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Abstract

For W a finite, real, reflection group we can define a set of simple reflections. Each

element w ∈ W is characterised by its inversion set which is directly associated with the

length function corresponding to the simple reflections. We can define a different length

function in terms of all reflections of a finite reflection group. This leads to the definition

of the partially ordered set of non-crossing partitions. The non-crossing partition lattice

NCPc is defined to be the set of elements of W that precede a fixed Coxeter element c.

In [12] a geometric model X(c) for NCPc is constructed and extended to give the type-W

associahedron, µ(AX(c)), while in [9], µ(AX(c)) is related to the type-W permutahedron.

In [19], Reading also relates the type-W associahedron and permutahedron using the

notion of Coxeter-sortable and reverse Coxeter-sortable elements in W .

In [9], the complex µ(AX(c)) is defined by applying the linear operator µ = 2(I − c)−1

to AX(c). In this thesis we first give an alternative elementary construction of µ(AX(c))

using intersections of halfspaces. Next we show that the equivalence classes arising from

the partition of W defined by µ(AX(c)) are intervals in the weak order thus giving a

new characterisation of Coxeter-sortable and reverse Coxeter-sortable elements. We also

describe an algorithm for recursively computing the cardinality of these intervals. In [9],

a bijection is constructed from elements of NCPc to the facets of µ(AX(c)). We calculate

the size of the interval by reflecting these facets and expressing the result as a union of

other facets. Finally, we construct a geometric basis for the homology of NCPc by defining

a homotopy equivalence between the proper part of the non-crossing partition lattice and

the (n−2)-skeleton of X(c). Using a general construction of a generic affine hyperplane for

the central hyperplane arrangement defined by W , we relate this to the basis introduced

by Bjorner and Wachs in [6] for the homology of the corresponding intersection lattice.
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Chapter 1

Introduction

For W a finite reflection group we can define a set of simple reflections. Each element

w ∈ W is characterised by its inversion set which is directly associated with the length

function corresponding to the simple reflections. We can define a different length func-

tion in terms of all reflections of a finite reflection group. This leads to the definition of

the partially ordered set of non-crossing partitions. A geometric model of this partially

ordered set is given in [12] and is related to the generalised associahedron. Furthermore,

the generalised associahedron is related to the corresponding permutahedron in [9].

This thesis involves aspects of the combinatorics, geometry and homology of non-crossing

partition lattices for finite reflection groups. After reviewing background material, we

give a specific construction of the complex µ(AX(c)), a realisation of the generalised as-

sociahedron, using the intersections of halfspaces. The construction is modelled on the

construction in [12].

We also give a new characterisation of Coxeter sortable and reverse Coxeter sortable

elements which are defined by Reading in [20]. We use the identification of the associa-

hedron, µ(AX(c)), with the Cambrian fan to define an interval from a Coxeter sortable

element to a reverse Coxeter sortable element.

In chapter 5, we describe an algorithm for recursively computing the size of the interval

described above. The idea is to reflect the corresponding associahedron facet and express

it as a union of other facets.

Finally, we define a geometric basis for the homology of the non-crossing partition lat-

tices. We also construct an explicit embedding of this homology into the homology of the

corresponding intersection lattice.
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Chapter 1 Introduction

The layout of the thesis is as follows. We begin by reviewing background material about

finite reflections groups and Coxeter groups using [7] and [15] as references. We then review

details and results about posets and non-crossing partitions from [5] and [18]. We require

descriptions and facts about the simplicial complexes X(c), AX(c), and µ(AX(c)) from

[12] and [9]. In chapter 3, we give the construction of the complex µ(AX(c)). Chaper 4

deals with the interval. Chapter 5 describes the algorithm and in chapter 6 we construct the

basis for the homology of the non-crossing partition lattices and the embedding described

above.

2



Chapter 2

Preliminaries

2.1 Finite Reflection Groups

We begin in this chapter by introducing some background material. Firstly, we will review

definitions and results about finite reflection groups followed by details about Coxeter

groups.

2.1.1 Root Systems

Let V be a real n-dimensional euclidean space with inner product (·, ·) which in later

sections we will write as the dot product. A hyperplane H in V is defined for a non-zero

vector α ∈ V as H = {x ∈ V | (x, α) = c} for some constant c. In the special case where

c = 0, H is an (n − 1)-dimensional subspace of V and is called a linear hyperplane. We

will refer to a hyperplane as affine if it does not pass through the origin (c 6= 0). The

reflection in the linear hyperplane H is the linear transformation rα on V which sends α

to its negative while fixing H pointwise. The formula for reflecting a general vector β ∈ V

in H is

rα(β) = β − 2
(β, α)
(α, α)

α.

From this formula we can see that rα(α) = −α and for β ∈ H, rα(β) = β. The vector

α is called a normal to the hyperplane H. A finite reflection group W is a finite group

generated by reflections.

For Φ a finite set of non-zero vectors in V , we say that Φ is a root system for the finite

reflection group W if the following two conditions hold

Φ ∩Rα = {α,−α} for all α ∈ Φ,

rα(Φ) = Φ for all α ∈ Φ.

3



Chapter 2, Section 1 Preliminaries

A finite hyperplane arrangement A is a finite set of hyperplanes in V . The arrangement

A is called a central hyperplane arrangement if all the hyperplanes in the arrangement

pass through the origin. Otherwise, it is an affine arrangement. A central hyperplane

arrangement A is essential if
⋂

H∈AH = {0}. We refer to the connected components of

V \ A as regions. If A is the central hyperplane arrangement for a finite group W , we

fix a region C of the hyperplane arrangement called the fundamental chamber and refer

to the set of inward unit normals of C as the set of simple roots Π = {α1, . . . , αn}. C is

always a cone on a spherical simplex by theorem in section 1.12 of [15]. We say that n is

the rank of the finite reflection group W . If {β1, . . . , βn} is the dual basis to {α1, . . . , αn},
then C is the positive cone on the set {β1, . . . , βn}. A positive root is a linear combination

of the elements of Π with non-negative coefficients. Likewise, a negative root is a linear

combination of the elements of Π with non-positive coefficients. We denote the set of

positive roots by Φ+ and the set of negative roots by Φ−. The set of roots Φ is the disjoint

union of by Φ+ and Φ− (theorem 3 of section 1.6, chapter VI of [7]).

We will now describe in detail two particular examples of root systems. We will refer to

these throughout the thesis.

Example 2.1.1. The root system of type An is the set of n(n+1) vectors ei−ej in Rn+1

with i 6= j. The simple roots are αi = ei+1 − ei for i = 1, . . . , n and the positive roots are

ei − ej for 1 ≤ j < i ≤ n + 1. The corresponding finite reflection group W (An) acts on

Rn+1 by permuting the standard basis {e1, e2, . . . , en+1}. Hence W (An) can be identified

with the group of (n + 1) × (n + 1) permutation matrices and with the symmetry group

of the (n + 1)-simplex.

Figure 2.1.1 shows the root system A2 which consists of the set of vectors ei − ej ∈ R3

with i 6= j.

Example 2.1.2. The root system of type Cn is the set of 2n2 vectors in Rn which are

either of the form ±ei or ±ei± ej for i 6= j. The vectors e1 and ei+1− ei for 1 ≤ i ≤ n− 1

4



Chapter 2, Section 1 Preliminaries

−α1 α1 = (1,−1, 0)

α1 + α2 = (1, 0,−1)α2 = (0, 1,−1)

−α2−α1 − α2

Figure 2.1.1: Root System

form the set of simple roots. The positive roots are ei for 1 ≤ i ≤ n and ei ± ej for

1 ≤ j < i ≤ n. The group W (Cn) acts on the set {e1, . . . , en,−e1, . . . ,−en}. W (Cn) can

be identified with the group of signed permutation matrices and with the symmetry group

of the n-dimensional cube.

The finite reflection groups are completely classified [15]. The other finite reflection

groups are the dihedral groups in dimension 2, the family of groups W (Dn), a special

index 2 subgroup of W (Cn) and the sporadic examples corresponding to the root systems

H3,H4, F4, E6, E7 and E8.

2.1.2 Coxeter Groups

A Coxeter system is a pair (W,S) with W a group and a subset S ⊂ W a generating set

of elements. The elements of the subset S are subject to relations of the form

(rr′)m(r,r′) = 1

5



Chapter 2, Section 1 Preliminaries

where m(r′, r) are positive integers with m(r, r) = 1 and m(r, r′) = m(r′, r) ≥ 2 for r 6= r′.

We will refer to such a group W as a Coxeter group. Every finite reflection group is a

finite Coxeter group (theorem in section 1.9 of [15]) with the set S as the set of simple

reflections. If Π is the set of simple roots in a root system Φ, then each αi ∈ Π has

an associated simple reflection ri. The product of the n elements of S in any order is a

Coxeter element c of W . All such elements c have the same order, which is called the

Coxeter number of W and is denoted by h. We let T denote the set of all reflections in

W . It will be important to note that the set of reflections is closed under conjugation.

This is because

rβrα(rβ)−1 = rβrαrβ = rγ

where γ = rβ(α). A Coxeter diagram is a graph with vertex set S and an edge from si

to sj if m(si, sj) > 2. Since the Coxeter diagram for any finite Coxeter group is a tree

(Theorem 1 of Section 4.2, Chapter VI of [7]), it is possible to partition the simple roots

into two orthnormal sets S1 = {α1, . . . , αs} and S2 = {αs+1, . . . , αn}. This induces a

partition on the set of simple reflections into two sets whose elements commute with each

other. The resulting Coxeter element c = r1 . . . rsrs+1 . . . rn is called a bipartite Coxeter

element.

The hyperplane arrangement for a finite reflection group is called a Coxeter arrange-

ment. Recall that we fix a fundamental chamber C with inward normals α1, . . . , αn. The

regions of the Coxeter arrangement are in one-to-one correspondance with the elements of

W because the Coxeter group is generated by the fundamental reflections. C corresponds

to the identity element. The intersection of the arrangement with the unit sphere is the

simplicial permutahedron of type W .

For each w ∈ W , let l(w) denote the least number k such that w can be written as a

word of length k in the alphabet S. We define the weak order for elements u,w ∈ W by

u ≤R w ⇔ l(w) = l(u) + l(u−1w).

Associated with each w is an inversion set Inv(w) where Inv(w) = {t ∈ T | l(tw) <R l(w)}.

6



Chapter 2, Section 1 Preliminaries

It is proved in proposition 1.2 of [13] that u ≤R w if and only if Inv(u) ⊂ Inv(w). An

element of W is uniquely determined by its inversion set. We say the set I ⊂ Φ+ is closed

if, for each pair ρ1 and ρ2 of positive roots in I with the property that ρ1 + ρ2 is a root,

then ρ1 +ρ2 is also an element of I. If a set I is closed and its complement in Φ+ is closed,

then I is an inversion set of a unique element w ∈ W [17].

We now give two examples of Coxeter groups which we will refer to throughout the

thesis and which are related to the root systems in examples 2.1.1 and 2.1.2 respectively.

Example 2.1.3. Recall that W (An) can be identified with the symmetry group of the

(n + 1)-simplex and hence with the symmetric group Sn+1 of permutations of the set

[n+1] := {1, . . . , n+1}. The underlying vector space, on which W acts, is the hyperplane

in Rn+1 given by x1+x2+· · ·+xn+1 = 0. The cycle (i1, . . . , ik) will denote the permutation

sending ei1 to ei2 , ei2 to ei3 , . . . , eik−1
to eik and eik to ei1 . In particular the reflection (i, j)

will denote the transposition interchanging ei and ej . The simple reflections are given by

(i, i + 1) for 1 ≤ i ≤ n. For convenience of notation, we will omit the commas in cycle

notation for small values of n where no confusion can arise.

In the particular case where n = 3, a set of simple roots is given by

α1 = 1/
√

2(1,−1, 0, 0), α2 = 1/
√

2(0, 0, 1,−1), α3 = 1/
√

2(0, 1,−1, 0).

