. The aim of this paper is 
to evaluate the influence of the selection of the gradient operator on the overall performance of our 

CAD-CTC and to detail the mathematical model that will allow us to implement optimized 3D 

gradient operators. 
 

 

2 Mathematical background of gradient detection 
 
In image processing the gradient operators are widely used to identify strong features in the image 
such as edges or the local orientation of the curves and surfaces. The extraction of local derivative 

from a continuous signal can be done by applying directly the well-known derivative formula: 
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When designing a gradient operator we should bear in mind that the image data is discrete and we 

cannot apply the finite differences without compromising the accuracy of the gradient 

approximation [12-15]. Thus we have to assume that the original continuous optical signal that 

generates the image has been uniformly sampled at a rate of T samples per length. Using the 

Nyquist sampling theorem the continuous signal can be reconstructed from these discrete samples 
as follows: 
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In equation 2 the term f[k] represent the discrete sampled signal and s(x) defines the sampling 

function that can be approximated with the sinc function. Hence, to obtain the gradient of the 

discrete signal we have to derivate the reconstructed signal f(x) that is depicted in equation 2.  
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where s

’ 
represents

 
the derivative of the sinc function. As the derivative of the sinc function is 

dependent on the sampling frequency, it is worth noting that the spectrum of the discrete signal is 

bounded by T/2π  that is in agreement with the sampling theorem. We note that the derivative of 

sinc signal decays relatively slowly and the implementation of an optimal gradient filter would 
require large filters that are not feasible to be applied in practice due to the onerous computational 

cost required to extract the partial derivatives. Next, we will introduce a practical method to design 

one-dimensional (1-D) gradient filters whereas the generalization to multiple dimensions is a 



relatively simple task.  In order to design gradient operators that are to be applied to discrete signals 

we have to consider several constraints. The vision literature indicates that the gradient filters are 

anti-symmetric and usually have an odd order. Thus, the 1-D gradient filter can be represented in 

the following generic form: 
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In order to design 1-D derivative filters we need to impose several constraints for parameters dk as 

illustrated in the following expressions [14]: 
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In this way, equation 5 translates in the requirement that the derivative filter should have the sum of 

the coefficients equal to 0, while equation 6 can be used to select the values for dk coefficients. The 

derivative operator has to fulfill the condition illustrated in equation 5 to achieve insensitivity to 

DC signals. Since the derivative filters are anti-symmetric the first coefficient of the operator can 

be determined using the following relationship:  
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Using the formulas illustrated in equations 4 to 7, the 5×5×5 derivative filter that is applied to 

extract the gradient in the x direction has the following mask [-1 8 0 -8 1]/12 •  [1 4 6 4 1]/16, 

where •  defines the convolution operator. To extract the gradient for other directions we need to 

rotate the 5×5×5 mask in the direction required for a particular axis. It can be noted that this 

operator, as expected, represents the direct extension of the 5×5 Sobel operator to the 3D case.  

Using equations 5 to 7, we have developed a new 5×5 gradient operator that implements a two-
peak operator. Since the gradient operator has two lobes it will provide improved performance 

when applied to data with step discontinuities or 3D CT datasets defined by a low signal to noise 

ratio such as the low-dose CT data.  
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Figure 1. The masks of the 5×5×5 3D OptDer operator to extract the gradient in the z axis (the 

mask 05x5 indicates a 5×5 mask where all elements are zero). 

 

 
In our experiments we have evaluated the efficiency of several filters including the 3×3×3 Zucker-

Hummel operator, 5×5×5 Sobel operator and 5×5×5 optimized operator – OptDer filter (is a two 

peak derivative operator. For more details about the implementation of optimal derivative filters 
refer to [12,13]). A particular interest we had in assessing the performance of these gradient 

operators when applied to CTC datasets that have been acquired with different x-ray dose levels 



(the lower the radiation dose the higher the image noise). However in our experiments it has 

became clear that the 3×3×3 gradient masks are inefficient in sampling the correct curvature of the 

colon wall when dealing with irregular surfaces. The experimental data indicated that the optimized 

5×5×5 gradient operator was able to return improved performance (this operator has been designed 
using the masks illustrated in Figure 1). The measurements were performed on CTC prone and 

supine views where the reconstruction interval was set to 1.5mm. The tests were conducted on 

phantom (synthetic) data and on real patient data. Of particular interest was the evaluation of the 
level of false positives detected by the automated CAD-CTC system and a detailed performance of 

our system is illustrated in Tables 1 to 5 where different gradient operators are evaluated.    
 

