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Abstract

Crash hedging strategies are derived as solutions of non–linear differ-
ential equations which itself are consequences of an equilibrium strategy
which make the investor indifferent to uncertain (down) jumps. This is
done in the situation where the investor has a logarithmic utility and where
the market coefficients after a possible crash may change. It is scrutinized
when and in which sense the crash hedging strategy is optimal. The sit-
uation of an investor with incomplete information is considered as well.
Finally, introducing the crash horizon, an implied volatility is derived.

Keywords: Optimal portfolios, crash modelling, worst–case scenario, chang-
ing market coefficients, implied volatility, crash horizon.

1 Introduction

Nowadays it is widely acknowledged that price processes of stocks do have jumps
which have to be modelled in some way. In most cases this is done by modelling
the price processes of stocks either by some kind of Lévy processes or some
processes which are heavy–tailed (see e.g. Aase [1], Merton [11], Eberlein and
Keller [4], Embrechts, Klüppelberg and Mikosch [5], or Cont and Tankov [3]
just as representatives for various sources). Using another approach, which has
been developed in Korn and Wilmott [9], the view will be taken of a semi–
specialized stock price process in this paper. More precisely, the distinction will
be made between so–called “normal times” where the stock prices are assumed
to follow a geometric Brownian motion and “crash times” where the stock price
falls suddenly.

This approach puts the emphasis on

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11308381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

• avoiding large losses in any possible situation by maximizing the worst–case
bound for the utility of terminal wealth.

• the investment horizon or the time to maturity, which is very important in
crash modelling. However, this variable is neglected in traditional portfolio
optimization under the threat of a crash.

• the possible number of crashes within the investment horizon instead of the
crash intensity in the traditional crash modelling. Moreover, only a range
for the possible crash size is needed and not a specific crash size.

This approach is already looked at in a paper by Korn and Wilmott [9] where
the authors determined optimal portfolios under the threat of a crash in the
case of logarithmic utility for final wealth. There, the main aim is to show that
suitable investment in stocks can still be more profitable than playing safe and
investing everything in the riskless bond if a crash of the stock price can occur.
The corresponding optimal strategy is found via the solution of a balance problem
between obtaining good worst–case bounds in case of a crash on the one hand
and also a reasonable performance on the other hand, if no crash occurs at all.

The model has been extended to general utility functions in a recent paper by
Korn and Menkens [8]. This paper also introduced the crash hedging strategy and
discussed the crash hedging strategy in the case of changing market coefficients
after a possible crash and when the investor has a logarithmic utility. However,
only the cases are considered where the expected return on the risky asset is
larger then the return on the non–risky asset.

Using the approach of Korn and Wilmott [9] the aim of this paper is to
generalize the model in various directions and to scrutinize some of its properties.
The most important aims are

• determining the crash hedging strategy (see Definition 3.1) for short mar-
kets (that is in the case where the expected return on the risky asset is
smaller then the return on the non–risky asset).

• calculating the optimal worst–case scenario portfolio strategy which devi-
ates from the crash hedging strategy in two cases substantially.

The paper is organized as follows: Section 2 describes the model only in the
case where the investor has a logarithmic utility. The main result is given in
section 3 while section 4 gives some examples for this result. Section 5 analyses
the situation for an investor with limited information and section 6 introduces the
crash horizon and derives an implied volatility. The last section gives a conclusion
and an outlook.
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2 The Set up

As in Korn and Wilmott [9], let us start with the most basic setting and consider
a security market consisting of a riskless bond and a single risky security with
prices given by

dP0,0(t) = P0,0(t) r0 dt , P0,0(0) = 1 , (1)

dP0,1(t) = P0,1(t) [µ0 dt + σ0 dW (t)] , P0,1(0) = p1 , (2)

with constant market coefficients µ0, r0 and σ0 6= 0 in “normal times” and where
W is a Brownian motion on a complete probability space (Ω,F , P ). Assume
further that at most one crash can happen within the time horizon T . At the
“crash time” the stock price suddenly falls. More specific, suppose that the sud-
den relative fall of the stock price lies in the interval [k∗, k

∗], where the constants
0 < k∗ < k∗ < 1 (“the lowest and the highest possible crash size, respectively”)
are given. No probabilistic assumptions are made about the distribution of either
the crash time or the crash height. For motivation of this model consider Korn
and Wilmott [9].