The simple reflections are (12), (23) and (34). Then the Coxeter element c = (12)(34)(23) =

(1243) so that c(x, y, z, w) = (z, x, w, y). This Coxeter element c is bipartite with S1 =

{(12), (34)} and S2 = {(23)}.

Example 2.1.4. Recall that W (Cn) is the symmetry group of the n-cube. We use a

variation of the notation used in [10] for elements of W (Cn). We will denote reflection in

the hyperplane xi = 0 by [i]. For instance, the reflection [1] in C3 is such that [1](x, y, z) =

(−x, y, z). For i 6= j reflection in the hyperplane xi = xj will be denoted by one of the

7



Chapter 2, Section 2 Preliminaries

expressions (i, j), (j, i), (̄i, j̄) or (j̄, ī). Similarly we will denote reflection in the hyperplane

xi = −xj by one of the expressions (i, j̄), (̄i, j), (j, ī) or (j̄, i). If the cycle c = (i1, . . . , ik)

is disjoint from the cycle c̄ = (−i1, . . . ,−ik) then we write (i1, . . . , ik) to refer to the cycle

(i1, . . . , ik)(−i1, . . . ,−ik). If c = c̄ = (i1, . . . , ik,−i1, . . . ,−ik) then we write c = [i1, . . . , ik].

For n = 3 a set of simple roots is given by

α1 = (1, 0, 0), α2 = (1/
√

2)(0,−1, 1), α3 = (1/
√

2)(−1, 1, 0).

The corresponding simple reflections are [1], (23), (12). The set

T = {[1], (12), (23), [2], [3], (13), (12̄), (13̄), (23̄)}. We fix c = [1](23)(12) = [132]. Note that

c is bipartite.

2.2 The Non-Crossing Partition Lattice

There is a lattice associated with the finite reflection group W called the non-crossing

partition lattice. This lattice was first introduced by Kreweras for W = An [16]. The set

of non-crossing partitions for general W was proved to be a lattice in [4] and [12]. For

any finite reflection group W , we refer to the lattice as the type W non-crossing partition

lattice. In this section, we first review the definitions of posets and lattices and then

introduce the set of non-crossing partitions.

2.2.1 Posets

Definition 2.2.1. A relation ¹ on a set P is a partial order if it is reflexive, anti-symmetric

and transitive. The order ¹ is a total order if for any x, y ∈ P either x ¹ y or y ¹ x. A

set which has a partial order defined on it is called a partially ordered set or poset.

Example 2.2.2. Figure 2.2.1 shows an example of a poset whose underlying set is the

set of subsets of {x, y, z}. The subsets are ordered by containment.

8



Chapter 2, Section 2 Preliminaries

�

{}

{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

Figure 2.2.1: Poset of subsets of {x, y, z}

The poset P is said to be bounded if it has a top element usually denoted 1̂ (meaning

x ¹ 1̂ for all x ∈ P ) and a bottom element usually denoted 0̂ (meaning 0̂ ¹ x for all x ∈ P ).

The proper part of a bounded poset P is denoted by P̄ and defined to be P̄ = P \ {0̂, 1̂}.

For a poset P , let |P | denote the simplicial complex associated to it. |P | is a simplicial

complex whose vertices are the elements of the poset P and whose simplices are the non-

empty finite chains in P . We say that the poset P is contractible if the simplicial complex

|P | is contractible.

For ∆ a simplicial complex, let P (∆) denote the poset of simplices in ∆ ordered by

inclusion. The barycentric subdivision of the simplicial complex ∆ is denoted sd(∆),

where sd(∆) is the simplicial complex |P (∆)|. The simplicial complexes ∆ and sd(∆) are

homeomorphic. An example of a simplicial complex, the poset associated to it and the

barycentric subdivision is shown in figure 2.2.2.

The simplicial complex of a bounded poset P is the cone (from 1̂) on the cone (from 0̂)

9



Chapter 2, Section 2 Preliminaries

���

�

∆

1 2

3

4
����

����

�

P (∆)

1 2 3 4

12 13 23 24

123

���

�

�

|P (∆)|

1 2

3

4
��

��

123

12 24

13 23

Figure 2.2.2: Barycentric subdivision of a simplicial complex

on the proper part P̄ . Usually the proper part is topologically more interesting as we will

see in chapter 6.

Definition 2.2.3. Consider any partially ordered set (P,¹). An element y of the poset

P is an upper bound of x1, x2 ∈ P if x1 ¹ y and x2 ¹ y. The element y is a least upper

bound or lub of x1, x2 if it is an upper bound such that y ¹ z for any upper bound z of

x1, x2. Analogously, y ∈ P is called a lower bound of x1, x2 if x1 º y and x2 º y. We

say y is a greatest lower bound or glb if it is a lower bound such that y º z for any lower

bound z of x1, x2. P is called a lattice if the glb and lub exist for all pairs of elements in

P. We can define binary operations on P where ∨ is called the join operation and ∧ is

called the meet operation such that:

• x ∨ y = lub(x, y)

• x ∧ y = glb(x, y)

Example 2.2.4. The intersection lattice L(A) for a central hyperplane arrangement A

is an example of a lattice and one to which we will refer later. L(A) is the lattice of

non-empty intersections of A, ordered by reverse inclusion. The minimal element 0̂ is V .

10



Chapter 2, Section 2 Preliminaries

The intersection lattice for the hyperplane arrangement in example 2.1.1 is a lattice (as is

shown in figure 2.2.3) because the arrangement is central.

�

V

H1 H2 H3

H1 ∩ H2 H1 ∩ H3 H2 ∩ H3

H1 ∩ H2 ∩ H3

Figure 2.2.3: L(A) for a central hyperplane arrangement A

If A is not a central hyperplane arrangement, L(A) is not a lattice. An example is

shown in figure 2.2.4. The least upper bound does not exist for all pairs of elements, so

L(A) is not a lattice.

2.2.2 Non-Crossing Partitions

In order to introduce the concept of a non-crossing partition, we must first define a second

length function on W . For w ∈ W , let `(w) denote the smallest k such that w can be

written as a product of k reflections from T . We warn the reader that this length function

is distinct from the one defined earlier in terms of the simple reflections. Define the partial

order ¹ on W by declaring for u, w ∈ W :

u ¹ w ⇔ `(w) = `(u) + `(u−1w). (2.2.1)

11



Chapter 2, Section 2 Preliminaries

H1 H2

H3

H4

�

V

H1 H2 H3 H4

H1 ∩ H2 H2 ∩ H3 H2 ∩ H4H1 ∩ H3 ∩ H4

A L(A)

Figure 2.2.4: L(A) for a hyperplane arrangement A that is not central

We will refer to this partial order as the total reflection length order.

Example 2.2.5. Let W = W (C6) we let c = [123456] and consider the element u = [1456].

We can write [1456] = [1](14)(45)(56) so therefore `(u) = 4. The element v = (145̄6̄) can

be written as a product of elements in T as follows (145̄6̄) = (14)(45̄)(56̄) so therefore

`(v) = 3. Also v−1u = (16̄5̄4)[1456] = (1)[4](5)(6) which has length 1, so therefore v ¹ u.

Definition 2.2.6. The set NCPc of non-crossing partitions is the set of elements of W

that precede c in the total reflection length order (2.2.1).

The set NCPc is a poset with respect to this partial order. In fact, (by [12] for example),

NCPc forms a lattice and is called the non-crossing partition lattice. The lattice NCPc

is the interval [1, c] in the partial order (2.2.1).

The sets NCPc for the particular cases W (An) and W (Cn) and for appropriate choice

of c have simple descriptions which we now give. A partition of a set S is a disjoint set of

subsets whose union is all of S. These subsets are usually called blocks. A non-crossing

partition is a partition of the vertices of a regular (n + 1)-gon labelled by the set [n + 1]

so that the convex hulls of its blocks are pairwise disjoint. Equivalently, a non-crossing

12
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partition of the set [n+1] is a partition such that for a < b < c < d, if a and c belong to a

block B1 and b and d belong to a block B2 then B1 = B2. It is shown in [8] that the set of

permutations σ satisfying σ ¹ (1, 2, . . . , n + 1) = c are precisely the permutations whose

orbits are non-crossing partitions and whose cycles are oriented in the obvious way. Thus,

the type W (An) non-crossing partitions coincide with the classical non-crossing partitions.

The picture on the left of figure 2.2.5 in the example below illustrates such a partition.

Example 2.2.7. In figure 2.2.5 we show an example of a non-crossing partition and a

crossing partition of the set {1, . . . , 6}.

�

�

�

�

�

�

�

�

�

�

�

�

11

2 2

3 3

4 4

5 5

66

(23)(145) � (123456) (15)(23)(46) � (123456)

Figure 2.2.5: A non-crossing partition and a crossing partition of the set {1, . . . , 6}

For the case W (Cn), we can arrange the numbers 1, . . . , n,−1, . . . ,−n around a 2n-gon

and, as in the W (An) case, form the convex hulls of the blocks. A partition of the set

{1, . . . , n,−1, . . . ,−n} is non-crossing if it is symmetric with respect to a half-turn and

the blocks do not cross, as is illustrated in figure 2.2.6.

The fact that these non-crossing partitions correspond to the non-crossing partition of

type W (Cn) is shown in [10] and [4]. We give a formula for the number of non-crossing

partitions for groups of type An and Cn.

13
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4 4

−1 −1

−2 −2

−3 −3

−4 −4

[1](24) � [1234] [1](24̄) � [1234]

Figure 2.2.6: A non-crossing partition and a crossing partition for W (C4)

An
1

n+2

(
2n+2
n+1

)

Cn

(
2n
n

)

Example 2.2.8. The non-crossing partition lattice for W (A2) is drawn below. In this

case, the non-crossing partition lattice is equivalent to the intersection lattice. However,

this is not the case for W (A3). For c = (1234), the reflection (13)(24) is crossing and is

therefore not in the non-crossing partition lattice, although the corresponding subspace

lies in the intersection lattice.

14
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1

23

2.3 X(c), AX(c) and the Operator µ

In this section, we review results about the simplicial complex X(c) which is defined in

[12]. The complex X(c) is a geometric model for NCPc. It is extended to the complex

AX(c) in [9]. A linear operator µ = 2(I − c)−1 is defined in [12] and applied to AX(c) to

define the simplicial complex denoted by µ(AX(c)). We review these complexes and their

properties here.

2.3.1 The simplicial complexes X(c), EX(c) and AX(c)

We fix the fundamental chamber C with inward unit normals α1, . . . , αn and let r1, . . . , rn

be the corresponding reflections. We fix the bipartite Coxeter element of W given by

c = r1r2 . . . rn. As in [12] we define a total order on roots by ρi = r1 . . . ri−1αi where the

α’s and r’s are defined cyclically mod n. We will say that ρi < ρj if i < j when referring

to this order. Using the fact that c is bipartite, Steinberg shows in [22] that the positive

roots relative to the fundamental chamber are {ρ1, ρ2, . . . , ρnh/2} where h is the order of

15
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the Coxeter element in W . Let T denote the reflection set of W . This consists of the set

of reflections r(ρi) where ρi is a positive root and r(ρi) is the reflection in the hyperplane

ρ⊥i orthogonal to ρi.

In [11] there are particular subspaces of Rn whose definitions and properties we will

require. If O(n) denotes the orthogonal group, then for A ∈ O(n) we associate the

subspaces M(A) and F (A) to A where M(A) = im(A − I) and F (A) = ker(A − I). We

refer to M(A) as the moved space of A and to F (A) as the fixed space of A. In [11] it is

shown that M(A) = F (A)⊥.

Notation 2.3.1. Throughout the thesis, we will denote by ρ(r) the positive root associ-

ated to the reflection r.

