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Abstract. Active depth from defocus (DFD) eliminates the main
limitation faced by passive DFD, namely its inability to recover depth
when dealing with scenes defined by weakly textured (or texture-
less) objects. This is achieved by projecting a dense illumination
pattern onto the scene and depth can be recovered by measuring
the local blurring of the projected pattern. Since the illumination pat-
tern forces a strong dominant texture on imaged surfaces, the level
of blurring is determined by applying a local operator (tuned on the
frequency derived from the illumination pattern) as opposed to the
case of window-based passive DFD where a large range of band
pass operators are required. The choice of the local operator is a
key issue in achieving precise and dense depth estimation. Conse-
quently, in this paper we introduce a new focus operator and we
propose refinements to compensate for the problems associated
with a suboptimal local operator and a nonoptimized illumination
pattern. The developed range sensor has been tested on real im-
ages and the results demonstrate that the performance of our range
sensor compares well with those achieved by other implementa-
tions, where precise and computationally expensive optimization
techniques are employed. © 2005 SPIE and IS&T.
[DOI: 10.1117/1.1900743]

1 Introduction

Pentland1 pointed out that the range information is not lo
during the process of image formation as the objects
imaged according to their position in space. In this way,
objects situated along the surface where the image i
focus are accurately imaged, while others, not placed c
to this surface are blurred. It is important to note that
level of blurring is in direct relation to the distance betwe
the surface where the image is in focus and the actual
tial position of the object under investigation. Thus,
comparing several images captured with different focal l
els ~obtained by changing either the aperture of the lens
the internal parameters of the camera! we can estimate the
depth for each point in the scene by analyzing the lo
blurring.

As opposed to depth from focus~DFF!2–5 where the
depth is estimated by taking a large number of images
incrementing the focal settings in small steps, depth fr
defocus~DFD! requires only two differently focused im
ages to estimate the depth information.6–10 This is a major
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advantage when dealing with dynamic scenes where
scene objects may change their spatial position during
image acquisition process. Furthermore, instead of sea
ing for the best focused point in the image stack as is
case with DFF, the depth in DFD can be computed
evaluating the blurring difference between each point in
defocused images. Also it is worth noting that the rang
methods based on focus/defocus are less affected by o
sions or missing parts than the ranging techniques base
triangulation or stereo vision since the images to be a
lyzed are only differently focused.11

Historically, DFD methods have evolved as a pass
range sensing strategy.5,8,12,13 In general, passive DFD at
tempts to estimate the blurring level by applying a lar
range of narrow-band operators5 since the image blurring
varies with texture frequencies.12 A different implementa-
tion has been proposed by Rajagopalan and Chaudh14

where they applied a Markov random field model to im
prove the initial depth estimates obtained from a windo
based DFD scheme. More recently Descheneset al.15 pro-
posed a new algorithm to extract the blur differen
between two defocused images by fitting the defocused
ages by Hermite polynomials. In this way the coefficien
of the Hermite polynomial computed from the more blurr
image are a function of the partial derivatives of the oth
image and the blur difference. Other recent contributions
passive DFD include the work of Bhasin and Chaudhu16

and Favaroet al.17 However the main disadvantage of th
passive DFD approaches is the fact that they are comp
tionally intensive and they return unreliable depth estima
when dealing with weakly or nontextured image areas.

To address this limitation Pentlandet al.18 suggested
projecting a structured light onto the scene and estima
the depth by analyzing the level of blurring associated w
the projected pattern. The results proved to be accurate
though obtained at a relatively coarse spatial resoluti
Later, Nayaret al.19 argued that optimizing the illumination
pattern and the focus operator can lead to high den
depth maps. They developed a symmetrical pattern o
nized as a rectangular grid optimized for a specific came

c-
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Ghita, Whelan, and Mallon: Computational approach . . .
Then they optimized the Laplacian operator in order to o
tain a narrow band operator. The reported results indic
the efficiency of this approach but it is worth noting that
their implementation the illumination pattern has to be re
istered with the sensing elements at a subpixel resolutio
fact that makes this approach difficult to apply in practic

In this paper we describe the implementation of a re
time active DFD range sensor, where special emphasi
placed on the focus operator and the image refineme
employed in order to alleviate the problems caused by
bitrary object textures and a nonoptimized illumination p
tern.

