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Krylov Subspaces from Bilinear Representations of Nonlinear systems 

Research paper 

 

Abstract – 

 

Purpose:  The paper is aimed at the development of novel model reduction 

techniques for nonlinear systems. This is of paramount importance for the efficient 

simulation of state-of-the-art dynamical systems as arise in all aspects of engineering.   

 

Methodology/Approach:  The analysis is based on the bilinear and polynomial 

representation of nonlinear systems and the exact solution of the bilinear system in 

terms of Volterra series.  Two sets of Krylov subspaces are identified which are the 

most essential for capturing the input-output behaviour of the system and therefore 

preserved in the reduced model.   

 

Findings: The paper proposes two novel model-reduction strategies for nonlinear 

systems.  The first involves the development, in a novel manner as compared to 

previous approaches, of a reduced-order model from a bilinear representation of the 

system while the second involves a reducing a polynomial approximation using 

Krylov subspaces derived from a related bilinear representation. Both techniques are 

shown to be effective through the evidence of a standard test example. 

 

Research limitations/implications: The proposed methodology is applicable to so-

called weakly nonlinear systems where both the bilinear and polynomial 

representations are valid.  



 

Practical implications: From a circuits and systems viewpoint, systems involving 

micromachined devices or systems involving mixed technologies necessitate the 

development of reduced-order nonlinear models.  From a control systems viewpoint, 

the design of controllers for nonlinear systems is greatly facilitated by nonlinear 

model reduction strategies. The suggested methods lead to an improvement in the 

accuracy of nonlinear model reduction. 

 

Originality/value of paper:  The proposed novel approaches for model reduction are 

particularly beneficial for the design of controllers for nonlinear systems and for the 

design of Radio-Frequency Integrated Circuits.   
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1. INTRODUCTION 

With the growing complexity and dimensionality of state-of-the-art dynamical 

systems as arise in all aspects of engineering, model reduction is becoming a vital 

aspect of modern system simulation.  While model reduction techniques for linear 

systems are well studied (e.g. (Antoulas, 2003; Antoulas et al., 2001; Chiprout et al., 

1995; Feldmann et al.,1995; Gallivan et al., 1994; Gallivan et al., 1999; Odabasooglu 

et al., 1998; Phillips et al., 2003; Silveira et al., 1995; Shi et al., 2003) and references 

therein) especially in the context of interconnect and package modelling, the study of 

nonlinear model reduction strategies has received considerably less attention. 

However, from a circuits and systems viewpoint, systems involving micromachined 

devices or systems involving mixed technologies necessitate the development of 

reduced-order nonlinear models.  From a control systems viewpoint, the design of 

controllers for nonlinear systems is greatly facilitated by nonlinear model reduction 

strategies.  Applications for effective nonlinear control design abound in engineering 

from the control of chemical process systems to the control of aeronautical and 

electrical power systems.  Hence, the development of model reduction methods for 

nonlinear systems is of paramount importance to the general engineering community.  

Unfortunately, the study of nonlinear systems is much more complicated since their 

solutions (when they exist) can be of a quite complex nature (not unique, singular, 

chaotic etc.).  Therefore, the development of suitable reduced-order modelling 

techniques represents a formidable challenge. Some recent work in this field is 

presented in (Bai, 2002; Bai et al., 2002; Balakrishnan et al., 2001; Chen et al., 2000; 

Condon et al., 2004; Condon et al., 2005; Dong et al.,  2003; Gunupudi et al., 1999; 

Hahn et al., 2002; Lall et al., 2002; Phillips, 2000; Phillips, 2003; Rewieński et al., 

2003; Rowley, 2004). 



 

The present contribution proposes two novel techniques involving Krylov subspaces 

for model reduction of weakly nonlinear systems. These are systems in which the 

nonlinearities may be approximated by low-order polynomials. 

