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Characterization of 1.5hm Pulses from a
Self-Seeded Gain-Switched Fabry—Perot Laser
Diode Using Frequency-Resolved Optical Gating

L. P. Barry,Member, IEEEB. C. Thomsen, J. M. Dudley, and J. D. Harvé§ember, IEEE

Abstract—The intensity and frequency chirp of picosecond L
pulses from a self-seeded gain-switched Fabry—Perot laser diode RESISTOR

have been directly measured using the technique of frequency- 1552 nm

FIBRE BRAGG
resolved optical gating. Measurements over an output sidemode be 15pm  pg 3¢ GRATING
suppression ratio (SMSR) range of 15-35 dB show that higher sins [ onEr, |, a0
SMSR’s are associated with an increasingly linear frequency
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chirp across the output pulses. This complete pulse characteri-  eiectricaL l
zation allows the conditions for optimum pulse compression t0  ghEhet o A
be determined accurately, and indicates that transform-limited,

pedestal free pulses can be obtained at an SMSR of 35 dB. RF AMPLIFIER
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Fig. 1. Experimental setup used for pulse generation and measurement.

I. INTRODUCTION

. results in the conditions for optimum chirp compensation
HE GENERATION and measurem.ent of . p|cosecongeeing obtained using an approximate pulse compression model
pulses at wavelengths around 1,58 is very important

for the development of high-capacity optical communicatiorfl ,S;ug::g gellrr:)?al;gn(;hg%ee?ei? ?eS: ;? Spg]lsgél[j][é][?]’ [8], or by

systems. A convenient technique for single-mode PICOSEC ) g letter, we use the technique of frequency-resolved

ond pulse generation is the seli-seeding of gam—swnch% tical gating (FROG) [11] to measure the intensity and the

Fakl?ry—Perot. (F?]. Iatserh Q|odesﬁ andb many eﬁpsrm;en{ guency chirp of pulses from a self-seeded, gain-switched
schemes using this technique have been reported [1]-] laser, and we study in particular the variation in the chirp

With self-seeding, an external cavity containing a wavelengt s a function of the external cavity reinjection level. This

selective element reinjects a small fraction of the output ”g?fmplete pulse characterization allows the optimal conditions

back into the gain-swiiched laser at only one longitudin r pulse compression to be determined using numerical sim-

mode frequency. Provided that reinjection occurs during trEf?ations without any assumptions about the pulse intensity or

pulse buildup time in the FP laser, gain is suppressed g}ﬂirp characteristics. We use the simulations to determine the

aII,_ but th_e reinjected mode, and_ the Ias_er prqduces a St?‘ Stimal laser operation conditions which result in transform-
train of single-mode pulses. This technique is an ef'fectl\fI ited pulses after compression

way to produce wavelength-tunable 10-100-ps pulses wit
low pulse-to-pulse timing jitter [3], and recent experiments
have also demonstrated multiwavelength output [5] suitable
for application in wavelength-division-multiplexed (WDM) Fig. 1 shows our experimental setup. The FP laser was a
networks. temperature-controlled 1.bm p-side down InGaAsP device,
An intrinsic problem associated with pulse generation usigth a longitudinal mode spacing of 1.1 nm, a threshold current
gain-switching is the presence of a large frequency chirp acré¥27 mA, and a 10-GHz modulation bandwidth. With the laser
the pulses. This arises from variations in carrier density in tiéased below threshold at 5 mA, gain-switching was carried
gain region during pulse buildup [4], and is also present @ut around 500 MHz using a step-recovery diode to generate
self-seeded gain-switched lasers. For practical applicationsédf electrical pulse train of 13-V amplitude and 80-ps full-
gain-switched pulses, chirp compensation is usually employ#ddth at half-maximum (FWHM) [2]. The external cavity for
using dispersion-compensating fiber (DCF) [4], [7]-[9] ofeinjection was all-fiber based [6], containing a polarization
chirped fiber Bragg gratings (FBG’s) [10]. In these experiFontroller (PC), a 3-dB coupler, and a FBG with central

ments, however, the absenceagpriori chirp characterization reflection wavelength of 1552 nm and bandwidth of 0.3 nm.
Gain-switching without reinjection resulted in the generation

Il. EXPERIMENTAL SETUP

Manuscript receiveq January 30, 1998; reviseq March 16,_1998. of 12-ps pulses (FWHM) with a multimode spectrum. Self-
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Fig. 2. Measured pulse spectra for gain-switched self-seeded laser operation 40 0 40 -10 0 10
corresponding to observed SMSR values of (a) 15 dB, (b) 25 dB, and (c) Time (ps) Time (ps)