We will have occasion to define spherical simplices and cones using non-zero vectors. We

note that any set S = {v1, . . . , vk} of linearly independant vectors determines a positive

cone, denoted cone(S), by

cone(S) = {x ∈ Rn | x =
∑

aivi, ai ≥ 0}

and that this intersects the unit sphere in a spherical simplex. In the case k = 1, the cone

is called a ray and the simplex is just a single vertex.

The simplicial complex X(c) has the set of positive roots {ρ1, ρ2, . . . , ρnh/2} as vertex

set. An edge joins ρi to ρj if i < j and r(ρi)r(ρj) ¹ c−1. The vertices {ρi1 , . . . , ρik} form

a (k − 1)-simplex if they are pairwise joined by edges. It is shown in [12] that the set

{ρi1 , . . . , ρik} forms a (k − 1)-simplex if and only if

ρ1 ≤ ρi1 < ρi2 < · · · < ρik ≤ ρnh/2 and `[r(ρi1) . . . r(ρik)c] = n− k.

For each w ¹ c there is a subcomplex X(w) of X(c) associated to it. Let Γw =

{τ1, τ2, . . . , τt} be the set of positive roots whose reflections precede w in the partial or-

der. This set is Φ+ ∩M(w). The subcomplex X(w) is the collection of simplices of X(c)

whose vertices lie in Γw. It is shown in [12] that X(w) is a simplex on the simple system

16
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determined by Γw.

Example 2.3.2. Continuing with example 2.1.3 from subsection 2.1.2, let W = W (A3)

and fix c = (1243). Recall that the set of simple roots Π = {α1, α2, α3} where

α1 = 1/
√

2(1,−1, 0, 0), α2 = 1/
√

2(0, 0, 1,−1), α3 = 1/
√

2(0, 1,−1, 0).

Then we can calculate the set of positive roots. There are nh/2 = 6 such roots.

ρ1 = 1/
√

2(1,−1, 0, 0), ρ2 = 1/
√

2(0, 0, 1,−1), ρ3 = 1/
√

2(1, 0, 0,−1)

ρ4 = 1/
√

2(0, 1, 0,−1), ρ5 = 1/
√

2(1, 0,−1, 0), ρ6 = 1/
√

2(0, 1,−1, 0)

Then X(c) has vertices ρ1, . . . , ρ6. It is illustrated below.

ρ2

ρ1

ρ3

ρ5

ρ4

ρ6

Example 2.3.3. As in example 2.1.4, let W = W (C3), α1 = (1, 0, 0), α2 = 1/
√

2(0,−1, 1),

α3 = 1/
√

2(−1, 1, 0). The total order on roots induces an order on the set of reflections

where r(ρi) ≤ r(ρj) if ρi ≤ ρj . In this case the reflection order is

[1], (23), (13̄), [3], (12̄), (23̄), [2], (13), (12).

For w = (123̄), we can define the subcomplex X(w) of X(c) to be the collection of simplices

with vertex set Γw = {ρ(13̄), ρ(23̄), ρ(12)}.

17
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In [12], another larger simplicial complex EX(c) is defined. It is an extension of the

complex X(c) and it is proved in theorem 8.2 of [12] that EX(c) is a simplicial complex

and |EX(c)| is a sphere of dimension n− 1. The vertex set of EX(c) consists of the set of

positive roots and the negatives of the simple roots. In theorem 8.3 of [12], it is proven that

EX(c) coincides with the generalised associahedron defined in [14] for crystallographic W .

The complex AX(c) is the image of EX(c) under an isometry. It has vertex set

ρ1, . . . , ρnh/2, . . . , ρnh/2+n and it has a simplex on {τ1, . . . , τk} if

ρ1 ≤ τ1 < τ2 < · · · < τk ≤ ρnh/2+n and `[r(τ1) . . . r(τk)c] = n− k.

Since AX(c) is an isometric copy of EX(c), the geometric realisation of AX(c) is an (n−1)-

dimensional sphere and combinatorially it also is equivalent to the type W generalised

associahedron.

2.3.2 The complex µ(AX(c))

Definition 2.3.4. We will denote the dual basis to {α1, . . . , αn} by {β1, . . . , βn}. This

means that

βi · αj =





1, i = j;

0, i 6= j.

In [12] the vectors µi for 1 ≤ i ≤ nh are defined to be µi = r1 . . . ri−1βi where the β’s

and r’s are defined cyclically mod n. There is therefore an order on the set of µ vectors.

From Corollary 4.2 of [12], we know that µ(ρi) = µi for any i.

Notation 2.3.5. For convenience of notation, we will use µ(r) to denote the vector

µ(ρ(r)).

The numbers µi ·ρj have some properties which we will refer to and use throughout this

document. They are listed here.

1. µi · ρi = 1

18



Chapter 2, Section 3 Preliminaries

2. µi · ρj = −µj+n · ρi for all i and j

3. µi · ρj ≥ 0 for 1 ≤ i ≤ j ≤ nh/2

4. µi+k · ρi = 0 for 1 ≤ k ≤ n− 1 and for all i

5. µj · ρi ≤ 0 for 1 ≤ i < j ≤ nh/2

We can construct a matrix with µi ·ρj the entry in ith row and jth column. The matrix

has 1’s down the diagonal, 0’s for (n−1) entries below the diagonal, non-positive numbers

below the diagonal and non-negative above. We refer the reader to the matrix composed

for example 2.3.6. However at this point the reader can ignore the last four rows of the

matrix.

In [9] the operator µ = 2(I−c)−1 is applied to the simplicial complex AX(c) and the re-

sult is a simplicial complex denoted µ(AX(c)). We will denote by µ(X(c)) the positive part

of µ(AX(c)). The complex µ(AX(c)) has vertex set µ(ρ1), . . . , µ(ρnh/2), . . . , µ(ρnh/2+n)

and a simplex on {µ(τ1), . . . , µ(τk)} if

ρ1 ≤ τ1 < τ2 < · · · < τk ≤ ρnh/2+n and `[r(τ1) . . . r(τk)c] = n− k.

The stereographic projection of the complex µ(AX(c)) for W = W (A3) and W = W (C3)

is illustrated in figures 2.3.2 and 2.3.3 respectively. The numbers i in the figure represent

the vertex µ(ρi) = µi. The fundamental chamber C is the region with vertices µ1, . . . , µn.

We briefly describe the classical associahedron which corresponds to the An case. We

consider a set of n + 3 elements and the various ways to bracket the product of these

elements. For example the 5 different ways to bracket the product abcd are

((ab)c)d, (a(bc))d, a((bc)d), (ab)(cd) and a(b(cd)).

We can construct a graph with complete bracketings as vertices. A cell of dimension k

is obtained for each collection of complete bracketings that share a common non-trivial

subbracketing of size n− k. This graph is the 1-skeleton of the convex polytope which is

called the associahedron. It is illustrated in figure 2.3.4 for bracketings of 4 elements.
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Figure 2.3.1: The complexes X(c), EX(c), AX(c) and µ(AX(c)) for W (A2)
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Figure 2.3.2: The complex µ(AX(c)) for W (A3)
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Figure 2.3.3: The complex µ(AX(c)) for W (C3)
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(a(bc))da((bc)d)

a(b(cd))

Figure 2.3.4: Graph of bracketings of 4 elements

If we fix a point x in the fundamental chamber C, the W -permutahedron is the convex

hull of the orbit of x under the action of W . This polytope is the dual of the simplicial

W -permutahedron defined in section 2.1.2. In [9] it is shown that the fan determined by

the simplicial W -associahedron is a coarsening of the fan determined by the simplicial

W -permutahedron.

We can extend the matrix of dot products µi ·ρj to include {µnh/2+1, . . . , µnh/2+n}. The

example below gives details for W = W (C4).

Example 2.3.6. Let W = W (C4), c = [1](23)(12)(34) = [1342]. Therefore h = 8 and

nh/2 = 16. The simple system is given by

α1 = (1, 0, 0, 0), α2 = 1/
√

2(0,−1, 1, 0), α3 = 1/
√

2(−1, 1, 0, 0), α4 = 1/
√

2(0, 0,−1, 1).

Set a = 1/
√

2. Then the first 20 roots are given by

ρ1 = (1, 0, 0, 0), ρ2 = (0,−a, a, 0), ρ3 = (a, 0, a, 0), ρ4 = (0,−a, 0, a)

ρ5 = (0, 0, 1, 0), ρ6 = (a, 0, 0, a), ρ7 = (0, 0, a, a), ρ8 = (a, a, 0, 0)

ρ9 = (0, 0, 0, 1), ρ10 = (0, a, a, 0), ρ11 = (0, a, 0, a), ρ12 = (−a, 0, a, 0)
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ρ13 = (0, 1, 0, 0), ρ14 = (−a, 0, 0, a), ρ15 = (−a, a, 0, 0), ρ16 = (0, 0,−a, a)

ρ17 = (−1, 0, 0, 0), ρ18 = (0, a,−a, 0), ρ19 = (−a, 0,−a, 0), ρ20 = (0, a, 0,−a).

Note that the last 4 roots are the negatives of the first 4 roots. In general the roots

ρnh/2+1, . . . , ρnh/2+n are a permutation of the first n roots by [12].

Therefore the reflections are ordered as follows

[1], (23), (13̄), (24)

[3], (14̄), (34̄), (12̄)

[4], (23̄), (24̄), (13)

[2], (14), (12), (34)

−[1],−(23),−(13̄),−(24)

From the roots, we can calculate the µ vectors.

µ1 = (1, 1, 1, 1), µ2 = (0, 0, 2a, 2a), µ3 = (0, 2a, 2a, 2a), µ4 = (0, 0, 0, 2a)

µ5 = (−1, 1, 1, 1), µ6 = (0, 2a, 0, 2a), µ7 = (−2a, 2a, 0, 2a), µ8 = (0, 2a, 0, 0)

µ9 = (−1, 1,−1, 1), µ10 = (−2a, 2a, 0, 0), µ11 = (−2a, 2a,−2a, 0), µ12 = (−2a, 0, 0, 0)

µ13 = (−1, 1,−1,−1), µ14 = (−2a, 0,−2a, 0), µ15 = (−2a, 0,−2a,−2a), µ16 = (0, 0,−2a, 0)

We arrange the quantities ρi · µj into a matrix. This is done for this example in the

table below.
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ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρ13 ρ14 ρ15 ρ16

[1] (23) (13̄) (24) [3] (14̄) (34̄) (12̄) [4] (23̄) (24̄) (13) [2] (14) (12) (34)

µ1 1 0 2a 0 1 2a 2a 2a 1 2a 2a 0 1 0 0 0

µ2 0 1 1 1 2a 1 2 0 2a 1 1 1 0 1 0 0

µ3 0 0 1 0 2a 1 2 1 2a 2 2 1 2a 1 1 0

µ4 0 0 0 1 0 1 1 0 2a 0 1 0 0 1 0 1

µ5 −1 0 0 0 1 0 2a 0 1 2a 2a 2a 1 2a 2a 0

µ6 0 −1 0 0 0 1 1 1 2a 1 2 0 2a 1 1 1

µ7 −2a −1 −1 0 0 0 1 0 2a 1 2 1 2a 2 2 1

µ8 0 −1 0 −1 0 0 0 1 0 1 1 0 2a 0 1 0

µ9 −1 −2a −2a 0 −1 0 0 0 1 0 2a 0 1 2a 2a 2a

µ10 −2a −1 −1 −1 0 −1 0 0 0 1 1 1 2a 1 2 0

µ11 −2a −2 −2 −1 −2a −1 −1 0 0 0 1 0 2a 1 2 1

µ12 −2a 0 −2a 0 0 −1 0 −1 0 0 0 1 0 1 1 0

µ13 −1 −2a −2a −2a −1 −2a −2a 0 −1 0 0 0 1 0 2a 0

µ14 −2a −1 −2 0 −2a −1 −1 −1 0 −1 0 0 0 1 1 1

µ15 −2a −1 −2 −1 −1 −2 −2 −1 −2a −1 −1 0 0 0 1 0

µ16 0 −1 −1 0 −2a 0 −1 0 0 −1 0 −1 0 0 0 1

−µ1 −1 0 −2a 0 −1 −2a −2a −2a −1 −2a −2a 0 −1 0 0 0

−µ2 0 −1 −1 −1 −2a −1 −2 0 −2a −1 −1 −1 0 −1 0 0

−µ3 0 0 −1 0 −2a −1 −2 −1 −2a −2 −2 −1 −2a −1 −1 0

−µ4 0 0 0 −1 0 −1 −1 0 −2a 0 −1 0 0 −1 0 −1
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2.3.3 Facets of µ(AX(c))

In [1] the first bijection between the elements of NCPc and facets of EX(c) is constructed.