 The particular choice of Krylov subspace model reduction stems from the success of 

the Krylov paradigm in linear model reduction.  Firstly for linear systems, the choice 

of a projection matrix is straightforward resulting from the moment-matching 

properties of the transfer function of the system.  Secondly, the computation the 

projection matrix is straightforward involving only the solution of linear equations or 

matrix products. Furthermore, the Krylov approach enables the efficient formation 

and simulation of a reduced order model in that the reduced order model has the same 

form as the original system but is of much lower dimensionality.   However, the 

development of Krylov approaches for nonlinear model reduction is not quite so 

straightforward.  Consider the following nonlinear system: 
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where nnf : is a non-linear function with the initial condition x(0)=x0 and 

1)(),( tytu . nCB ,  are constant vectors (C is a vector-row and B is a vector-

column).  To directly translate the projection scheme developed for linear model 

reduction would involve the determination of a projection matrix V which is 

orthogonal, IVV T  , such that  
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where )()( tVxtx r  and )(txr is the reduced state space. BVB Tˆ  and the aim is that 

yy ˆ  where ŷ  is the output of the reduced model.  However, to date, there has been 



no universal approach proposed for the determination of V.  Furthermore, as outlined 

in (Phillips, 2003), the interpretation of (2) as a reduced-order model for a nonlinear 

system is dubious. Since f is a nonlinear function, it is not, in general, possible to pass 

V through the parentheses in (2) and thus computation of the nonlinear function, f, is 

unavoidable.  Since the computation of such a function is often the major determining 

factor in the overall system simulation time, a reduction in the size of the state-space 

if achieved in this manner may not produce the desired effect as regards a significant 

reduction in computation time. 

 

Thus, for nonlinear systems, some compromises have to be made if Krylov 

approaches are to be utilised.  For this contribution, the compromise comprises either 

a restriction on the type of nonlinear system under consideration or an approximation 

of the nonlinear equations describing the system behaviour.  In particular, two 

categories of nonlinear system representation will be considered – bilinear system 

representations and polynomial system representations.  A bilinear system is one 

which is linear in state, linear in control but not linear jointly.  Bilinear systems 

frequently arise naturally in engineering, for example, nuclear fission, chemical and 

biological models and ecological models (Mohler, 1973; Baillieul, 1995).  However, 

even when the system itself is not naturally bilinear, the bilinear representation offers 

a superior representation to a linear model, naturally incorporating the higher-order 

polynomial terms in the series expansion of the nonlinear function, f.   

 

While some Krylov subspace based approaches have been proposed for nonlinear 

model reduction e.g. (Bai, 2002; Bai et al., 2002; Phillips, 2000; Phillips, 2003) 

employing bilinear and polynomial representations, the current work employs them in 



a rather different manner to that previously presented.  Full details of the new 

approaches and their position relative to existing methods will be detailed in 

subsequent sections.  Section 2 will present the first approach and the second is 

detailed in Section 3.  An illustrative and standard example (Bai et al., 2002; Chen et 

al., 2000; Dong et al., 2003; Phillips, 2000; Phillips, 2003; Rewieński et al., 2003) is 

given in Section 4, which confirms the efficacy of the proposed approaches.  It should 

be noted that this example is not intended to be a practical application of the 

techniques.  It is chosen to enable ease of comparison of the proposed techniques with 

existing approachess and to confirm the theoretical proposals put forth throughout the 

paper. 

 

2. BILINEAR APPROXIMATION OF WEAKLY NONLINEAR SYSTEMS 

Consider again the nonlinear system in (1).  For the ensuing analysis, it is assumed 

that the system (1) is weakly nonlinear with an asymptotically stable equilibrium 

point as described in (Bai et al., 2002; Chen et al., 2000; Dong et al., 2003; Phillips, 

2000; Phillips, 2003).  Without loss of generality, it is assumed that 0x  is the stable 

equilibrium point of the system i.e. 0)0( f . Under this assumption )(xf can be 

expanded in a generalised Taylor’s series about the equilibrium point 0x : 

 ...)( )3(
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where xx )1( , xxx )2( ,  xxxx )3( , etc. and    denotes the Kronecker 

product.  Stability of the system implies that all the eigenvalues of 1A  have negative 

real parts. 

 

The systems under consideration will be assumed to be weakly nonlinear.  Hence, the 

condition that each term in the Taylor’s expansion is small compared to the previous 



one will be taken to hold.  Consequently, the system in (1) can be approximated by 

the well-known bilinear representation (Carleman bilinearization) of (1) (Phillips, 

2000; Phillips, 2003): 
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and  ˆ,ˆ,ˆ BNA  and Ĉ are constant matrices: 
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The matrices iA  are defined from the Taylor’s series expansion in (3) and 

iiiji AIIIAIIIAA   ,  

BIIIBIIIBB j  0  

where I is the nn  identity matrix and there are j  terms in each sum. Thus Â , 

N̂ are square matrices of dimension Knnn  2 ; x̂ , B̂ , Ĉ  are vectors with 

Knnn  2  components if K terms in the Taylor’s series expansion are taken into 

account. 

