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Abstract

Personal Health (pHealth) sensor networks are gen-
erally used to monitor the wellbeing of both athletes
and the general public to inform health specialists
of future and often serious ailments. The problem
facing these domain experts is the scale and quality of
data they must search in order to extract meaningful
results. By using peer-to-peer sensor architectures and
a mechanism for reducing the search space, we can,
to some extent, address the scalability issue. However,
synchronisation and normalisation of distributed sen-
sor streams remains a problem in many networks. In
the case of pHealth sensor networks, it is crucial for
experts to align multiple sensor readings before query
or data mining activities can take place. This paper
presents a system for clustering and synchronising
sensor streams in preparation for user queries.

1. Introduction

A sensor is a device for quantifying some physical
attribute and transforming the measurement into a
signal. Sensor networks often involve large numbers
of sensors where the signal data is transferred through
wireless or wired networks (or often USB keys) to
software managed storage devices. In effect, sensors
provide a bridge between the phyiscal and digital
worlds. With the continuing growth in ubiquitous
sensing, which strives to develop and deploy sensing
technology all around us, we can see the emergence
of applications such as environmental and personal
health monitoring. Most of the developments in sen-
sor networks have focused on developing the sens-
ing technologies, or the infrastructure (middleware) to
gather data, with research on power consumption on
the devices, security of data transmission, networking
challenges in gathering and storing the data and fault

tolerance. More recently, the focus has turned to data
management, querying and mining of large and often
distributed sensor networks.

Monitoring devices are already used in Sport Sci-
ence to monitor athletes. Additionally, they are becom-
ing increasingly available to individuals who take a
pro-active interest in managing their own health. Most
of the time, sport and health monitoring devices are
used with their own distinct proprietary software. Con-
sequently, the user has to manually make sense of the
data and integrate data from the different sources. From
our collaboration with Sport Scientists, we believe that
this is not taking place and data is lost or stored in
a form that is unusable. In this paper, we present the
XSense architecture, with processes for harvesting and
integration of physical data from wearable sensors.

1.1. Background and Motivation

Until quite recently the evaluation of physiologi-
cal responses during exercise has been limited to a
controlled laboratory environment, which clearly lacks
ecological validity. The ability to effortlessly interro-
gate data relating to the physiological responses during
exercise will allow coaches:

1) To view the average heart rate every minute or
every 5 min or 10 min etc., during the game.
For example, coaches would be interested in
comparing the heart rate response during the first
10 minutes compared to the last 10 minutes of
a game.

2) To compare heart rate responses between games.
3) To determine the effect of environmental condi-

tions of the heart rate response.
4) To determine how changes in the dimensions on

the playing surface and the number of players per
team can alter the physiological load (determined
by heart rate).
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5) Determining the period of time that individual
players exercise above or below a predefined
heart rate, or percentage of their maximal attain-
able heart rate (heart rate max).

6) To combine this information with laboratory
based data to determine the percentage of maxi-
mal aerobic capacity. (VO2max), and the percent
heart rate corresponding to the ventilatory and/or
lactate threshold.

Providing real-time automatic alerting to the
coach/user on when a player reaches a pre-determined
excessive level of physiological response (e.g. heart
rate), either momentarily or for a pre-defined ex-
tended time period, will greatly assist in optimizing
performance [5]. The coach can also, if necessary,
view the corresponding video and movement (velocity)
data to identify the tasks the athlete was undertaking
to determine if it was an appropriate physiological
response. This information could be used by the coach
to design and implement an appropriate intervention.
For example, an immediate response may be to remove
the player from the activity/game, change the tactic or
drill, or substitute the player. A post-event response by
the coach may be to implement a (more) appropriate
physical training programme to address the poor phys-
iological response. Being able to monitor the informa-
tion remotely in real-time, will allowing teams/athletes
to gain feedback from experts without them having to
travel to the site of training. Physiological results in
similar experiments can be see in [4].

In this collaboration between data engineers and
sports scientists, data was collected from a series of
experiments conducted on teams playing Gaelic (Irish)
football. We developed on a personal health (pHealth)
sensor network where football players have heart rate
monitors attached to their chests while they play com-
petitive matches. Separately, we also have a number
of different monitors reading separate measurements
during personal exercise periods. The main device
used to capture heart rate is the Polar Team System,
used across a group of participants. Data is collected
through USB connections with the entire set of sensors
described in earlier work [3].

