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HVOF Coating Blended with WC 
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ABSTRACT 

 
High velocity oxy-fuel (HVOF) spraying of Diamalloy 1005 powders mixed with 

WC particles onto steel (304) is considered and laser re-melting of the resulting 

coatings is examined. Laser re-melting process is modeled to determine the melt layer 

thickness while temperature increase is formulated using the Fourier heating law. The 

morphological and metallurgical analyses prior and post laser re-melting process are 

carried out using scanning electron microscopy (SEM) and energy dispersive 

spectroscopy (EDS). X-ray diffraction (XRD) technique is used to determine the 

residual stress developed in the coating while the analytical formulation is adopted to 

predict the residual stress levels at the coating base material interface. The indentation 

tests are carried out to determine the Young’s modulus and fracture toughness of the 

coating prior to laser re-melting. Corrosion resistance of coating is measured using 

potentiodynamic polarization technique prior and post laser treatment process. The 

predictions of the melt layer thickness are in good agreement with experimental 

results. The presence of WC particles modifies temperature rise and its gradient in the 

coating while affecting the Young’s modulus, residual stress levels, and fracture 

toughness of the coating. The differences in the thermal properties of Inconel 625 

powders and WC particles result in formation of small size cellular structure through 

polyphase solidification. WC dissolution in the central region of the large 

polycrystalline cells is observed due to the loss of carbon through carbonic gas 

formation. The results of corrosion tests prevail that significant improvement of 

corrosion resistance can be achieved after laser treatment process. 
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_______________________________________________ 
 
Chapter 1 - Introduction 
_______________________________________________ 
 

Several surface treatment techniques including coatings are available to 

improve the surface properties of metallic parts. The thermal spray 

processes is well-established technique in this regard. The attribution of 

these techniques is recognized in the application and deposition of 

surface layer with required properties on top of substrate material 

surfaces with poor properties. Depending on the feature of applied 

technique, common problems would be of a dispute as combination of a 

poor bonding of the applied surface layer to the base material, the 

occurrence of porosity, the thermal distortion of the workpiece, the 

mixing of the surface layer with the base material and the inability of a 

very local treatment. 

One of the techniques that provide structural homogeneity through 

thermal integration called laser cladding or re-melting. Laser cladding 

has been defined as a process which is used to fuse a material with a 

laser beam to another material. The re-melting surface has different 

metallurgical properties on a substrate with only very thin layer of the 

substrate has to be melted in order to achieve strong bonding. The 

minimum diffusion of coating into the substrate is regarded for the 
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integrity of coating and maintaining the original properties of the 

coating material [1, 2]. 

Thermal spraying family is well known system as well of being used to 

form a composite layer and vary from one to another in performance and 

quality. High velocity oxy-fuel (HVOF) is one of the family is 

considered to be excellent and the best among other types as stated in 

Table 1.1 [2]. 

 
Table 1.1.  Comparison of Thermal Spraying Processes and Coating 
Characteristics [2]. 
 

 
Process 

 
Particle 
Velocity 

(m/s) 

 
Adhesion 

(MPa) 

 
Oxide 

Content 
(%) 

 
Porosity 

(%) 

 
Deposition 

Rate 
 (kg/hr) 

Typical 
Deposit 

Thickness 
(mm) 

 
Flame 

 

 
40 

 
<8 

 
10–15 

 
10–15 

 
1–10 

 
0.2–10 

 
Arc 

 

 
100 

 
10–30 

 
10–20 

 
5–10 

 
6–60 

 
0.2–10 

 
Plasma 

 

 
200–300 

 
20–70 

 
1–3 

 
1–8 

 
1–5 

 
0.2–2 

 
HVOF 

 

 
600–800 

 
>70 

 
1–2 

 
1–2 

 
1–5 

 
0.2–2 

 

 

HVOF coating is to be considered one of the most recent thermal 

spraying family added technique, has become as an alternative to others 

in properties such as detonation (D-GUN) flame spraying and the lower 
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velocity, air plasma spraying processes for depositing wear resistant 

coatings. However, HVOF is a system that delivers high pressure and 

flow rate compared with those in the atmospheric burning flame 

spraying system due to internal combustion process (Figure 1.1) [2]. 

 

 

 

Figure1.1. Schematic of High Velocity Oxy-fuel (HVOF) spraying 
system [2]. 

 

 

There are different types of HVOF systems which can be utilized in 

research and experiments or even in practice such as diamond jet hybrid, 

modified diamond jet, JP5000, DJ2700, and TopGun [3,4]. However, 

the applications of HVOF sprayed coatings have been growing gradually 

in the last two decades because of increased use of surface engineering. 
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It has been developed primarily for wear resistance at different industrial 

locations like aerospace. The major utilization of the system as 

succeeded with superiority in technical and competitively in commercial 

is base on corrosion and wear protection, as well as repair of worn 

components [3, 5]. In relation with sort of properties consideration in 

performance of coating such as mechanical, process, microstructure and 

parameters, the type of coating powders has significant effects of HVOF 

on the wear-corrosion, and other properties of the resulting surface. 

Moreover, use of carbide particles can improve the tripological 

properties of the resulting coating surface.  

 
 
 
1.1 Types of Carbide Powder Are Used With HVOF Spraying 

 

One class of coatings widely prepared using the HVOF spraying process 

is carbide-containing composites, called cermets. Because of their 

combination of high hardness, moderate toughness, good adhesion and 

chemical stability in many service environments, these coatings are 

widely used to provide protection against wear.  

The main components are tungsten carbide or chromium carbide 

particles in a metallic alloy matrix consisting of various combinations of 

Co, Ni or Cr. The two most common carbide coatings are WC-Co and 
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Cr3C2-NiCr. In the HVOF process, these materials are sprayed as a 

powder consumable. The main keys of powder characteristics needed 

during manufacturing process control to achieve compatibility of 

resulting needed of coating can be summarized in particle grain size, 

homogeneity of carbide dispersion within the powder particle, density of 

the powder particle, shape of the powder particle and particle size 

distribution [6]. 

 

 
1.2 HVOF System Disadvantages 

 

However beyond the performance of HVOF spraying application 

compared with other systems, there are also disadvantages associated. 

HVOF sprayed coatings can be found complicated with their properties 

and microstructure depending on processing variables. For instant, 

restriction to sintering powder sizes of a range of about 5 - 60µm with a 

need for narrow size distributions. Moreover HVOF spraying requires 

experienced and qualified applicator is of high demand to ensure safe 

operation and to achieve consistent coating quality. Proper controlled 

automated and robotic of an HVOF spray gun is required more than 

manual control. The design of the gun is limited for larger equipment 

size and to be found extremely not accessible to internal of small 
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cylindrical components narrow paths as long as maintaining distance of 

150-300 mm is required [7].  

 

1.3 Lasers & Laser Beam Interaction with Materials 

 

Laser treatment techniques is considered to be the advanced way to form 

a layer with better performance compared with conventional methods 

like thermal spraying in terms of their advantages in chemical 

cleanliness, thermal penetration, and surface profile with absence of 

voids and oxides as well [1]. 

 

1.3.1. Laser Basic 

 

Simple laser is made of two parallel mirrors named as resonators. It is 

meant to create an optical oscillator in which light would oscillate back 

and forth between the mirrors. Considering a lasing medium between the 

mirrors, the process of Light Amplification by the Stimulated Emission 

of Radiation would be achieved and hence named as laser (Figure 1.2) 

[1, 8]. 
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Figure 1.2.  Light Amplification by the Stimulated Emission of 
Radiation [8]. 
 

 

There is a straightforward approach to understand laser processing 

which is relevant for every situation. This approach considers only 

processes that can occur when a laser beam strikes a surface and 

expressed in: Reflection + Absorption + Transmission = 1 with 

possibility of occurrence of all of them in practical [1]. The other 

approach that some of these pure Light Amplification beam hit  the 

target,  some photons would be absorb and they would be converted into 

thermal energy at the target surface as heat. The heat generated may be 

conducted, radiated or convected away from the area. In most practical 

situations, convection and radiation are playing in a very narrow 
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occasion however conduction is the prevailing process. Once the heat 

enter to the target area with higher rate than the rate of conduction of 

heat away from the target, then melting or vaporization or both 

combined together would occur due to raise of temperature locally with 

possibility of sublimation as indicated by some scientists. In general 

assumption and usually in most of industrial laser processes, the target 

would absorb significant proportion of the light amplification beam. 

Furthermore, it is widely accepted that there are three dominating factors 

playing the big rule in laser processes as of average power, intensity of 

the laser spot in the target and wavelength of the laser beam [1,8]:  

 

1.3.2 Types of Lasers 

 

There are many kinds of lasers manufactured today and each produce 

laser light at a unique frequency. However, the most common lasers 

used in fabrication are the carbon dioxide (CO2) laser, the Nd:YAG 

(neodymium-yttrium aluminum garnet) laser, and the diode laser. The 

CO2 laser uses a mixture of gases including CO2 as the active medium 

and produces light with a 10.6-micron wavelength. The Nd:YAG laser 

uses a crystal as its active medium and produces light with a 1.06-

micron wavelength. The diode laser uses a semi-conductor diode 
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material as its active medium can be manufactured to produce one of 

several wavelengths.  

 

There are many laser types. Each type of laser has its advantages and 

disadvantages and is therefore used for different applications. In 

addition, laser process in industrial have been extended to cover many 

applications such as welding, cutting, drilling and in little wide range in 

surface treatment that is covering diversify range of  areas (Figure 1.3 ) 

[1].  

 

 
Figure 1.3. Range of laser processes mapped against power density per 
unit time [1]. 
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1.3.2.1 Laser Surface Treatment 

 

It is called laser surface modification increasingly used in industrial to 

change the surface of a component to develop a reliable material work 

against aggressive environments (high temperature and corrosive 

environments). Different types of modifications are available to do the 

change required as of laser transformation hardening, laser melting, laser 

alloying and laser cladding (re-melting) [1]. 

 

1.3.2.2 Laser Transformation Hardening 

 

Laser hardening is one of surface treatment techniques justified for 

developing high stressed and hard surfaces to avert to better wear 

resistance and increase in fatigue life in respect to change in 

microstructure [2].  

 

1.3.2.3 Laser Melting 

 

It is similar of laser surface hardening as meant in surface melting 

through application of a focused or near focused beam in order to gain 

fine homogeneous structures with ensuring covering the substrate with 

inert gas [1, 2].  
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1.3.2.4 Laser Alloying 

 

The processing of hardening and melting are closed related to laser 

surface alloying (LSA) with modifying the process to add alloying 

elements in the melt pool while changing the chemical composition in 

surface region. In order to achieve the required properties, alloying 

elements can be introduced either with inert gas or with powder feed 

line if available in the system [1, 2]. 

 

1.3.2.5 Laser Cladding / Clad Re-melting 

 

Laser cladding / clad re-melting can form metallurgical bond between 

two materials and lead to new microstructure with desirable properties at 

the surface.  As laser with its function of producing high power 

densities, it will have the ability to generate heat reaching to melt the 

substrate and some of the cladding particles. With controlled power 

density, fusion of metal onto another metal with minimal thermal input 

can be attained. Selection of suitable cladding materials can increase the 

component wear, hardening and corrosion resistance with well-

established parameters of laser processing.  

In principle there are two possibilities of realizing the process of 

cladding [1, 2]:  
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- Pre-placed powder process (two stages) as meant of clad re-melting. 

- Blown powder process (one stage) as meant of cladding with surface 

re-melting.  

 

1.4 Clad Re-melted Layer Properties 

 

It is found to be complicated in practice to generate a clad re-melted 

layer with all desirable requirements such as geometric features, 

mechanical properties, metallurgical properties, and other qualitative 

properties. Moderating the requirements of such properties has to be 

evaluated and assessed against environments. Application of preheating 

the substrate material prior to laser implementation can lead to reduce 

the cooling rate and eventually lowering the residual stress levels. Crack 

prevention is an important issue against the initiation of corrosion 

fracture and reduce fatigue strength [9,10].  

 

1.4.1 Fusion Depth 

 

Formation of a melt pool in the substrate is highly required to perform 

strong fusion bonding with clad layer. However, part of metallurgical 

and geometrical properties in laser re-melting, depth of clad melt into 

substrate need to be as small as not to be fused deep with the base 
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material in order to obtain a pure surface that characterizing the quality 

of layer. The fusion depth measurements can be carried out in two ways. 

One way of defining the fusion depth is based on the clad layer 

geometry by means of the ratio of the clad depth (dc) in the substrate 

over the total clad height (tc) with the assumption of homogeneity in 

elements distribution over the clad cross section geometrical. (Fig. 1.4) 

The other way of assessment the fusion depth can be made through 

analysis of the material composition in the clad layer. In more detail, an 

evaluation is to be made between the material composition of the pure 

coating material and the composition of the substrate. This way permit 

recognizing the variation of the fusion over the clad depth and is 

preferred over the geometrical approach [11]. 

 

 

 

Figure 1.4. Cross-section of a single clad layer with definition of the 
clad geometry: clad height (hc ), clad depth (dc ), total clad height (tc ) 
and clad width (wc ) [11]. 
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1.4.2 Porosity 

 

Voids in the clad layer are called porosity which can be resulted through 

different process occasions. They may be created due to trapped gas 

bubbles in the melt pool during cooling and solidification. However, this 

can be reduced by vibrating the workpiece which has an advantage of 

reducing also cracks and internal stresses. The other reasons to form the 

porosity is the solidification process, which proceeds different 

directions, i.e. resulting and causing tensile stress in the layer with 

possible formation of holes. Impurities like presence of some flaws of 

grease during laser processing can affect the bonding between the clad 

and substrate causing the porosity formation. 