If  A1 is stable then  Â  is also stable, since each of its diagonal blocks is stable (see 

e.g. (Condon et al., 2005) for details). This however does not guarantee that the 

bilinear system (4) is BIBO (bounded input-bounded output) stable. A sufficient 

condition for stability on the interval ],0[   is (Condon et al., 2005) 



BKtu |)(|          (6) 

for all ],0[ t  where NA ˆˆ   is stable for all ],[ BB KK . (Since Â  is stable, 

NA ˆˆ   is stable in the vicinity of 0 , i.e. there exists an interval ],[ BB KK , such 

that NA ˆˆ   is stable for all ],[ BB KK ). 

 

As stated in the introduction, the rationale for employing the bilinear representation is 

that it allows higher-order terms to be explicitly incorporated in the subsequent model 

reduction technique and hence is superior to employing a linear representation.  

However, for practical purposes, the matrix )(ˆ tx  requires truncation.  For the present 

work, x̂  is taken as: 
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which corresponds to taking into account the quadratic terms in (3). 

Consequently,  
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where 1A  and 2A  are the matrices in (3), 1121 AIIAA  , BIIBN   

where I is the nn  identity matrix. Thus, Â  and N̂ are square matrices of dimension 

2nn  ; x̂ , B̂ , Ĉ  are vectors with 2nn   components.   

 

Now for the purposes of developing the new Krylov approach, consider, initially, the 

case of a bilinear system subject to a constant input u . 
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       (8) 



This obviously results in the linear system (8) and thus the system, (8), possesses all 

the advantageous properties pertaining to linear systems.  Bearing this observation in 

mind, for the general case where consttu )( , it is proposed to introduce a 

parameter which depends on )(tu : ][u   and BB KuK  ][  reflecting the 

fact that BKtu |)(| where KB is a constant bound as given in (6).  It is assumed that 

 is a functional on u  (i.e. a parameter that does not depend on t  but does depend on 

the behaviour of )(tu  for ],0[ t  and on the specific choice of interval, ],0[  ).  The 

dependence of  on )(tu is important.  This enables the Krylov subspaces of the 

system (8) to vary with )(tu  which results in a superior model reduction technique for 

a bilinear representation.  Now, in order to define ][u , consider a rescaling of the 

input uu   where  is a constant and u is sufficiently small.  This transforms the 

bilinear system into another bilinear system with source u(t)  as follows: 
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     (9) 

A rescaling of B̂ does not affect the determination of Krylov spaces. 

However, the term uxNˆˆ in (9) indicates that it is necessary to impose the validity of 

the following property of  : 

][][ uu         (10) 

i.e. ][u  must be a linear functional on u .  Therefore, for the general case of a non-

constant input, it is reasonable to define ][u  as follows:  
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The definition in (11) obviously obeys (10).  This choice of   is extensively used in 

the study of different types of bilinear systems; see e.g. (Baillieul, 1995).   Since for 



bilinear systems the input-output mapping (e.g. see (20) below) depends nonlinearly 

on the input, then the validity of approximation (11) for a particular system can be 

only confirmed from computer simulations.  

 

The proposition then is to employ the following linear system that is related to the 

original bilinear system to extract a projection subspace for the bilinear system with a 

][u  value determined from (11) or by some other means: 
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When the system in (12) is represented in the frequency domain, the input and output 

are related by the following transfer function: 

BAIsCsH ˆ)ˆˆ(ˆ)( 1       (13) 

where NAA ˆˆˆ    and Î  is the corresponding 2nn   dimensional identity matrix.