Assuming that the investor is able to realize that the crash has happened let
us model its occurrence via a jump process N(t) which is zero before the jump
time and equals one from the jump time onwards. Let us require that N lives
also on (Ω,F , P ). To model the fact that the investor is able to realize that a
jump of the stock price has happened it is supposed that the investor’s decisions
are adapted to the P -augmentation {Ft} of the filtration generated by both the
Brownian motion W (t) and the jump process N(t).

Let us further suppose that the market conditions change after a possible
crash. Let therefore k (with k ∈ [k∗, k

∗]) be the arbitrary size of a crash at time
τ . The price of the bond and the risky asset is assumed to be

dP1,0(t) = P1,0(t) r1 dt , P1,0(τ) = P0,0(τ) , (3)

dP1,1(t) = P1,1(t) [µ1 dt + σ1 dW (t)] , P1,1(τ) = (1 − k) P0,1(τ) , (4)

with constant market coefficients r1, µ1 and σ1 6= 0 after a possible crash of size
k at time τ .

For simplicity, the initial market will also be called market 0, while the market
after a crash will be called market 1.

It is important to keep in mind that the investor does not know that a crash
will occur, the investor thinks only that it is possible. An investor who knows that
a crash will happen within the time horizon [0, T ] has additional information and
is therefore an insider. The set of possible crash heights of the insider is indeed
KI := [k∗, k

∗], while the set of possible crash heights of the investor who thinks
that a crash is possible is K := {0} ∪ [k∗, k

∗]. In this paper only the portfolio
problem of the investor, who thinks a crash is possible, is considered.
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Definition 2.1
1. For i = 0, 1, let Ai(s, x) be the set of admissible portfolio processes

π(t) corresponding to an initial capital of x > 0 at time s, i.e. {Ft, s ≤ t ≤
T}–progressively measurable processes such that

(i) the wealth equation in market i in the usual crash–free setting

dX
π,s,x
i (t) = X

π,s,x
i (t) [(ri + π(t) [µi − ri]) dt + π(t)σi dWi(t)] , (5)

X
π,s,x
i (s) = x (6)

has a unique non–negative solution X
π,s,x
i (t) and satisfies

T∫

s

[π(t)Xπ,s,x
i (t)]2 dt < ∞ P–a.s. , (7)

i .e. X
π,s,x

i (t) is the wealth process in market i in the crash–free
world, which uses the portfolio strategy π and starts at time s with
initial wealth x.

Furthermore, Xπ
i (t) := X

π,0,x
i (t) will be used as an abbreviation.

(ii) π(t) has left–continuous paths with right limits.

2. the corresponding wealth process Xπ(t) in the crash model, defined
as

Xπ(t) =

{
Xπ

0 (t) for s ≤ t < τ

[1 − π(τ)k] X
π,τ,Xπ

0
(τ)

1 (t) for t ≥ τ ≥ s ,
(8)

given the occurrence of a jump of height k at time τ , is strictly positive.
Thereby, it is assumed that the crash time τ is a stopping time, which is
supposed to be Ft–measurable. The set of admissible portfolio strategies is
obviously given by A0(s, x) as long as no crash happens. After a crash at
time τ the set is given by A1(τ, x). Hence,

A(s, x) := A0(s, x)

∣
∣
∣
∣
[0,τ ]

∪ A1(τ, x).

3. A(x) is used as an abbreviation for A(0, x).

With these definitions it is possible to state the worst–case problem. Note
that due to the lack of statistical assumptions on the distribution of both the
crash height and the crash time, the problem cannot be dealt with by simply
maximizing the expected utility of final wealth. However, the crash consequence
has to be taken into account in some way. The approach of this paper is to
maximize the worst case possible.
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Definition 2.2
1. Let the utility function U be given by U(x) = ln(x). Then the problem to

solve

sup
π(·)∈A(x)

inf
0≤τ≤T,

k∈K

E [ln (Xπ(T ))] , (9)

where the final wealth Xπ(T ) in the case of a crash of size k at time τ is
given by

Xπ(T ) = [1 − π(τ)k] X
π,τ,Xπ

0
(τ)

1 (T ) , (10)

with X
π,τ,Xπ

0
(τ)

1 (t) as above, is called the worst–case scenario portfolio
problem.