During overlapping tracks of continuous laser application, ‘inter-run 

porosity’ as called can appear as referred in Figure 1.5 due to excess 

laser power supplied [11]. 

 

 

Figure 1.5.  Inter-run porosity [11]. 
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High Velocity Oxy-fuel (HVOF) coatings in specific are widely used in 

industry for the wear preventions and high temperature protection of 

surfaces. The coating powder has resistance to high temperature and to 

abrasive operations, which enables the coating to be used in the power 

industry. Moreover, WC addition to the powder improves the wear 

properties of the coating significantly. In HVOF coating process, the 

splats (semi-molten powder) anchors to the grit blasted surface through 

the mechanical locking. As the spraying progresses, the splats build up 

forming the coating layers. The particles during in-flight remain in semi-

molten state, which give rise to the formation of porous structures in the 

coating. This causes a non-homogeneous structure being formed in the 

coating. Thermal integration of the splats in the coating reduces the 

porosity and improves the structural integrity in the coatings. This can 

be achieved through controlled melting of the resulted coating. The laser 

melting process has several advantages over the conventional melting 

methods. The local heating resulting in narrow heat affected zone, 

precise operation, and fast processing time are the main advantages. 

However, the thermal strains developed during the heating and cooling 

cycles differ significantly inside the coating. This, in turn, results in the 

development of the excessive stress field in the coating and in some 
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cases the crack formation at the stress centers in the coating becomes 

unavoidable. Consequently, investigation into microstructural changes 

and temperature rise during the laser melting process become essential 

for possible structural integration in the coating with low stress levels. 

 

In the present study, laser re-melting of HVOF coating of Inconel 625 

including WC particles is considered and the microstructural analyses 

prior and post laser re-melting is carried out. Inconel and WC mixture 

are used as the spraying powders while stainless steel (SS 304) is 

accommodated as the base material for spraying. The selection of 

Inconel 625 powder is because of its wide usage in industry. However, 

addition of WC provides improved hardness of the resulting coating. 

Since, Inconel 625 and WC have different properties, structural integrity 

of the coating needs improvement through controlled re-melting. 

Consequently, the influence of WC content in the microstructure of the 

coating after laser re-melting is also investigated.    

 

The thesis consists of six chapters as the first chapter presents 

introduction of HVOF coating and laser re-melting processes. The 

second chapter reports the literature review pertaining to previous works 

carried out in regards to finding and assessment of the state of the art 
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and application of HVOF and laser treatments. This review survey is 

performed and classified into four related categories of HVOF coating. 

They are of pertaining to coating processes and characterization, 

coatings and WC addition, coatings and laser treatment and finally 

coatings and corrosion. In chapter three, equipment used in the 

experiment with specimen preparations, spraying, procedures, and laser 

facility used in the experiment were presented. Furthermore, the 

morphological and metallurgical examinations were carried out using 

EDS, optical microscopy and SEM. XRD technique for residual stress 

measurement was applied. Last in this chapter, determination of young’s 

modulus and fracture toughness measurement was also carried out using 

indentation tests. However, the laser heating process is modeled using 

the lump parameter analysis, which is presented in chapter four followed 

by simulation the equation for temperature distribution with different 

concentration of WC in Inconel 625 powder. Results and discussion is 

given in chapter five of the thesis. The findings of experimental tests and 

theoretical model are discussed in details in this chapter as well. The 

limitations of equipments and model study are also given. Finally, the 

conclusion and future work are presented at the end of the thesis in 

chapter six. 
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______________________________________________ 
 
Chapter 2 - Literature Review 
_______________________________________________ 
 
 

2.0 Introduction 

 

The studies reported in the open literature related to the materials 

characterization of HVOF coatings and application of laser treatment are 

presented in the following literature survey. Considerable numbers of 

investigations have been carried out while using different types of 

equipment as well as materials and processes in order to secure high 

coating performance and quality as judged by the mechanical, 

metallurgical, corrosion, and erosion properties.  

The published work in the literature survey covers the period of past 15 

years. The literature survey will be presented under the relevant sub-

headings.  

 

2.1 Material Characterization of HVOF Coatings 

 

Different types of gaseous fuels have been used recently with HVOF 

coating process such as hydrogen, propylene, propane, and acetylene. 

However, the use of liquid fuel (kerosene) in HVOF system is found to 

produce thick deposition layers of coating as compared with gaseous 
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fuels units [2, 12]. Sturgeon [4] reported that the deposition efficiency is 

exceeding more than twice of JP5000 and DJ2700 systems when the 

TopGun HVOF system was used. They indicated that this was due to 

design of dwelling time of the TopGun spraying facility, which resulted 

in high temperature powder particles in the spraying jet as compared 

with other HVOF facilities.  

 

Particle velocity is one of the important parameters in thermal spray 

process. Higher the particle velocity results in higher the bond strengths. 

This gives rise to low porosity due to reduced cooling period, provided 

that the particles are impacting the preheated substrate surface within a 

semi-molten state. The HVOF process is designed to produce high 

particle velocities, and this contributes to the advantages of HVOF 

coating over the other thermal spray processes [13 - 15]. 

 

It was demonstrated that temperature tends to increase during spraying a 

nanostructured WC-12Co cermet powder through using the different 

gun-fuel in descending order JP-5000 kerosene, DJ-2600 hydrogen, and 

DJ-2700 propylene. However, the velocity of particles tended to 

decrease in the same order. High velocity with maintaining high 

temperature could promote the coating properties due to improvement of 
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bonding and adhesive strength of multiple layers through kinetic energy 

gain of the particles during spraying. Moreover, the low temperature 

would endorse low melting and low viscosity that lead to possible 

rebounding of particles and increase of porosity. Hardness of the 

coatings increased while using DJ-2600 hydrogen as compared to DJ-

2700 propylene due to the increase in temperature and velocity [13, 15, 

16].  

Increasing the stoichiometric factor of oxygen / fuel ratio was measured 

for the flame during spraying of Inconel 718, which was found to 

decrease the flame temperature and increase the velocity of the flame. It 

was observed that the percentage of oxide contents was also increased. 

Moreover, producing dense coating can be possible due to the increase 

of oxides in the coating as a result of the increase in combustion 

pressure. However, the porosity was at constant level with the increase 

of combustion pressure regardless of the stoichiometry ratio [17-19]. 

However, Lugscheider et al. [18] highlighted the importance of spraying 

parameters on the resulting coating characteristics. Increase in the spray 

distance was correlated to the adjustment of substrate temperature in 

restraining the severe oxidization by reducing the heat load on the 

substrate. The increase in the powder feed rate was found to reduce the 

oxide contents due to the incomplete melting of particles. Thus, building 
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a thick layer pass with high feed rate could create residual stresses in the 

coating. As a result of this study, hydrogen / oxygen ratio was expected 

to be high enough to reduce the oxides with maintaining thin layers of 

coating [20].  

Fixing the cylindrical shroud at the end of the jet nozzle was intended to 

reduce in-flight oxidation of the powder. It was found that the increase 

of particle temperature with decrease in particle velocity was possible 

while applying the shroud. It appeared that the geometry of the 

cylindrical shroud produced low quality of coating because of low 

bonding strength. Thus, re-designing the shroud to minimize the re-

circulation of the flow inside the shroud as noticed would be of future 

study [21].   

Nuruzzaman et al. [22] examined the surface durability of HVOF 

coating (WC-Cr-Ni) in lubricated rolling with sliding contact conditions 

against the substrate material and its surface finish. They applied two-

roller testing machine to investigate the durability of the steel roller with 

and without coating. While using thermally refined steel substrates 

during the test, formation of flaking was noticed in steady condition if 

the substrate was axially ground. On the other hand, with blasted or 

circumferentially ground substrate of coated roller, the coating durability 
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of the roller was indicated to be inferior with the increase of coating 

thickness. However, the coated rollers were found to be harder and 

demonstrated a longer life compared with the thermally refined steel 

substrates. Furthermore, the condition of the substrate exhibited 

significant effect on the surface durability of thermally sprayed WC 

cermet coating, which was due to the higher hardness of the substrate 

[22]. HVOF coating of micron and nano sized WC-Co powders was 

examined by Cho et al. [23]. They showed that WC-Co coating was 

protective for the sliding machine component, since the hardness of the 

coating was 2-3 times higher than those of machine component 

materials. It was shown that the WC-binder adhesion and adhesion 

between splats is correlated with hardness and toughness of the coatings. 

Increase in WC-binder adhesion could increase decarburization as a 

result of high flame temperatures, in which it was found afterward to 

decrease adhesion between the splats. Decarburization is to be 

considered one of the most prominent problems affecting the integrity of 

nanostructured coating because of their relatively large surface area. To 

overcome and to reduce the decarburization, additive in Infralloy was 

decreased the adhesion between WC grains and binder. This study 

showed that increasing in the decarburization would adversely decrease 

the wear resistance while the hardness would increase the wear 
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resistance. Qiao et al. [24] indicated that worn out of the WC grains and 

the lifting of entire splats was affecting the sliding wear. However, they 

associated the occurrence of abrasive wear related to ductile cutting, 

grain loss, and lifting of splats. Moreover, splat-boundary weakening, by 

fatigue, extended to the low wear rate in sliding. In general, as long the 

high abrasive wear removes material before fatigue becomes important, 

the abrasion wear was found to be inferior with decarburization. 

Unfavorably, decarburization could play a major role in sliding wear 

[24]. In addition, the effect of carbide size and cobalt content on the 

microstructure and mechanical properties of HVOF WC-Co coating 

were examined by Chivavibul et al. [25]. They analyzed the 

microstructures of the resulting coatings and they showed that the binder 

phase was a key factor affecting the microstructure of the coating. 

 

High temperature gradients are developed in the HVOF coating, which 

result in the formation of high residual stress levels. Liao et al. [26] 

examined the residual stress developed in the coating using the 

curvature method. They indicated that the attainment of high 

temperature during coating caused the formation of high levels of the 

residual stresses, particularly in the surface region of the coatings. 

Stokes and Looney [27] analyzed the residual stress formation after the 

23 
 



 

HVOF coating. They showed that the residual stress levels changed 

from tensile to compressive as the coating thickness reduced. Thermal 

stress analysis of HVOF coating produced by WC-Co/NiAl powders 

was carried out by Toparli et al. [28]. They found that the stress 

distributions changed during the spraying and cooling phases because of 

the different mechanical properties of the coating layers. In addition, 

they demonstrated that the tensile stress was higher than the 

compressive stress. Lima et al. [29] investigated the residual stress 

levels in the HVOF coating using the material removal method. They 

indicated that the plastic deformation and quenching history of 

individual splats influenced significantly the stress levels in the coating. 

Gill et al. [30] studied the residual stress development in the HVOF 

coating. They showed that the curvature method for the residual stress 

measurement was reliable and accurate. Kesler et al. [31] investigated 

the residual stress formation in plasma sprayed coatings. The findings 

revealed that the thermal expansion coefficients and mechanical 

properties were the important factors influencing the residual stress 

levels. Santana et al. [32] measured the residual stress levels in the 

coating using the hole drilling method. They indicated that depending on 

the coating and base material properties, the residual stress could 

become tensile. Totemeier and Wright [33] examined the residual 
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stresses in the coatings using the curvature method and XRD technique. 

They showed that the residual stress levels in the coating became 

compressive as the particle velocity increased. Wang et al. [34] used the 

curvature interferometer technique to measure the residual stress levels 

in the coatings. They indicated that the residual stress formed in the 

surface region of the coating had significant effect on the wear 

properties of the coating. Ghafouri-Azar et al. [35] studied residual 

stress developed in the coating. They showed that the residual stress 

levels increased significantly with the increase in the coating layer 

thickness. Otsubo et al. [36] investigated the residual stress distribution 

in the coating. They showed that the residual stress levels remained 

almost uniform in the coating, except at the coating base material 

interface; in which case, it is reduced below the average value. McGrann 

et al. [37] examined the effect of the residual stress levels on the fatigue 

life of the coating. They indicated that the amount of tungsten carbide in 

the coating influenced the fatigue life of the coating. 

 

The residual stress minimization through monitoring temperature of 

substrate material was considered as one of the target approaches. Many 

research studies in thermal spray techniques were focused on to avoid 

adhesion loss, formation of cracks, buckling, and interlaminar de-
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bonding. Stokes et al. [38] succeeded in some extent to maximize the 

HVOF (WC-Co) coating thickness by application of carbon dioxide 

cooling system.  

 

Fatigue failure modes of thermal spray (WC–12%Co) HVOF coatings 

on the surface of 440-C steel substrate were studied to correlate the 

performance with the influence of coating thickness and contact stress 

fields. A modified four ball machine under identical tribological 

conditions of contact stress, configuration and lubrication was used for 

rolling contact failure tests. The study showed that a non-dimensional 

coating thickness parameter might be applied as functional indicator to 

optimize coating delamination resistance during Hertzian contact 

loading. Moreover, fatigue life in excess of 70 million cycles without 

failure was of probability for attainment. It was attributed to the 

improvement in coating performance of an improved fracture toughness 

of coatings, in which liquid fuel was used [39]. On the other hand, 

typical study with same objectives was performed by Stewart et al [40], 

but with post-treatment (Hot Isostatic Pressing) on the Rolling Contact 

Fatigue performance of thermal spray (WC-12%Co) HVOF coatings. 