 

3 CAD-CTC Polyp Detection Algorithm 

 

We have developed an automated CAD-CTC method designed to identify the colorectal polyps in 

CT data [16] that evaluates the local morphology of the colon wall. Initially, the colon is segmented 
using a seeded 3D region growing algorithm that was applied to identify the interface between the 

air voxels and the colon tissue, which assures the extraction of the colon wall.  After the 

identification of the colon wall, for each colon wall voxel the surface normal vector is calculated 
using the Hummel-Zucker operator, Sobel and OptDer operator. The normal vectors sample the 

local orientation of the colon surface and the suspicious candidate structures that may resemble 

polyps are extracted using a convexity analysis where the colon suspicious surfaces are detected by 

evaluating the distribution of the normal vectors intersections in the 3D space (for a detailed 

description of this algorithm refer to [16]). This method is able to correctly identify all polyps 

above 3mm but it is worth noting that this is achieved at the cost of a high level of false positives. 

In order to reduce the level of false positives, statistical features [16] including the standard 

deviation of surface variation, ellipsoid fitting error, sphere fitting error, three axes of the ellipsoid 

and the Gaussian sphere radius are calculated for each candidate surface that has been identified by 
the convexity method described before. These features are used as inputs for a nearest neighbor 

classifier that is trained to decide whether the surface under investigation belongs to a polyp or a 

fold. The classifier was trained using a collection of 64 polyps and 354 folds that were selected by 

a radiologist from Mater Misericordiae Hospital, Dublin. 

 

 

4 Results and Discussions 
 

In our tests we have used 52 standard dose (100mAs) patient datasets (prone and supine views) 

with 75 polyps, 9 low dose (13-50mAs) patient data with 2 small polyps and phantom data (low-

dose and standard dose) with 48 polyps of various sizes and shapes. All patients were scanned at 
120kVp, 13mAs-100mAs, 2.5mm collimation, 3mm slice thickness, 1.5mm reconstruction interval, 

and 0.5s gantry rotation. The CT acquisition was performed with the patient head-first supine 

position and then repeated with the patient in the prone position. The CT protocol mentioned before 

generates CT datasets where the number of axial slices is in the range 200-350 and is dependent on 

the height of the patient. 

 

Table 1: Sensitivity for synthetic phantom data (polyps >=10mm). 
 

 

 
 

 

 
 

 

 

 

 

Sensitivity (%) 
mAs Total 

Zucker Sobel OptDer 

100 14 100 100 100 

40 14 100 100 100 

30 14 100 92.85 100 

20 14 100 100 100 

13 14 92.85 92.85 100 



 

 

Table 2: Sensitivity for synthetic phantom data (polyps [5-10)mm). 

 
 

 

 
 

 

 

 

 

 

Table 3: Sensitivity for synthetic flat polyps. 

 

 

 
 

 

 

 

 

 

 

Table 4: Sensitivity for polyps >=5mm in real patient standard dose (100mAs) data. 

 
 

 

 
 

 

Table 5: Sensitivity for polyps <5mm in real patient’s standard and low dose data 

 

 

 

 

 

 

 

When the CAD-CTC system was applied on phantom data the OptDer operator shows 

100% sensitivity for polyp >=10mm for datasets acquired with radiation doses in the range 

100-13mAs where the Zucker-Hummel and Sobel operators shows 92.85% sensitivity at 

30mAs and 13mAs radiation doses (see Table-1).  Figure 2(a) illustrates the 3D surface 

extraction for a 12mm polyp when the Zucker-Hummel operator was applied for detection 

of the surface normal vectors and Figure 2(b) shows the surface extraction when the 

OptDer operator has been used. Figure 3 illustrate the surface extraction for an 8 mm 

phantom polyp from a dataset scanned with 13mAs. It can be noted that in both cases the 

CAD-CTC system achieved a more accurate surface extraction when the OptDer operator 

was employed. Due to incomplete surface segmentation our CAD-CTC system missed the 

polyp illustrated in Figure 2 when the Zucker-Hummel operator was used to extract the 

surface normal vectors (see Table 1), whereas the polyp was correctly detected when the 

OptDer operator was applied. In Figures 2 and 3 it can be also observed that the OptDer 

operator generates better surface normal concentration than the Zucker-Hummel operator. 