2. The value function to the above problem is defined via

νc(t, x) = sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E
[
ln
(
Xπ,t,x(T )

)]
. (11)

3. The value function in the crash–free setting of the market model Xi

will be denoted

νi(t, x) = sup
π(·)∈Ai(t,x)

E
[
ln
(
X

π,t,x
i (T )

)]
.

Clearly, the above defined optimization problems are stochastic control prob-
lems. A classical approach to solve a stochastic control problem is to derive the
corresponding so–called Hamilton–Jacobi–Bellman equation, often abbreviated as
HJB–equation. For an introduction to this method see e.g. Korn [6].

In order to get shorter and more transparent formulae, the following defini-
tions are useful.

Definition 2.3
For i = 0, 1 let us name

1. the optimal portfolio strategy in market i, assuming that no crash
will happen, by

π∗

i :=
µi − ri

σ2
i

.

2. Moreover,

Ψi := ri +
1

2

(
µi − ri

σi

)2

= ri +
σ2

i

2
(π∗

i )
2

will be called the utility growth potential or earning potential of
market i.
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The well–known value function of the crash–free world, given the market
coefficients of market i, calculates to

νi(t, x) = sup
π(·)∈Ai(t,x)

E
[
ln
(
X

π,t,x
i (T )

)]

= ln (x) +

(

ri +
1

2

(
µi − ri

σ2
i

)2
)

(T − t)

= ln (x) + Ψi (T − t) .

In particular, ν1 is the value–function of the market 1. Hence, ν1 is the value–
function for a crash hedging investor after a crash has happened and no further
crash is expected. Moreover, define for an arbitrary admissible portfolio strategy
π(t)

νπ (t, x) := E
[
ln
(
X

π,t,x
0 (T )

)]

= ln (x) + E





T∫

t

[

π(s) (µ0 − r0) + r0 −
1

2
π2(s)σ2

0

]

ds





= ln (x) −
σ2

0

2
E





T∫

t

[

(π(s) − π∗

0)
2 −

2

σ2
0

Ψ0

]

ds





= ln (x) + E





T∫

t

[

Ψ0 −
σ2

0

2
(π(s) − π∗

0)
2

]

ds



 .

This is the utility one gets using the portfolio strategy π in the initial market.
Being in the initial market means that no crash has happened so far. If the
portfolio strategy is deterministic, the expectation is redundant.

3 The Main Result

In order to get the optimal portfolio strategy for an investor, who wants to
maximize her worst–case scenario portfolio problem, it is easier to calculate the
portfolio strategy π̂ first, which makes the investor crash indifferent. Obviously,
the investor is indifferent towards a crash, if her maximized expected worst–case
final utility before a possible crash is equal to her maximized expected final utility
after a crash of the worst possible case. That is, the investor’s expected utility
is not effected by a crash of the worst possible size. This justifies the following
definition, where the convention ν̂(t, x) := νπ̂(t, x) is used.
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Definition 3.1
i) A portfolio strategy π̂ determined via the equation

ν̂ (t, x) =

{
ν1 (t, x (1 − π̂(t)k∗)) for π̂(t) ≥ 0
ν1 (t, x (1 − π̂(t)k∗)) for π̂(t) < 0

}

for all t ∈ [0, T ]

will be called a crash hedging strategy.

ii) A portfolio strategy π̃ is a partial crash hedging strategy, if there exists
an S ∈ (0, T ) such that π̃ is a crash hedging strategy on [0, S] and is a
solution of the worst–case scenario portfolio problem on [S, T ].