Temperature range in between 850 oC and 1200 oC was set inside the 

furnace during the post-treatment process. In addition, a modified four 
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ball machine under the identical tribological conditions of contact stress, 

configuration, and lubrication was also used for rolling contact failure 

tests. The results of the study indicated that the possibility to achieve a 

fatigue life in excess of 70 million stress cycles without failure in 

relatively thin (50 mm) cermet coatings through increasing the furnace 

temperature to 1200 oC with maintaining the full film lubrication was 

feasible. As a result of cyclic loading, shear stress occurring in either at 

the coating substrate interface or within the coating microstructure was 

considered coating failure in the experiment [40]. 

 

Hernandeza et al [41] investigated fatigue properties of a 4340 steel 

coated with a Colmonoy 88 deposit by HVOF spraying facility. They 

found a decrease in the fatigue strength of both coated and non-coated 

surfaces related to existence of Al2O3 particles penetrated during grit 

blasting as became stress concentrators that enhanced the multiple 

nucleations of fatigue cracks. However, in case of coated substrate, 

results revealed further fatigue strength reduction as attributed to the 

partial fracture and detachment of the coating from the substrate along 

the substrate deposit interface. This indicated control of the deposit 

thickness of HVOF as it could endure the stress applied to the material 

[41, 42]. 
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Producing an amorphous and nanocrystalline structure using the HVOF 

spray facility was investigated and evaluated for various spraying 

conditions [43]. The study showed an ability to attain amorphous 

coating from the FeNb powder while adjusting the spraying conditions. 

Crystalline deposit was formed in all cases of microcrystalline and 

nanocrystalline powders whenever using silicon-iron powder was used. 

However, considerable addition of boron was suggested in the study to 

bring amorphous phase in the silicon-iron alloy. Boron in Fe3Si alloy 

with variation of quantity added indeed showed the ability to produce 

amorphous phase with appearance of increase or decrease the 

nanocristalline phase [43]. 

 

Toma et al. [44] studied the microstructure and photocatalytic properties 

of nanostructured TiO2 and TiO2–Al coatings applied by HVOF 

spraying in two different methods. They were internal injection, as in a 

conventional HVOF system, and external injection at the exit of the 

torch nozzle. In general, a lamellar structure would be observed in 

thermally sprayed coatings that prepared by standard HVOF spraying 

process. Specific structure with a high ratio of non-melted particles and 

significant amount of anatase phase was obtained in the deposits by 
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external injection of the powder feedstock system. They found that the 

external injection method used was exhibited better photocatalytic 

activity compared to conventional HVOF method. They also found a 

significant enhancement of photocatalytic activity if aluminum particles 

were added to TiO2 powders. Moreover, the HVOF TiO2 coating 

containing certain amount of rutile phase showed a better photocatalytic 

performance [45]. Lee et al. [46] investigated the effect of heat treatment 

on the microstructure and properties of HVOF-sprayed Ni-Cr-W-Mo-B 

alloy coatings. They showed as-sprayed coatings induced a localized 

corrosion if metastable and heterogeneous phases such as amorphous, 

nanocrystalline and very refined grain crystals and precipitates are exist 

in the coating. Increased of microstructural and chemical homogeneity 

such as the reduction of porosity, densification, and reduction of the 

eutectic phase was found to be affected by the increase of annealing 

temperature which in turn would enhance corrosion resistance.  

 

Adhesion of thermal sprayed coating to a substrate material has been a 

primary concern to engineers since thermal spray processes were 

introduced to various industries. This was because of the process, which 

could not be effectively employed for engineering applications if the 

coating did not bond well to a substrate interface. Therefore, 
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investigation on the bonding mechanisms at coating-substrate interface 

has received considerable attention in thermal spray technology [47-49].       

For a conventional spraying process with spray particle at a relatively 

low velocity, the adhesion between the coating and the substrate 

primarily depends on the mechanical interlocking, which is mainly 

related to the substrate surface roughness and the solidification of 

impacting droplets. However, diffusion processes might occur due to the 

high temperature of the substrate when vacuum plasma spray or low 

pressure plasma spray technology was used to deposit a coating [50-51]. 

As far as the mechanical interlocking effect was concerned, the adhesive 

strength of coating sprayed by the conventional thermal spraying 

processes was increased with the improvement in the melting state of 

spraying particles and the increase in roughness of substrate surface [22, 

52-55]. However, Li et al. [56] proved that no significant effect in the 

adhesive strength of HVOF WC cermet coatings in which they exceeded 

the strength of the adhesives used approx. 65 MPa was observed as 

compared to others such as Cr3 C2 -25NiCr and Al2O3-Ni. Subsequently, 

other researchers linked the bond strength with mass of solid phase in a 

spray particle with excluding the effect of the conventional state 

parameters of a spray particle, i.e., temperature, velocity, and 

momentum. With the result attained, insurance of high bond strength of 
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HVOF coating besides the solid–liquid two-phase condition was 

requiring high density of non-melting phases in a solid–liquid two-phase 

droplet [19].                 

 

From corrosion point of view through electrochemical behaviour, 

different types of HVOF coatings on steel were examined. Observations 

indicated that spraying parameters was playing a major rule in 

influencing the corrosion behaviour of the sample surfaces. The 

electrochemical behaviour of HVOF coatings was strongly affected by 

porosity, the presence of micro- and macro-cracks, and also of un-

melted particles. Once the electrolyte reached the substrate material via 

these defects, the galvanic pair formed between the coating and substrate 

resulting in accelerated corrosion leading to the depletion of the coating. 

Moreover, Inconel 625 is found to be more resistant to corrosion 

compared with 316L steel coating, if electrochemical testing was carried 

out using a sea water [4, 57]. The formation of oxides in the splats 

exhibited better avoidance of corrosion solution to approach the 

substrate surface. However, possible effects of higher oxides in the 

lamella type microstructure were representing low tensile bond strength 

as attributed to the discontinuity of coating structure [58].  Exposure to 

thermal cycling was found significantly affecting to some Ni-Cr 
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coatings accompanied with aging. As a matter of fact, adhesive strength 

was reduced and coating delaminated indicated the limit of integrity and 

protection of using these coating on boiler components against steam 

oxidation [59]. Moreover, the hot corrosion behaviour of HVOF NiCrAl 

coating on superalloys was investigated by Mahesh et al. [60]. They 

performed mass gain measurements after each cycle to establish the 

kinetics of corrosion using the thermogravimetric technique. They 

showed that the bare superalloys experienced higher weight gain and the 

formation of oxides and spinels of nickel, chromium, and aluminium 

contributed to hot corrosion resistance of the coating. Corrosion 

resistance of WC based cermets coatings produced by HVOF spraying 

was studied by Aw et al. [61]. They performed polarization and 

electrochemical impedance spectroscopy on both uncoated and coated 

workpieces, which were immersed in 3% NaCl solution prior to 

spectroscopic analysis. They demonstrated that the nickel binder in the 

WC-17Ni coating had a better corrosion resistance than the cobalt 

binder in the WC-17Co coating.    

 

Important concerns other than corrosion were erosion and weight loss 

through abrasion and impingement. In this case, WC–Co was hard metal 

and introduced through HVOF spraying on the top of components while 
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some others employed sintering material. The re-melting surfaces were, 

then, tested by microscale abrasion that occurred predominantly by 

preferential removal of the binder phase followed by pullout of the 

carbide. It was observed that the binder phase removal was accelerated 

by corrosion in acid media [62].  Chen et al. [63] were carried out 

experiments on applying WC–Co coatings produced by HVOF spraying 

from two different feedstock powders, one with a conventionally sized 

WC grains and one with nanoscale WC grains. It was found that under 

conditions of micro-scale abrasion, the fine WC grain size in the 

nanostructured material resulted in rapid pullout of the hard phase and 

thus to high wear rates [63]. HVOF coatings were applied on to three 

different metallic surfaces, which they were plain stainless steel, spot-

welded stainless steel, and a composite surface of stainless steel and 

carbon steel welding. After impingement test, it was found that the 

coating over both spot-welded and plain stainless steel surfaces 

exhibited a similar degree of weight loss. However, the coating on the 

composite surface experienced a greater degree of weight loss [64].  

 

2.2 Material Characterization of Laser Treated HVOF Coatings  

 

Laser surface treatment has been employed to enhance the bonding of 

coating to the substrate material through reduction in porosity and crack 
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formation. This required the selection of appropriate parameters 

resulting in uniform coating onto the substrate during melting and 

solidification process. In addition, formation of the metal matrix 

composition (MMC) at low porosity and oxides is one of the main 

targets for many researchers in order to expose the effect of different 

parameters on the re-melting of the coating. The formation of high 

performance of MMC layers whether by HVOF or by laser techniques 

or both together could improve adhesion, wear resistance, temperature 

resistance and corrosion prevention on the surfaces. However, the 

metallurgical changes occurred during the melting, and the main 

constitutes of the coating could be retained with quenching.    

Pang et al. [65] utilized laser surface alloying of Mo, WC and Mo-WC 

metal matrix composite on Ti6Al4V alloy. They found that the solubility 

levels of hard particles could be varied through changing the laser output 

power level. They observed different weight percentage content of WC 

lead to variation in wear and hardness proportionally. Moreover, it could 

reduce the hardness and increase the wear resistance compared with 

HVOF coating due to reduction of carbide and could increase in bonding 

to prevent layer lamination [63]. The dendritic growth around WC 

particle was required and it could be achieved with the selection of 

proper processing parameters. It, then, could produce pores free coating 
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with good bonding, good corrosion resistance, and wear resistance 

simultaneously [66]. The elastic limit of coating was found to be 

reduced after the laser treatment of Inconel 625 HVOF coating and the 

defect sites at coating base material interface were the origin of the 

crack sites. Moreover, some locally distributed splats with high oxygen 

content were also act as crack initiation centers [67]. This indicates that 

many factors could lead to crack initiation in coating influencing the 

coating performance.  

 

Laser re-melting of Ni–20Cr and Stellite-6 powders coating was found 

to be effective in reducing the porosity less than 0.5% as compared to 

original plasma spray coating application of 2-4%. However, significant 

improvement in interfacial strength between the coating and substrate 

material was observed after the laser re-melting. It was also noticed 

from the early studies that almost no porosity and improved structural 

homogeneity occurred in the laser re-melted coating as compared with 

the plasma spraying [68]. The microhardness decreased after the laser 

re-melting as compared to the original coating hardness. This might be 

attributed to the internal stresses and disordered arrangement of atoms in 

the coated material [69].  
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The harmful effects of high-temperature oxidation, evaporation, melting, 

crystallization, residual stress, gas release, and other common problems 

of traditional thermal spray methods could be avoided by means of new 

emerging a recent technique called the cold spray process. The coating 

is formed by high-velocity particles impacting on the substrate to be 

coated. The particles are accelerated by a jet of compressed air whose 

temperature is always lower than the melting temperature of the material 

being sprayed, and the coating is formed by particles in the solid state. 

These particles bond mechanically with the substrate by way of plastic 

deformation only. Application of laser treated coatings had exhibited a 

high density and high particle bonding strength [70]. 

 

It was reported [71] that the sliding wear resistance of a plasma-sprayed 

WC-17 wt.% Co coating was improved following laser re-melting by 

factors between 1.5 and 8 depending upon the test conditions due to a 

reduction in porosity. A similar result was also observed in the study of 

laser re-melted plasma-sprayed Cr2C3-25 wt.% NiCr [72]. In addition, 

Liang et al. [73] demonstrated that laser surface re-melting of plasma-

sprayed WC-80NiCrBSi coatings also increased their hardness and 

sliding wear resistance. However, it was also reported [63] that 

following laser re-melting of HVOF-sprayed conventional and 
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nanostructured WC-12 wt.% Co coatings, the hardness and wear 

resistance of both coating types were significantly reduced, with the 

nano-scale coating exhibiting a slightly lower wear rate than its 

conventional counterpart. It is explained in the reference [63] that the 

reduced wear resistance of the conventional coating as a result of laser 

re-melting may be attributed to the cracking and porosity, which is 

always present in the CO2 laser treatment. Moreover, the carbides within 

the laser re-melted coating were either reduced in size or severely 

cracked, these attributes would allow easy pull-out of the carbides in the 

micro-scale abrasion test and thus to reduce wear resistance. Up to date, 

there have been very limited studies considering corrosion performance 

of laser re-melting on thermal sprayed composite coatings. Tuominen et 

al. [74] reported that laser re-melting of HVOF-sprayed Inconel 625 

coatings resulted in homogenization of the sprayed structure, leading to 

improvement in resistance to wet corrosion and high temperature 

corrosion. In addition, laser re-melting of HVOF sprayed Ni-45Cr and 

Cr3C2-20 wt.% NiCr coatings [75] showed good corrosion resistance in 

a short-term and high-temperature environment. So far, no work has 

been reported on the effect of laser re-melting of WC MMC HVOF-

sprayed coatings on corrosion performance, although substantial effects 

have been made on laser direct deposition, such as laser cladding and 
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laser melt/particle injection, of various WC composite coatings [67,76-

78].  

