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ABSTRACT 
The paper presents a novel approach for a balanced 
truncation style of model reduction of a perturbative 
representation of a nonlinear system.  Empirical 
controllability and observability gramians for nonlinear 
systems are employed to define a projection matrix.  
However, the projection matrix is applied to the 
perturbative representation of the system rather than 
directly to the exact nonlinear system.   This is to 
achieve the required increase in efficiency desired of a 
reduced-order model.  Application of the new method is 
illustrated through a sample test-system.  The technique 
will be compared to the standard approach for reducing 
a perturbative representation of a nonlinear system. 
 
  
 
1. INTRODUCTION 

With the ever-growing complexity of dynamic 
models for systems in all branches of engineering, 
simulation times and use of computational resources 
have concomitantly increased to impractical levels.  
Consequently, the development of effective model 
reduction techniques is of paramount importance.  In 
particular, for control system design for nonlinear 
systems eg Lall 2002, numerous iterative or repetitive 
simulations are required to meet target specifications.  
Hence, system representations in these studies must 
meet a required level of accuracy but with a low 
computation cost and time.   

Model reduction for linear systems has received 
much attention for the past number of decades and 
several techniques are well-known and widely used 
(Antoulas 2001, 2003).  Balanced Truncation, as 
developed and pioneered by Moore in 1981(Moore 
1981), is one such method.  In linear system theory (e.g. 
see (Antoulas 2001, 2003) and the references therein), 
the input-output interaction of a system is characterized 
by the so-called gramian matrices or gramians.  These 
matrices can be transformed to be equal or balanced 
(Antoulas 2001, Moore 1981).   For general nonlinear 
systems, the more general concept of controllability and 
observability (or energy) functions (Scherpen 1993, 
1994) are employed for balancing.  However, the 
calculation of the energy functions is computationally 

expensive and the result is rarely an explicit solution 
(Scherpen 1993, Gray 1998).  For these reasons, it is 
very difficult to apply this method to large-scale 
problems.  To counteract this, empirical gramians were 
suggested in several recent research papers, (Lall 2002) 
followed by Hahn 2002 and Condon 2004.  In (Condon 
2004), some shortcomings of the approaches in (Lall 
2002) and (Hahn 2002) were highlighted and an 
improved approach for the computation of the empirical 
gramians was suggested and confirmed with numerical 
tests.   

There is one significant issue with the model 
reduction approach using empirical gramians as 
described in (Lall 2002, Hahn 2002 or Condon 2004).  
As stated in (Phillips 2003) and (Rewienski 2003) and 
as will be described in Section 4, it is dubious as to 
whether direct use of the projection matrix with the 
exact nonlinear function actually results in a 
significantly more efficient model for a nonlinear 
system.  Therefore in this contribution, although the 
projection matrix is derived from empirical gramians 
obtained from the exact system representation, it is 
applied to a perturbative representation of the nonlinear 
system.  This approach results in an efficient reduced-
order model.  Numerical results will then confirm that 
the approach is superior to the existing Krylov methods 
for reduction of perturbative representations. 
 
2. BALANCED TRUNCATION 

To review balanced truncation, consider the 
following standard linear system representation: 

nnnn BAuxtButAxtx ℜ∈ℜ∈ℜ∈ℜ∈+= × ,,,   )()()(&  
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A is a constant matrix and B and C are constant vectors 
( C is a vector-row and B is a vector-column).  u(t) is the 
input to the system and y(t) is the output of the system. 
The input-output behaviour of the linear system is 
characterised by two matrices - the controllability and 
observability gramians.  The matrices are defined as 
follows: 
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 (* denotes transpose).  P and Q are the solutions of the 
Lyapunov Equations (eqns. 4 and 5) and efficient 
techniques exist for their solution (Saad 1990). 

** BBPAAP −=+   (4) 
CCQAQA ** −=+   (5) 

The subspace spanned by the eigenvectors 
corresponding to non-zero eigenvalues of P contains the 
states that are reachable or controllable by the input to 
the system.   The subspace spanned by the eigenvectors 
corresponding to non-zero eigenvalues of Q contains the 
observable states at the output.  The eigenvalues of the 
product PQ are known as the Hankel Singular Values.  
By carrying out a transformation as described in e.g. 
(Lall 2002), it is possible to diagonalise the gramians 
and make them both equal.  This particular arrangement 
is known as a balanced realisation.  When a linear 
system is balanced, each Hankel Singular value 
represents a different state through which the input may 
be transferred to the output.  Consequently, the states 
corresponding to the largest Hankel Singular values, 
being the most important, may be retained and those of 
relatively minor importance may be neglected.    