In [9] another bijection is constructed from elements of NCPc but this time to facets of

µ(AX(c)). Before we define a facet, we need to characterise the simple system associated

to the length k element w ∈ NCPc.

Definition 2.3.7. A subset ∆ of a root system Φ is a simple system if the elements of ∆

form a basis for V and if each α ∈ Φ is a linear combination of ∆ with coefficients all of

the same sign.

Recall that for an element w of NCPc we define Γw to be the set of positive roots whose

reflections precede w. We want to find the simple system ∆ = {δ1, . . . , δk} associated to

Γw. By proposition 5.1 of [12], we know that the ordered elements δ1, . . . , δk of the simple

system ∆ are determined recursively by the fact that δk is the last positive root in Γw and

δi is the last positive root in M(w[r(δk) . . . r(δi+1)]).

Example 2.3.8. As in example 2.3.6, let W = W (C4), c = [1342]. Consider the element

w = (1342̄). We know that `(w) = 3. We find that

Γw = {ρ(12̄), ρ(23̄), ρ(24̄), ρ(13), ρ(14), ρ(34)}.

Therefore r(δ3) = (34). To find δ2, we consider M(w[r(δ3)]) = M((1342̄)(34)) = M(132̄).

We find that

Γw[r(δ3)] = {ρ(12̄), ρ(23̄), ρ(13)}.

Therefore r(δ2) = (13). Finally to find δ1, consider M(w[r(δ3)r(δ2)]) = M((132̄)(13)) =

M(12̄). It is clear that r(δ1) = (12̄).

For w ∈ NCPc, let {δ1, . . . , δk} be the simple system for the element w where `(w) = k.

For w′ = cw−1, let {θ1, . . . , θn−k} be the simple system for w′. Then, as in [9], we define

the facet

F (w) = {x ∈ Rn | x · δi ≤ 0 and x · θj ≥ 0}.
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In [12], Brady and Watt determine the first facet of X(w) in the lexicographical order for

any w ∈ NCPc of length k. In [1] there is an analogous description of the lexicographically

last facet. We review these here. For each 1 ≤ i ≤ k define the roots

εi = r(δ1) . . . r(δi−1)δi.

We reorder these roots so that ε1 < ε2 < · · · < εk. Then the set {ε1, ε2, . . . , εk} is the

vertex set of the first facet of X(w) in the lexicographic order (Proposition 3.6 of [1]).

We can also determine the vertex set of the last facet of X(w) in the lexicographic order.

Define the roots ηi for each 1 ≤ i ≤ k as

ηn−k+i = r(δk) . . . r(δi+1)δi.

If we reorder the roots so that ηn−k+1 < ηn−k+2 < · · · < ηn then the set {ηn−k+1, . . . , ηn}
is the vertex set of the last facet of X(w) in the lexicographic order (Proposition 3.14 of [1]).

Recall that we refer to the positive cone on a non-zero vector v in a one-dimensional

subspace X ∈ L(A) as the ray generated by v. We can now determine the rays of F (w)

for each w ∈ NCPc. Let {ε1, . . . , εn−k} be the vertices of the lexicographically first facet

of X(cw−1) and let {ηn−k+1, . . . , ηn} be the vertices of the lexicographically last facet of

X(w). Then by Proposition 5.3 of [9] the rays of F (w) are generated by

{µ(ε1), . . . , µ(εn−k), µ[c(ηn−k+1)], . . . , µ[c(ηn)]}.

We will now demonstrate this with some examples.

Example 2.3.9. As in 2.1.3, let W = W (A3) and c = (12)(34)(23) = (1243). Consider

w = (13). We know that `(w) = k = 1. For w = (13), we find that ∆ = {ρ(13)} so

therefore r(δ1) = (13). The last facet of X(w) has vertex set {ηn} where r(ηn) = r(η3) =

r(δ1) = (13). We also need to note that r(c(η1)) = −(12).
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If w = (13), then cw−1 = (1243)(13) = (243) with ∆ = {ρ(34), ρ(23)}. The vertices of

the first facet of X(cw−1) are {ε1, ε2} where r(ε1) = (34) and r(ε2) = (24).

Therefore the rays of F ((13)) are generated by

µ(34), µ(24), µ(−(12)).

In figure 2.3.5 we have labelled all the facets of µ(AX(c)) for W = W (A3). If we number

the ordered reflections then each facet is labelled by the simple system of the corresponding

element. For example 26 corresponds to (243) and 126 corresponds to c.

1
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8

9e

1

2

12 3

4

5

6 45

14

16

26

25

126

Figure 2.3.5: The complex µ(AX(c)) for W (A3) with facets labelled

Example 2.3.10. As in 2.3.6, let W = W (C4), c = [1342] and consider w = [13]. We find
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that Γw = {ρ[1], ρ(13̄), ρ[3], ρ(13)} so from that we find that r(δ1) = [1] and r(δ2) = (13).

We want the vertex set of the last facet of X(w) so we calculate ηn−k+i for 1 ≤ i ≤ k.

We find that ηn−k+1 = η3 = r(δ2)δ1 so r(η3) = [3] and ηn−k+2 = η4 = δ2 so r(η4) = (13).

Therefore the vertex set is given by {ρ[3], ρ(13)}.

Now, we want to find the vertex set of the first facet of X(cw−1) = X([1342][13̄]) =

X(14̄2̄). We find that Γcw−1 = {ρ(24), ρ(14̄), ρ(12̄)} so ∆ = {ρ(24), ρ(12̄)} and r(ε1) =

(24), r(ε2) = (14̄).

Therefore the rays of F ([13]) are generated by

{µ(24), µ(14̄), µ[c[3]], µ[c(13)]} = {µ(24), µ(14̄), µ[4], µ(34)}.
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Building the Complex µ(AX(c))

3.1 Simplicial complex µ(AX(c))

Recall that µ(AX(c)) denotes the simplicial complex with vertices {µ1, . . . , µnh/2+n} and

with a simplex on {µi1 , . . . , µik} if and only if

1 ≤ i1 < i2 < · · · < ik ≤ nh/2 + n and l(r(ρi1) . . . r(ρik)c) = n− k.

In [9], the complex µ(AX(c)) is defined by applying the operator µ = 2(I− c)−1 to AX(c)

which, in turn, is isometric to EX(c) which is an extension of X(c). In this section, we

will describe an alternative, more direct construction of µ(AX(c)) using intersections of

halfspaces. Our construction is analagous to that of the complex X(c) in [12]; however we

do not consider the subcomplexes for w ¹ c. The properties of the dot products µi · ρj

will be used in this section. We recall them here for convenience and will refer to them by

their number when required.

1. µi · ρi = 1

2. µi · ρj = −µj+n · ρi for all i and j

3. µi · ρj ≥ 0 for 1 ≤ i ≤ j ≤ nh/2

4. µi+k · ρi = 0 for 1 ≤ k ≤ n− 1 and for all i

5. µj · ρi ≤ 0 for 1 ≤ i < j ≤ nh/2

Following [12], we define the positive and negative halfspaces as follows.

Definition 3.1.1. We fix a positive root ρ and define the positive halfspace by

ρ+ = {x ∈ Rn|x · ρ ≥ 0}.
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The negative halfspace is defined as

ρ− = {x ∈ Rn|x · ρ ≤ 0}.

It will be convenient to use the notation ρ⊥ for the hyperplane

ρ⊥ = {x ∈ Rn|x · ρ = 0}.

We fix a fundamental chamber C for the W -action where C has inward unit normals

α1, . . . , αn. Let r1, . . . , rn denote the corresponding reflections. The chamber C has ver-

tices µ1, . . . , µn and is on the positive side of all hyperplanes. It can therefore be expressed

as the intersection of the halfspaces

ρ+
1 ∩ ρ+

2 ∩ · · · ∩ ρ+
nh/2.

Our construction involves beginning with C and building up the complex µ(AX(c)) by

adding the vertices µn+1, . . . , µnh/2+n in order of ascending indices. We require some

definitions and notation.

Definition 3.1.2. For i ≥ n, we denote by X(c, µi) the set of simplices of µ(AX(c))

whose vertices are in the set {µ1, . . . , µi}. We will also use Xi as an abbreviation for

cone|X(c, µi)|, that is the positive cone on the subcomplex X(c, µi). We note that Xn is

the cone on the fundamental chamber C.

Definition 3.1.3. For i ≥ n, Yi = Y (c, µi) denotes the positive cone on the set {µ1, . . . , µi}.

Definition 3.1.4. For i ≥ n, Zi = Z(c, µi) = ρ+
i−n+1 ∩ · · · ∩ ρ+

nh/2.

Note that for i = nh/2+n, Zi is not on the positive side of any hyperplane. In this case

Zi = Rn.

Our aim is to prove that Xi = Yi = Zi for i ≥ n. We do this using an induction

argument. We will first outline the ideas used in the proof. We will see that it suffices to

show that Zi ⊆ Xi. We assume that the theorem holds for i = n+k− 1 and we will prove
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that it holds for i = n + k. If F is the subcomplex of µ(AX(c)) with F = Xn+k−1 ∩ ρ⊥k

and V is the closure of |Xn+k \ Xn+k−1|, then V is the cone on the sphere with base F

and apex µi. The theorem follows if the closure of Zn+k \ Zn+k−1 is contained in V .

Example 3.1.5. We will outline the proof of the theorem using an example with W =

W (A3) and c = (1243). Assume that X4 = Y4 = Z4. We want to show it holds for

i = 5. To do this, we let F denote the subcomplex X4 ∩ ρ⊥2 and let V denote the closure

of |X5 \ X4|. It is clear in this example that V is a cone with base F and apex µ5. V

is outlined in bold for this example in figure 3.1.1. In this case, V can be expressed as

the intersection of halfspaces ρ−2 ∩ ρ+
3 ∩ ρ+

4 . Let Z denote the closure of |Z5 \ Z4| then

Z = ρ−2 ∩ ρ+
3 ∩ ρ+

4 = V .

1

2

3

4

5

ρ
⊥

4

ρ
⊥

3

ρ
⊥

2

Figure 3.1.1: X5 = Y5 = Z5

Theorem 3.1.6. The equality Xi = Yi = Zi holds for n ≤ i ≤ nh/2 + n.

Proof. Xi ⊆ Yi by definition. By property 3, we know that Yi ⊆ Zi. Therefore, it suffices

to show that Zi ⊆ Xi. In the case i = n, Xn = cone|X(c, µn)| is the positive cone on the

set of simplices of µ(AX(c)) whose vertices precede µn and Zn = ρ+
1 ∩· · ·∩ρ+

nh/2. In other
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words, Zn contains the set of facets on the positive side of all hyperplanes. The only such

facet is the fundamental domain. Therefore, Xn = Yn = Zn.

We assume the theorem holds for i = n + k − 1 and show it is true for i = n + k. We

let F = Xn+k−1 ∩ ρ⊥k and V be the closure of |Xn+k \Xn+k−1|. Then V is a cone on the

sphere with base F and apex µn+k since each facet of Xn+k \Xn+k−1 has µn+k as a vertex.