 

Laser heating of HVOF coating and thermally sealing of the coating 

surface were investigated by Oksa et al. [75].  They showed that the 

thermal sealing provided good corrosion resistance of the surface in 

short-term tests. The laser assisted spraying and the laser treatment of 

thermally sprayed coating was studied by Suutala et al. [79].  They 

indicated that the cracks perpendicular to the processing direction were 

observed when using the Nd:YAG laser;  however, this situation was 

improved when the diode laser was used.  The adhesion testing of the 

thermally sprayed and the laser deposited coatings was carried out by 

Hjornhede and Nylund [80].  They suggested that the delamination 

mechanism was the initial formation of a radial crack in the coating after 

which the coating/substrate interface came under increased tension load 

and fractures. The influence of laser melting on morphology, 

composition, and microhardness of the thermally sprayed coatings was 

investigated by Kumari et al. [81].  They showed that the microhardness 

increased by the post deposition treatment; however, the extent of 

increase depended on the laser scanning speed and the coating 

composition.  Yilbas et al. [67] investigated HVOF coating and the laser 
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treatment process.  They showed that the elastic limit of the coated 

workpiece after the laser treatment reduced slightly.  

 

2.3 Modelling of HVOF Coatings  

 

Bansal et al [82] applied finite element modelling for the fracture 

behaviour of brittle coatings to assess the experimental results carried 

out by the others. They demonstrated that the finite element analysis 

could provide the information on the effects of various coating 

parameters for understanding the mechanical response of coatings under 

bending loads. Moreover, the residual stress modelling and predictions 

in HVOF coating was carried out by Bansal et al. [83]. They used a 

hybrid non-linear explicit-implicit finite element analysis to model the 

thermomechanical process developed during the thermal spraying. The 

researchers [84-85] previously proved, in some extent that the result of 

modelling can be set as a basis for the formulation of parameters in 

HVOF coating process. In practice, modelling and analysis were carried 

out for HVOF thermal spray process and demonstrated systematic 

characterization in representing the influence of controllable process 

variables such as combustion chamber pressure, oxygen/fuel ratio. The 

effect of powder size distribution on the particle velocity and 

temperature at the point of impact on substrate was also demonstrated in 
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the model study [84-85]. However, Sysweld software used to calculate 

the residual stresses in HVOF thermal sprayings showed inconsistency 

with the experimental observations as attributed to low memory capacity 

simplified two-dimensional model of the program compared with 

proposed application of improved three dimensional calculation model 

instead [86].   

 

2.4 Summary of Literature Review  

 

Residual stress, variation of fatigue strength, corrosion and erosion 

resistance in relation to HVOF-sprayed Inconel 625 coatings are found 

to be important, which in general, depend on the coating process 

parameter. The information related to HVOF coating  properties, that 

introduced in the literature have attributed to the observations of 

researchers through experiments studies. This provided the 

understanding of the complexities accomplishing a high quality HVOF 

coating to all deficiencies. On the other hand, post heat-treatment 

application on metal matrix composite (MMC) coatings were targeted to 

improve the coating corrosion resistance and other mechanical 

properties by reducing the composition gradient between the matrix and 

the hard phase through promoting some inter-diffusion in the coating. 

Laser surface treatment is an option owing to its unique features over 
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conventional heat-treatments, such as its capabilities of precise control 

of treatment depth with or without melting. The resultant microstructural 

homogenization, such as modifying of splat-structure through control 

melting and porosity, reduction of compositional gradient between the 

hard phase and the matrix, and improvement of adhesion bonding 

between coating and substrate, can be readily achieved to improve 

coating properties. Up to now, most of the previous work on laser 

surface treatment of HVOF thermal sprayed coatings has been 

concentrated on attempts to improve their hardness and wear resistance. 

The metallurgical changes after laser treatment process were not 

examined in detail. In addition, blending of spraying powder with hard 

particles influences the metallurgical changes in the coating and 

modifies the residual stress levels in the coating. In the previous studies, 

the mechanical properties were the focused research area and the 

metallurgical changes as well as the residual stress levels were not 

deeply examined. The open literature review shows that there is a gap in 

the knowledge on aspects of laser treated HVOF coatings and 

assessment of performance of such treated coatings. Consequently, the 

main objective of this thesis has been focused on determining the 

metallurgical changes, residual stress levels, and corrosion response 
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prior and after the laser treated HVOF coatings consisting of Inconel 

625 and WC particles at different weight ratios.  
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_______________________________________________ 
 
Chapter 3 - Experimental Equipment & Procedures  
_______________________________________________ 
 
 

3.0 Introduction  
 
 

Experiments are carried out to examine metallurgical, topological, and 

corrosion properties of HVOF coating of diamalloy 1005 with and 

without level of WC powders onto stainless steel (304). The experiment 

carried out include sample preparation, HVOF coating, laser re-melting, 

measurement of residual stress, and fracture toughness. With laser re-

melting of the coating that had been carried out, the effect of WC 

content on the residual stress formation in the coating is examined.  

XRD technique is used to measure the residual stress in the coating with 

and without WC content. The indentation tests are carried out to 

measure the Young’s modulus and fracture toughness of the coating 

with and without WC content also. The microstructural characterization 

and surface morphology of the coating after laser re-melting are carried 

out using SEM, EDS and optical microscopy. In addition, corrosion tests 

are conducted for laser re-melted samples.  
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3.1 Specimen Design   

 

Stainless steel 304 is selected in this experiment due to its widely used 

in industry such as Saudi Arabian Basic Industrial Company (SABIC). 

Stainless steel 304 has low toughness and low to high temperature 

resistance with highly affected by sensitization as the precipitation of 

chromium, which take place during welding. In addition, exposure to 

high temperature will make material prone to reduction of corrosion 

resistance due to chromium depletion. Therefore, application of HVOF 

coating of diamalloy 1005 with and without level of WC particles re-

melted by laser beam is considered to improve metallurgical and surface 

properties.  

 
The geometry of the substrate material workpieces were cut and 

mounted on a holding plate. The workpieces were located close to each 

to attain uniform thermal spray (HVOF) coating in terms of layer 

thickness as shown in Figure 3.1. The samples were prepared by 

Applied Surface Technology Ltd. [87-89]. However, coated samples 

received from Applied Surface Technology Ltd. [87-89] were cut and 

prepared for examination. Figure 3.2 demonstrates the cutting machine 

type, "Brilliant 220" made by ATA in Germany applied to sectioned 

coated samples by using a CBN slitting wheel [87].  
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HVOF coated 

Laser treated 
Initially testing 
coated sample 

Figure 3.1. The workpieces were located close to each other to attain 
uniform thermal spraying. 
 

 

 Figure 3.2. Cutting Machine used to section the coated samples [87]. 

3.2 Surface Preparation 
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The steps for surface preparation of the workpieces are given below.  

3.2.1 Grit Blasting 

Samples were grit blasted by Applied Surface Technology Ltd. [88]. 

Grit blasting provided a clean and a rough surface to enhance the 

adhesion of coating and to remove any contaminations that restrain the 

bonding with possible forms uneven surface profile. The specimens 

were grit blasted with 20 mesh Alumina particles at 40 – 45 psi pressure 

to roughen the surface followed by cleaning by compressed air prior 

HVOF thermal spraying. Figure 3.3 illustrates the grit blasting machine 

[88]. 

 

Grit Blasting Unit 
controller 

Grit Blasting 
Equipment 

Figure 3.3. Enviraclean grit blasting machine used to clean and rough on 
the specimens surfaces [88]. 
 

3.2.2 Sample Mounting 
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The metallographic samples for coating structure evaluation are cut from 

section of specimens and mounted using automatic mounting press 

manufactured by BUEHLER. All the samples were sectioned and 

mounted. Grinding was performed using different grades of sandpapers 

and polishing was carried out using diamond suspensions on well-

lubricated sintered metallic disc. Final polishing was carried out to 

0.25µm of diamond suspensions. Samples were electrochemically 

etched a mix of 15 mL HCl – 10 mL acetic acid – 10 mL nitric acid in 

order to reveal microstructure. 

 

3.3 HVOF Thermal Spraying Process 

 

The thermal spray process and the powder used are given below. 

 

3.3.1 HVOF Coating Powder 

 

The aim of using Inconel 625 powder and tungsten carbide WC is to 

increase the wear resistance by the addition of wear resistant phases in 

which afterward to be subjected to laser treatment for assessment and 

evaluation against HVOF. Various compositions of Inconel 625 were 

blended with tungsten carbide, and the resultant coatings were assessed 
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to establish the microstructural and morphological changes prior and 

after the laser re-melting process.   

 
Table 3.1. Chemical composition and size of HVOF powder ( Inconel 
625 & WC) 
 

Powder 
Material 

Chemical composition Powder 
Size 
Microns 

 
Inconel 625 
powder 

Fe Mo Cr Ni  
22 to 53  

5 9 21 Balance 

 
Tungsten 
Carbide WC 
Spec HV.CA04 

Co Cr WC  
15 to 45 

10 4 Balance 

 

 

3.3.2 HVOF and Laser Equipment 

 

HVOF spraying was carried out using the JP-5000 unit by Applied 

Surface Technology Ltd. as shown in Figure 3.4[89]. The coating layer 

thickness of approximately 300µm was achieved. The spraying 

parameters are given in Table 3.2. Some of coated samples were laser 

treated. 
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Table 3.2. Process parameters of HVOF thermal spray. 
 

 
Oxygen 
Pressure 

(kPa) 

 
Fuel 

Pressure 
(kPa) 

 
Air 

Pressure 
(kPa) 

 

 
Powder Feed 
Rate (m3/h) 

 
Spray Rate 

(Kg/h) 

 
Spray 

Distance 
(m) 

 
WC 
% 

 

1023 

 

590 

 

720 

 

0.85 

 

6.5 

 

0.28 

0 %, 
9.3% and 

47% 
 

 

The Rofin DC 020 (Diffusion-cooled Slab CO2) CO2 laser equipment 

was used to irradiate the surface of coated samples as shown in Figure 

3.5. The laser was operated at HF excitations giving the nominal output 

power of 2000 W. The beam quality factor for this equipment is to be 

considered as k > 0.9 and the pulse frequency is 0 or 2 up to 5000 Hz; 

cw. The temporal distribution of the laser output power intensity was in 

the repetitive pulses form of 5 ns nominal pulse length. The traverse 

speed of the samples was 10 mm/s during the laser scanning. The laser 

spot size at the sample surface was set as 1.2 mm and the overlap tracks 

were developed during the laser processing. The overlap ratio was kept 

as 40% to cover the large area of the irradiated surface. Argon was used 

as a shielding gas during the processing to reduce the oxidation of the 

irradiated surface.  
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The laser diode was also used to irradiate the coating surface. The 

samples re-melted by the diode laser were only used for corrosion 

experiments. A Laser line 160–1500 LDL 1.5 kW diode laser Figure 3.6, 

with a rectangular beam size of 2.5 mm × 3.5 mm, having a uniform 

power density distribution, and mixed wavelengths of 808 and 940 nm 

with beam delivery: 5 m optical fibre (1000 micron) or direct beam, 

were the specification of the equipment used in this study. In order to 

reduce/eliminate oxidation induced in the laser processes, samples to be 

treated were placed in a hermetic box with a Perspex cover, which is 

transparent to the laser beam, on the top. Before laser processing, the 

box was purged by argon gas for at least 20 min to remove/minimize the 

oxygen and other gases. The laser power was varied from 350 W to 

800 W, whereas the scanning velocities were varied from 5 mm/s to 

40 mm/s. Overlap ratio was 50%. 
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Robot Arm 

HVOF JP-5000 
Gun 

Samples 

Figure 3.4. HVOF JP-5000 unit used in spraying Inconel 625 with and 
without WC inclusion [89]. 
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Laser Head 

 

 

Nozzle 

Workpiece 

x,y Table 

Figure 3.5. Rofin DC 020 (Diffusion-cooled Slab CO2) CO2 laser 
equipment. 
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Laser Power 
Supply 

 

Laser Head 

 

Focusing Lens 

Workpiece Holder 

Figure 3.6. A Laser line 160–1500 LDL 1.5 kW diode laser. 
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3.4 Characterization Tests 

 

The tests carried out for the characterization of the coating are given 

below. 

 

3.4.1 Potentiodynamic Anodic Polarization  

 

Corrosion behaviour was assessed by potentiodynamic anodic 

polarization in deaerated 3.5% NaCl at 24 °C. The samples were 

immersed in the solution for 50 min to stabilize the open circuit 

potential (Ecorr). Anodic polarization curves were determined at a scan 

rate of 15 mV/min, using a Gill ACM computer controlled potentiostat 

and a conventional three-electrode cell employing a platinized titanium 

counter electrode and a saturated calomel reference electrode (SCE). 

Purging the nitrogen was continued throughout the tests. Values of 

corrosion current density (icorr), which is linked to the corrosion rate 

through application of Faraday's law, were determined by the TAFEL 

extrapolation technique. 

 

3.4.2 SEM & EDS and Optical Microscope 

 

JEOL JDX-3530 scanning electron microscope (SEM) was used to 

obtain photomicrographs of the cross-sections and surface of the 
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workpieces prior and after the tests while energy dispersive 

spectroscopy (EDS) was accommodated for the elemental analysis. 

JEOL JDX 3530 LV has specifications of resolution 3.0 mm, 

accelerating voltage 03 to 30 kV, and magnification x5 to 300,000. The 

equipment is shown in Figure 3.7. 

 

The optical microscope, whichis used in this study, is manufactured by 

Olympus as shown in Figure 3.8. It is Olympus BX 60 optical has 

Polaroid digital microscope camera (DMC). It is used for microscopic 

observations and to obtain optical micrographs of the surface. The 

microscope has a resolving nosepiece with 5 objective lenses of various 

magnifications attached to it. The magnifications levels are 50X, 100X, 

200X, 500X and 1000X.  
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Scanning Electron 
Microscope 

X-ray Detector 

Figure 3.7. Scanning Electron Microscope model JEOL JDX 3530 LV. 