Let T be the matrix that transforms both P and Q 
into diagonal form S as 
follows:  ( ). 
The states of the system are then ordered according to 
decreasing values of the diagonal entries in . Once 
balanced, a Galerkin projection,  where 

SQTTSTPT tt == −− 11, 21 STPQT =−

S
[ 0I=Π ] Π  

is  projection matrix and nk × I  is unit matrix, is 
then employed to project the transformed system onto 
the states corresponding to the k largest singular values 
(i.e. the k largest values of the diagonal matrix S where 
k is the desired dimension of the reduced-order model).   
The reduced model is thus of the form:  

kk ×
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3. EMPIRICAL GRAMIANS AND BALANCED 
TRUNCATION 

Now consider a non-linear system of the form: 
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where  and  are non-linear 

functions, the function  is regarded as an 

input signal to the system and the function  is 
an output signal.  For such a system, the more general 
concept of controllability and observability (or energy) 
functions (e.g. Scherpen 1993) would need to be 
employed for ‘exact’ balancing.  However, the 
calculation of the energy functions is computationally 
expensive and the result is rarely an explicit solution 
(Scherpen 1993).  For these reasons, it is very difficult 
to apply balanced truncation methods to large-scale 
nonlinear problems and to counteract this, empirical 
gramians were introduced (Lall 2002).  In (Condon 
2004), an improved approach for the computation of the 

empirical gramians was suggested and confirmed with 
numerical tests.   In light of this, the ‘improved’ 
empirical gramians in (Condon 2004) are employed in 
this contribution and are defined as follows:  

nnf ℜ→ℜ: qnh ℜ→ℜ:
ptu ℜ∈)(
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Let M≡ }{ scc ,...,1  be a set of s  positive 
constants, Tn ≡ }{ r1 TT ,..., - be a set of r  orthogonal 

nn× matrices and En ≡ }{ nee ,...,1  be the set of 

standard unit vectors in . The set Enℜ n defines the 
standard directions and the set Tn defines ‘rotations’ of 
these directions.  The set M introduces different scales 
for each direction of the initial states. 

 
Definition 1 
Let be the solution of eqn. 7 with : )(txilm 0≡u

))(,()( txtftx =&    (8) 
and with the initial condition:  
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It is assumed that the initial condition (9) does not take 
the system outside the region of attraction of the 
equilibrium point x=0.  The ‘state-space average’ of the 
‘nonlinear’ fundamental solution may be defined as:  
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The nonlinear controllability gramian is then defined as: 

∫
∞

−−
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where )(tΘ  is as described in (10).  
  
Definition 2.  For the system in (7) the nonlinear 
observability gramian is defined as: 
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and  is the output which corresponds to an initial 

state and a zero source term. 
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Now once the controllability and observability gramians 
are defined, the process of balancing may proceed as 
described in Section 2.  The final reduced nonlinear 
model is given by:     

  (13) 
))(,()(

)()())(,()(
*1

*1

tzTthty

tutTBtzTtTftz

Π=

Π+ΠΠ=
−

−&

 
4.  PERTURBATIVE FORM OF THE 
NONLINEAR FUNCTION  

The reduction process in Section 3 and as used in 
(Lall 2002, Hahn 2002 and Condon 2004) involves 
application of the projection matrix directly to the exact 
nonlinear representation in eqn. 7.  However, since f is a 



nonlinear function, the projection matrix may not in 
general be passed through the parentheses (Phillips 
2003).  Thus the evaluation of 

necessitates initially setting 

. The nonlinear function is then 
evaluated and finally the reduced space is formed using 

as .  However, herein lies the 
problem.  Evaluation of the function f normally 
consumes up to 50% of the computing time in a 
nonlinear circuit simulation.  Hence, although the state 
space size may be reduced significantly by 
setting , the expected gain in 
computational efficiency will not be achieved.    