Let Z denote the closure of |Zn+k \ Zn+k−1| = ρ−k ∩ ρ+
k+1 ∩ · · · ∩ ρ+

nh/2. We claim that

each facet of cone(V ) is of the form ρ⊥j ∩V for some j ∈ {k, k + 1, . . . , nh/2}. If the claim

is true the theorem follows because we can express V as the intersection of halfspaces.

V = ρ−k ∩ ρ+
i1
∩ . . . ρ+

ij
with {i1, . . . ij} ⊆ {k + 1, . . . , nh/2}.

But we have that

Z = ρ−k ∩ ρ+
k+1 ∩ · · · ∩ ρ+

nh/2

⊆ ρ−k ∩ ρ+
i1
∩ · · · ∩ ρ+

ij

= V.

The inclusion above follows from the elementary fact about sets that if {i1, . . . , ik} ⊆

{1, . . . , n} then automatically

A1 ∩A2 ∩ · · · ∩An ⊆ Ai1 ∩Ai2 ∩ · · · ∩Aik .

To prove the claim we need to show that each facet of cone(V ) apart from F is of the

form ρ⊥j ∩V for some j ∈ {k+1, . . . , nh/2}. Assume j < k and we will find a contradiction

by finding two µ vectors that lie on ρ⊥k , with the property that they lie on different sides

of ρ⊥j .
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µk+n
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Figure 3.1.2: The cone V
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Since V is a cone on µn+k, each boundary facet of V apart from F must have µn+k

as a vertex. Therefore µn+k ∈ ρ⊥j and as a result µn+k ⊥ ρj . Therefore, since µn+k ∈

F (r(ρn+k)c) = (M(r(ρn+k)c))⊥,

r(ρj) ¹ r(ρn+k)c

⇒ c = r(ρn+k)r(ρj)ν where `(ν) = n− 2

= r(ρj)νr(ρk)

= r(ρj)r(ρk)ν ′,

for some ν ′ ¹ c with `(ν ′) = n− 2 since the set of reflections is closed under conjugation.

Thus

r(ρk) ¹ r(ρj)c

⇒ ρk · µj = 0

⇒ µj ∈ ρ⊥k .

Since ρj · µj = 1 by property 1, we know that µj is on the positive side of ρ⊥j . In other

words, it is on the same side as the fundamental domain. Also, since j < k < n + k then

µj lies on F .

The construction of a µ vector on F and on the negative side of ρ⊥j is more delicate.

If we set σ = c[r(ρk)] then σ is a length (n − 1) non-crossing partition. We show that

µ(σ(ρj)) ∈ ρ⊥k as follows
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µn+k

ρ
⊥

j

ρ
⊥

kµjµ(σ(ρj))

Figure 3.1.3: The facet ρ⊥j
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ρk · µ(σ(ρj)) = −c[µk] · σ(ρj) by property 2

= −c[µk] · c[r(ρk)]ρj

= −µk · r(ρk)ρj by orthogonality of c

= −r(ρk)µk · ρj

= −c[µk] · ρj

= −µn+k · ρj

= 0.

Also, we can show that µ(σ(ρj)) is on the negative side of ρ⊥j , proving that ρ⊥j separates

µ(σ(ρj)) and µj .

ρj · µ(σ(ρj)) = −c[µj ] · σ(ρj) by property 2

= −c[µj ] · c[r(ρk)]ρj

= −µj · r(ρk)ρj by orthogonality of c

= −r(ρk)µj · ρj

= −µj · ρj

= −1.

Finally, we need to ensure that µ(σ(ρj)) < µk+n so that µ(σ(ρi)) ∈ F .

µ(σ(ρj)) < µk+n ⇔ σ(ρj) < ρk+n

⇔ [c(r(ρk))](ρj) < ρk+n

⇔ [r(ρk)](ρj) < ρk.

Since ρk ·µj = 0, we have that r(ρk) ¹ r(ρj)c. Therefore, r(ρj)r(ρk) ¹ c where r(ρj)r(ρk)

is a non-crossing partition of length 2 with simple system {ρj , ρk} since j < k. Therefore,
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[r(ρk)]ρj is a positive root which precedes ρk in the total order by (Proposition in Section

1.4 of [15]).

We return to example 3.1.5. Recall that V was a cone with base X4 ∩ ρ⊥2 and apex µ5.

For j < k we want to find two µ vectors on either side of ρ⊥j . We can see from figure 3.1.1

that µ5 ∈ ρ⊥1 . From the theorem, we know that µ1 is on the positive side of ρ⊥1 . We let

σ = c[r(ρk)] = (1243)(34) = (124). Then by theorem 3.1.6, the vector µ(σ(ρj)) is on the

negative side of ρ⊥j . In this example µ((124)[(1,−1, 0, 0)]) = µ(0, 1, 0,−1) = µ4. We can

see from the figure that this is in fact the case. This establishes the contradiction since µj

and µ(σ(ρj)) are two vertices on F separated by ρ⊥j so that V ∩ ρ⊥j could not have been

a facet of V .
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Existence of an Interval

Recall that we have identified the associahedron with the complex µ(AX(c)) so that

associahedron facets are of the form F (w) for w ∈ NCPc. For a given associahedron

facet F (w) we will show that the set of elements x ∈ W , with the property that the

permutahedron facet corresponding to x is contained in the associahedron facet F (w),

forms an interval in the weak order. We do this by showing that certain sets of reflections

associated to w form inversion sets for group elements in W .

4.1 The sets Tn(w), Tp(w), Tnp(w).

Recall from section 2.3.3 that, for w ∈ NCPc, we define the facet

F (w) = {~x ∈ Rn | ~x · δi ≤ 0, ~x · θj ≥ 0}

where {δ1, . . . , δk} is the simple system for w and {θ1, . . . , θn−k} is the simple system for

w′ = cw−1. F (w) is a positive cone on

µ(c[ηn]), . . . , µ(c[ηn−k+1]), µ(εn−k), . . . , µ(ε1).

In [9], there is a geometric characterisation of the regions F (w), which are associahe-

dron facets consisting of those elements whose permutahedron facets lie in F (w) for some

w ∈ NCPc. We can therefore express each associahedron facet F (w) as a union of per-

mutahedron facets. F (w) partitions the set of nh/2 hyperplanes into three subsets; those

with the facet on the negative side, those with the facet on the positive side and those

that split the facet.

Definition 4.1.1. We define

Tn(w) = {t ∈ T | ~x · ρ(t) ≤ 0 for all ~x ∈ F (w)}
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Tp(w) = {t ∈ T | ~x · ρ(t) ≥ 0 for all ~x ∈ F (w)}

Tnp(w) = {t ∈ T | there exists ~x and ~y ∈ F (w) such that ~x · ρr > 0 and ~y · ρr < 0}

The set Tn(w) is the set of all reflections whose corresponding hyperplanes have F (w)

on their negative side. Similarly, we define Tnp(w) which is the set of reflections whose

hyperplanes split F (w) and Tp(w) which is the set of reflections whose hyperplanes have

F (w) on their positive side.

We can determine the elements of Tn(w) from the matrix of dot products [ρi · µj ] since

r(ρi) ∈ Tn(w) if and only if ρi · µj ≤ 0 for each µj a corner of F (w). Similarly, it is also

possible to determine the elements of Tnp(w) and Tp(w) from the matrix. The elements

of Tn(w), Tp(w) and Tnp(w) inherit an ordering from the total order on the set of positive

roots ρ1, . . . , ρnh/2.

Example 4.1.2. Consider W (A3), w = (123). The element w produces the simple system

with r(δ1) = (12) and r(δ2) = (23). The element w′ = (1243)w−1 = (1243)(132) = (34)

produces the simple system with r(θ1) = (34). By definition

F (w) = {~x ∈ Rn | ~x · δ1 ≤ 0, ~x · δ2 ≤ 0, ~x · θ1 ≥ 0}

To find the corners of the facet F (w), we must find ε1, η2 and η3 where ε1 = θ1, η2 = r(δ2)δ1

and η3 = δ2. Therefore F (w) is a positive cone on the vertices µ(34), µ(c[13]), µ(c[(23)]).

Therefore, F (w) has vertices µ(34), µ(−(12)), µ(−(14)). Consider the matrix of dot prod-

ucts for the appropriate µ vectors.
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ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

(12) (34) (14) (24) (13) (23)

µ2 0 1 1 1 0 0

µ8 −1 0 −1 0 −1 0

µ9 0 0 −1 −1 −1 −1

It is easy to see from the table that

Tn(w) = {r(ρ1), r(ρ5), r(ρ6)}, where r(ρ1) = (12), r(ρ5) = (13), r(ρ6) = (23),

Tnp(w) = {r(ρ3), r(ρ4)}, where r(ρ3) = (14), r(ρ4) = (24),

Tp(w) = {r(ρ2)} where r(ρ2) = (34).

Our aim is to prove that Tn(w) is an inversion set for some x ∈ W . We first need to

prove a particular property of the positive roots. In the process of doing this, we use the

properties of the matrix of dot products ρi · µj introduced by Brady and Watt in [12] and

which we have reviewed in section 2.3.

It is proved in Corollary 4.7 of [12] that ρk does not lie in the positive cone on {ρi1 , . . . , ρim}
for 1 ≤ i1 < i2 < · · · < im < k ≤ nh/2. This is proved by showing that ρk cannot be

expressed as a non-negative linear combination of {ρi1 , . . . , ρim}. Analogously, it can be

proved that ρk does not lie in the positive cone on {ρi1 , . . . , ρim} for 1 ≤ k < i1 < i2 <

· · · < im ≤ nh/2. Here we prove this result for m = 2 in a different way. We prove that if

ρ is a positive linear combination of two roots ρi and ρj with ρi < ρj , then ρi < ρ < ρj in

the total order.

Proposition 4.1.3. Let ρi, ρj be positive roots with ρi < ρj. Suppose ρ is a root with

ρ = aρi + bρj where a, b > 0. Then ρi < ρ < ρj.
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Proof. Consider ρ · µi.

ρ · µi = (aρi + bρj) · µi

= a(ρi · µi) + b(ρj · µi)

= a(1) + b(ρj · µi) by property 1 above.

> 0 by property 3.

Therefore, ρ > ρi by property 5.

Consider ρ · µj+n.

ρ · µj+n = (aρi + bρj) · µj+n

= a(ρi · µj+n) + b(ρj · µj+n)

= a(ρi · µj+n) + b(−ρj · µj) by property 2.

= a(ρi · µj+n) + b(−1) by property 1.

< 0 by property 5.

Therefore, ρ < ρj by property 3.

Now we can prove that Tn(w) is an inversion set. Recall from section 2.1.2 that we can

characterise an inversion set as follows. A set I is an inversion set of a unique element

w ∈ W if I is closed and its complement in Φ+ is closed.

Proposition 4.1.4. Tn(w) is an inversion set for an element x ∈ W .

Proof. We first prove that the set Tn(w) is closed and we follow this with a proof that

T \ Tn(w) = Tnp(w) ∪ Tp(w) is closed. Then, by the characterisation of inversion sets in
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[17], Tn(w) is an inversion set.

The set Tn(w) is closed: Let ~x, ~y be roots with r(~x), r(~y) ∈ Tn(w). Let ~z be a root

of the form a~x + b~y, with a, b ∈ R+. We need to show that r(~z) ∈ Tn(w). Let ~u ∈ F (w).

Since r(~x), r(~y) ∈ Tn(w), we know that ~u · ~x ≤ 0 and ~u · ~y ≤ 0. We calculate ~u · ~z.