 

 

 

Optical Microscope 

Figure 3.8. Olympus BX 60 optical microscope with Polaroid digital 
microscope camera (DMC). 
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3.4.3 X-Ray Diffraction (XRD) 

 

The Bruker D8 Advance having Mo-Kα  radiation is used for XRD 

analysis. A typical setting of XRD was 40 kV and 30 mA.  It should be 

noted that the residual stress measured using the XRD technique 

provided the data in the surface region of the specimens. This was 

because of the penetration depth of Mo-Kα radiation into the coating, 

i.e. the penetration depth was in the order of 10 – 20 μm. the detailed 

specification and picture are is allustrated in Table 3.3 and Figure 3.9 

respectively. 

 

Table 3.3. X-Ray Diffraction machine specifications 

Model AXS D8 Bruker Inc 

Sample 
Positioning & 
Rotation 

Goniometer; Eulerian Cradle; Theta-Theta, Thet-
2Theta 

X-Ray Source & 
Optics 

Collimeter or slits to reduce angular divergence in 
the incident beam 

Performance 
Specifications 

• 2-Theta Angular Range (degree) – 110 to 168 
• Peak Count Rate (cps) 2.00E6 
• Max Sample Dia (mm) 600 
• Computer based interface and disply; Othe digital or 

analog interface or display; Ability to process and 
analyze the diffraction data 
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X-ray Source 

Detection Unit 

Figure 3.9. X-Ray Diffraction machine model AXS D8 Bruker Inc. 
 

 

3.4.4 Indentation Tests and Fraction Toughness Measurement  

 

The indentation tests were performed by the Indentation Hardness Tester 

manufactured by BUEHLER Com as shown in Figure 3.10. The fraction 

toughness of the surface was measured using the indenter test data for 

microhardness (Vickers) and crack inhibiting. In this case, 

microhardness in HV and the crack length generated due to indentation 

at the surface were measured using 20 N load level. Moreover, in order 

to visualize the cracks formed around the indention mark, an optical 

microscopy was performed. The indentation tests were carried out at 20 
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locations at the laser treated surface to secure the data uniformity and 

repeatability of the tests. 

 

 

Figure 3.10. The indentation testing BUEHLER machine used to get 
fraction toughness of the surface. 
 

 
 

3.5. The XRD Technique for Residual Stress Measurement  
 

The measurement relies on the stresses in fine grained polycrystalline 

structure. The position of the diffraction peak undergoes shifting as the 
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specimen is rotated by an angle ψ. The magnitude of the shift is related 

to the magnitude of the residual stress. The relationship between the 

peak shift and the residual stress (σ) is given [90]: 

 

21
n o

o

( d d )E
( )Sin d

−
σ =

+ υ ψ
                                    (1) 

 

where E is Young’s modulus, υ  is Poisson’s ratio, ψ is the tilt angle, 

and di are the d spacing measured at each tilt angle. If there are no shear 

strains present in the specimen, the d spacing changes linearly with 

sin2ψ.  

 
3.5.1 Analytical Expression for the Residual Stress 

 
 

The analytical expression for the residual stress was developed 

previously [27]. The previous expression is based on the thermal 

expansion mismatched between the coating and the base material. 

Therefore, the residual stress is: 

 

1 2

c f R c s

c c

s s

[ E (T T )( )]

E t
E t

− α − α
σ =

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

                          (2) 
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where Ec and Es are the elastic modules of the coating and the base 

material, tc and ts are the coating and base material thicknesses, Tf is the 

maximum temperature during laser heating and TR is the room 

temperature after the cooling period is over, αc and αs are the thermal 

expansion coefficient of the coating and the base material, respectively. 

Table 3.4 gives the data used for the residual stress calculation using 

equation (2). It should be noted that the properties used in the table are 

estimated using the mass average method. 

 
Table 3.4. Properties of the coating material used in equation (2) 
 

 Ec 

(GPa) 

Es 

(GPa) 

ts (m) tc (m) αc (1/K) 

×10-6 

αs (1/K) 

×10-6 

TR 

(K) 

0%

WC 

208 210 3×10-3 3×10-4 13.1 15 300 

9.3

% 

WC 

225 210 3×10-3 3×10-4 12.36 15 300 

47% 

WC 

424 210 3×10-3 3×10-4 12.36 15 300 

 
 
 
3.5.2 Determination of Young’s Modulus and Fracture Toughness 

by Indentation Test 
 

The elastic response of the surface when subjected to indention test, 

needs to be examined through which the Young’s modulus can be 
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determined. After considering Figure 3.11, the Young’s modulus can be 

formulated as [91]: 

505150

16
9 ...* R.h.P)(E −−=                                                     (3) 

where P is the applied load, h is the elastic penetration of the indenter, 

and R is the indenter radius. The true modulus of elasticity can be 

determined using the indenter properties [92], i.e.: 

i

i

EE

E
)1(1

1
2

*

2

υ
υ
−

−

−
=                (4) 

 

where Ei and iυ  are the Young’s modulus and Poisson’s ratio of 

indenter, respectively. In the calculations Ei = 1141 GPa and iυ  = 0.07 

(diamond indenter), and υ  = 0.24 are taken [91]. 

 

The fracture toughness of the surface is measured using the indenter test 

data for microhardness (Vickers) and crack inhibiting. In this case, 

microhardness in HV and the crack length generated due to indentation 

at the surface are measured. The lengths of the cracks, which are 

generated due to indentation at the surface are measured. The length (l) 

measured corresponded to the distance from the crack tip to the indent. 

The crack lengths (l) were individually summed to obtain ∑l as 

described in the previous study [93]. The crack length (c) from the 

62 
 



 

center of the indent is the sum of individual crack lengths (∑l) and half 

the indent diagonal length (2a). Therefore, c = a + ∑l [93]. However, 

depending upon the ratio of c
a

, various equations were developed to 

estimate the fracture toughness (K). However, the equation proposed by 

Evans and Davis [94] and Anstis et al [95] has limitations due to 

nonlinearity of the coefficients for values of  2c
a
<  , which has not case 

for the HVOF coatings (≈ 0.8 - 1.5). Therefore, the equation proposed 

by Evans and Wilshaw [96] is used to determine he fracture toughness 

(K), which is applicable for ( 0.6 4.5c
a

≤ ≤  [93]), i.e.: 

 

3
2

0.079 .log(4.5 )c
PK
a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

aP
c

               (5) 

 

where P is the applied load on indenter, c is the crack length, and a is 

the half indent diagonal length. The data used for the calculations are 

given in Table 3.5. Moreover, in order to visualize the cracks formed 

around the indention mark, top surface of coating is grinded slightly. 
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Table 3.5. Data obtained after indentation tests. The error estimated 
based on the repeats of the indentation test is 7%.  
 

 Fracture 
Toughness 
(MN/m3/2) (MN/m3/2) 

E E 
(GPa) (GPa) 

H H 
  

P P 
(N) (N) 

l l 
×10-6  
(m) 
×10-6  
(m) 

0%WC 7.5 208 500 
(HV) 

4.904 
(GPa) 

20 40 

9.3%WC 8.5 250 550 
(HV) 

5.394 
(GPa) 

20 38 

47%WC 9.21 424 600 
(HV) 

5.884 
(GPa) 

20 36 

 
 
 
 
 

Load

Surface Profile After Load Removal

Surface Profile Under Load Removal

Free Surface

h

 
 
 
 
 
 
 
 
A schematic view of indention and relevant dimensions. 
 
 
 
 C

Crack Length

Indention Mark

 
 
 
 
 
 
 
 
Geometric configuration of indention mark and crack length in relation to fracture toughness 
measurement. 
 
 
Figure 3.11. The indention geometry used in the calculations. 
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_______________________________________________ 
 
Chapter 4 – Mathematical Analysis  
_______________________________________________ 
 
 

4.0 Introduction 

 

Laser heating and re-melting of coating is modeled using lump 

parameter technique while temperature distribution using the laser 

heating process is formulated through solving the heat transfer equation. 

In the lump parameter technique, energy balance in the coating is 

considered during the heating process and molten front velocity is 

derived using the Navier-Stokes equations. The solution of the heat 

conduction equation for temperature distribution is achieved using the 

laplace transformation technique. Since the laser absorption depth is 

significantly small and the focused spot diameter of the laser beam at the 

coating surface is significantly small, one dimensional heating situation 

is considered in the heating analysis for temperature formulation, i.e. 

temperature gradient along the beam axis in the substrate material is 

much higher than along the radial direction. 
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4.1 Melt Depth Formulation 

 

The influence of assisting gas including cooling and exothermic reaction 

contribution on the melting process needs to be modeled prior to dross 

formulation. This is because of the fact that the liquid layer film and the 

liquid film velocity at liquid film-assisting gas interface should be 

determined including the assisting gas jet affect. In the case of oxygen as 

assisting gas, the exothermic reaction contributes to the energy transport 

process at the interface. Moreover, during the melting process, the 

assisting gas forms a boundary layer flow over the liquid film surface 

(molten metal surface) and heat transfer from liquid surface to boundary 

layer flow occurs, at assisting gas-liquid interface, since the assisting gas 

is at room temperature, and heat transfer from liquid surface to solid 

substrate occurs at liquid-solid interface. High temperature oxidation 

reaction (exothermic reaction during which metal oxides are formed) at 

the melt surface provides excess energy to the laser irradiated region 

during the machining operation. It should be noted that, in general, 

nitrogen is used as an assisting as in laser machining operation; 

however, existing of oxygen in the air results in high temperature 

exothermic reactions taking place in the melting region. The species 

formed after the chemical reactions (product of exothermic reactions) 

contribute to the heat transfer taking place at gas-liquid interface. In this 
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case, heat transfer at the gas-liquid interface due to high temperature 

oxidation reaction can be described through the ratio of dimensionless 

heat transfer coefficients due to diffusion ( )
dHC  and chemical reaction 

( )
cHC , which was presented as [97] 
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υ ) , where υ  is the thermal diffusivity and D is 

the diffusion coefficient) are turbulent Prandtl and Schmidt numbers, 

respectively. is the gas jet velocity at the outer edge of the assisting 

gas boundary layer (free stream velocity). is the liquid velocity at 

interface, and C is the skin friction coefficient. The rate of heat transfer  

( ) per unit area of  the molten metal excluding the cooling effect 

while including chemical reaction contribution of the assisting gas can 

be written as [97]: 
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where is the gas velocity and eU eρ is the gas density at the edge of the 

boundary layer, is the chemical reaction enthalpy. ch

The ratio 
c

d

H

H

C
C is dependent on Pr,  and where Pr and are 

constant [97]. 

Sc 1B Sc

 

The energy balance associated with the melting process can be 

simplified through investigating the melting process by lumped 

parameter technique. Therefore, it is considered that the melt layer 

generated flows steadily in the direction of the assisting gas due to the 

drag force developed at the assisting gas-liquid interface. Consider the 

melt layer generated at the solid surface during the steady laser heating 

process. Assume a small fraction ( β ) of molten metal evaporates from 

the surface at the assisting gas-melt interface during the laser heating 

process. The rate of energy required ( ) to generate a melt flow rate 

( ) at the surface of the solid substrate can be written as: 

reqE
.

Lm
.

                         (8) )()([ 65.1
..

mememimsLreq TTCpLLTTCpE m −+++−= υυβ

where  and  are initial and the melting temperatures of the solid 

substrate. and  are the latent heating of melting and evaporation 

of the substrate material. and are the specific heat capacity of 

iT mT

mL υeL

mpC spC
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the liquid and solid phases of the substrate. It should be noted that since 

the liquid layer flows along the surface due to a shear force across the 

gas-liquid interface, it stores extra rate of energy. Therefore, the term 

1.65 ( - ) represents the extra rate of energy due to melt layer 

flow at the surface as approximated in the previous study [97]. 

Moreover, in laser melting process, the rate of mass generated from 

solid into liquid at the solid surface can be written as: 

mpC υeT mT

 

           AV
dt
dm

dt
dm

t
m

LL
L ρρ =∀===

Δ
Δ )(

.
→ 0tΔlim  

 

where ∀ is the volume, A  is the cross sectional area, is the density of 

melt, and is the liquid velocity along the y-axis ( is the velocity of 

melt generated from solid into liquid as depicted in Figure 4.1. 

L
ρ

L
V

L
V

The rate of energy convective ( ) from the surface due to the 

assisting gas is: 

ConvectionE
.
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where  is the assisting gas mass flow rate, is the total enthalpy 

( = +

g

.
m

∫
oe
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T

T

oh

oh CpdT 2
1 2
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∫

) at the edge of the boundary layer and is the 

total enthalpy ( = +

gh

gh υe

ref

T

T
CpdT 21

2 LSU ) at assisting gas-liquid interface 

(where is the assisting gas-liquid interface velocity). is the heat 

transfer factor, which can be obtained from the Reynold’s analogy, i.e. 

[98]: 
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where is the skin friction coefficient and Pr is the Prandtl number. 

The evaluation of skin friction coefficient is based on the type of 

assisting gas flow. In the case of turbulent boundary layer, can be 

evaluated as [99]: 

fC

fC

                                        = 0.0576 Re-1/5 fC

 

where Re is the Reynolds number of the assisting gas flowing over the 

molten metal. Therefore, the rate of energy input ( ) for melting at the 

assisting gas -liquid interface can be written as: 

inE
.
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where  is the laser power available at the assisting gas-liquid 

interface. It should be noted that the reflectivity of the surface is 

included in the , i.e.  represents the laser power available after the 

reflection. Therefore, 

oP

oP oP

                                           (11) )(
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However, the rate of heat transfer from liquid surface to assisting gas 

can be written as: 

          

)]()([)( 22
..