2 Active Depth from Defocus. Related Research

A range sensor based on focus error and structured l
has been proposed by Pentlandet al.18 and Girod and
Scherock.20 This approach extends the passive range sen
developed by Pentland1 where the large aperture came
was replaced by a structured light source~for more details
see also Ref. 21!. Since the camera’s lens has a small a
erture, its depth of field is significantly larger than the dep
of field of the structured light. They employed an illumin
tion pattern consisting of evenly spaced vertical lines. Sin
the position of the pattern is knowna priori and using the
fact that the width of the light stripe gets larger when d
focused, the depth can be easily estimated by measuring
spread of the defocused line. In spite of simplicity this a
proach proved to be relatively accurate. The major limi
tion of this approach is the coarse-spaced illumination p
tern and as a direct consequence the resulting depth m
low resolution.

In order to address this limitation Nayaret al.19 devel-
oped an active DFD range sensor consisting of two sens
elements separated by a known distanceb used in conjunc-
tion with a dense optimized illumination pattern.22 In this
way, one of the sensing elements will capture a near
cused image while the other will capture the far focus
image~see Fig. 1!. The illumination pattern was projecte
onto the scene in order to force an artificial texture on
imaged areas. The depth is in direct relation to the rela
level of blurring present in both images which is measur
by filtering the near and far focused images with a loc
operator such as the Laplacian.18,19 Since our goal is

Fig. 1 The image formation process. The depth u is a function of
the sensor position s, lens aperture D, focal length f and the blur
patch d (See Refs. 9 and 19).
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achieving dense depth maps in our implementation we u
the latter approach.

3 The Blur Function

If the object to be imaged is placed in or very close to t
surface of best focus~object point is in the positionP and
the sensing element is placed atI f , see Fig. 1!, the image
formed on the sensing element is sharp while each ob
point is imaged by the lens into a point on the sensor pla
Conversely, if the object is shifted from the surface whe
the image is in focus, the object points are distributed o
a patch on the surface of the sensing element, where
diameter of the patch indicates the level of blurring.

The blurring effect can be thought of as a convolutio
between the perfectly focused image and a blurring fu
tion called point spread function~PSF!. In vision literature
various models have been proposed to approximate
blurring function10,23,24but in practice the two-dimensiona
Gaussian1,9,25 has been widely employed to approxima
the PSF when paraxial geometric optics are used and
fraction effects are negligible.

The standard deviation~or the spread parameter! of the
Gaussian operator is the parameter of interest as it indic
the level of blurring contained in the defocused images~the
larger the level of blurring the larger the value of the sta
dard deviation!. Since the PSF function approximates a lo
pass filter, to extract the level of local blurring~i.e., deter-
mine the standard deviation of the PSF! it would be neces-
sary to extract the high frequency information derived fro
the scene. This is achieved by convolving the near and
focused images with a local focus operator, where the o
put indicates the local blurring level.

However, the earlier-mentioned approach returns r
able results only if the scene under investigation is high
textured. To eliminate this restriction a solution is to proje
a structured light onto the scene, thus forcing a domin
artificial texture on all visible surfaces.

