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A Novel Two-Section Tunable Discrete
Mode Fabry-Pérot Laser Exhibiting
Nanosecond Wavelength Switching

Richard Phelan, Wei-Hua Guo, Qiaoyin Lu, Diarmuid Byrne, Brendan Roycroft, Paul Lambkin, Brian Corbett,
Frank Smyth, Liam P. Barry, Brian Kelly, James O’Gorman, and John F. Donegan

Abstract—A novel widely tunable laser diode is proposed and
demonstrated. Mode selection occurs by etching perturbing slots
into the laser ridge. A two-section device is realized with different
slot patterns in each section allowing Vernier tuning. The laser op-
erates at 1.3 ;«m and achieves a maximum output power of 10 mW.
A discontinuous tuning range of 30 nm was achieved with a side
mode suppression greater than 30 dB. Wavelength switching times
of approximately 1.5 ns between a number of wavelength channels
separated by 7 nm have been demonstrated.

Index Terms—Fast wavelength switching, semiconductor laser
diode, Vernier effect, widely tunable laser.

1. INTRODUCTION

IDELY TUNABLE (WT) monolithically integrated

laser diodes have been the subject of considerable
interest with the advent of wavelength division multiplexing
(WDM). Tunable lasers are needed to reduce the inventory costs
associated with different part numbers for fixed wavelength
distributed feedback lasers but also to provide new applica-
tions such as optical switching and routing which require fast
wavelength switching lasers in the nanosecond regime [1], [2].
They are also being used for niche but increasingly important
applications such as trace gas detection for environmental emis-
sion monitoring and process control [3]. The tuning range of
conventional single frequency lasers is approximately 2-5 nm
which significantly under-utilizes the available gain bandwidth
of multiple quantum well semiconductor lasers (more than
100 nm) and erbium doped fiber amplifiers (about 40 nm in the
C- or L-band). Consequently, research efforts have targeted the
development of integrated lasers with extended tuning ranges
beyond the refractive index limit, an overview can be found
in [4]. Typical examples of commercially available monolithic
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tuneable laser devices are the sampled grating distributed Bragg
reflector (SG-DBR) [5], modulated grating Y-branch (MGY)
laser [6], and the digital supermode DBR laser (DS-DBR) [7].
These devices can achieve tuning ranges in excess of 40 nm,
SMSRs exceeding 35 dB, output powers above 10 dBm, and
switching times on the order of 5 ns using advanced electronic
drive circuitry [8]. However, the specific structure of these
devices requires complex re-growth and processing techniques,
which limit the wafer yield and affect their deployment in large
quantities.

Methods for improving spectral purity in edge emitting semi-
conductor lasers often involve a spatially varying refractive
index in the form of a grating. One technique introduced by
our group to improve spectral purity in edge-emitting lasers
involves the creation of additional features (slots) into the
ridge waveguide of a Fabry-Pérot (FP) laser when the ridge
itself is formed [9]. The facet reflections in this case are the
primary source of feedback necessary for lasing, whilst the
slot pattern along the cavity provides additional filtering and
hence improved spectral purity. By carefully optimizing the
slot position and slot number, lasing with a SMSR of 50 dB
has been achieved. The great advantage of this technique is
that it requires no additional re-growth or processing steps.
It, therefore, minimizes the fabrication complexity thereby
increasing reliability while reducing cost. In this paper, we
present results for a novel two-section widely tunable laser
diode, which is based on the discrete mode (DM), FP laser
structure. The theory behind the use of etched slots has been
described previously [10], [11]. The key parameter is the
positioning of the slots along the cavity to optimize the optical
feedback they produce. By etching slots into the ridge of a
waveguide to a controlled depth and location above the active
material, an extended tuning range greater than 30 nm can be
achieved. Similar to other tunable diode lasers, the slotted laser
uses the Vernier effect to extend the tuning range associated
with limited refractive index change. The Vernier effect is a well
known technique [12]-[14] for extending the tuning range of
widely tunable lasers containing two reflectors with a different
grating period, causing a slightly different peak spacing in the
reflection spectrum. Lasing occurs when peaks of both sections
overlap, so by slightly changing the refractive index of one
section two other peaks that are further away will overlap and
tuning over a wide wavelength range is obtained.