   

)(sH  may be expanded about a selected expansion point 0s  as follows: 
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where  

IsNAIsAA os
ˆˆˆˆˆˆ

0, 0
                  (15) 

and mp (termed moments) are:  
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sp
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         (16) 

 



The choice of expansion point 0s is an issue that arises not only in relation to 

nonlinear reduction but also in Linear system theory.  In general, the choice depends 

on which part of the spectrum of Â  that requires emphasisis - it is desirable that the 

selected part is that which is the most significant for the input-output mapping- e.g. 

see the discussion in (Gallivan et al., 1994).  Many authors report significant 

improvement in relation to Krylov spaces when several expansion points are 

employed- e.g. (Chiprout et al., 1995; Gallivan et al., 1994; Phillips et al., 2003; Shi 

et al., 2003).  Some selection strategies for the expansion points are proposed in 

(Chiprout et al., 1995).   

For model reduction purposes, what is of interest is the relationship between the 

moments and the formation of suitable projection subspaces.  All of the moments (16) 

may be written as scalar products between the following left and right Krylov spaces 

e.g. (Bai et al., 2002): 
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    (17) 

(The notation is adopted throughout that Krylov subspaces of the form K̂  have 

dimension ...2nn   while Krylov spaces of the form K  have dimension n).  

The projection subspace is formed by taking the first k  vectors of each Krylov space. 

To avoid ill-conditioning in the reduction matrices, the two bases can be made 

biorthogonal, i.e. kIWV  where the vector-columns of V  are from 1
ˆ

RK , the vector-

rows of W  are from 1
ˆ

LK  and kI  is the kk   identity matrix. 

The state vector )(ˆ tx may then be approximated by the ‘reduced’ k -dimensional state 

vector )(txr  i.e. )()(ˆ tVxtx r . The resultant reduced bilinear system is therefore: 
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where VAWAr
ˆ , VNWNr

ˆ ,  BWBr
ˆ  and VCCr

ˆ . 

Thus, by employing the system in (12) it is possible to define suitable Krylov spaces 

that may subsequently be used for determining a reduced-order bilinear system.  The 

success of employing such subspaces will be evident from the results in Section 4.   

 

3. QUADRATIC APPROXIMATION OF WEAKLY NONLINEAR SYSTEMS 

The second technique proposed for model reduction of weakly nonlinear systems is 

based on a polynomial approximation of the given system (1).  However, for ease of 

explanation, the current work will be restricted to a quadratic approximation which is 

as follows: 
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Particular observations in relation to a corresponding bilinear approximation of the 

nonlinear system can provide some insight into the construction of a suitable Krylov 

space for model reduction of the quadratic representation.  Therefore, the first part of 

this section will again focus on the bilinear representation.  Consider the solution to 

the bilinear system in (4) (D’Alessandro, et al., 1974):  
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i  is the set of permutations of  },...,{ 1 itt and   is the unit step function. The 

expression for iz  can be obtained from those for iv  with B̂  replaced by the identity 

matrix I.  

The kernels BeNeNeC ttAttAtA iii ˆˆ...ˆˆ )(ˆ)(ˆˆ
211   of this solution naturally lead to the multi-

dimensional transfer functions of the form (Bai et al., 2002): 

    BAIsNNAIsCsssH iii
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The coefficients in a power series expansion of iH  (about 0s ) are the following 

multi-moments: 
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where il are nonnegative integers and IsAAs
ˆˆˆ

00
 . Since the selection of 0s  depends 

on the spectrum of Â  and not on the input, the most suitable value can be selected 

using a test-input. 

 

The matrices involved in (22) have the following noteworthy structure: 
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where IsAA s 01,1 0
  and IIsAA s  021,21 0

. 



As a result of this structure and that of B̂ and Ĉ (see Section 2 (7)), the kernels of 

degree 1 may be written as: 
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This indicates that they can therefore be represented as scalar products between 

vectors of the following n -dimensional (not 2nn  -dimensional) Krylov spaces: 
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Similarly, kernels of degree 2 may also be represented as scalar products between 

vectors of n -dimensional Krylov spaces: 
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The combined Krylov spaces are as follows: 
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Thus, the crucial observation is that n -dimensional Krylov spaces suffice for 

matching both degree 1 and degree 2 kernels (and possibly some of the degree 3 

kernels) for a bilinear system.  