The structured light should have a symmetrical or sem
symmetrical arrangement in order to achieve rotational
variance. We can recall that the near and far focused ima
are captured with different focal settings and as a con
quence a variation in magnification between these ima
will be noticed. As in our implementation the magnificatio
changes between the defocused images cannot be allev
on an optical basis~for details refer to Sec. 6! this issue
introduces a new challenge as we cannot perform a re
tration between the illumination pattern and the pixel e
ments of the complementary metal–oxide–semiconduc
~CMOS! cameras. Perfect registration between the illum
nation pattern and camera’s pixels is quite difficult

Fig. 2 The focus operator. (a) Standard Laplacian. (b) Four peak
Laplacian operator.
1-2 Apr–Jun 2005/Vol. 14(2)
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Fig. 3 The diagram of the developed range sensor.
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achieve in practice as it would require specialized equ
ment to construct a custom grating filter, and in additi
this solution would be effective only if the magnificatio
were maintained at a constant level for both near and
focused images.

Fortunately, the depth errors caused by misregistrati
between the illumination pattern and the camera’s pix
are very small when compared with errors introduced
the focus operator, magnification changes, and the im
fections of the optical and sensing equipment~the proce-
dure employed to compensate for the nonlinear respons
the CMOS sensors is detailed in Sec. 6!. Thus in our imple-
mentation we relaxed the requirement for an optimized
lumination pattern. To achieve high resolution depth e
mation, in our implementation we have used a sim
illumination pattern defined by a sequence of horizon
stripes with a density of 10 lines per millimeter. Our effor
were concentrated on the development of a new focus
erator that can be easily tuned on the spatial arrangeme
the illumination pattern.
02302ic Imaging
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4 Focus Operator

The problem of recovering the local blurring is greatly sim
plified in active DFD since the scene has a dominant f
quency, namely the frequency associated with the illumi
tion pattern. Thus, the focus operator has to be designe
order to respond strongly to this frequency. When the il
mination pattern is projected onto a blank sheet of wh
paper the projected pattern consists of evenly spaced
and bright horizontal lines, where the period is 6 pixe
~projector elevation 71 cm from the base line, fitted with
60 mm lens!. Since the illumination pattern has a symme
ric arrangement, the focus operator also has to be symm
ric and must be immune to direct current~dc! components.
The most common focus operator is the Laplacian wh
the size of the kernel is dependent on the spatial arran
ment of the illumination pattern~535 for the present illu-
mination pattern!. Although the Laplacian has sharp pea
at the frequency derived from the illumination pattern,
also enhances the features associated with the scene’s
Fig. 4 The effect of the supplementary blur introduced by the lens of the light projector. The errors are
compensated by using a look-up table linearization. Numerical values are obtained when the simple
cell was employed as focus operator.
1-3 Apr–Jun 2005/Vol. 14(2)
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ture which alters the local blurring measurements. To a
viate this problem Nayaret al.19 employed a frequency
analysis approach to develop a narrow-band Laplacian w
four sharp peaks at the frequency derived from an o
mized illumination pattern. In Fig. 2 the kernels of the 535
Laplacian operator and the 535 four-peak narrow band op
erator are depicted.

Taking into account that the illumination pattern forc
on the scene is organized as a sequence of evenly sp
light stripes, this motivates us to introduce a new foc
operator to estimate the local blurring, namely the sim
cell.26

The relationships that implement the simple cell ope
tor are illustrated in Eqs.~1!–~3!:

s~x,y!5e2(x821y82)/2s2
cosS 2p

T
x81w D , ~1!

x85x cos~u!2y sin~u!, ~2!

y85x sin~u!1y cos~u!, ~3!

whereT represents the period,s is the standard deviation
of the Gaussian filter,u specifies the orientation of th
normal to the illumination pattern, andw is the phase off-
set. There are various psychophysical experiments wh
indicate that the simple cell operator acts as a line
edge detector, by responding to lines or edges with a s
cific orientation and spatial frequency.26,27 For other tex-
ture orientations the simple cell will respond weakly, a
this will result in a decreased sensitivity as compared
the Laplacian operator when applied to arbitrary obj
textures.