The motivation for this research project is to provide
a data infrastructure and query management system for
the listed requirements of sport scientists in scalable
pHealth sensor network environment. The challenge
lies in the fact that queries across multiple participants
require that data must be synchronised across all
players to ensure that all players are measured using
the same criteria.

1.2. Contribution and Paper Structure

The contribution presented in this paper, is in the
specification of an architecture for sensor network
management. By clearly defining the boundaries be-
tween the different representations and interfaces to
data, cross-cutting processors such as data mining
and query optimisation can manage and optimise at
various levels. Our primary focus will be on distributed
management, and in particular, the integration of non-
aligned sensor sources. We provide experiments to
demonstrate the speed with which we can create dy-
namic clusters of sensors, and synchronise the streams
within the cluster.

The paper is structured as follows: §2 describes the
system architecture in order to provide the framework
for this research; despite this framework for enriching
and integrating data, we find that sensor streams are
often unreliable, providing the issues described in §3;
while in §4, we present our experiments and report on
the output; in §5 we discuss related work; and finally
in §6, we provide some conclusions.

2. The Sensor Network Architecture

In this section, we describe the XSense architecture,
an infrastructure designed to provide a query interface
to sensor data using the standard web query languages,
XPath and XQuery. While this paper focuses mainly on
Semantic Transformation and Integration (layers 3 and
4), for completeness we will provide a brief overview
of the entire architecture.

Raw sensor data must be enriched, normalised and
synchronised, and finally integrated into XML doc-
uments before queries or data mining activities can
take place. In [3], we presented a system for generic
enrichment of sensor devices that automatically trans-
formed any sensor output to an XML file. This system
demonstrated both our ability to handle all sensor
streams, providing a short template was provided for
the sensor, and the reasonably fast times for generating
and integrating XML data. However, this system was
largely centralised with little focus on scalability. Fur-
thermore, it focused on individual sensor data and not
on teams of participants. The latter requires a crucial
synchronisation stage which we will later show to be
a difficult problem. The original architecture presented
in [3] has been enhanced with these new features.

2.1. Sensor Network

At this level, a potentially large number of sensors
are generating raw data at intermittent or continuous
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Figure 1. System Architecture

bursts. Querying information at these nodes is time
consuming and data mining is very difficult due to
the format of data generated. In [2], we described a
clustering infrastructure which handles the large scale
element of the problem. Peers are clustered based on
criteria provided by the knowledge workers and queries
will take place against selected clusters of peers, thus,
reducing the search space for queries. For example,
a cluster may be an entire team; or players from all
teams who are over 35 years of age; or all players who
played on a specific date.

Metadata. Peers are provided with unique identi-
fiers but are otherwise regarded as autonomous entities
which may come or go on a regular basis. Thus, the
metadata repository contains no information on actual
peers. However, clusters are created to group sensors
together for the purpose of query optimisation. This is
described in [2] where queries execute on clusters of
peers rather than across the entire sensor network.

2.2. Enrichment

At this level, data is converted from its raw format
into XML documents or streams. Each sensor device
has a small XML template file associated with it.
The enrichment processor combines the template and
output from the device to create an XML document
that can be queried using the XPath query language. If
the system encounters a new sensor, all that is required
is its template. The template describes the sensor’s
output in terms of its structure and the location of
key elements, such as start time and measurements,
as well as important data such as value delimiters.
The output file contains user, session and device ID
information, followed by sensor-specific information
and finally, a list of labelled measurement values. A

more complete discussion on this process is provided
in earlier work [3], while in this paper, small extracts
from the enriched BodyMedia and heart rate sensors
are provided in examples 1 and 2 respectively.

Example 1: BodyMedia Data
<user>
<id>1</id>
<session>
<id>1</id>
<sensorData deviceID="bsd">
<startTime>1195226100000</startTime>
<measurement time = "1195226160000"

type="BodyMediaSenseWearData">
<skin_temp_average_original_rate>30.126686096191406
</skin_temp_average_original_rate>
<energy_expenditure_per_minute>1.4301998615264893
</energy_expenditure_per_minute>
</measurement>
</sensorData>

</session>
</user>

Metadata. XML sensor templates are stored in the
system repository.

2.3. Semantic Transformation

When integrating data from multiple sensors, one
of the primary issues is coordination based on timing
axes. It is often crucial when comparing sensor output
from participants or events that we can identify and
read output for the exact moment across all devices.
This is discussed in depth in the section 3 as it provides
one of the main contributions of this work.