          

Since the bilinear system of (4)-(7) was formed on the basis of inclusion only of 

quadratic terms in the Taylor’s series approximation of the original system, it is 



proposed that the Krylov spaces in (28) can be used for reduction of the n -

dimensional quadratic system in (19).  Taking the relevant k -dimensional (where k is 

the order of the reduced system) left and right subspaces, biorthogonal bases and 

projection matrices V  and W  can be constructed as described in Section 2.  The 

reduced quadratic system is then: 
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where xr is k- dimensional, VWAA r 1,1   (of dimension k×k), )(2,2 VVWAA r  (of 

dimension k×k2),  WBBr   (of dimension k), CVCr  (of dimension k). 

and )()( tVxtx r . 

4. AN ILLUSTRATIVE EXAMPLE 

The circuit employed is the nonlinear RC ladder shown in Fig. 1 (frequently employed 

as a test circuit for model reduction techniques (Bai et al., 2002; Chen et al., 2000; 

Dong et al., 2003; Phillips, 2000; Phillips, 2003; Rewieński et al., 2003)). The 

nonlinear resistors (a diode in parallel with a unit resistor) have the constitutive 

relation vevi v  )1()( 40  and the capacitors have unit capacitance. 

 

The input to the system is a current source u(t) entering node 1 and the output is the 

voltage taken at node 1. The number of nodes in the system is n=30.  

 

The system is initially approximated by a bilinear system of order 30+302=930.  The 

time interval chosen for consideration is ]1,0[t , i.e. 1 , the input is tetu )(  and 

hence the parameter  in (11) and (12) is evaluated as 6321.01 1
1

0

  edte t . 

 



The reduction process for the bilinear system of order 930 to a bilinear system of 

order 3 is implemented utilising the Krylov spaces defined by (17) (Method 1).  In 

order to compare various results, the root-mean squared error is calculated between 

the outputs of the bilinear model (4) of order 930 and the reduced-order models (18).  

Table 1 shows the results achieved with 6321.0  for a selection of expansion 

points 0s .  (Obviously, tests were carried out for a much larger range of expansion 

points and what is given in Table 1 corresponds only to a suitable selection).  The 

variation in the results clearly shows the importance of judicious choice of expansion 

point.  The best result is achieved with an expansion point of 7.20 s  with the 

corresponding rms error equal to 1.110-5. To confirm the validity and superiority of 

this new approach (Method 1), results are also shown for the case where 0 .  This 

corresponds to the standard linear approximation of a bilinear representation.  With 

0  the rms error is ~10-3 for a large range of values of 0s  around 3.0 (where the 

rms values are at their lowest).  Phillips (2003) also proposes determining a projection 

basis for bilinear systems based on a Krylov approach.  He chooses an initial basis V1 

from )ˆ,ˆ(ˆˆˆ 1
11 BAKKK RL

  such that first-order kernels are matched up to terms in 

1qs  - 11      )(ˆˆ qmVspanBA m  .  He then proceeds to determine a basis V2 from 

))ˆ,ˆ(ˆˆ,ˆ(ˆˆˆ 1
1

1
22 BAKNAKKK RRL

 and finally constructs knRV  (k is the order of 

the reduced system) from 21
ˆˆˆˆ

LLRL KKKK  .       

  

With this approach the second order regular kernels of the reduced model and the 

original bilinear system match up to terms in 21 qq ss  - 

21        ˆÂˆˆˆˆˆˆ qlqmBNAVBANA r
m

rr
l

r
ml    where the subscript r denotes matrices 

of the reduced-order model.  Implementation of this approach in conjunction with 



biorthogonalisation yields an rms error of 2.410-4. (Since biorthogonalisation was 

employed with the proposed new methods, it was employed with the approach of 

Phillips (2003) so as to compare like-with-like).  Biorthogonalisation is known to be 

more efficient in multimoment matching than the use of one-sided Krylov subspaces 

(Bai et al., 2002).  As evidenced by these results, the new method proposed leads to 

equally precise results.  Fig. 2 shows that the reduced-order model is effective for a 

variety of inputs although  and 0s were determined with an exponential input as the 

‘test’ input. 

 

The second approach is that suggested in Section 3 whereby the system is 

approximated by a quadratic system (19) of order 30.  The reduction to a 3k  

dimensional quadratic system is implemented by utilising the following Krylov 

subspaces (based on (28)): 
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and the chosen expansion point is 3.20 s . This particular choice of subspaces and 

expansion point is found to yield the best results.  The subspace selection is based on 

matching the first four of the first-order kernels as the first-order kernels contribute 

most to the response of the system.  The elements of span{V} are from ),( 1
,11, 0

BAK sR
  

in (28).  The first two elements of }{ TWspan  are selected from ),( 1
,11, 0


sL ACK  and the 

third element is selected from 2,LK .  The root-mean squared error is calculated 

between the outputs of the quadratic model (19) and the reduced-order model (29).  