2
1

LSeoeeHeoH UUTTCpACUhhCmE −+−=−= υρ gggas gg

 

where A  is the area, gρ is the assisting gas density, is the specific 

heat capacity of the assisting gas at the edge of the boundary layer, 

heat transfer parameter, and is the gas temperature at the edge of 

the boundary layer. 

gCp

HC oeT

 

Consider the rate of heat transfer from liquid to solid substrate across the 

liquid-solid interface; in this case, continuity of heat flux at the interface 

can be employed, i.e.: 
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               [ ] )(
.

oimm TTAhkE
mdx

dT −= =Conduction                            (12) 

 

where  and is the thermal conductivity of the melt layer and 

the temperature gradient at the melt-solid interface. 

mk dxdT /

A  is the area, h is 

the heat transfer coefficient at the interface, and is the solid 

temperature at infinitely large depth from the interface. It should be 

noted that the conjugate heat transfer equation employing Neumann 

boundary condition (continuity of heat flux and temperature) can be 

used across the liquid and gas surfaces (interface). However, the 

Neumann and radiation boundary conditions are omitted, since 

conjugate solution of the heating situation is simplified using a lump 

parameter analysis. Therefore, a simplified approach is introduced 

employing a Dirichlet boundary at the interface (boundary condition of 

first kind). 

oiT

The rate of energy required for melting is ( ): melt
.
E

 

                              (13) )()(
...

oimoHCo TTAhhhCmdAqPE −−−−+= ∫ ggmelt

 
Setting the rate of energy balance across the melt per unit area yields: 
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Consider the flow system as shown in Figure 4.1 for the steady 

production of liquid substrate while neglecting the evaporation from the 

liquid surface during laser heating, continuity equation for 

incompressible flow can be written, i.e.: 

                             

                                  0=
∂
∂

+
∂
∂

y
LL V

s
U                                           (16) 

 

where is the velocity of the liquid layer in the s direction. It should 

be noted that only a small fraction (

LU

β ) of melt evaporates. 

 

At the assisting gas-liquid interface, shear stresses should be the same. 

In this case, 

                                     Lττ =g     

 

where gτ  is the shear stress exerted by an assisting gas on the liquid 

layer and Lτ  is the shear stress exerted by the liquid layer on the gas 
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layer. If the liquid layer flow is assumed to be treated as Due to 

extremely small liquid layer thickness, then the shear stress ( Lτ ) is: 

 

                                     
L

L
LL

U
δ

μτ Δ
=                                             (17) 

where Lδ is liquid layer thickness. For zero velocity at the solid surface 

                                   

yields =L  ULS, where ULS is the liquid layer velocity at assisting 

gas-liquid interface. Equation (17) becomes: 

 

ΔU

L

LS
LL

U
δ

μτ Δ
≈                     (18) 

surface with pressure variation, the 

                                  

                    

In the case of flow due to inclined 

velocity distribution in the liquid layer can be obtained from Navier-

Stokes equation. After assuming liquid layer depth is considerably 

smaller than its width, then Navier-Stokes equation for two-dimensional 

flow reduces to: 

)(1
2

2

zγ
μ

+=
∂
∂ P

ds
d

y
U L                             (19) 

here inclination angle of surface is: 

                              

 

w

 

  
ds
dz

−=θSin                        (20)                          
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Assuming a linear variation of pressure in the liquid layer with constant 

slope along the s  direction due to considerably thin layer of liquid, it 

results: 

                              =+ z)γP
ds
d ( Constant                                    (21) 

 

Solving equation (19) with appropriate boundary condition yields the 

velocity distribution in the liquid layer, i.e.: 

 

                            )()( 1
2

1

δ
γ

μ
δ yyy2 −+−+= LSL UP

ds
dU z)(                (22) 

 

Since =+ z)γP
ds
d (  constant along the s direction, therefore: 

 

                                    
δ
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                                       (23)  

The continuity equation (16) can also be written as: 

 

                                  ∫∫ ∂
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or 

                                ∫∫ −=
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L δ
δ )()(
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                     (25) 

 

Inserting equation (23) into equation (25) and after the mathematical 

arrangements, equation (25) yields: 
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Since at (at the assisting gas-liquid interface) and 0=y 0)0( =⇒ LV  

Lδ−=y (at the liquid-solid interface) LL VV =⇒ )0( , equation (26) reduces 

to: 

                                   )
2
1( LSLL U

ds
dV δ−=                                      (27) 

troducing  from equation (15) into equation (27), it yields: 

 

In  LV
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or: 
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Due to the assisting gas flow over the melt surface, the heat transfer 

characteristics are modified accordingly. In this case, the rate of heat 

transfer from the liquid surface to assisting gas is modified as [98]: 

                                                                              (30) 5/1
.

−= NsEgas

 

where is a function varying with and considered to be constant 

along  [98]. Therefore equation (29) becomes: 

N

s

gas
.
E

                     
2

5/1

1)
2
1(

C
NsCU

ds
d

LSL −=− δ                                         (31) 

 

Integration of equation (31) yields: 

                     ds
C

NsCU LSL ][
2

5/1

12

1
−=− ∫δ                                        (32) 

or: 

                            

                     3
5/4

2
1 4

5

2

1 Cs
C
NsCULSL +−=− δ                                    (33) 

 

where is a constant to be determined from the boundary conditions.  3C

 

Consider at the tip of the cutting edge, the velocity of the liquid surface 

is approximately zero, since the liquid layer thickness is negligibly small 

in this region. Therefore, at 0=s  : 0=LSU ; therefore, . 03 =C
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Replacing  in equation (33) yields: 5/1
.

−= NsEgas
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Let us define 

                           )]([4 oeeHe TTCpCUC −= υρ gg  

 

Then equation (34) yields: 
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Re-arrangement of equation (35) yields: 
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Moreover, to obtain the liquid layer thickness, consider the shear 

stresses at the assisting gas-liquid interface, which is: 

                                      Lττ =g                                               (37) 

From equation (17): 
L

LS
LL

U
δ

μτ = ; and gτ can be written as: 

                                2

2 e
f U

C
gg ρτ =   
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Inserting the shear stresses into equation (36), the liquid layer thickness 

becomes: 

                                 2
2

efe

LS
LL UCU

U
gρ

μδ =                                     (38) 

Combining equation (36) and (38), it yields: 
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where 
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L UCC
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gρ
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Substituting equation (39) into equation (38) gives the liquid film 

thickness in the melting section, i.e. [97]: 
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=                           (40) 

Equations (39) and (40) are used to compute liquid layer velocity and 

liquid layer thickness in the cutting section. 

A computer program in Mathematica software is developed to compute 

the liquid layer thickness ( Lδ ) from equation (6) for various laser power 

settings. Table 4.1 gives the simulation conditions. 
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Table 4.1. Thermal properties used in the simulations for inconel 625 
powder. 

 
Source of Variation Value Units 
Boiling temperature 3133 K 
Melting temperature 1910 K 
Density of assisting gas 1.97  at 50kPa kg/m³ 
Density of workpiece 8440 kg/m³ 
Fraction of evaporation contribution (β) 0.1 - 
Specific heat capacity of solid 429 J/kgK 
Specific heat capacity of melt 560 J/kgK 
Specific heat capacity of gas 918 J/kgK 
Thermal conductivity of molten metal 21.3 W/mK 
Thermal conductivity of solid 9.8 W/mK 
Latent heat of melting 2.72×10⁵  J/kg 
Latent heat of boiling 6.10×10⁶  J/kg 

 
 
 
 
 

 
 
Figure 4.1. A schematic view of liquid- and gas-side velocities in the 
coordinate system. [100] 
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4.2 Temperature Formulation: 

 

Laser pulse heating consists of two cycles, namely heating and cooling 

cycles. The heating cycle starts with the initiation of the pulse and ends 

when the pulse intensity reduces to zero. The construction of the step 

intensity pulse can be achieved through subtraction of two unit step 

functions, i.e. the first unit step pulse starts at time t = 0 (Figure 4.3) 

while the second unit step pulse (shifted unit step pulse) starts at time t 

+ Δt (Figure 4.4). The difference in both pulses results in the step 

intensity pulse, i.e.[101]: 
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and SP(t) is the step intensity pulse with a unit intensity. The Fourier 

heat transfer equation for a laser heating pulse can be written as: 

 

t
TetSPC

k
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x
T x
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2

2

                         (43) 

where 

of IrI )1(1 −=  
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and rf is the reflection coefficient, C1 is the intensity multiplication 

factor, and I0 is the laser power intensity. 

 

The initial and boundary conditions are: 

At time t = 0  : T (x,0) = To 

 

At the surface x = 0 : 
0

0

=⎥⎦
⎤

⎢⎣
⎡
∂
∂

=xx
T

 and x = ∞ T(∞,t) = To. 

 

After introducing the dimensionless parameters as: 

1

2

I
kT     :            :    δθδηαδτ === xt

 

 

Equation (43) becomes: 

 

τ
θτθ η
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x
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                          (44) 

where  

][1][1)( ττττ Δ−−=SP                           (45) 

and . t2αδτ Δ=Δ

 

The dimensionless initial and boundary conditions become: 
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At time τ = 0 : θ(η,0) = θo 

 

At the surface η = 0 : 
0

0

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=ηη
θ

  and  at η = ∞  : θ(∞,τ) = θo 

The solution of equation (44) can be obtained through Laplace 

transformation method, i.e., with respect to τ, the Laplace 

transformation of equation (44) yields: 
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                                   (46) 

The homogenous solution of equation (46) can be written as: 

ηηθ ss
h eKeK −+= 21
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and the particular solution for equation (46) is: 
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Therefore, the solution of dimensionless temperature in Laplace domain 

becomes: 
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The boundary condition θ(∞,τ) = θo results in K1 = 0. The boundary 

condition at the surface yields: 
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Therefore, equation (49) becomes: 
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Noting from equation 1 that: 
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Hence equation (50) becomes: 
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Noting that: 
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The inversion of Laplace transforms can be written as: 
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Let us denote the right hand side of equation (52) by f(η,τ). Consider 

the following Laplace operation: 
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Consequently, 
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Laplace transformation of 
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where 1[τ] is a unit step function. Similarly, Laplace transformation of  
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Using the terms in equations (52, 53, 54, and 55), dimensionless 

temperature (Laplace inversion of equation 51) becomes [101]: 
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                   (56) 

 

where Erfc is the complimentary Error function.  
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Figure 4.2. A step input pulse intensity used in the analysis. 
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Figure 4.3. Construction of a step input intensity pulse. 
 

 

Equation (56) is the closed form solution for temperature distribution. 

Two consecutive pulses are used in the simulations as shown in Figure 

4.4. 
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Figure 4.4. Two laser pulses used in the simulations. 
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The material properties and simulation conditions for equation (56) are 

given in Table 4.2. The selection of laser pulse parameters are similar to 

those used in practical applications. The absorption coefficient (δ) is 

taken as 6.17x106 1/m for all the materials simulated. It should be noted 

that the thermal properties of the coating is obtained from the open 

literature for Inconel 625 [103] while thermal properties of coating with 

addition of WC are estimated using the mass averaged base calculation. 

 

 

Table 4.2. Material properties used in the simulations. 
 

 K 
(W/mK) 

Cp 
(J/kgK) 

α ×10-6 
(m2/K) 

ρ 
(kg/m3) 

δ ×106 
(1/m) 

Io 
(W/m2) 

h [104] 
(W/m2) 

 
0%WC 9.8 429 2.707 8440 6.17 1011 3000 

 
9.3% WC 16.7 408.6 4.81 9124 6.17 1011 3000 

 
47% WC 44.68 326 1.33 11899 6.17 1011 3000 
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_______________________________________________ 
 
Chapter 5 – Results and Discussions 
_______________________________________________ 
 
 

 

5.0 Introduction 
 

The results and discussion are categorized into morphological, 

metallurgical changes, thermal analysis, mechanical and corrosion 

properties prior and post laser re-melting. Thus, the discussion of 

observations and findings are given in coming appropriate classified 

headings. 

 
 
 
5.1 Morphological and Metallurgical Changes in Coating with no 

Inclusion of WC 
 
 

Laser melting of HVOF sprayed Inconel 625 coating with and without 

WC inclusion is carried out in the thesis. The melt layer thickness and 

microstructural changes in the laser re-melted zone are examined. The 

melt layer thickness is formulated using the lump parameter analysis and 

compared with the experimental results.  
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Figure 5.1 shows melt layer thickness with laser output power obtained 

from predictions (equation (40)) and experimental data for no WC 

inclusion situation. It should be noted that the measurements were 

repeated five times at each data point and estimated error is shown in 

bars at each data point in Figure 5.1. The melt layer thickness increases 

almost in a parabolic form with increasing laser output power. In the 

analysis laser scanning speed and beam spot size at the workpiece 

surface are kept constant to resemble the experimental conditions. The 

non-linearity in the melt layer variation occurs for the laser power 

intensity ≤ 400 W. This is because of the heating situation during the 

formation of the melt layer at low laser power intensities. In this case, 

conduction and convection losses from the melt region are almost 

comparable to the laser power at low intensities. The increase in the 

conduction and convection losses from the melt region is incremental as 

the laser power increases. Consequently, increase in the melt size mostly 

depends on the increase in the laser irradiated power. This provides 

almost linear variation of melt layers thickness with increasing laser 

irradiated power beyond 400 W.  
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Figure 5.1. Melt layer thickness with laser power predicted from the 
lump parameter analysis (equation (40)) and obtained from the 
experiment. 
 