Therefore, the properties of this operator are very attr
tive for our application since the illumination pattern
defined by a periodic arrangement with a well defined o
entation. In our implementation, the following values a
used to tune the simple cell operator on the projected i
mination pattern: 2p/T51.5, s252, u5p/2, andw5p/2.
The resulting filter implements an antisymmetric orient
derivative operator and the elements of the kernel are
justed in order to ensure that their sum is equal to zero~to
achieve insensitivity to dc components!.

Fig. 5 Recovered depth for a textureless planar object placed at
different elevations from the base line of the workspace.
02302Journal of Electronic Imaging
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In order to assess the efficiency of this new foc
operator we evaluated its performance compared to
offered by the Laplacian operator and the narrow-ba
operator.19

5 Image Refinements

Since the focus operator has a finite support~defined by
535 masks! it will generate windowing errors when it is
applied to the near and far focused images. As expected
image distortions inserted by the focus operator are m
severe around the transitory regions between the dark
bright light stripes. This is caused by the imperfections
construction of the filter employed to generate the illum
nation pattern, i.e., the transparent and opaque region
the projection filter are not perfectly defined. Given th
the central part of the illumination stripe is less affected
the errors introduced by the focus operator and the illu
nation pattern~and has the highest intensity values!, we
normalized each stripe by vertically propagating the va
of the pixel positioned on the center of the stripe. It
important to note that this stripe normalization procedu
does not affect the local blurring level since the illumin
tion pattern is dense and the resulting stripes are only 3
pixels wide and the blurring is assumed to be constan
small neighborhoods.

However, the focus operator and the imperfections
the illumination pattern were not the only source of erro
Given that the near and far focused images are captu
with different camera settings, a variation in image mag
fication ~which is dependent on the spatial position of t
imaged object! occurs and as a direct consequence
stripes contained in the near and far focused images do
match perfectly together. This forced researchers to ei
implement computationally intensive techniques such
image registration and warping28 or to address this problem
on an optical basis.29 In our implementation we compensa
for this issue by employing image interpolation. While th
dark stripes of the illumination pattern do not reveal a
useful information and the spatial shift induced by mag
fication changes is smaller than half of the period of t
illumination pattern, we propose to map them by vertica
interpolating the adjacent bright illumination stripes. Ta
ing into consideration that the illumination pattern is ve
dense, linear interpolation proved to be sufficient. The
periments indicate that the performance of the sensor
nificantly improved after the application of these ima
refinements.

Fig. 6 Recovered depth for a randomly textured planar object
placed at different elevations from the base line of the workspace.
1-4 Apr–Jun 2005/Vol. 14(2)
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Fig. 7 Depth estimation for a scene defined by polyhedral objects. (a) Near focused image. (b) Far
focused image. (c) Recovered depth.
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6 Sensor Implementation

The developed sensor consists of two distinct parts, nam
the sensing devices and the light projector. To capture
near and far focused images at the same time the se
uses a beam splitter to separate the original image into
identical images. To capture the near and far focused
ages, one sensor is set in contact with the beam spl
while the second is positioned with a small gap~approxi-
mately 0.8 mm! from the beam splitter surface. The regi
tration between the sensing elements is carried out by u
a multiaxis translator which is attached to one of the se
ing elements. Figure 3 illustrates the components of
developed range sensor.