Rewriting the determining equation for the non–negative crash hedging strat-
egy π̂ gives

ν̂ (t, x) = ν1 (t, x (1 − π̂(t)k∗))

⇐⇒ ln (1 − π̂(t)k∗) =

T∫

t

[

Ψ0 − Ψ1 −
σ2

0

2
(π̂(s) − π∗

0)
2

]

ds. (12)

Differentiating with respect to t yields

π̂′(t) =

(

π̂(t) −
1

k∗

)[
σ2

0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

.

Clearly, π̂(T ) = 0, since the right side of equation (12) is zero for t = T and the
left side is only zero for t = T , if π̂(T ) = 0. Using π̂(T ) = 0, this gives

π̂′(T ) = −
1

k∗
(Ψ1 − r0)







< 0 for Ψ1 > r0

= 0 for Ψ1 = r0

> 0 for Ψ1 < r0






.

A close look reveals that π̂′(T ) < 0 implies π̂′(t) ≤ 0 for t ∈ [0, T ). Hence,
π̂(t) > 0 for t ∈ [0, T ).

Moreover, it is straightforward to verify that π̂′ ≡ 0, if π̂′(T ) = 0. Thus, this
case yields π̂ ≡ 0. The economic meaning of this being the impossibility to hedge
a risky asset if the utility growth potential after a possible crash is only of the
size of the initial riskless rate of return.

Finally, the case Ψ1 < r0 gives

νπ(t, x)

∣
∣
∣
∣
∣
π≡0

= ln(x) + r0(T − t)

> ln(x) + Ψ1(T − t)

= ν1(t, x) for t ∈ [0, T ) and x > 0.
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Thus, the expected worst–case is given in this situation by an immediate crash,
if the portfolio strategy π ≡ 0 is used. In order to boost the expected worst–case
utility, the expected utility after a crash has to be increased. This can only be
achieved by going short, i.e. π(t) < 0 for t ∈ [0, T ). However, if π̂ is negative,
the corresponding differential equation is

π̂′(t) =

(

π̂(t) −
1

k∗

)[
σ2

0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

,

which can be confirmed easily. Note that this differential equation has in T

the same behavior as the differential equation for non–negative portfolio strate-
gies. This guarantees that the crash hedging strategy is well–defined. Moreover,
π̂′(T ) > 0 implies π̂′(t) ≥ 0 for t ∈ [0, T ). Thus, π̂(t) < 0 for t ∈ [0, T ).

This leads us to the main result of this paper where the first part of the
theorem (that is the case Ψ1 ≥ r0) is already presented in Korn and Menkens [8].
For the sake of completeness it is stated here again.

Theorem 3.2
1. If Ψ1 ≥ r0, then there exists a unique crash hedging strategy π̂, which is

given by the solution of the differential equation

π̂′(t) =

(

π̂(t) −
1

k∗

)[
σ2

0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (13)

and π̂(T ) = 0. (14)

Moreover, this crash hedging strategy is bounded by 0 ≤ π̂ < 1
k∗ . Addition-

ally, if Ψ1 ≤ Ψ0 and π∗

0 ≥ 0, the crash hedging strategy has another upper

bound with π̂ < π∗

0 −
√

2
σ2

0

(Ψ0 − Ψ1).

2. If Ψ1 < r0, then there exists a unique crash hedging strategy π̂, which is
given by the solution of the differential equation

π̂′(t) =

(

π̂(t) −
1

k∗

)[
σ2

0

2
(π̂(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (15)

and π̂(T ) = 0. (16)

Furthermore, this crash hedging strategy is bounded by

π∗

0 −

√

2

σ2
0

(Ψ0 − Ψ1) < π̂(t) < 0 for t ∈ [0, T ).

3. If Ψ1 < Ψ0 and π∗

0 < 0, there exists a partial crash hedging strategy π̃ (which
is different from π̂), if

S := T −
ln (1 − π∗

0k∗)

Ψ0 − Ψ1

> 0. (17)
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With this, π̃ is on [0, S] given by the unique solution of the differential
equation

π̃′(t) =

(

π̃(t) −
1

k∗

)[
σ2

0

2
(π̃(t) − π∗

0)
2 + Ψ1 − Ψ0

]

, (18)

and π̃(S) = π∗

0. (19)

On [S, T ] set π̃(t) := π∗

0. This partial crash hedging strategy is bounded by

π∗

0 −

√

2

σ2
0

(Ψ0 − Ψ1) < π̃ ≤ π∗

0 < 0.