~u · ~z = ~u · (a~x + b~y)

= a(~u · ~x) + b(~u · ~y)

≤ 0

Therefore, r(~z) ∈ Tn(w)

The set Tp(w) ∪ Tnp(w) is closed: Since T \ Tn(w) = Tnp(w) ∪ Tp(w) elements of

Tp(w) ∪ Tnp(w) have the following characterisation.

r(~u) ∈ Tp(w) ∪ Tnp(w) ⇔ there exists a corner cu of F (w) with ~u · cx > 0

Let ~x, ~y be roots where r(~x), r(~y) ∈ Tp(w) ∪ Tnp(w). Let ~z = a~x + b~y be a root with

a, b ∈ R+. We need to show that r(~z) ∈ Tp(w) ∪ Tnp(w). We have

r(~x) ∈ Tp(w) ∪ Tnp(w) ⇔ there exists a corner cx of F (w) with ~x · cx > 0

r(~y) ∈ Tp(w) ∪ Tnp(w) ⇔ there exists a corner cy of F (w) with ~y · cy > 0

From proposition 4.1.3, we know that ~x < ~z < ~y. Since ~x · cx > 0 and ~x · µi ≤ 0 for

i > ~x, we can deduce that cx ≤ µ~x < µ~z < µ~y. Property 3 states that µi · ρj ≥ 0 for

1 ≤ i ≤ j ≤ nh/2. Since cx < µ~y, it is clear from this that cx · ~y ≥ 0.
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~z · cx = (a~x + b~y) · cx

= a(~x · cx) + b(~y · cx)

> 0

Since cx is a corner of F (w), r(~z) ∈ Tp(w) ∪ Tnp(w).

By a similar argument we can prove that Tp(w) is an inversion set. This gives the

following.

Proposition 4.1.5. Tn(w) ∪ Tnp(w) is an inversion set for an element y ∈ W .

While examining the properties of the sets Tn(w), Tnp(w) and Tp(w) we proved the

following sufficient condition for a root to split F (w) and we record it here.

Proposition 4.1.6. Suppose ρ1 precedes ρ2 in the total order, r(ρ1) ∈ Tp(w), r(ρ2) ∈

Tn(w) ∪ Tnp(w) and ρ = aρ1 + bρ2 with a, b > 0. Then r(ρ) ∈ Tnp(w).

Proof. Since r(ρ2) ∈ Tn(w) ∪ Tnp(w), there exists a vertex cx of F (w) with ρ2 · cx < 0.

Therefore µ(ρ1) < µ(ρ2) < cx. Since ρ1 < ρ2, then ρ1 · cx ≤ 0. But r(ρ1) ∈ Tp(w) and as

a result ρ1 · cx = 0. We can now calculate ρ · cx.

ρ · cx = (aρ1 + bρ2) · cx

= a(0) + b(ρ2 · cx)

< 0.

Therefore, r(ρ) /∈ Tp(w).
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Since r(ρ1) ∈ Tp(w), there exists a vertex cy of F (w) with ρ1 · cy > 0. Therefore

cy ≤ µ(ρ1) < µ(ρ2). Since ρ1 < ρ2, then ρ2 · cy ≥ 0.

ρ · cy = (aρ1 + bρ2) · cy

= a(ρ1 · cy) + b(ρ2 · cy)

> 0.

Therefore, r(ρ) /∈ Tn(w). Therefore, r(ρ) ∈ Tnp(w).

4.2 Construction of an Interval

We first recall the definition of the weak order from section 2.1.2. For u,w ∈ W we say

that

u ≤R w ⇔ l(w) = l(u) + l(u−1w)

where l(w) denotes the least number k such that w can be written as a word of length k

in the alphabet S. In [19], Reading defines a congruence Θ of the weak order and each

equivalence class is an interval in the weak order. The Cambrian lattice is defined in [19]

as the quotient of the weak order on W modulo Θ. In [21], Reading makes the connection

between Cambrian lattices and a set of elements called the Coxeter sortable elements of

W and states that the Cambrian lattice is isomorphic to the restriction of the weak order

to Coxeter sortable elements.

In [9], there is a geometric characterisation of the congruence classes of Θ. Each con-

gruence class has a region F (w) associated to it for some w ∈ NCPc and consists of those

elements whose permutahedron facets lie in F (w). The region F (w) is an associahedron

facet which can be written as the union of some permutahedra facets. In this section, we

want to construct the interval associated to F (w) and calculate its cardinality. We will

denote the interval associated to F (w) by Iw and its size by |Iw|.
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Recall that Tn(w) = {t ∈ T | ~x · ρ(t) ≤ 0 for all ~x ∈ F (w)}. We can determine the

elements of Tn(w) from the matrix of dot products since r(ρi) ∈ Tn(w) if and only if

ρi · µj ≤ 0 for all µj a corner of F (w). We assume the elements of Tn(w) are ordered

consistently with the total order on the set of roots ρ1, . . . , ρnh/2. We also assume that

the elements of Tp(w) = {t ∈ T | ~x · ρ(t) ≥ 0 for all ~x ∈ F (w)} are ordered.

The facet F (e) is on the positive side of all hyperplanes. If we start at F (e) and cross

the walls associated to the reflections in Tn(w) in order, we reach the facet F (w). In par-

ticular, we reach the permutahedron facet in F (w) with the minimal inversion set among

permutahedron facets in F (w). We will refer to this facet as the minimal facet of F (w). If

we start at F (c) (the opposite chamber to C) and cross the reflections in Tp(w) in reverse

order, we reach the maximal facet of F (w).

We can therefore associate to w an interval Iw = [w1, w2] where w1 is the minimal facet

associated to F (w) and w2 is the maximal facet. We want to construct this interval and

find the size of it in the weak order.

Example 4.2.1. Continuing with the example 2.3.6, let w = (13̄2̄). Therefore r(δ1) = (23)

and r(δ2) = (12̄). We calculate w′ = cw−1 = [1342](12̄3̄) = (24)[3]

Therefore r(θ1) = (24) and r(θ2) = [3] and so

F (w) = (23)− ∩ (12̄)− ∩ (24)+ ∩ [3]+

Since the elements of W (C4) are identified with 4× 4 signed permutation matrices, we

can identify elements with signed permutations. Therefore, for example, the element w

which takes the 4-tuple (1, 2, 3, 4) in C to (2,−4,−1,−3) in w(C) can be written 24̄1̄3̄.

We find that Tn(w) = {[1], (23), (13̄), (12̄)}. Starting at the identity permutation we

cross the walls in order:

1234
[1]−→ 1̄234

(23)−→ 1̄324
(13̄)−→ 31̄24

(12̄)−→ 321̄4
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The set Tp(w) = {(24), [3], (34̄), [4], (23̄), (24̄), (13), [2], (14), (12), (34)}. Starting at the

permutation associated to the longest element, we cross the walls in reverse order:

1̄2̄3̄4̄
(34)−→ 1̄2̄4̄3̄

(12)−→ 2̄1̄4̄3̄
(14)−→ 2̄4̄1̄3̄

[2]−→ 24̄1̄3̄
(13)−→ 24̄3̄1̄

(24̄)−→ 4̄23̄1̄

(23̄)−→ 4̄3̄21̄
[4]−→ 43̄21̄

(34̄)−→ 3̄421̄
[3]−→ 3421̄

(24)−→ 3241̄

Therefore, Iw = [321̄4, 3241̄].
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An Algorithm for computing the size of Intervals

Recall from section 4.2 that for each w ∈ NCPc there is an interval Iw = [w1, w2] as-

sociated to F (w), where w1 is the minimal facet and w2 is the maximal facet of F (w).

In this section, we give an algorithm for recursively calculating the size of the intervals

denoted by |Iw|. It is possible to order the elements of NCPc and to reflect each associa-

hedron facet in a certain wall to obtain a union of earlier associahedron facets in the order.

Since reflection is an orthogonal transformation, reflecting an associahedron facet in any

one of its walls gives a region with exactly the same number of permutahedron facets. We

will see that reflection in the last hyperplane δ⊥k gives a region which is also a positive

cone on µ vectors and corresponds to a factorisation of c.

5.1 Order on elements of NCPc

To calculate |Iw|, we first put a total order on the elements of NCPc so that we can

calculate the numbers |Iw| in this order. We do this so that when we reflect the facet,

we obtain a union of facets whose size is already known. It is proven in [9] that each

non-crossing partition gives an associahedron facet with vectors µi1 , . . . , µin as corners.

We have described the construction of the facet in section 2.3.3. The total order on the

set of µ vectors induces the order we put on NCPc. We compare the corners of a facet

reverse lexicographically. This means that we say µi1 , . . . , µin < µj1 , . . . , µjn if

µin < µjn

or µin = µjn but µin−1 < µjn−1

...

or µin = µjn , . . . , µi2 = µj2 but µi1 < µj1 .
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Example 5.1.1. As in example 2.1.3, let W = W (A3) and set c = (1243). The table

below lists the order of the non-crossing partitions w and the corners of F (w) for each w.

Order Corners Element w

1 µ1, µ2, µ3 e

2 µ2, µ3, µ4 (12)

3 µ1, µ3, µ5 (34)

4 µ3, µ4, µ5 (12)(34)

5 µ4, µ5, µ6 (14)

6 µ1, µ5, µ7 (24)

7 µ5, µ6, µ7 (124)

8 µ2, µ4, µ8 (13)

9 µ4, µ6, µ8 (143)

10 µ6, µ7, µ8 (13)(24)

11 µ1, µ2, µ9 (23)

12 µ1, µ7, µ9 (243)

13 µ2, µ8, µ9 (123)

14 µ7, µ8, µ9 (1243)

Once the non-crossing partitions are ordered, we calculate |Iw| in this order. The first

facet whose size is calculated is always the facet corresponding to the identity element of

W since we know that |F (e)| = 1 for all W . F (e) is the facet with vertices µ1, . . . , µn.

The facet whose size is last calculated is always the facet corresponding to c. F (c) is the

antipodal facet to F (e). Its vertices are µnh/2, . . . , µnh/2+n and its size is also 1.
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5.2 Algorithm

The associahedron facet F (w) can be expressed as an interval Iw in the weak order. By

calculating how many permutahedron facets are in the associahedron facet F (w), we are

calculating the size of this interval.

Let w ∈ NCPc be a length k element with simple system {δ1, . . . , δk}. We denote by

{θ1, . . . , θn−k} the simple system for the non-crossing partition w′ = cw−1. Recall from

section 2.3.3 that the set {ε1, . . . , εn−k} is the vertex set of the first facet of X(w′) in

lexicographic order and the set {ηn−k+1, . . . , ηn} is the vertex set of the last facet of X(w)

in lexicographic order. We will consider the following particular factorisation of c

c = r(c[ηn]) . . . r(c[ηn−k+1])r(εn−k) . . . r(ε1).

From [9], we know that since F (w) is a simplicial cone, that is a positive cone on a

spherical simplex, all the vertices of F (w) are on δ⊥k except the vertex µ(δn+k) which lies

on the negative side of δ⊥k .

Since δk is the last element of the inversion set of w, we reflect F (w) in δ⊥k . As a result

of the fact that r(δk)ηn = cηn, we obtain a new factorisation of c when we reflect in δ⊥k

where

c = r(cηn−1) . . . r(cηn−k+1)r(εn−k) . . . r(ε1)r(ηn).

This is the positive cone on the corresponding µ vectors

µ(cηn−1), . . . , µ(cηn−k+1), µ(εn−k), . . . , µ(ε1), µ(ηn)

If the reflections r(cηn−1), . . . , r(cηn−k+1), r(εn−k), . . . , r(ε1), r(ηn) are in decreasing order

relative to the total induced order on the set of reflections, we know that r(δk)F (w) con-

sists of one associahedron facet by the definition of an associahedron facet from section

2.3.2. Since the elements of NCPc are ordered, the size of this associahedron facet is

already known.

If the reflections are not in decreasing order, the sequence must be increasing from r(ε1)

to r(ηn). The roots ε1 and ηn are both positive roots. From theorem 5.4 of [12], we know
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F (w)

r(δk)F (w)

��

�

�

�

µn+k

δ⊥
k

µk

Figure 5.2.1: Reflecting F (w)

that they form a simple system for some length 2 element σ ¹ c. Consider the ordered

set Γσ = {τ1, . . . , τa} of roots that precede σ. Since r(ε1) and r(ηn) form a simple system

for σ, we know that τ1 = ε1 and τa = ηn. We can therefore write r(δk)F (w), as a union of

(a− 1) positive cones. See figure 5.2.4 where a = 4.