Metadata. The system repository contains a Ground
Truth template (also described in section 3) that is used
to identify suitable sensors whose output can be used
to calibrate all remaining sensors.

2.4. Integration

It is often necessary for the domain expert who
monitors an activity, to be interested in the combination
of simultaneous measurements by various sensors.
For example, medical staff may be alerted whenever
the heart rate goes above a certain level and whenever
the skin temperature goes above a certain level during
the same session. While the clustering process that
employs predicates to group sensor streams, the
integration process can combine data into a single
stream based on a number of axes. In this paper,
we focus on integrating using the temporal axis. In
Example 2, a subset of the integrated sensor stream is
illustrated.

Example 2: Integrated Data

<user>
<id>1</id>



<session>
<id>1</id>
<sensorData
<measurement time="1195226130000">
<HRValue>91</HRValue>
</measurement>
<measurement time ="1195226160000">
<skin_temp_average_original_rate>30.126686096191406
</skin_temp_average_original_rate>
<energy_expenditure_per_minute>1.4301998615264893
</energy_expenditure_per_minute>
<HRValue>95</HRValue>
</measurement>
<measurement time="1195226190000">
<HRValue>97</HRValue>
</measurement>
</sensorData>

</session>
</user>

Metadata. The system repository contains the at-
tributes used for integration; rules for integrating mul-
tiple sensor streams and mappings that are created
during the integration process.

2.5. Knowledge Discovery

This layer is domain dependent and employs rules,
specified by knowledge workers and domain experts to
perform query and data mining operations. XPath 2.0
is used to provide a standard query interface but we
are currently extending XPath as not all data mining
operations are possible. When changing domains (to
environmental or food monitoring sensor networks for
example) the knowledge and rules at this layer change
completely.

Metadata. The system repository contains rules for
navigating and mining data for each domain.

2.6. Knowledge Transformation

After the Knowledge Discovery process, data is once
again transformed.

Metadata. The system repository contains rules for
transformation of data, supplied by domain experts.

3. Integration Issues

Often queries involving teams of players will require
near to precise times, for example, to compare all
participants at the 15-minutes and 30-minute stages
of a particular game. Other measures involve compar-
ing their average heart rates across various intervals
throughout the game. In order to query across multiple
participants, this presents two challenges: dynamic in-
tegration of participants as different groups or clusters
of players are chosen based on age, field position,
weight, etc.; and the synchonisation of sensors to

Figure 2. Midfielder Sensor Stream

ensure that the starting time of the game is recorded
on all sensors.

From an abstract perspective, sensors can be re-
garded as generating values that correspond to var-
ious states. A profile is a combination of various
states. For Irish field sports, we have identified six
states: Pre-Game (Pre), Warm-Up (WU), First-Half
(FH), Half-Time (HT), Second-Half (SH), and Warm-
Down (WD). Each state occurs once and in the order
specified. The goal is to semantically enrich sensor
data with an additional field that identifies the state
associated with every sensor reading.

In Example 3, a sample valid profile with 24 values
is illustrated (values not shown). Thus, if every sensor
generates a set of 24 values and we apply the same
profile of states to all players, then (by allocating a
state to each sensor value) we can synchronise across
players.

Example 3: Game Playing Profile
{Pre,Pre,Pre,WU,WU,WU,FH,FH,FH,FH,FH,FH,HT,HT,HT,

SH,SH,SH,SH,SH,SH,WD,WD,WD}

In figure 2, we see a sensor stream for one player
for an entire game. Sensors record every 5 seconds
and there are approximately 1,200 values generated
while the device is worn. For this particular player,
the graph demonstrates all six states albeit with some
outlier data. Pre-Game is always the first state; by
reading 150, we can see the beginning of Warm-Up;
by reading 300, we can detect the beginning of the
first half; at roughly reading 650, we see a break of
activity for Half-Time; by reading 800, we can detect
Second-Half; and finally, by 1100, we are in Warm-
Down state. Thus, by applying some metrics of Heart
Rate values, we can determine with an acceptable level
of accuracy, the beginning of each state. However, this
chart is for a midfield player, and one with a profile
of gradually building activity through Pre-Game and
Warm-Up, and remaining constantly active throughout



Figure 3. Forward Sensor Stream

each half. By analysing the graphs for all 30 players,
we discovered that this model profile is unusual.