The structured light is projected onto the scene usin
MP-1000 projector fitted with a MGP-10 Moire gratin
02302ic Imaging
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~stripes with density of 10 lines per millimeter!. The system
uses two AF MICRO Nikkor 60 mm lenses, where one
used to image the scene while the other is attached to
light projector. The aperture of the lens attached to the li
projector should be very small in order to obtain a lens w
a large depth of field. Therefore, the illumination patte
projected onto the scene will be nonblurred and defo
will be introduced only by the focal settings of the sensi
elements. On the other hand, a pinhole aperture will c
tribute to a severe reduction in illumination level arriving
the sensing elements. To compensate for this issue we
to employ a very powerful source of light, a solution diffi
cult to apply in practice due to safety considerations. Sin
our light projector is fitted with a 50 W incandescent bu
this approach is not feasible. Thus, we set the apertur
1-5 Apr–Jun 2005/Vol. 14(2)
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Fig. 8 Depth estimation for a scene defined by textureless, textured, and mildly specular objects. (a)
Near focused image. (b) Far focused image. (c) Recovered depth.
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the lens at the minimum value~2.8 setting! that assures a
sufficient level of light to image the scene objects irresp
tive of their color. Nevertheless, in this situation the illum
nation pattern was supplementary defocused. To allev
this problem we set the surface of best focus of the p
jected illumination pattern at the same position with t
surface of best focus of the near focused sensing elem
Using this approach, the level of blurring in the near f
cused image is almost linear with depth. On the other ha
the level of blurring in the far focused image will be di
turbed due to the attenuation of the illumination patte
This problem can be observed in Fig. 4 where the inten
output of the near and far focused images after the app
02302ic Imaging
e
-

t.

,

-

tion of the focus operator is plotted against depth.
This generates errors when dealing with far situated

jects with respect to the sensor’s position. To compens
for this problem the blurring profile of the far focused se
sor is linearized in agreement with the blurring profile
the near focused sensor. The linearization procedure
implemented using a look-up table where the depth is e
mated directly from the intensity outputs of the near and
focused image after the application of the focus operato

7 Experiments and Results

In this paper our aim is to evaluate how the focus opera
affects the overall performance of the range sensor.
1-6 Apr–Jun 2005/Vol. 14(2)
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achieve this goal, the range sensor was tested initially
textureless scenes then on scenes defined by arbitrary
tured objects.

The relative accuracy was estimated for successive m
surements and was defined by the maximum error betw
the real and estimated depth values contained in the d
map. During operation the sensor is placed at a distanc
86 cm above the base line of the workspace. Figure 5 il
trates the effect of the focus operator when the sensor
tested on a simple scene defined by a planar texture
object which is placed at different elevations from the ba
line of the workspace. As expected since there is no a
tional texture to disturb the illumination pattern, the dep
is estimated almost similarly irrespective of the choice
the focus operator. However, when the sensor was teste
textured scenes, the experimental results indicated tha
Laplacian operator cannot reject the influence of the ob
texture while the four peak focus operator and the sim
cell are more robust to arbitrary texture~see Fig. 6!.

Our results are similar with those reported by Nay
et al.19 when the four peak Laplacian was employed as
cus operator. Also it can be noticed that the depth esti
tion is less precise for objects situated at distances clos
the calibration point where the depth values are over de
mined. Figures 7 and 8 depict additional results when
sensor was applied to various scenes.

In line with other active techniques, this approach
turns unreliable depth estimation when it is applied
highly specular scenes or scenes defined by objects
very dark surfaces. Figure 9 illustrates how the accurac
affected when the sensor was applied to scenes define
objects with different surface colors. Figure 10 indicates

Fig. 9 Relation between the depth error and the brightness of the
object surface.

Fig. 10 Relation between the depth estimation and the level of illu-
mination.
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performance of the sensor when the illumination level
the light projector is reduced by changing the lens apertu

8 Conclusions

In order to achieve accurate and dense depth estima
using active DFD, we have to address a large numbe
problems including mechanical, optical and computation
While the physical implementation of this sensor has be
previously detailed,30 in this paper we place the emphas
on the computational components. To robustly extract
relative blurring between two images captured with diffe
ent focal settings, we have to confront problems such
sensitivity of the focus operator to the object texture a
the variation in image magnification. In order to achie
insensitivity to object texture we developed a focus ope
tor that responds strongly to the frequency derived from
illumination pattern. The problems associated with t
variation in image magnification were addressed by e
ploying image interpolation. All these components were
cluded in the implementation of a real-time active DF
range sensor which was successfully applied in the de
opment of a vision sensor for robotic bin-picking.30
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