))(,()( *1 tzTtTftz ΠΠ= −&

)()( *1 tzTtx Π= −
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)()( *1 tzTtx Π= −

As a consequence of this, approaches involving 
polynomial or perturbative forms and bilinear forms eg. 
(Phillips 2003 and Condon 2004) are employed.  
Several approaches for reduction via Krylov subspaces 
have been given eg. (Phillips 2003).  However, in this 
contribution, it is proposed to (i) form a projection 
matrix from the empirical gramians derived from a full 
nonlinear system representation and then (ii) to employ 
the projection matrix with the perturbative 
representation of the system which is formed as follows:  

Let  be expanded in a generalised Taylor’s 
series about (the equilibrium point) 

)(xf
0=x
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where , ,  , etc. and  
 denotes the Kronecker product. Since 

xx =)1( xxx ⊗=)2( xxxx ⊗⊗=)3(

⊗ 0=x  is a 
stable equilibrium point,  is a stable matrix.  It is also 
assumed that each term in the Taylor’s expansion is 
small compared to the previous one.  

1A

Now consider the case where a variational 
parameter α  is introduced, i.e. 

)())(()( tuBtxftx α+=& and let the response of the 
system x(t) be perturbatively expanded in a power series 
in α (Phillips 2003): 
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3
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On comparing terms in the variational parameter α , the 
following set of -dimensional differential equations 
can be derived: 
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Each -dimensional equation describes the time 
evolution of an  where represents the  order 
perturbative term in the expansion (16).  Defining a 
vector 
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the system in (16) acquires the following form: 
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This form is termed the perturbative representation 
where 
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The source for the second equation in (16) 

depends only on the state vector  determined from the 
first equation and so on.  Note that since  is a stable 
matrix, 

2u

1x

1A
A  is also automatically stable.  The system may 

be reduced using Krylov methods as described in 
(Phillips 2003).  Section 5 will confirm that the 
utilisation of the projection matrix derived from the 
novel gramian definitions provides an alternative 
reduction method and results in greater accuracy for a 
test case.   
 
5. TEST CASE 

The example taken is a standard example for 
illustrating the effectiveness of model reduction 
techniques for nonlinear systems (e.g. Phillips 2003 and 
Chen 2000 and in many others).  It consists of a network 
of nonlinear resistors and capacitors. The series of 
nonlinear resistors ensures a strong global nonlinearity.  
The nonlinear resistors are described by: 

   (20) vevi v +−= )1()( )40(

The capacitors have unit capacitance.  The input is a 
current source entering at node 1 and the output is the 
voltage at node 1.   

1

u(t)

11

u(t)

 
Fig. 1  Nonlinear RC network 
 
A ladder with 30 nodes is taken.  The model is to be 
reduced to order 3.  A projection matrix is derived from 
the empirical gramians as described in Sections 2 and 3.  
Initially, the projection matrix is applied to the exact 
nonlinear representation and then the projection matrix 
is applied to the perturbative representation.  The time 
for simulation of the latter is ~17% of the former.  
Hence greater efficiency is achieved by using the 
perturbative representation (if the perturbative 
representation is deemed accurate enough for the design 
work in hand).  Having established that use of the 
perturbative form is significantly more efficient, we 



now compare the reduction method to a standard Krylov 
approach (Phillips 2003).  The solid line in Fig. 2 shows 
the exact perturbative result for the ladder network with 
an exponential input of the form .  The dashed line 
gives the result achieved by using the Krylov method 
described by (Phillips 2003).  In this method, the 
projection matrix is formed from and .  is 
computed such that its columns are a basis for 

 and  is then defined 

as the basis for where 
are as defined in eqns. 16-19 and 

.  The dotted line gives the result 
obtained using the empirical gramians defined in eqns. 
11 and 12.  As is evident from the figure, the result 
obtained with the empirical gramians is clearly more 
accurate.     
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Fig. 2  Response at node 1 with an input of  te−

  
6.  CONCLUSIONS 

The paper has recommended the empirical 
gramians introduced in (Condon 2004) for use in 
conjunction with a perturbative system representation to 
achieve an efficent and effective reduced model.  By 
avoiding the direct use of the nonlinear function, the 
issue concerning the lack of the expected gain in 
computational speed with the use of a reduced model is 
avoided.   
 