35 dB.
Fig. 3. Output pulse intensity (solid line, left axis) and frequency chirp
(dashed line, right axis) for observed SMSR values of (a) 15 dB, (b) 25 dB, and

laser mode coincided with the central reflection Waveleng(ﬁ 35 qB. The corresponding simglation results af_ter optim_al compression are
of the fiber grating. Then, the gain.-switching frequency W%S clv(vcr; |2n(((jj),(é)e_)&find (f), respectively. Note the different timescales between
tuned to 496.76 MHz, corresponding to the 26th harmonic
of the external cavity. The amount of reinjection from the
external cavity could be adjusted by varying the polarizatidRvels greater than 6%, pulse deformation and instabilities
of the reflected signal using the PC. were observed [12], although a comprehensive analysis of this
The laser output was taken from the 3-dB coupler shov@Perating regime was not carried out in our experiments.
in Fig. 1. Pulse characterization was carried out using anFig. 2(a)—(c) shows measured output spectra for estimated
optical spectrum analyzer, a 25-GHz detector and digitginjection levels of 0.1, 0.8, and 6% corresponding to SMSR’s
oscilloscope, and a FROG measurement setup using secBhd5, 25, and 35 dB respectively. It is clear that increased
harmonic generation. The FROG measurement yields a twiginjection results in improved SMSR, reduced spectral width,
dimensional (2-D) time-frequency spectrogram of the pulgdld increased spectral symmetry. Additional physical insight
from which the time-dependent intensity and phase can Iseobtained from the FROG characterization, and Fig. 3(a)—(c)
obtained using phase-retrieval techniques [11]. Specifically,Siiows the corresponding retrieved pulse intensity and fre-
the pulse electric field is writteds(t) = /I(#) exp[i(wot — duency chirpiu(t). As expected, the chirp blue-shifts the pulse
$(t))], the FROG technique allows the recovery igt) and leading edge and red-shifts the trailing edge [1]. It is also clear
#(t). The instantaneous frequency chifp(¢) (in gigahertz) that an increased SMSR is associated with increased pulse
across the pulse is obtained from the phagg by év(t) = duration and reduced chirp, consistent with the spectral data
—(27)~! d¢(t)/dt. To obtain good signal-to-noise ratio inin Fig. 2. Significantly, the FROG measurements show that
the FROG measurements, an erbium-doped fiber amplifigfilst the chirp is highly nonlinear at low SMSR, it becomes
(EDFA) amplified the laser pulses to a peak power of aroufi@creasingly linear with increasing SMSR. The reduction in the
1 W. At this power level, amplification was purely linear anghirp magnitude with increasing reinjection has been noted
introduced no intensity or chirp distortion. previously [12], [13] and arises since the presence of the
reinjected signal reduces the peak inversion reached during
the pulse emission process. To the best of our knowledge,
IIl. RESULTS AND DISCUSSION the results presented here are the first direct measurements of
The pulse characteristics from the self-seeded gain-switchbeé change in chirp across the pulse with reinjection level,
laser were examined as a function of reinjection level. Thand the first to demonstrate improved linearity with increased
highest sidemode suppression ratio (SMSR) in the output speginjection.
trum for stable pulse generation was 35 dB corresponding toWith the complete intensity and chirp characterization of the
an estimated reinjection level of 6%. With reduced reinjectiokgser pulses in Fig. 3(a)—(f), the optimal conditions for pulse
the SMSR decreased, and stable output pulses were obtaic@tpression can be investigated by numerically simulating
over a SMSR range of 35-15 dB. At 5-dB increments ovéne propagation of the pulses in DCF [9]. By examining the
this range, the pulses were characterized by monitoring timensity and chirp characteristics as a function of propagation
pulse spectra and by performing FROG measurements. Witkistance, the required fiber length for optimum compression
experimental error, the average output power was measuredat be obtained accurately. In our simulations, we modeled
around 0.17 mW for all SMSR values. At estimated reinjectigoulse propagation neglecting nonlinear propagation effects at
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TABLE | FP laser. The pulse chirp has been found to decrease and
SUMMARY OF RESULTS FROM EXPERIMENTS AND SIMULATIONS to become increasingly linear with increasing SMSR. At the
Spectral | Temporal | Average | Compressed Compressed O;.)timum hlgheSt SMSR Of 35 dB, Slmu|atI0nS |nd|Cate that tl’anSfOYm-
SMSR | FWHM | FWHM (Chirp Slope| FWHM from | Pulse &% Av from | COMPESonLens® @ iqita nylses are obtained after compression. The optimum
dB) |Av(GHz)| At(ps) | -Av/At | Simulations Simulations From Using . . .
GHzpy | At p) simutaions chipsiope  CONAitions for pulse compression can also be obtained accu-
15 | 2 | o121 8.4 4.7 0.67 1050 017 rately using the average chirp slope across the pulse FWHM.
20 { 17 | 138 8.1 4.8 0.66 1150 961 We anticipate that FROG measurements will allow further
25 123 17.0 6.7 5.0 0.62 1210 1162 . . . . . . .
o T 10 1 208 o o 058 p— 580 opt.|m|zat|on and_ improved physical understanding of gain-
35 75 26.1 3.0 5.9 0.44 2640 2595 switched laser diodes.
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