The application of the OptDer operator to extract the surface normal vectors offers better 

detection for polyps in the range 5-10mm than the Sobel operator (see Table 2).  It also 

Sensitivity (%) 
mAs Total 

Zucker Sobel OptDer 

100 20 100 100 100 

40 20 100 100 100 

30 20 95 90 95 

20 20 100 100 95 

13 20 95 95 100 

Sensitivity (%) False Positive per dataset 
mAs Total 

Zucker Sobel OptDer Zucker Sobel OptDer 

100 9 55 55 44.44 1 1 1 

40 9 33.33 33.33 44.44 2 1 1 

30 9 44.44 44.44 55 0 2 2 

20 9 11.11 33.33 44.44 2 2 2 

13 9 22.22 22.22 44.44 2 2 3 

Sensitivity (%) False Positive per dataset 
mAs Total 

Zucker Sobel OptDer Zucker Sobel OptDer 

100 18 88.89 88.89 88.89 4.32 4.69 4.71 

Sensitivity (%) 
mAs Total 

Zucker Sobel OptDer 

100 48 60.41 60.41 68.75 

13-40 2 50 100 100 



provides a better detection of flat polyps when compared to the performance of the Zucker-

Hummel and Sobel operators (see Table 3). When the Zuker-Hummel, Sobel and OptDer 

operators were used to calculate the surface normals of the colon wall for standard dose 

real patient datasets, the sensitivities for the detection of polyps >=5mm were 88.89% (see 

Table 4) for all operators, but the OptDer operator provides higher sensitivity (see Table 5) 

in the detection of small polyps (<5mm) than the other two operators.  Table 5 indicates 

that the overall sensitivity for polyp detection was highest when the OptDer operator was 

used and the experimental data indicates that this operator outperformed the Zucker-

Hummel and the Sobel operators especially when the system is applied to low-dose 

datasets. The level of noise sampled by the standard deviation calculated in a local 5×5×5 

neighborhood increased with a factor of 2.67 (SD = 26.59 for 100mAs and SD = 70.95 for 

13mAs) when the scan was performed at 13mAs when compared to the case when the 

phantom was scanned with 100mAs radiation dose. The relation between the noise level 

and the radiation dose is illustrated in Figure 4. 

 

  
 

(a)                                                  (b) 

 

Figure 2. 3D surface extraction of a 12mm phantom polyp (radiation dose 13mAs). (a) The 3D 

surface extracted by the CAD-CTC system using the Zucker-Hummel operator. (b) The 3D surface 

extracted by the CAD-CTC system using the OptDer operator. 

 

 

  
 

(a)                                                  (b) 
 

Figure 3. 3D surface extraction of a 12mm phantom polyp (radiation dose 13mAs). (a) The 3D 

surface extracted by the CAD-CTC system using the Zucker-Hummel operator. (b) The 3D surface 

extracted by the CAD-CTC system using the OptDer operator. 
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Figure 4. The relationship between the noise level and the radiation dose. 
 

 

5 Conclusions 
 

In this paper we have addressed the problem of robust calculation of the surface curvature 

in 3D CT data. As numerous automated CAD-CTC systems identify the colorectal polyps 

based on analysing the local convexity of the colon surface, one of the most important 

steps in this analysis is the precise identification of normal vector. In this regard, we have 

investigated a number of 3D gradient operators and we have conducted the experiments on 

a large number of synthetic and real patient data. Experimental data indicated that the 

commonly used 3D gradient operators such as Zucker-Hummel and Sobel fail to correctly 

determine the normal vector when dealing with datasets characterized by a low signal to 

noise ratio. To address this problem we have proposed a new gradient operator that was 

able to return better performance when applied to CT data that is acquired with different 

radiation dose levels.  
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