The slot separation of 35.7 um in the front section and
37.7 pm in the back section results in a free spectral range of
approx 7 nm which determines the super-modes spacing and
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enables operation of our device at four discrete super-modes
spaced by 7 nm across the gain spectrum. Fast wavelength
switching between these super-modes of approximately 1.5 ns
is demonstrated.

II. OPERATION PRINCIPLE

It has been demonstrated that suitable positioning of index
perturbations (slots) distributed along the laser waveguide al-
lows the mirror loss spectrum of an FP laser to be manipulated
in order to achieve single mode emission [10]. The positioning
of the slots is important in maximising the optical feedback they
produce, the distance d between the slot features should ideally
be

d=" 246, (1)
4neﬁ'

where ) is the free space wavelength n is an integer and n.g
is the effective index of the guided mode. In such a scenario
the optical feedback will be maximised since reflections from
the slots will be in phase. To date DM lasers are designed to
operate in a single mode over a wide temperature range. More
specifically, for a simple pattern design (1), is applied to cal-
culate the slot spacing d, the value of A\ determines one of the
wavelengths where the laser’s mirror loss will be reduced due
to feedback from the slot pattern. The value of the integer n de-
termines the wavelength separation between adjacent minima in
the laser’s mirror loss spectra. This wavelength separation A\ in

the mirror loss spectra is called the effective free spectral range
(FSR)

2
A = A
2ng4d

2)

where n is the group refractive index.

In the case of a two section tuneable laser employing the
Vernier effect we require the FSR to be different in each sec-
tion and also narrow (<7 nm) so as to produce a comb of mirror
loss minima. By increasing the value of n in (1), the slot spacing
d increases resulting in a reduction in the FSR in the mirror loss
spectrum. By differential tuning of each section a new set of
mirror loss peaks can be brought into alignment allowing the
lasing wavelength to be tuned. Taking advantage of the Vernier
effect tuning mechanism allows the laser to be tuned over a
range of M(An/neg) where M is the number of peaks used
and An is the change in the effective index due to current injec-
tion. The maximum number of peaks is given by (3) where A,
is the average peak spacing and A); is the difference in peak
spacing between the front and back section

Ap

Myax = - 3
s 3)

In order to achieve a large tuning range, a large peak spacing
Ap and a small peak period difference A\, is required. Both of
these parameters are already limited by the quasi-continuous
tuning range and SMSR. Quasi-continuous tuning is employed
to extend the overall wavelength coverage and is achieved
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Fig. 1. Reflection and transmission amplitude versus slot depth calculated by
the 2-D SMM mode.

by overlapping small regions of continuous tuning from sev-
eral longitudinal modes. In order to ensure quasi-continuous
wavelength coverage over the whole tuning range, the peak
spacing A, has to be smaller than the continuous tuning range.
In the case of ridge waveguide WT-DM lasers this continuous
tuning range is typically around 3 nm. On the other hand,
the peak period difference A)X; should not be smaller than
the width of the reflection peaks, otherwise the SMSR would
become impaired. Therefore, a compromise between tuning
range and side mode suppression has to be found. The slot
pattern chosen in the current design was selected to demon-
strate Vernier effect tuning in a two-section DM laser. The
peak spacing and peak period difference was approximately
7 and 0.5 nm, which resulted in a large discontinuous tuning
range and high SMSR being achieved at the expense of the
quasi-continuous tuning range.