Furthermore, there are a number of issues involved
in the enrichment process. Firstly, sensors begin sens-
ing at the moment they are attached the the skin. Thus,
each player’s sensor will begin to generate values at
different times. While there are certain rules (supplied
by domain experts) that help to detect the beginning of
certain states, they cannot be applied to all players due
to their activity during the game. In simple terms, if
we could identify (for example) the beginning value for
the First-Half state, we could synchronise all players.
As can be seen from figure 3, this is not possible.
A player that plays up front appears to perform high
bursts of activity both during warm up and during the
game. At times during the game, this player appears to
be at rest for intervals during the game. This provides
a significant challenge to creating a generic process for
normalising and synchronising sensor streams.

3.1. Matching Candidate Sensor Streams

Our solution to this problem was for the Enrichment
Processor to examine all players in order to locate
the player that most resembled a model profile. To do
this we developed a template class for a player with
”ground truth” data stored into our model profile. Each
of the six states of the model has an average heart
rate associated with it, expressed as a percentage of a
maximum heart rate (maxHR).

The raw format of the data is a sequence of heart rate
values, taken at an interval of 5 seconds. This results in
a graph with a number of peaks and, potentially, a sig-
nificant difference in standard deviation from one value
to the next. In order to smooth the graph to ensure a
better match against the model profile, we compute 60-
second averages. Finally, it is necessary to normalise
all heart rates in advance of the matching process as

the distribution across players can be significant. For
example, an 18 year old will have a different heart rate
to a 35 year old player. The highest heart rate for each
player is normalised to a value of 100, and all other
values are adjusted accordingly.

The matching algorithm is initialised in the first state
of the model and sequentially processes average heart
rate values. For each value, it computes the difference
between the current value and the model profile value
of the current and next states (the states correspond to
the periods of the model and are, therefore, ordered). If
a number of consecutive values are found to be closer
to the next state, then the state is changed. This is
repeated until there are no more values or states to
be processed. Then, the average difference between
the heart rate averages and the archetypal average is
calculated for each state. The mean of these values
is then used to score each candidate. The lower the
matching score, the closer the candidate is to the model
profile.

In the case of players with profiles such as that in
figure 3, the matching algorithm often cannot distin-
guish between one period and the next as there is no
distinct boundary in the data. As a result of this, the
program does not move from one state to the next
when it should and some states are ignored completely.
When this occurs, a high default value difference of
100 is accorded to the ignored states. This has the
effect of higher scores for those players whose heart
rate data does not fit the required profile, and thus,
will never be selected. A value of 100 was chosen
as an arbitrarily large value, although there are more
elegant solutions, such as using the distance between
the ignored state and the previous one, but as we are
currently interested only in the lowest matching score,
it is not important how the unsuitable candidates are
weighted.

3.2. Enriching Sensor Data

Once the best sensor stream has been located, this
data is used to discover the precise durations of each
of the six states. Once the durations are determined,
they are then imposed on all the other sensor streams
for this activity (or cluster).

3.2.1. Identifying State Boundaries. The first step is
to determine as precisely as possible, the beginning of
each state, by searching for certain boundaries in the
data. In the context of this experiment, we know that
a game has two halves of roughly 30 minutes, with a
half-time period of roughly 10 minutes. Based on this,
the processor defines a window of 70 minutes of data



which slides across the data looking for the best match
to the expected shape of the data graph.

The Identification Process comprises three phases.
1) The sliding window is composed of three con-

tiguous sections of 30, 10 and 30 minutes re-
spectively. The program computes the average
heart rate values for each section of the window
and the window with the maximum difference
between the average values of the two 30 minute
sections (which should be very high) and the
middle 10 minute section (which should be mod-
erate as it corresponds to the half time period)
is selected as roughly corresponding to the game
itself.

2) Once the correct window has been identified, and
since the three states involved in the window
(FH,HT,SH) have a fixed interval, these must be
adjusted as games will never complete exactly
on time.
To achieve this, the standard deviation of each
section is computed and the values on either
boundary of the section are examined to see if
they are within a standard deviation of value
STDdur. During experiments we set value of
STDdurto be between 1.5 and 3, and currently
this is set at 2.8 as it gives the best results with
the dataset that we have collected so far. The
values that are in the same range as the rest of the
section are thus included in it and those that are
not, will form part of the neighbour state. This
process then results in a more accurate picture
of the durations of each period.
As a result, the window states FH, HT and SH
have been identified, and this also provides the
last state WD, and the first two states, Pre and
WU, although they must later be separated. In
this experiment, the separation between these
two states is not as important as other states.