The rms error achieved is 1.010-4 highlighting the efficacy of this second novel 



approach. The rms values are for the case of an exponential input to the system (Fig 

3A), but the reduced model gives excellent results for other inputs-Fig 3B-D.    

If a projection basis is chosen based solely on a linear approximation of the system, 

the rms error is 7.610-4.  It should be noted that choosing a basis based on a linear 

approximation of the system is the standard approach for reducing a quadratic model 

(Chen et al., 2000) (and also indicated in (Phillips,2003)).  These results clearly 

indicate that the proposed approach results in high precision reduced-order models.    

 

5.  CONCLUSIONS 

Two novel methods involving Krylov subspaces for model reduction of weakly 

nonlinear systems have been proposed.  The first method is based on bilinearisation of 

the system and utilizing the Krylov basis for a related linear system (12).  The second 

approach involves using Krylov bases identified for a bilinear representation of the 

system for subsequent reduction of a polynomial approximation of the system. 

The first method (that proposed in Section 2) has the advantage that the choice of 

Krylov bases is straightforward as is the case for all linear systems.  It consists of the 

selecting the first k  vectors of the set given in (17).  The drawback with the approach 

is that which is common to all techniques that involve working directly with bilinear 

systems and is that the size of bilinear system is large i.e. nn 2  if only quadratic 

terms are taken into account.  Another point to note is that an extra parameter is 

introduced into the system,   (11).  Taking the average value of a test input over the 

interval of interest for the determination of this parameter is a fairly standard practice 

for a large class of systems.  Obviously, for an input such as ttu sin)(   over a large 

time interval,  , clearly the average value will be zero and the system is 

approximated with a linear approximation of the bilinear representation.  However, 



for the cases of inputs with a non-zero average over a finite interval such as constant 

(step) inputs; decaying exponential, then utilising (12) is advantageous.  The paper 

also indicates the necessity of the judicious choice of expansion point, 0s , in model 

reduction methods involving series expansions for both linear and nonlinear systems.   

 

The advantage of the method proposed in Section 3 is that there is no need to work 

directly with the large bilinear system.  All that is required is to employ the Krylov 

spaces resulting from a bilinear representation of the system.  Furthermore, there is no 

new parameter introduced into the modelling process.  However, once again the 

choice of expansion point is a factor that must be taken into account in the application 

of reduction technique.  Also, the selection of the vectors from the general Krylov 

spaces (28) needs to be made judiciously. 
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Captions 

Table 1: Results for nonlinear ladder 

 

Fig. 1.  Nonlinear circuit (exponential nonlinearity) 

 

Fig. 2.  Reduction with method 1 (dash-dotted line) of the original model  (solid line). 

The full order bilinear model is presented with dotted line. 

A: exponential input u(t)=exp(-t); 

B: unit step input; 

C: sinusoidal input, )4sin(
2

1
)( ttu  ; 

D: )2cos(
2

1
)( ttu  . 

 
 
Fig. 3.  Reduction with Krylov space (30) (dash-dotted line) of the original model  

(solid line). The full order quadratic approximation of the model (i.e. the nonlinear 

function (3) with the first two terms in the expansion) is presented with dotted line. 

A: exponential input u(t)=exp(-t); 

B: unit step input; 

C: sinusoidal input, )4sin(
2

1
)( ttu  ; 

D: )2cos(
2

1
)( ttu  . 

 
 
 
 
 
 
 
 
 
 
 



 
 
Table 1 
 

  0s  Rms error
0 0 1.310-2

0 3.0±1.0 (6.5±0.2)10-3

0.6321 0 1.710-2

0.6321 2.4 2.910-4

0.6321 2.5 1.910-4

0.6321 2.6 1.010-4

0.6321 2.7 1.110-5

0.6321 2.8 6.410-5

0.6321 2.9 1.310-4

0.6321 3.0 2.010-4
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Fig. 2A 
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Fig 3A 
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Fig 3B 
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Fig 3C 
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Fig. 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