For optimization of WT-DM laser diode it is important to
know the reflectivity and scattering loss characteristics from
structures with multiple slots. We use a 2-D scattering matrix
method (SMM), which is described in more detail in [15] to an-
alyze a structure with multiple slots etched into the ridge wave-
guide. The device structure which was to be fabricated was sim-
ulated and as both the guided and radiation modes are taken into
account it can predict accurately the loss and reflectivity caused
by multiple slots. As illustrated in Fig. 1 it has been shown that
the reflection increases while the transmission decreases expo-
nentially as the slot depth is increased so in order to have uni-
form reflection from multiple slots the slot depth should be pre-
cisely controlled. The amplitude reflectivity of a single slot with
aslot depth of 1.3 um is calculated to be 0.014 therefore in order
to increase the reflectivity and mode selection the number of
slots needs to be increased. Fig. 2 plots the reflection and trans-
mission amplitude versus the number of slots calculated with
the 2-D SMM model. The reflection amplitude increase and the
scattering loss transmission amplitude decreases linearly as the
number of slots is increased. Scattering loss also plays a role
in spectral selection as the guided modes that are discriminated
against by the impressed index of refraction perturbations expe-
rience greater scattering loss than the single mode selected for
lasing.
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Fig. 2. Reflection and transmission amplitude versus number of slots calcu-
lated by the 2-D SMM model.
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Fig. 3. Schematic of the two-section WT-DM laser.

III. DEVICE STRUCTURE

A schematic view of the laser is depicted in Fig. 3. It con-
sists of five compressively strained quantum wells, formed from
InAlGaAs material with an emission wavelength centered at
1310 nm. The ridge waveguide and slot features were realized
using surface processing techniques which do not involve epi-
taxial regrowth. The cavity is 800 pm in length with nine slots
etched per section. The ridge width is approximately 2.5 pym
with a slot width of 1 gm. A combination of dry and wet etching
using etch stop layers was used to define the slot and the ridge
depth thus ensuring consistency of device performance. The
front and back facets are uncoated with a facet power reflec-
tion coefficient of 0.3.

For Vernier effect tuning, it is necessary that the effective re-
fractive index of each section can be varied independently. To
achieve this, the metal and highly doped cap layer was removed
in the centre of the ridge to electrically isolate the laser into two
sections. The isolation resistance between the two electrodes
was measured to be 1 k2. The slot period in the front section
is 35.7 pum (d;) and the period in the back section is 37.7 pum
(d2), this results in a comb-like behavior in the mirror loss spec-
trum. The comb-like mirror loss spectra of each section possess
periodicities of 7 nm in the front and 6.5 nm in the back sec-
tion, which permits the use of Vernier-effect tuning to achieve
quasi-continuous wavelength coverage.

Fig. 4(a) shows the calculated reflection spectrum. Lasing
will occur at the wavelength where the reflection peaks from
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Fig. 4. Calculated (a) reflectance and (b) mirror loss spectrum and mode posi-
tion for the two-section device incorporating a different slot pattern in section 1
and 2.

the different sections overlap. Although considering the reflec-
tion spectra is helpful in understanding the device principle, it
is necessary to investigate the positions of the cavity modes.
Hence, Fig. 4(b) shows the calculated mirror loss spectrum for
the cavity modes. Lasing will occur at the wavelength where the
mirror loss valleys of each section coincide, which is at a wave-
length of 1313 nm in the present example. Large wavelength
jumps, so-called super-mode hops, are obtained by varying the
current in one section while leaving the other one unchanged
whereas continuous tuning is obtained by varying the current in
both sections simultaneously.

IV. STATIC CHARACTERIZATION

The light—current (L—I) and voltage—current (V—I) charac-
teristics of the uncoated 800 pm long WT-DM laser are shown
in Fig. 5 inset. The L—I curve is linear and the lasing threshold
is 28 mA. For the spectral characterization, the light emitted by
the diode was collected with a lens-ended single mode fiber,
coupled to the front facet of the laser. A fiber-coupled output
power of 10 mW was obtained at a current of 100 mA. Fig. 5
shows superimposed emission spectra from the laser at a heat
sink temperature of 20 °C.
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Fig. 5. Superimposed optical emission spectrum of the WT-DM laser mea-
sured at a temperature of 20 °C, at various bias currents of section one and two
indicating four supermodes. Inset: L—I, V' —I characteristics at 25 °C.
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Fig. 6. Emission spectrum and SMSR of the WT-DM laser with section one
and two biased at 40 mA versus heat sink temperature.