We denote these cones by C1, . . . , Ca−1 where

C1 = µ(cηn−1), . . . , µ(cηn−k+1), µ(εn−k), . . . , µ(ε2), µ(τ2), µ(ε1)

C2 = µ(cηn−1), . . . , µ(cηn−k+1), µ(εn−k), . . . , µ(ε2), µ(τ3), µ(τ2)

...
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µ(τ2)µ(ε1) µ(ηn)

r(δk)F (w)

δ⊥
k

µk

Figure 5.2.2: Increase from r(ε1) to r(ηn) causes a split

Ca−1 = µ(cηn−1), . . . , µ(cηn−k+1), µ(εn−k), . . . , µ(ε2), µ(ηn), µ(τa−1).

We examine each of these facets for increasing sequences between r(ε2) and r(τi) for

i = 2, . . . , a. If an increase occurs, we split the positive cone on r(ε2) and r(τi), for the

appropriate i, into a union of positive cones. Assume there is an increase between r(ε2)

and r(τ2). We know that they form a simple system for some length 2 element σ′ ¹ c.

Consider the ordered set Γσ′ = {ω1, . . . , ωb} of roots that precede σ′. Since r(ε2) and r(τ2)

form a simple system for σ′, we know that ω1 = ε2 and ωb = τ2. Therefore the positive

cone C1 on vectors

µ(c[ηn−1]), . . . , µ(c[ηn−k+1]), µ(εn−k), . . . , µ(ε2), µ(τ2), µ(ε1)

splits further into a union of positive cones C ′
1, . . . , C

′
b−1 where

C ′
1 = µ(c[ηn−1]), . . . , µ(c[ηn−k+1]), µ(εn−k), . . . , µ(ε3), µ(ω2), µ(ε2), µ(ε1),

C ′
2 = µ(c[ηn−1]), . . . , µ(c[ηn−k+1]), µ(εn−k, ) . . . , µ(ε3), µ(ω3), µ(ω2), µ(ε1)
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...

C ′
b−1 = µ(c[ηn−1]), . . . , µ(c[ηn−k+1]), µ(εn−k), . . . , µ(ε3), µ(τ2), µ(ωb−1), µ(ε1).

We examine each of these facets for increasing sequences between r(ε3) and r(ωi) for

i = 2, . . . , b and between r(ε1) and r(ωj) for j = 2, . . . , b − 1. If an increase occurs, we

split the positive cone and repeat the process where necessary. We continue this until

we obtain a union of expressions, all of which are in decreasing order. We therefore have

written the facet as a union of associahedron facets.

Since we have calculated the size the facets in order, we have already calculated the size

of the intervals in the image of F (w) under δk. We can therefore now determine |Iw|.

Example 5.2.1. Consider W = W (A3), c = (1243). Figure 5.2.3 shows the associahedron

facets outlined in bold. Consider F (w) with corners µ2, µ8 and µ9. Both µ2 and µ8 are

on ρ⊥6 . When we reflect F (w) in ρ⊥6 , we get the facet with corners µ2, µ6 and µ8. This is

made up of two associahedron facets. The facet with corners µ2, µ4 and µ8 which is made

up of two permutahedron facets and the facet with corners µ4, µ6 and µ8 which consists

of one permutahedron facet.

Example 5.2.2. Again, we continue the example 2.3.6 where W = W (C4), c = [1342].

For convenience we recall the order of the reflections.

[1], (23), (13̄), (24)

[3], (14̄), (34̄), (12̄)

[4], (23̄), (24̄), (13)

[2], (14), (12), (34)
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1

2

3

4

5

6

7

8

9

Figure 5.2.3: Example of reflecting an associahedron facet

−[1],−(23),−(13̄),−(24)

Let w = (14) then w′ = cw−1 = [1342](14) = [12](34). We want to determine the vertex

set of the first facet of X(w′) and the last facet of X(w). Beginning with the first facet of

X(w′), we find the simple system {θ1, θ2, θ3} for w′ to be {ρ[1], ρ(23), ρ(34)}. We want to

find {r(ε1), . . . , r(ε3)} where ε1 = θ1, ε2 = r(θ1)θ2 and ε3 = r(θ1)r(θ2)θ3. Therefore

r(ε1) = [1], r(ε2) = (12̄), r(ε3) = (34).

We now find the vertex set of the last facet of X(w). We find that r(η1) = (14). We

will require the fact that r(c[η1]) = −(23).

Therefore F (w) is a positive cone on the vertices

µ(−(23)), µ(34), µ(12̄), µ[1].
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When we reflect F (w) in [ρ(14)]⊥ we get the positive cone on µ vectors

µ(34), µ(12̄), µ[1], µ(14).

This sequence increases between reflections [1] and (14) so the cone splits into a union

of positive cones. In order to do this, we must consider the set Γσ for the element σ

whose simple system is formed by [1] and (14). We find that the ordered set Γσ =

{ρ[1], ρ(14̄), ρ[4], ρ(14)}. Therefore the cone splits into three positive cones on the following

vectors

µ(34), µ(12̄), µ(14), µ[4] ∪ µ(34), µ(12̄), µ[4], µ(14̄) ∪ µ(34), µ(12̄), µ(14̄), µ[1]

We examine these sequences and find an increase in the first one between (12̄) and (14)

and in the second one between (12̄) and [4]. The increase in the first sequence occurs

between reflections (12̄) and (14). We know that these reflections form a simple system

for some element. The reflections that precede that element are (12̄), (24̄), (14) in that

order. The cone on the corresponding µ vectors can therefore be rewritten as the union of

two positive cones. Dealing with the increase in the second sequence, we find the simple

system for the element is {ρ(12̄), ρ(14)}. Since the elements commute, the cone does not

split, but we rewrite its vertices in order. Therefore we get the following union of cones

µ(34), µ(14), µ(24̄), µ[4] ∪ µ(34), µ(24̄), µ(12̄), µ[4]

∪ µ(34), µ[4], µ(12̄), µ(14̄) ∪ µ(34), µ(12̄), µ(14̄), µ[1]

The final increase can be seen in the second facet between (12̄) and [4]. Therefore, F (w)

can be written as the following union of positive cones:

µ(34), µ(14), µ(24̄), µ[4] ∪ µ(34), µ(24̄), µ[4], µ(12̄)

∪ µ(34), µ[4], µ(12̄), µ(14̄) ∪ µ(34), µ(12̄), µ(14̄), µ[1]

Therefore, F (w) consists of four associahedron facets. This can be seen in figure 5.2.4.
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µ(34)µ[1]

µ(14̄)

µ[4] µ(24̄)

µ(−(23))

µ(14)

Figure 5.2.4: Associahedron facets for W = W (A3)
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Example 5.2.3. Below is the table from example 5.1.1 above with the numbers |Iw|

included for each w.

Order Corners Element w Reflected Corners |Iw|

1 µ1, µ2, µ3 e 1

2 µ2, µ3, µ4 (12) µ1, µ2, µ3 1

3 µ1, µ3, µ5 (34) µ1, µ2, µ3 1

4 µ3, µ4, µ5 (12)(34) µ2, µ3, µ4 1

5 µ4, µ5, µ6 (14) µ3, µ4, µ5 1

6 µ1, µ5, µ7 (24) µ1, µ4, µ5 2

7 µ5, µ6, µ7 (124) µ4, µ5, µ6 1

8 µ2, µ4, µ8 (13) µ2, µ4, µ5 2

9 µ4, µ6, µ8 (143) µ4, µ5, µ6 1

10 µ6, µ7, µ8 (13)(24) µ5, µ6, µ7 1

11 µ1, µ2, µ9 (23) µ1, µ2, µ6 5

12 µ1, µ7, µ9 (243) µ1, µ6, µ7 3

13 µ2, µ8, µ9 (123) µ2, µ6, µ8 3

14 µ7, µ8, µ9 (1243) µ6, µ7, µ8 1

57



Chapter 6

Homology of Non-Crossing Partition Lattices

In this chapter we construct a geometric basis for the homology of the non-crossing

partition lattice for any finite, real reflection group W using the geometric model X(c)

from [12] which is described in detail in section 2.3. We construct the basis by defining

a homotopy equivalence between the proper part of the non-crossing partition lattice and

the (n− 2)-skeleton of X(c).

We relate this to the basis for the homology of the corresponding intersection lattice

introduced by Björner and Wachs in [6]. We exhibit an explicit embedding of the homology

of the non-crossing partition lattice in the homology of the intersection lattice, using the

general construction of a generic affine hyperplane.

6.1 Homotopy Equivalence

The top-dimensional simplices of X(c) are (n− 1)-dimensional and therefore we consider

the barycentric subdivision of the (n− 2)-skeleton of X(c), denoted by sd(Xn−2(c)). An

(n− 2)-simplex of X(c) consists of roots {τ1, . . . , τn−1} with the property that

`(r(τ1) . . . r(τn−1)c) = 1. Recall that we denote by P (Xn−2(c)) the poset of simplices of

Xn−2(c) ordered by inclusion. We begin with the observation that every simplex in X(c)

defines a non-crossing partition. Recall from Lemma 4.8 of [12] that if {τ1, . . . , τk} is the

ordered vertex set of a simplex σ of X(c) then

`(r(τ1) . . . r(τk)c) = n− k.

In particular, r(τk) . . . r(τ1) is a non-crossing partition of length k.

Definition 6.1.1. We define f : P (X(c)) → NCPc by

f(σ) = r(τk) . . . r(τ1)

where σ is the simplex of X(c) with ordered vertex set {τ1, . . . , τk}.
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Example 6.1.2. Let W = W (A4) and c = (12)(34)(23)(45) = (12453). The total order

on the set of roots induces the following order on reflections

(12), (34), (14), (35), (24), (15), (25), (13), (45), (23).

Let σ = {(12), (15), (13)} ∈ P (X(c)). Then f(σ) = (13)(15)(12) = (1253).

Lemma 6.1.3. The map f is a poset map.

Proof. Let σ = {τ1, . . . , τk} ∈ P (X(c)) and let θ ¹ σ. Therefore, θ = {τi1 , . . . , τil} for some

1 ≤ i1 < · · · < il ≤ k. Note that since the set of reflections is closed under conjugation

we have r(ρ)r(τ) = r(τ)r(ρ′), where ρ′ = r(τ)[ρ] for any roots ρ and τ . We can use this

equality to conjugate the reflections in f(θ) to the beginning of the expression for f(σ).

Therefore f(θ) = r(τil) . . . r(τi1) ¹ r(τk) . . . r(τ1) = f(σ).

Example 6.1.4. Continuing from example 6.1.2 above, let W = W (A4), c = (12)(34)(23)(45) =

(12453) and σ = {(12), (15), (13)}. If θ = {(12), (13)} then it satisfies θ ¹ σ. We find that

f(θ) = (13)(12) = (123).

f(σ) = (1253)

= (13)(15)(12)

= (13)(12)(25)

Therefore, f(θ) ¹ f(σ).

By definition of f , f−1(c) is the set of maximal elements in P (X(c)) and f−1(e) is empty.

We therefore can consider the induced map,

f̂ : P̂ (X(c)) → NCPc

where P̂ (X(c)) is the poset obtained from P (X(c)) by removing the maximal elements.

Note that P̂ (X(c)) is the poset of simplices of the (n− 2)-skeleton of X(c).
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Theorem 6.1.5. The map f̂ is a homotopy equivalence.

Proof. Since f is a poset map by lemma 6.1.3, f̂ : P̂ (X(c)) → NCPc is a poset map. We

intend to apply Quillen’s Fibre Lemma [18] to this map f̂ . Following notation from [18],

we define the subposet f̂¹w of P̂ (X(c)) for w ∈ NCPc by

f̂¹w = {σ ∈ P̂ (X(c)) : f̂(σ) ¹ w}.