 
When comparing the experimental results and predictions of melt layer 

thickness, it is evident that both results are in good agreement. Some 

small discrepancies between both results are because of the assumptions 

of the structural homogeneity and porous free consideration, as well as 

constant thermal properties used in the analysis. Although the porosity 

level in the coating is almost 2-3 %, which is small, the oxide formation 

in the coating as a result of spraying process alters the thermal 

properties. In addition, thermal properties vary with temperature, 

provided that this variation is not significant. Consequently, the effects 
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of structural changes such as oxide formation, and temperature 

dependant properties are responsible for the discrepancies between the 

experimental results and the predictions of the melt layer thickness.  

 

Figure 5.2 shows SEM micrographs of HVOF Inconel 625 coating 

(without WC inclusion) prior to laser melting. It can be observed that the 

coating consists of lamellar structure. The voids are scattered randomly 

provided that overall porosity is within 2-3 %. Moreover, some 

oxidation around the splats is evident, which occurs during the in-flight 

prior to impacting the base material surface. Some dark inclusions 

around the splats are the evidence of brittle oxide particles.  

 

 
 
Figure 5.2. SEM micrograph of HVOF Inconel 625 coating (without 
WC inclusion) cross-section prior to laser melting. 
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Figure 5.3 shows SEM micrographs of the cross-section of laser melted 

and re-solidified coating structure without WC inclusion. The cellular 

structure is observed upon solidification and the size of grain changes 

across the cross-section of the laser re-melted region. This is because of 

the non-uniform cooling at high rates. In this case, the liquid solution 

upon melting is solidified progressively while the composition of the 

solid is not uniform. The distribution of the solute in the solid after the 

completion of the solidification becomes different than from that in the 

liquid. This situation is also observed from the EDS results (Table 5.1); 

in which case, non-uniformity of the elemental composition in the 

coating post laser re-melting is evident. Moreover, the development of 

transverse periodicity in the solidification process is also evident. This is 

attributed to the instability during the super-cooling process. In this case, 

cellular sub-structures are formed and then fine regular corrugated 

structures are developed extending along the regular cellular boundary. 

The corrugations are roughly parallel to the direction of growth of the 

crystal (Figure 5.4). Furthermore, the formation of the cellular structure 

(Figure 5.3) is because of the liquid, which is rapidly decanted exposing 

the solid-liquid interface. The cell size increases with decreasing rate of 

growth and the growth direction depends on the impurity content, speed 

of growth, and the inclination of the dendrite direction to the growth 
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direction. The heat flow and cooling rate are related to the asymmetry in 

the shape of the cells, which in turn results in anisotropy of the growth 

rate of the cells. The segregation occurs at the grain boundaries during 

the process of solidification (Figure 5.5), i.e. two crystals grow side-by-

side and the boundary between them forms a groove. It should be noted 

that cellular segregation occurs when super-cooling takes place during 

the solidification. However, segregation degreases as a result of 

diffusion during the cooling after the solidification. In the cooling 

process, if the temperature gradient is reduced, then the zone of super-

cooling extends. Consequently, the cells change to characteristic of 

dendrites forming cellular dendrites as seen from Figure 5.6. This 

appearance is distinct from the cellular structure and free dendritic 

growth. One of the causes for this type of morphology is that the cellular 

dendritic type of growth occurs when the temperature gradient is small 

in the liquid phase providing the heat rejection into the solid at a low 

rate. Alignment of dendrites forms webs, which enhances conducting 

path for heat flow from the liquid to the crystals. It should be noted that 

the cellular-dendritic growth differs from cellular growth; in which case, 

the depth of super-cooled zone is greater for cellular growth. 
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Figure 5.3. SEM micrograph of laser HVOF Inconel 625 coating 
(without WC inclusion) cross-section after the laser treatment. The 
cellular structure is clearly observed. 
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Table 5.1. EDS results for the laser melted region for HVOF Inconel 
625 coating. Each spectrum represents the different points across the 
cross-section of the coating after the laser treatment. The existing of 
gold in the spectrums is because of the gold coating of the samples prior 
to the EDS analysis. 
 
 
 

Spectrum C Al Cr Fe Ni Au Total 

Spectrum 1  0.25 16.98 52.49 30.28  100.00 
 

Spectrum 2 0.67  16.18 45.17 26.60 11.38 100.00 
 

Spectrum 3 0.37  16.24 45.96 26.55 10.87 100.00 
 

Spectrum 4 0.50  15.60 46.36 25.65 11.89 100.00 
 

Spectrum 5 0.79  15.70 45.95 25.32 12.25 100.00 
 

Spectrum 6 0.62  16.50 45.22 26.82 10.84 100.00 
 

Spectrum 7 0.59  17.60 44.48 26.36 10.97 100.00 
 

Spectrum 8 0.59  14.33 46.64 26.56 11.88 100.00 
 

Spectrum 9 0.60  15.29 46.68 25.31 12.11 100.00 
 

Max. 0.79 0.25 17.60 52.49 30.28 12.25  
 

Min. 0.37 0.25 14.33 44.48 25.31 10.84  
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Figure 5.4. SEM micrograph of laser HVOF Inconel 625 coating 
(without WC inclusion) cross-section after the laser treatment. The 
corrugations of the cellular structure are observed. 
  

 

 
 
Figure 5.5. SEM micrograph of laser HVOF Inconel 625 coating 
(without WC inclusion) cross-section after the laser treatment. The 
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differences in the cell sizes are observed due to non-uniform cooling 
rates. 
 
 

 

Dendrites 

 
Figure 5.6. SEM micrograph of laser HVOF Inconel 625 coating 
(without WC inclusion) cross-section after the laser treatment. The 
dendritic structure is observed in the surface region of the coating. 
 
 
 
   
5.2 Mechanical Changes and Thermal Analysis in Coating 

 

In this work, laser melting of the coating formed through HVOF thermal 

spraying of Inconel 625 powders mixed with WC particles onto a steel 

304 workpiece is investigated. Temperature rise inside the substrate 

material is computed and the residual stress developed in the substrate 

material after the laser treatment process is measured using the XRD 

technique.  The analytical solution presented in the early study [27] is 
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used to determine the residual stress in the coating.  In addition, the 

influence of WC content on the residual stress is also examined. 

Figure 5.7 shows temporal variation of temperature (obtained from 

equation (56)) at the coating surface during the laser heating process for 

three concentrations of WC.  It should be noted that the thermal 

properties used in the simulations is recalculated according to the WC 

concentration in the coating, which is given in Table 4.2 and equation 

(56) is used in the simulations. The rise of surface temperature is 

significantly high in the early heating period and as the time progresses, 

the rate of temperature rise reduces.  This is because of the internal 

energy gain of the substrate material from the irradiated laser energy.  In 

this case, internal energy gain from the irradiated field is significantly 

high and energy loss from the free surface through forced convection is 

small as well as the rate of energy diffusion from the surface region to 

the solid bulk is low due to the low temperature gradient in the early 

heating period. It should be noted that the influence of heat transfer 

coefficient used in the current simulations (h = 3000 W/m2K) on 

temperature rise is not significant, which is due to the fact that the heat 

transfer coefficient  h ≤ 107 W/m2K temperature rise is not affected 

[105]. However, as the heating period progresses, the temperature 

gradient in the neighborhood of the surface increases.  This enhances the 
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heat diffusion from the surface region to the solid bulk.  Consequently, 

internal energy gain in the irradiated region balances the diffusional 

energy transfer from the irradiated region to the solid bulk.  This 

changes the temperature rise at the surface such that it increases steadily 

with progressing time.  Moreover, WC content in the coating modifies 

temperature rise at the surface.  This is because of the change in the 

thermal properties.  In this case, increasing WC content improves the 

thermal conductivity of the coating and suppresses temperature rise at 

the surface.  Consequently, increasing thermal conductivity enhances the 

diffusional energy transport from the surface region to the solid bulk 

lowering the internal energy gain in the surface region of the coating. 
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Figure 5.7. Temporal distribution of temperature due to two 
consecutive laser pulses for HVOF coating of Inconel 625 powders 
blended with different percentage of WC. 
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Figure 5.8 shows temperature distribution in the coating for two WC 

concentrations. Temperature decays sharply in the vicinity of the surface 

and as the depth below the surface increases, temperature decay 

becomes gradual.  The sharp decay of temperature in the surface region 

is because of the internal energy gain from the irradiated field, which is 

high in this region. As the depth below the surface becomes comparable 

to the absorption depth (1.6 × 10–7 m), temperature decay becomes 

gradual in this region.  This is due to the fact that the energy transfer by 

conduction beyond this region dominates the energy transport in the 

coating. Consequently, large temperature gradient in the surface region 

results in high heating and cooling rates in this region.  Increasing WC 

content modifies temperature distribution inside the substrate material.  

In this case, high WC content lowers the temperature gradient in the 

surface region because of increasing thermal conductivity (Table 4.2).  It 

should be noted that increasing WC content increases the thermal 

conductivity of the coating.  Surface temperature attains low values due 

to high thermal conductivity and the temperature gradient becomes low 

with increasing WC content in the coating. 
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Figure 5.8. Temperature distribution inside the coating at two different 
heating  periods. Inconel 625 powders are blended at different weight 
ratios of WC. 
. 
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Table 3.5 gives fracture toughness determined from the indentation tests 

and elastic modulus determined from the mass fraction of the constituent 

composition. It is evident that the fracture toughness improves with 

increasing WC concentration. This is because of the WC dissolution in 

the surface region where temperature is high. In addition, laser re-melted 

Inconel 625 coating without WC content is brittle because of the high 

oxygen content in the surface region [106]. Consequently, homogeneous 

structure in the surface vicinity of the coating with high WC content 

slightly enhances the fracture toughness of the coating. Table 5.2 gives 

the residual stress determined from the XRD technique and the 

analytical formulation [27].  It can be observed that the residual stress 

determined from the analytical method is slightly lower than that of the 

XRD technique, except 47% WC, provided that this difference is small. 

It should be noted that the analytical expression (equation 2) provides 

the residual stress at coating interface. Therefore, the discrepancies 

between the measurement and analytical results are because of the fact 

that the residual stresses in the coating and at the interface differ as well 

as the assumptions made in the analytical formulation, i.e. uniform 

temperature distribution, homogeneous coating structures, and uniform 

properties of coating. Moreover, increasing WC content increases the 

residual stress levels in the coating. This is because of the partial 
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dissolution of WC ion in the Inconel 625 coating during the laser 

melting, which contributes to the stress levels in the coating. In addition 

interfacial strain developed at boundaries between WC and W2C 

contributes to the residual stress development after the laser re-melting 

process [107], which is more pronounced in the surface region of the 

coating where temperature is high due to absorption of laser beam 

energy. In cooling period, quenching stresses are developed because of 

the contraction of different constituted molten particles during the 

solidification. These stresses are mainly tensile and contribute to the 

total residual stress in the region where the cooling rates are high, 

particularly in the surface region and in the interfacial region of the 

coating base substrate [108].  Moreover, the mismatch in thermal 

contraction between coating and substrate material contributes the 

residual stress in this region. It should be noted that the temperature 

gradient generated during the cooling cycle of the re-melting process 

becomes high for the species with high thermal conductivity in the 

coating, i.e., high thermal conductivity of WC cools the coating at a 

faster rate than that of the Inconel 625 in the coating.  This results in 

high temperature gradient across the Inconel 625 and WC particles; as 

consequence, the level of residual stress increases.   
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Table 5.2. Residual stress measured using XRD technique and 
determined from analytical formulation [27]. The error estimated based 
on the repeats of the XRD measurements is in the order of 5%.  
 
 

 XRD Technique 
(MPa) 

 

Analytical  
MPa 

0%WC 300 230 

9.3%WC 360 342 

47%WC 400 429 

 

 

Figure 5.9 shows SEM micrographs of the top and cross-sectional views 

of the coating with two different WC contents.  The coating surface is 

intact and no microcrack is observed.  In addition, partial or total 

disbounded splats at the coating surface are not evident.  The cross-

sectional examination of the coating reveals that interconnected carbide 

particles with a mean size of about 2 μm embedded in the Inconel 625 

coating are evident.  This is more pronounced for the coating with high 

volume content of WC.  The splat pattern forms laminated-like structure 

in the coating.  However, the splats appear to be elongated parallel to the 

coating surface.  The carbide particles form islands with certain degree 

of homogeneity in the coating. Moreover, the high carbide concentration 

106 
 



 

region reveals that some of the carbide particles loss their angularity and 

partially dissolves in the coating, which is more pronounced for the 

coating with high carbide concentrations. This situation can also be 

observed from the EDS line scan across the coating after the laser 

treatment (Figure 5.10). In this case, W concentration increases locally 

indicating the existence of the WC particles. However, in the 

neighborhood of W peaks, W concentration reduces indicating the 

dissolution of WC in the melt pool and most probably forming the W2C 

in this region. This situation occurs in the surface region as well as in the 

central region of the coating where the liquids temperature is high due to 

the high rate of the internal energy gain from the irradiated laser energy. 

In the surface region formation of carbonic gases at high temperatures 

contributes to reduction in carbon content while forming W2C. 

Moreover, the porosity increases slightly with the carbide concentration; 

in which case, the small gap between the carbide particles and the splats 

is responsible for the high porosity. 
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Figure 5.9. SEM and optical micrographs of coatings with and without 
WC. 
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Figure 5.10.  EDS line scan in the coating. The existence of low peaks 
of W and slope of WC peaks (WK) indicates the existence of W2C and 
WC dissolution in the coating. (9.3% WC content) 
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In the case of WC addition and laser melted specimens (Figure 5.11), 

the cellular structure is superimposed in the lamellar structure modifying 

the cellular structure as observed for the coating without WC addition. 