3) Finally, each boundary value is checked to see
whether it is at a peak, a trough or somewhere
in between on the graph of heart rate values.
Domain knowledge informs us that that each
period begins at either a trough (no activity) or a
peak (maximum activity). Thus, if we find that a
boundary is not at the minimum or maximum
in the curve, it is adjusted appropriately. For
example, if the beginning of the First-Half state
is on a rising curve, this boundary is moved back
to the start of the curve.

3.2.2. Enriching All Streams. Once all state durations
have been extracted from the data of the best candidate,
they are then imposed on the rest of the players. The

motivation for this is to have periods of uniform length
across all participants, as computing the durations for
each player would result in a number of conflicting
values. By choosing an ideal candidate we are max-
imising our chance of getting accurate durations. Also,
were we to attempt to extract durations from some
players with poorly defined boundaries (e.g. players 9
and 13 from Team 1 in table 2 and the player profile
in figure 3), results would be unreliable. Currently, a
human inspection of the output graphs finds it difficult
to discern the durations of periods in certain cases.

The remaining players’ data is processed by a sim-
ilar program to the one used for extracting durations
from the best candidate. In this algorithm, a similar
sliding window is used to locate the easiest state to
identify (in these experiments, HT). The reason for
choosing the beginning of the HT state is that we have
observed empirically that the beginning and ending
points of the game are often blurred, but the half
time (HT) state is generally noticeable as all players
rest during this state. Once the precise point has been
located, the durations extracted from the best candidate
are imposed on the data and it is enriched with state
data for all sensor values.

The output of this algorithm is the generation of
states with uniform length across all sensor streams.
At this point, XQuery can be employed to query the
distributed sensor data.

4. Experiments

A total of 60 datasets corresponding to 2 football
games with 4 teams of 15 players is used to demon-
strate the process of clustering and synchronisation of
a relatively small set of data. Table 2 describes the
result of the matching process where all 60 player
streams were compared with the ground truth model.
The experiments were executed on a single workstation
running the Windows XP Pro operating system on
2.66GHz Intel Core 2 Duo processors with 4 GB of
RAM. The system was implemented using the Java
Virtual Machine 6.0.

4.1. Matching Results

In Gaelic (Irish) Football, they are 15 players on
each side, with one goalkeeper, 6 defenders, 6 forwards
and 2 midfielders. In a normal game, both midfielders
(positions 7 and 8) are most likely to generate the
profile that will help to identify the six states. Dur-
ing a prolonged offence, defensive players may find
themselves relatively inactive, while the opposition
forwards may also generate low levels of activity. This



Table 1. Candidate Matching Scores

Position Team 1 Team 2 Team 3 Team 4
1 41.97 11.32 N/A 9.19
2 N/A 12.47 39.57 N/A
3 10.18 8.05 11.35 9.10
4 12.89 11.39 13.03 6.28
5 11.73 37.88 7.93 43.86
6 358.89 N/A 5.36 42.53
7 6.57 5.10 7.03 14.41
8 5.14 5.19 11.34 7.64
9 45.38 7.77 6.10 9.82
10 N/A 9.30 36.95 6.67
11 7.29 5.27 14.46 N/A
12 N/A 9.34 9.28 N/A
13 38.05 8.00 12.94 13.23
14 9.37 11.18 11.09 7.79
15 N/A 13.56 N/A N/A

will have an effect on the heart rate data and can
blur the boundaries between game periods. Despite this
information, one cannot assume that specific sensors
will always generate reliable data.

Table 2 illustrates the results of the matching pro-
cess. Players with the lowest matching scores are those
whose heartrate data provides the closest match with
the model profile. As can be seen from the data, these
players are generally numbers 7 and 8. As an example
of unsuitable heart rate data, players 9 and 13 from
Team 1 show quite high scores. These are the result
of their data lacking clear boundaries and the program
consequently failing to change state at the right time.
They are then assigned a high score by default which
makes them unlikely to be selected as the most suitable
candidate.

The entries in the table labelled as “N/A” are due
to unusable data caused by malfunctioning equipment.
This is now less common as sensors are becoming
more reliable.