The device lases in a single mode with a side mode suppres-
sion ratio (SMSR) greater than 30 dB, the emission wavelength
is changed by differential tuning of the section one bias current
from 20 to 50 mA while the section two bias current is fixed at
80 mA. Injecting different currents into the two sections of the
ridge wave-guide changes the refractive index of the different
sections thereby altering the mirror loss spectrum. Within this
current range, four super-modes are observed, the spacing of
approximately 7 nm is in good agreement with the mirror loss
calculations depicted in Fig. 4.

The laser can be quasi-continuously tuned by varying both
tuning currents simultaneously with a maximum continuous
tuning range of approximately 1.5 nm around each supermode.
The temperature variation of the laser spectrum was measured
with a fixed current of 40 mA into both sections with the heat
sink temperature varied from 5 °C to 60 °C as depicted in Fig. 6.
The discontinuous tuning jumps measured are due to new re-
flection modes coming into alignment and an overall maximum
discontinuous tuning range greater than 30 nm is demonstrated.
Within each super mode, the emission wavelength is shifting
towards longer wavelength at a rate of 0.1 nm/°C, which is
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Fig. 8. Optical heterodyne technique used to measure switching speed of
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characteristic of thermal tuning. The SMSR falls off at higher
temperature due to the temperature dependence of the threshold
condition which decreases the power in the lasing mode and
hence the SMSR [1].

Fig. 7(a) is the measured wavelength-plane and Fig. 7(b) is
the SMSR-plane for the WT-DM as a function of the front and
back section tuning currents. On the wavelength surface, several
plateaus are apparent, each corresponding to the coincidence of
a pair of reflectivity peaks from the slots from section 1 and 2
and termed super-modes. Within these super-modes, the emis-
sion wavelength is shifting towards longer wavelength, which
is characteristic for the electrothermal tuning. In contrast, by
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Fig.9. Wavelength switching signal of the WT-DM when the laser is switched from channel 1 to channel 2 as viewed on the sampling oscilloscope with (a) 5 ns/div

TABLE 1
SWITCHING COMBINATIONS FROM CHANNEL 1
Switch Channel 2 Channel 3 Channel 4
Channel / 1.5ns 1.6 ns 1.8 ns

increasing only one tuning current distinct wavelength jumps
occur, because another pair of reflection peaks become lined
up. Typically, the SMSR is significantly above 30 dB in regions
where the reflection peaks are perfectly lined up as illustrated
in Fig. 7(b). The various supermodes are separated by regions
with low SMSR, which is the position where another pair of re-
flections peaks becomes lined up and large wavelength jumps
occur.

V. WAVELENGTH SWITCHING

Advanced optical networks require fast wavelength switching
of tunable lasers in the nanosecond regime. In order to test the
switching speed of the two-section laser, an optical heterodyne
technique was employed [16] as schematically depicted in
Fig. 8. A key requirement for these measurements is a stable,
tunable external cavity laser (ECL). The back section of the
WT-DM laser was biased at 100 mA and the front section
was driven by a square wave signal at a frequency of 50 MHz
generated by a pulse pattern generator with a pulse rise time of
80 ps. The square wave changes the current in the front section
from 30 to 35 mA, which shifts the emission wavelength of
the WT-DM from 1311 to 1318 nm. Here channel 1 is used
to denote the super mode at 1311 nm and channel 2 refers to
the super mode at 1318 nm. In this setup, the optical emission
from both lasers are mixed into a fibered coupler, its first output
is connected to an optical spectrum analyzer (OSA), which
allows us to match approximately the ECLs wavelength with
channel 2. The ECL is tuned to within 6 GHz of channel 2 to
allow the mixing to fall within the bandwidth of the detector.
When the WT-DM is switched to channel 2 a heterodyne beat
tone between the ECL and channel 2 is generated and can be
viewed on an oscilloscope.