We claim that f̂¹w = P (X(w)). Assuming the claim, the theorem follows from Proposi-

tion 1.6 of [18] if |P (X(w))| is contractible. It is shown in Corollary 7.7 of [12] that X(w)

is contractible for all w ∈ NCPc. Since X(w) and sd(X(w)) are homeomorphic (by [18]

for example) and |P (X(w))| = sd(X(w)), it follows that |P (X(w))| is contractible.

To prove the claim we first show that f̂¹w ⊆ P (X(w)). If σ ∈ f̂¹w, then e ≺ f̂(σ) ¹ w ≺

c by definition of f̂¹w. By applying lemma 6.1.3 to the reflections corresponding to vertices

of σ, it follows that σ ∈ P (X(w)). To show that P (X(w)) ⊆ f̂¹w, let σ ∈ P (X(w)). If σ

has ordered vertex set {τ1, . . . , τk}, then r(τi) ¹ w for each i by definition of X(w). Then

f̂(σ) = r(τk) . . . r(τ1) ¹ c. From equation 3.4 of [12], we know that since f̂(σ) ¹ c, w ¹ c

and each r(τi) ¹ w then f̂(σ) = r(τk) . . . r(τ1) ¹ w. Therefore, σ ∈ f̂¹w.

Example 6.1.6. Let W = W (A3), c = (12)(34)(24) = (1234). Then, the figure 6.1.1

illustrates that |P (Xn−2(w))| for w = (123) is homotopy equivalent to the subposet of

|(NCPc)| that consists of the elements in W that precede w.

Corollary 6.1.7. |NCPc| has the homotopy type of a wedge of spheres, one for each facet

of X(c).

Proof. The map f̂ induces a homotopy equivalence |f̂ | : |P̂ (X(c))| → |NCPc|. The simpli-

cial complex X(c) is a spherical complex that is convex and hence contractible (Corollary
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Figure 6.1.1: Homotopy Equivalence

7.7 of [12]). Let Y denote the subspace of X(c) obtained by removing a point from the

interior of each facet. Then |P̂ (X(c))| is a deformation retract of Y and therefore has the

homotopy type of a wedge of (n− 2) spheres. The number of such spheres is equal to the

number of facets of X(c).

Note 6.1.8. This is a more direct proof of the result in corollary 4.4 of [2] where it is

proved that for a crystallographic root system, the Möbius number of NCPc is equal to

(−1)n times the number of maximal simplices of |NCPc|, which can also be viewed as

positive clusters corresponding to the root system.

Note 6.1.9. After this work was completed, we became aware of [3] which proves a more

general version of theorem 6.1.5.

6.2 Homology Embedding

We now briefly review the results in [6] where geometric bases for the homology of inter-

section lattices are constructed. Let A be a central and essential hyperplane arrangement

in Rn. We refer to the connected components of Rn \ A as regions. Recall that the

intersection lattice LA of A denotes the set of intersections of subfamilies of A, partially

ordered by reverse inclusion.
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Homology generators are found by using a non-zero vector v such that the hyperplane

Hv, which is through v and normal to v, is generic. This means that dim(Hv ∩ X) =

dim(X)−1 for all X ∈ LA. In Theorem 4.2 of [6], it is proven that the collection of cycles

gR corresponding to regions R such that R ∩H is nonempty and bounded, form a basis

of H̃d−2(L̄A) where H is an affine hyperplane, generic with respect to A. Lemma 4.3 of

[6] states that for each region R, the affine slice R ∩Hv is nonempty and bounded if and

only if v · x > 0 for all x ∈ R. At this point, we refer the reader to figure 6.2.1 which

illustrates this basis for W = W (C3). The figure shows the stereographic projection of the

open hemisphere satisfying v · x > 0 and is combinatorially equivalent to the projection

onto Hv. The actual projection onto Hv is shown in figure 6.2.2. Each region in the figure

which is non-empty and bounded contributes a generator to the basis for the homology of

the intersection lattice.

The fact that the hyperplane Hv is generic is equivalent to the fact that 0 /∈ Hv and

H ∩ X 6= ∅ for all 1-dimensional subspaces X ∈ LA (Section 4 of [6]). It is therefore

sufficient to check that Hv is generic with respect to the set of rays. In section 6.2.1, we

describe for any W , the general construction of a vector v with Hv generic. In section

6.2.2, we use the construction of v to explicitly embed the homology of the non-crossing

partition lattice in the homology of the intersection lattice.

6.2.1 Construction of a generic vector for general finite reflection groups

Let {τ1, . . . , τn} be an arbitrary set of linearly independant roots. Since the number of

roots is finite and rays occur at the intersection of hyperplanes, it follows that the number

of unit rays is finite. Hence, the set {r · ρ | r a unit ray, ρ a root} is finite and

λ = min{|r · ρ| : r a unit ray, ρ a root and r · ρ 6= 0}

is a well defined, positive, real number. It will be convenient to use the auxiliary quantity

a = 1 + 1/λ.

Proposition 6.2.1. Let v = τ1 + aτ2 + a2τ3 + · · · + an−1τn and r be a unit length ray.
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Then |r · v| ≥ λ. In particular, Hv is generic.

Proof. Let r denote a unit length ray. Since {τ1, . . . , τn} is a linearly independant set,

r · τk 6= 0 for some τk. Let k be the index with 1 ≤ k ≤ n satisfying

r · τk 6= 0, and r · τk+1 = 0, . . . , r · τn = 0.

By replacing r by −r if necessary, we can assume that r · τk > 0 and hence r · τk ≥ λ by

the definition of λ. We now compute r · v.

r · v = r · (τ1 + aτ2 + a2τ3 + · · ·+ an−1τn)

= r · τ1 + a(r · τ2) + a2(r · τ3) + · · ·+ an−1(r · τn)

= r · τ1 + a(r · τ2) + a2(r · τ3) + · · ·+ ak−1(r · τk) + 0

≥ −1 + a(−1) + a2(−1) + · · ·+ ak−2(−1) + ak−1(λ)

= −1(1 + a + a2 + · · ·+ ak−2) + ak−1(λ)

= λ.

The last equality follows from the formula for the sum of a geometric series and the fact

that λ = 1/(a− 1).

6.2.2 Specialising the generic hyperplane

In order to relate the homology basis for non-crossing partition lattices to the homology

basis for the corresponding intersection lattice, we apply the operator µ = 2(I− c)−1 from

[12] to X(c) to obtain the complex which we call µ(X(c)) and which is the positive part of

the complex µ(AX(c)) studied in [9] and reviewed in section 2.3. Recall that the complex

µ(X(c)) has vertices µ(ρ1), . . . , µ(ρnh/2) and a simplex on µ(ρi1), . . . , µ(ρik) if

ρ1 ≤ ρi1 < · · · < ρik ≤ ρnh/2 and `(r(ρi1) . . . r(ρik)c) = n− k.

The walls of the facets of µ(AX(c)) are hyperplanes. Since regions considered in [6] are

bounded by reflection hyperplanes, this provides the connection between the two and ex-

63



Chapter 6, Section 2 Homology of Non-Crossing Partition Lattices

plains why we use µ(X(c)) instead of X(c) for comparing the two homology bases.

We now apply Proposition 6.2.1 to the case where τ1, . . . , τn are the last n positive

roots. Thus we set τi = ρnh/2−n+i. Since {τ1, . . . , τn} is a set of consecutive roots and

r(τn) . . . r(τ1) = c, the set {τ1, . . . , τn} is linearly independent by note 3.1 of [12].

Proposition 6.2.2. For τi = ρnh/2−n+i and

v = τ1 + aτ2 + a2τ3 + · · ·+ an−1τn,

µ(ρi) · v > 0 for all 1 ≤ i ≤ nh/2.

Proof. Recall from proposition 4.6 of [12] and section 2.3 that the following properties

hold.

µ(ρi) · ρj ≥ 0 for 1 ≤ i ≤ j ≤ nh/2.

µ(ρi+t) · ρi = 0 for 1 ≤ t ≤ n− 1 and for all i.

Since τ1, . . . , τn are the last n positive roots, it follows that µ(ρi) · τj ≥ 0. Furthermore

for each ρi, there is at least one τj with µ(ρi)·τj > 0 by linear independence of {τ1, . . . , τn}.

Since all the coefficients of v are strictly positive, µ(ρi) · v > 0.

Proposition 6.2.3. The projection of µ(X(c)) onto the affine hyperplane Hv where v is

as in proposition 6.2.2 induces an embedding of the homology of the non-crossing partition

lattice into the homology of the corresponding intersection lattice.

Proof. Recall from section 6.1 that homology generators for the non-crossing partition

lattice are identified with the boundaries of facets of X(c) and hence with boundaries of

facets of µ(X(c)). On the other hand, we can use the generic vector v to identify homology

generators of the intersection lattice with cycles gR corresponding to regions R such that

R ∩ H is nonempty and bounded. From [9], the boundary of each facet of µ(X(c)) is a

64



Chapter 6, Section 2 Homology of Non-Crossing Partition Lattices

union of pieces of reflection hyperplanes. It follows that vertices µ(ρi) for 1 ≤ i ≤ nh/2

are rays and each facet of µ(X(c)) projects to a union of affine slices of the form R ∩H.

Furthermore, the projection of distinct µ(X(c)) facets have disjoint interiors.

We denote the projection map by p : µ(X(c)) → H and by p∗ the induced map from the

homology of the non-crossing partition lattice to the homology of the intersection lattice.

Then p∗ takes the homology generator g′F corresponding to a facet F of µ(X(c)) to the

sum of the intersection lattice homology generators gR corresponding to the affine slices

R ∩H contained in p(F ). That is p∗(g′F ) = ΣbRgR where bR = 1 if R ∩H is contained in

p(F ) and 0 otherwise.

To establish injectivity of p∗, we observe that p∗(ΣaF g′F ) = ΣcRgR where cR = 0 if R

is not contained in p(µ(X(c))) and cR = aF if F is the unique facet satisfying R ⊆ p(F ).

Thus ΣaF g′F is an element of Ker(p∗) if and only if aF = 0 for all F .

Example 6.2.4. For W = W (C3) and for appropriate choices of fundamental domain

and simple system, the relevant regions are shown in figure 6.2.1 where i represents µ(ρi).

The basis for homology of the intersection lattice is formed by cycles corresponding to

regions in figure 6.2.1 which are non-empty and bounded. For this example, there are 15

such regions.

Homology generators for the non-crossing partition lattice are identified with the bound-

aries of facets of µ(X(c)), of which there are 10 in this example. These facets are outlined

in bold. Note that the facet with corners µ(ρ2), µ(ρ4), µ(ρ8) is a union of two facets of the
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Figure 6.2.1: Homology

Coxeter complex and therefore the embedding maps the homology element associated to

this facet to the sum of the two corresponding generators in the homology of the intersec-

tion lattice.

The corresponding affine projection of µ(X(c)) is shown in bold in figure 6.2.2.
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Figure 6.2.2: Homology
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Chapter 7

Conclusion

We conclude the thesis by considering some future directions of our results. Firstly,

we would like to further investigate the algorithm described in chapter 5. Specifically,

there is the question of which intervals arise in this manner. Since the computation of in-

terval sizes in finite reflection groups is difficult in general, this seems worthwhile exploring.

We would also like to consider the link between the minimal elements of our interval and

Coxeter sortable elements and show that they are equivalent. We expect that the minimal

elements can be written as products of the elements in the inversion set in increasing

order. Reading’s characterisation is in terms of reduced decompositions in terms of simple

reflections and the connection between the two is unclear.

Finally, figure 6.2.2 shows a particular non-crossing partition lattice in bold inside a

geometric lattice. We would like to characterise which sublattices of geometric lattices

arise as non-crossing partition lattices.
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