The overall result supports our approach in terms of
detecting the right sensor stream, for the subsequent
process of enriching data with state information.

4.2. Cluster Timings

For a dynamic creation of a cluster of sensor
streams, the matching process cannot be performed in
advance. Thus, both matching and enrichment must
be completed within a reasonable time frame for user
queries. For this experiment with 60 sensors streams
each with 1,200 values, it requires 205.2ms to locate
the candidate, 198.8ms to extract the durations, and
1136.2ms to apply those durations to all remaining
sensor streams.

Table 2. State start and durations

State System Start Actual Start System Duration Actual Duration Diff
Pre 0 0 29:10 N/S 0
WU 350 N/S 14:40 N/S 0
FH 526 527 30:40 30:47 5s
HT 894 896 13:00 13:05 10s
SH 1050 1053 31:05 30:58 15s
WD 1423 1424 4:05 N/S 5s

4.3. Matching Precision

In order to evaluate the precision of our enrichment
process, in one experiment the health specialists in-
volved in running the trials, recorded the time at which
the First-Half started, and the precise durations for
the First-Half, Half-Time and Second-Half states. The
actual time for the First-Half was then converted by
the same person to an actual value. In this case, this
value was 527 (43.9 minutes) which was a result of this
player (the midfielder) being the first person to wear
the sensor device. In general, there can be a long Pre
state as it takes time for all players to be equipped with
the devices. With this information, we calculate the
Actual Start Values (column 3) for 4 states, while the
first state will always be zero. The term N/S indicates
that this data was not supplied to us.

By examining the System Start and Actual Start
values (columns 2 and 3), we can see that our level of
precision is very high. The time difference in the final
column is based on the difference between columns 2
and 3. In other words, a difference of a single value
is 5 seconds, while a difference of 3 sensor values,
indicates an offset of 15 seconds. These results were
well inside the boundaries for domain user queries.

5. Related Research

In [8], a template for incorporating non-XML
sources into an XML environment is presented. Their
approach is similar to ours in that they use their Data
Format Description Language to generate the XML
representation of data. Significantly, no conversion of
sensor data is necessary as they create a view definition
to interpret the raw data. However, they provide only
a template system that has not been applied to any
domain (instead they provide some use-case descrip-
tions), and no query response times are possible. In
these systems, the query optimiser confronts problems
when converting between the view definition and the
physical data.

In both [10] and [7], the authors process and query
raw streams of sensor data without conversion to XML.



This has its benefits as the construction times for XML
repositories (both centralised and distributed) are often
reported to be quite large, and we have reported similar
issues in [9]. In [10], the approach is to enrich raw
data into semantic streams and process these streams
as they are generated. Their usage of constraints on
the data streams provides a useful query mechanism
with possibilities for optimisation. However, this work
is still theoretical and contains no evidence of experi-
ments or query times. In [7], they employ the concept
of proximity queries where network nodes monitor and
record interesting events in their locality. While their
results are positive in terms of cost, queries are still
at a relatively low level (no common format for query
expression), and it is difficult to see how this type of
proximity network can be applied in general terms due
to the complexity of the technologies involved.

In [6], they provide semantic clusters within their
sensor network. This is a similar approach to our
work, where we cluster related groups of sensors.
They also adopt a semi-automated approach and are
capable of generating metadata to describe sensors
and thus, support query processing. However, their
object-oriented approach is likely to lead to problems
with interoperability and this could be exacerbated
through the lack of common query language. While
this can be addressed with a canonical layer (probably
using XML) for interoperability, it is likely to have
performance related issues.

6. Conclusions

In this paper, we described our architecture used in
the management of distributed sensor streams. Two
particular features of this architecture form the core
of this paper: fast synchronisation of sensor streams,
necessary for dynamic cluster creation [2], [9] and
semantic enrichment of sensor streams necessary to
allow domain expert queries and data mining proce-
dures. We have also described our experiment which
uses real-world data recorded over two months, using
players from teams playing Gaelic football, the results
and analysis of these experiments, and our method for
measuring the precision of results.

Current research focus is on building an advanced
query interface using a combination of XPath 2.0 and
Java functions to facilitate complex query and data
mining requirements. As data is distributed across a
wide and potentially large sensor network, query prim-
itives must employ distributed (peer-to-peer) metadata
(and mappings) in the optimisation of user queries.
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