The difference in the thermal properties of coating alloy and WC results 

in growing of phases at different times in the liquid layer. This causes 

formation of small cells through polyphase solidification. The crystals of 

the discontinuous phases nucleate with random orientations; as a 

consequence, topology with randomly oriented interfaces is resulted. 

Since the melting temperature of the carbide particles is significantly 

high (2870 oC [109]), locally scattered un-melted and un-dissolved 

carbide particles are observed in the coating after the laser melting. This 

situation is observed in the region close to the coating base substrate 

material interface where temperature reduces because of the conduction 

energy losses from coating to the substrate material. The similar 

observations are also reported in the previous study [107]. However, 

small tungsten crystallites are formed in the vicinity of the 

polycrystallite structure. This is also evident from the EDS results; in 

which case, the local enrichment of tungsten is observed (Table 5.3 and 

Figure 5.10). In addition, some limited WC dissolution in the central 

region of the large polycrystalline cells is observed. This is because of 

loss of carbon through carbonic gas formation during the melting 
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process. It should be noted that the Inconel 625 splats oxidized at the 

splat boundary during the spraying process [106]. This contributes the 

carbonic gas formation, particularly in the surface region, during the 

melting process. In the process of carbonic gas formation, carbon is 

oxidized at high temperature in the coating and then it is released in the 

form of carbon oxide from the melt surface. 

 
 
Table 5.3. EDS analysis results for as received and laser melted coating. 
The WC content is 9.3% untreated coating. 
 
 

Spectrum 
 

O Al Ti Cr Fe Co Ni Mo W 

As 
Received 

0.4 2.01 0.21 13.00 0.75 4.41 Balance 1.81 9.32 

Laser 
Melted 

4.00 1.12 0.26 21.43 0.75 3.94 Balance 1.88 14.94
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Figure 5.11. SEM micrographs of laser melted coatings with and without 
WC. 
 

Figure 5.12 shows XRD results obtained prior and after the laser melting 

process. The results show that the coating prior to melting contains WC 

phase without existing of W2C compound. This indicates that the 

formation of carbonic gas and release of carbon monoxide is not 

possible during the present spraying process. It should be noted that the 

surface of the splats acts as a sink for carbon, which causes carbon 

diffusion through the liquid toward the surface, thereby alloying for the 

decarbonization of the inner part of the splats [110]. In addition, creation 
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of the new surface through the in-flight particle fragmentation enhances 

the carburization process. However, W2C peaks are observed for the 

laser melted coatings. The presence of W2C reveals the liberation of 

carbon from WC into the surroundings of the high temperature melt. 

Moreover, in the surface region of the coating, carbon can be oxidized 

and released as carbonic gas to the environment. In addition, existing of 

Cr2O3 peaks for both prior and after the laser melting process suggested 

that oxidation of splats during in-flight occurs. The laser melting 

contributes to the Cr2O3 formation, particularly in the surface region of 

the coating. After closed examination of XRD peaks, it can be observed 

that full width at half maximum (FWHM) of the peak is a broader for 

the laser melted coating than as sprayed coating. This indicates that the 

crystals are smaller in the laser melted coating than that of coating 

without melting.      
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Figure 5.12. XRD results for laser treated and un-treated coating (9.3% 
WC content). 

 

 
 
5.3 Corrosion Behaviour  
 

Typical phase constitutions of various coatings before and after laser 

treatment, studied using XRD analysis, are indicated in Table 5.4. 

Figure 5.13 shows the anodic polarization curves for HVOF Inconel 625 

coating with 47%WC before and after laser treatments by diode laser 
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equipment in deaerated 3.5% NaCl solution at 24 °C, while the 

corrosion parameters of the three coatings have been summarized in 

Table 5.5. For sample with 0%WC, the HVOF-sprayed coating 

presented a passive behaviour with breakdown potential of 175 mV. 

Both partially- and fully-melted surface presented more positive 

breakdown potentials of 260 mV and 245 mV respectively. This implied 

that the content of Fe wt.% caused by the dilution from the base-alloy 

for the fully-melted layer did not significantly affect the corrosion 

behaviour. As laser re-melted surface generated solidified structure with 

a certain degree of inhomogeneity or microsegregation within the 

interdendritic regions. Once the alloying elements like Cr and Mo, 

which are the primary elements to promote resistance to corrosion by 

formation of Cr/Mo oxide film, were tied up as carbides, the regions 

adjective to the carbides would be depleted of Cr and Mo elements 

would reduce the beneficial effect of passivation protection locally. 

Galvanic cells formed between the carbides and the depleted region 

around the carbides promoted corrosion to take place. Therefore the 

improvement in corrosion performance after laser treatment was not 

significant although the laser treatment eliminated the discrete splats and 

porosity. With the introduction of the WC phase into the melt pool, not 

only is there microsegregation from solidification of matrix, but also the 
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presence of the WC particles forming more complex phases especially 

after laser treatment, should be considered. In addition, the depletion of 

alloying elements like Cr and Mo could be more severe when additional 

WC was added to form other forms of carbides due to the extra C 

available as a result of dissolution of the WC in the laser melt pool. For 

samples of 9.3%WC, the passive behaviour of the HVOF-sprayed 

coating was less obvious compared with Sample of 0%WC, due to the 

addition of 9.3wt.% of WC, exhibiting a breakdown potential of 170 mV 

and corrosion current density of 0.106 μA/cm2. However, both partially- 

and fully-melted coatings demonstrated significant improvement of 

corrosion resistance, with the breakdown potentials of 770 mV and 

700 mV, and corrosion current densities of 0.032 μA/cm2 and 

0.018 μA/cm2, respectively. Compared with the laser-melted sample of 

0%WC , the laser-melted Sample of 9.3%WC displayed much higher 

corrosion resistance. This was believed to be caused by the complete 

dissolution of the WC particles but mainly by the increased amount of 

W in Ni(γ)-matrix, which enhanced the degree of passivation. In 

addition, the concentrations of Cr for both laser-melted layers were 

almost kept the same value of the content of Cr in the HVOF-sprayed 

coating. It was believed that dissolved W into Ni-matrix might promote 

a more protective film. It was also reported [111] that alloying of W 
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element in Co-based alloys improved resistance to erosion and erosion-

corrosion. With further increase in amount of the WC to 47 wt.%, the 

HVOF-sprayed coating displayed a different electrochemical response 

from the other two types of coatings, which had a relative small passive 

region with breakdown potential of − 100 mV. However, as the potential 

was shifted more positive from Ecorr, the current density raised to a 

stable value of approximately 40–50 μA/cm2. At the potential of 

approximately + 320 mV, the second rapid rise in current density was 

observed. After laser treatment, both partially- and fully-melted surface 

displayed positive shifted breakdown potentials and decreased corrosion 

current densities, as shown in Table 5.5. The improvement in the 

corrosion performance after laser treatment was mainly associated with 

the elimination of microcrevices between the WC particles and the 

Ni(γ)-matrix. In addition, the difference of electrochemical potentials 

between the WC and the matrix could be decreased due to the formation 

of the interfacial phase between the two phases in the partially-treated 

layer, and also the completely formation of various new phases, 

although there is no data available on the relative position of the WC 

and other alloyed carbides in the electrochemical series [78]. 
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Table 5.4.  Phase constitutions of various coatings before and after laser 
treatment by XRD. 
 
Sample 
A 
0 wt.% 
of WC 

HVOF-
sprayed 

γ-matrix 

Partially-
melted 

γ-matrix 

Fully-
melted 

γ-matrix 

Sample 
9.3 wt.% 
of WC 

HVOF-
sprayed 

γ-matrix, WC, W2C 

Partially-
melted 

γ-matrix, WC, W2C, (Cr, Mo)2C, Ni4W2C, 

Fully-
melted 

γ-matrix, Ni4W2C, Fe3W3C-Fe4W2C 

Sample 
47 wt.% 
of WC 

HVOF-
sprayed 

γ-matrix, WC, W2C 

Partially-
treated 

γ-matrix, WC, Ni4W2C, (Cr, Mo)2C, 

Fully-
melted 

γ-matrix, WC, Ni4W2C, Fe3W3C-Fe4W2C, (Cr, 
Mo)2C, 

 
 

 

Figure 5.13.  Polarization curves of sample 47 wt.% of WC before 
(dark blue) and after laser treatment (red for partially melted and light 
blue for fully melted coating). 
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Table 5.5. Corrosion parameters of various coatings before and after 
laser treatment. 
 

 Sample Ecorr, vs. 
SCE 

Icorr, 
μA/cm2 

Breakdown 
Potential, Eb,  
vs. SCE 

Sample 
0 wt.% 
of WC 

HVOF-
sprayed 

  175 

Partially-
melted 

  260 

Fully-
melted 

  345 

Sample 
9.3 wt.% 
of WC 

HVOF-
sprayed 

− 177 0.106 170 

Partially-
melted 

− 35 0.032 770 

Fully-
melted 

− 15 0.018 700 

Sample 
47 wt.% 
of WC 

HVOF-
sprayed 

− 257 0.382 − 110 

Partially-
treated 

− 217 0.073 175 

Fully-
melted 

− 53 0.096 126 
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_______________________________________________ 
 
Chapter 6 – Conclusions and Suggestions for Future 
Work 
_______________________________________________ 
 
 

 

• The predictions of liquid layer thickness agree reasonably well 

with the experimental findings. However, some small 

discrepancies between in the results are observed and are 

attributed to the assumptions made in the current analysis. In this 

case, the assumptions of homogeneous structure, constant thermal 

properties, and uniform laser heating situation are mainly 

responsible for these discrepancies. The re-crystallization of the 

laser melted layer results in cellular structure with different sizes. 

The change in the cell size is due to cooling rates, which are non-

uniform in all directions. However, constitutional super-cooling 

causes the development of a transverse growth of cellular 

structure; in which case, elongated cellular structure is observed 

locally. The corrugations are almost parallel to the direction of 

growth of the crystals. Moreover, rapidly decanted liquid at the 

solid liquid interface results in almost uniformly distributed 

cellular structure. The free dendritic growth is observed locally, 
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which is attributed to the extension of super-cooling due to 

locally reduced temperature gradient. The cellular type dendritic 

growth is also observed; in which case, the temperature gradient 

in the liquid phase is small and latent heat of fusion is conducted 

into the solid. 

 
 

• Increasing the WC percentage lowers the temperature rise and its 

gradient in the coating.  This is because of increasing thermal 

conductivity with increasing WC concentration in the coating.  

Moreover, differences in the thermal properties of the coating and 

WC result in the formation of small cells though polyphase 

solidification.  WC dissolution in the central region of the large 

polycrystalline cells is observed due to the loss of carbon through 

carbonic gas formation.  This situation is also observed from the 

XRD graph; in which case, the presence of W2C peaks is evident. 

Increasing WC concentration improves the elastic modulus and 

the fracture toughness of the coating.  However, the residual 

stress increases significantly with increasing WC content in the 

coating. The residual stress measured from the XRD technique 

shows general agreement with the results obtained from the 

previous analytical formulation. 
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• Laser surface treatment was found to improve the corrosion 

performance of the various HVOF-sprayed coatings as a result of 

the removal of the discrete splat-structure and micro-crevices, 

and also the reduction of compositional gradient between the 

WC and the matrix due to the formation of interfacial phases. 

Polarization curves demonstrated a significant improvement of 

corrosion resistance with the breakdown potentials of high 

positive value and corrosion current densities of low value. 

Furthermore, it was proven that the laser-melted sample of 

9.3%WC displayed much higher corrosion resistance than the 

sample of 0.0%WC (no WC addition).  
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Suggestions for Future Work 
 
 

In the present study, laser re-melting of HVOF coating was studied and 

the microstructural analysis prior and post re-melting has been carried 

out. Inconel 625 with addition of WC particles is used as the spraying 

powder while stainless steel (SS 304) is used as the based material for 

the coating. EDS, optical microscopy, and SEM are conducted for 

material characterization. The microstructural analyses show that 

increase of WC percentage in the spraying powder would contribute to 

the residual stress levels and the fracture toughness of the coating, which 

is due to improper distribution of WC particles in the coating. Moreover, 

laser heating situation is modeled using the lump parameter analysis and 

predications are compared with the experimental findings. However, 

assumptions of uniform properties in the analytical formulation resulted 

in some discrepancies in the melt depth predictions. Consequently, the 

following studies are suggested as the future work: 

 

• Improve the theoretical model by incorporating varying material 

properties. In this case, linear or quadratic variation of thermal 

properties with coating depth can be adopted in the formulation. In 

addition, ANSYS FEM code can be used to predict the melt layer 

thickness for the validation of the code developed. 
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• Other hard particles like TiC or TaC can be mixed with Inconel 625 

powders prior to spraying. The effect of hard particles on the coating 

properties can be examined. This will form the basis for comparison of 

the coating properties when WC is mixed. 

 

• The heat treatment of coating after laser re-melting process can be 

carried out to examine the stress relaxation in the coating. This may 

allow accommodating high percentage of WC concentration in the 

coating while improving the mechanical properties of the coating in the 

surface region. 

 

• The effect the gradually varying (functional gradient) hard particle 

concentration in the coating can be examined while spraying at 

increasing percentage of WC particles in Inconel 625 powder. This will 

provide high concentration of WC at the surface of the coating, which 

is expected to improve the tribological properties. 
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