ACKNOWLEDGEMENT 
The authors wish to acknowledge the financial support 
of Science Foundation Ireland. 
 
REFERENCES 
Antoulas AC, Sorensen DC, Gugercin S., 2001, ‘A survey of 
model reduction methods for large-scale systems.’ 
Contemporary Mathematics, AMS Publications, 2001, Vol. 
280, pp. 193-219.   
Antoulas A.C. 2003, Approximation of large-scale dynamical 
systems, SIAM Press- Philadelphia, 2003. 
Chen Y, White J., 2000, ‘A quadratic method for nonlinear 
model order reduction’, International conference on modelling 
and simulation of Microsystems semiconductors, sensors and 
actuators, San Diego, 2000. 
Condon, M. and Ivanov R., 2004,  ‘Empirical balanced 
truncation for nonlinear systems’, Journal of Nonlinear 
Science, Oct. 2004 

Condon, M. and R. Ivanov, R., 2005, ‘Balanced Model 
Reduction from a perturbative representation of weakly 
nonlinear systems’, NOLTA 2005 Bruges, Belgium. 
Gray WS, Scherpen JMA. 1998, ‘Hankel Operators and 
Gramians for Nonlinear Systems’, Proceedings of the 37th  
IEEE Conference on Decision and Control (CDC’98), Tampa, 
Fl, USA 1998, pp. 1416-1421. 
Hahn J, Edgar TF, 2002, ‘An Improved Method for Nonlinear 
Model Reduction Using Balancing of Empirical Gramians. 
Computers and Chemical Engineering 2002; Vol. 26(10), pp. 
1379-1397. 
Lall S, Marsden JE, Glavaški S., 2002, ‘A subspace approach 
to balanced truncation for model reduction of nonlinear 
control systems’, International Journal of Robust and 
Nonlinear Control 2002; Vol. 12, pp. 519-535. 
Moore B., 1981, ‘Principal Component analysis in linear 
systems: Controllability, Observability and model reduction’, 
IEEE Trans. on Automatic Control 1981; AC-26(1). 
Phillips JR., 2003, ‘Projection-based approaches for model 
reduction of weakly nonlinear, time-varying systems’, IEEE 
Transactions on computer-aided design of integrated circuits 
and systems 2003, Vol. 22, No. 2. 
Rewienski M and White J., 2003, ‘A trajectory piecewise-
linear approach to model order reduction and fast simulation 
of nonlinear circuits and micromachined devices, IEEE 
Transactions on Computer-aided Design of Integrated 
Circuits and Systems 2003, Vol. 22, No. 2, pp. 
Saad, Y., 1990, ‘Numerical solution of large Lyapunov 
equations’ Signal Processing, Scattering and Operator 
Theory, and Numerical Methods, Proc. MTNS-89, 3:503-511, 
Birkhauser,1990 
Scherpen JMA.,1993, ‘Balancing of nonlinear systems’, 
Systems & Control Letters 1993; Vol. 21, pp.143-153. 
Scherpen JMA. 1994, ‘Balancing of nonlinear systems’,  
Dissertation, Systems and Control Group, University of 
Twente, Enschede, the Netherlands, 1994. 
 
AUTHOR BIOGRAPHIES 
MARISSA CONDON is a lecturer at DCU.  Her 
research interests include the development of simulation 
techniques for nonlinear and high-frequency circuits and 
mathematical modelling of biological systems. Her 
webpage is /www.eeng.dcu.ie/~condonm.html.  Her 
email is marissa.condon@dcu.ie 
 
GEORGI GRAHOVSKI is a post-doctoral researcher at 
DCU.  He has research interests in solitons, differential 
geometry and biophysical models in addition to 
nonlinear circuit simulation techniques. 
 
ROSSEN IVANOV is a post-doctoral researcher at 
TCD.  His research interests include nonlinear circuit 
simulation and differential equations solution 
techniques.  Email:  ivanovr@tcd.ie 
 
  
 
 
  


	BALANCED TRUNCATION OF PERTURBATIVE REPRESENTATIONS OF NONLI
	KEY WORDS: controllability and observability gramians, model
	ABSTRACT

	Definition 2.  For the system in (7) the nonlinear observabi
	and  is the output which corresponds to an initial state and
	ACKNOWLEDGEMENT
	REFERENCES