A dc signal is generated when the WT-DM is switched to
channel 1 as the beat frequency would be in the THz frequency
range and fall outside the bandwidth of the detector. Fig. 9(a)
illustrates the detected electrical signal as the WT-DM is
switched from channel 1 to channel 2 at a repetition rate of

50 MHz. The dc signal corresponds to the time the laser is op-
erating at channel 1 and the heterodyne component corresponds
to the time the laser is operating at channel 2. As shown in
Fig. 9(b) the laser switches from channel 1 to channel 2 in ap-
proximately 1.5 ns. The switching time between channel 1 and
several combinations of channels is shown in Table I. A similar
switching time can be expected for all channel combinations
as the same tuning mechanism is involved in each switch. The
wavelength switching time T, of the two-section laser can be
approximated by [17]

Tc

Tow = “
)

1+ 7.5 (;—I%

where 7. (1 ns) is the stimulated carrier lifetime, S is the photon
density in the laser cavity and dg/dN (1 x 10'7 cm?) is the
differential gain coefficient. Lasers with high values of S and
dg/dN become good candidates for achieving fast wavelength
switching speeds. Using (4) swithching times in the order
of 500 ps can be expected for these devices. However, the
switching time measured here is limited by the speed of the
electrical connections used to bias the laser sections. Although
the square wave drive signal has a rise time of 80 ps, due to the
limited electrical bandwidth of the cables and connections used
the rise time is around 1 ns when it arrives at the laser. Using
high speed electrical connector and cables switching times in
the order of several hundreds of picoseconds can be expected.

VI. DISCUSSION

To compare the relative merits of the WT-DM lasers with the
current state of the art in tunable lasers which have achieved
great success, our results show that initial devices fabricated can
discretely tune over a 30-nm range and achieve an SMSR of
greater that 30 dB for these wavelength channels. The overall
quasi-continuous tuning range is substantially smaller than that
of other Vernier effect tuneable lasers. Significant improvement
can be expected by optimal design of the slot configuration and
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by the inclusion of phase tuning sections. It should be noted that
unlike the SG-DBR laser that have passive tuning sections, the
two-section WT-DM lasers have active sections. This ensures
that the carrier lifetimes that affect the switching speed are lim-
ited by stimulated carrier lifetimes, and not spontaneous life-
times as with the SG-DBR, the fastest switching times reported
for these lasers are in the order of 5 ns using advanced elec-
tronic drive circuitry [8]. It is, thus, possible to achieve very fast
switching times in the order of hundreds of picoseconds with
these devices. In addition to the performance of these lasers it is
also important to emphasise their manufacturability, especially
that they can be manufactured using standard optical lithog-
raphy and surface processing techniques. As a result these de-
vices with optimum design of the slot configuration can be ex-
pected to combine the characteristics of SG-DBR devices with
the reliability of ridge waveguide laser diodes.

VII. CONCLUSION

In conclusion we have presented a novel design of a wave-
length tunable laser based on a two section slotted FP structure.
These devices are easier to fabricate than traditional electron-
ically tunable devices as they are based on a single epitaxial
growth step. The tuning characteristics of these widely tunable
lasers show distinct regions of high SMSR >30 dB, where con-
tinuous wavelength tuning can be carried out. A discontinuous
tuning range of 30 nm was achieved in these first devices with a
super mode spacing of 7 nm, in very good agreement with the-
oretical predictions. Hence, these observations clearly demon-
strate the Vernier effect tuning for the first time in a WT-DM
laser diode. A fast wavelength switching time of 1.5 ns has
been experimentally achieved. This two-section device can ac-
cess four-wavelength channels spaced 7 nm apart. In the future
we plan to realize devices with phase tuning sections working
at 1550 nm with channel spacing as small as 400 GHz (3.2 nm).
To achieve this goal, the slot spacing needs to be increased as
well as the number of slots. A larger number of slots will result
in a smaller bandwidth of the reflection combs, which will help
to preserve the high SMSR. Also because of the smaller channel
spacing it will be possible to achieve switching between more
channels using the same tuning capability.
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