The optimal portfolio strategy for an investor, who wants to maximize her
worst–case scenario portfolio problem, is given by

π̄(t) := min {π̂(t), π̃(t), π∗

0} for all t ∈ [0, T ], (20)

where π̃(t) is only taken into account if it exists. π̄ will be named the optimal
crash hedging strategy.

Remark 3.3
1. It is straightforward to verify that π̂, π̃ and π̄ are admissible portfolio

strategies, since they are bounded as well as continuous.

2. Observe that the optimal crash hedging strategy is independent of the crash
time τ .

3. Note that the worst–case utility bound of the crash hedging strategy is given
by ν̂(t, x), or by ν1 (t, x (1 − π̂(t)k∗)), which is according to the construction
of π̂ the same. Hence, it is sufficient to show that either νπ(t, x) < ν̂(t, x)
or ν1 (t, x (1 − π(t)k∗)) < ν1 (t, x (1 − π̂(t)k∗)) in order to verify that the
portfolio strategy π has a lower expected worst–case final utility than π̂.

4. Compare the differential equation (13) with the differential equation Korn
and Wilmott [9] got in Corollary 2.2. Rewriting the above differential equa-
tion to

π̂′(t) =
1

k∗
(1 − π̂(t)k∗)

[

Ψ0 − Ψ1 −
σ2

0

2
(π̂(t) − π∗

0)
2

]

,

it is easy to see that it is up to the correction term Ψ1 − Ψ0 the same as
the differential equation in Korn and Wilmott [9].

5. Notice that the investor is only indifferent between no crash and a crash of
the worst case possible. In general, any other crash of size k with k∗ < k <

k∗ will be favorable for the investor, if the investor uses the crash hedging
strategy π̂.
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6. Observe that the investor will P–a.s. not go bankrupt, if he uses the port-
folio strategy π̂. Define the pure bond strategy by πB (that is πB ≡ 0) then
one has

νπB
(t, x) < ν̂(t, x) = ν1 (t, x (1 − π̂(t)k∗)) < ν1(t, x) if 0 < π̂(t) <

1

k∗

ν̂(t, x) = ν1 (t, x (1 − π̂(t)k∗)) > ν1(t, x) if π̂(t) < 0.

Since the last case is the classical utility function in the crash–free model
where the investor does not go bankrupt, the investor cannot go bankrupt in
the other cases as well. Keep in mind that the investor cannot go bankrupt
if he pursuit the pure bond strategy.

The following lemmata will prepare the proof of Theorem 3.2 and will reveal
some important properties of the crash hedging strategy π̂.

Lemma 3.4
Any admissible portfolio strategy π which satisfies

E [π(t)] < π̂(t) ≤ π∗

0 for all t ∈ [0, T ]

has a lower expected worst–case utility bound than π̂, the crash hedging strategy.

Proof: Using the Theorem of Fubini and the the fact that

E
[
X2
]

= (E [X])2 + Var(X) ≥ (E [X])2

for any square integrable random variable X, the case of no crash occurring gives

νπ(t, x) = ln (x) + E





T∫

t

[

Ψ0 −
σ2

0

2
(π(s) − π∗

0)
2

]

ds





≤ ln (x) +

T∫

t

[

Ψ0 −
σ2

0

2
(E [π(s)] − π∗

0)
2

]

ds

< ln (x) +

T∫

t

[

Ψ0 −
σ2

0

2
(π̂(s) − π∗

0)
2

]

ds

= ν̂ (t, x) ,

which shows that π(t) has a lower expected worst–case utility bound than π̂. �

Lemma 3.5
Of all admissible portfolio strategies π with

E [π(t)] < π̂(t) for all t ∈ I := {t : π̂(t) > π∗

0} (21)

π̄ yields the highest worst–case utility bound (where π̄ is defined in (20) in The-
orem 3.2).
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Remark 3.6
Observe that I is a disjoint union of closed intervals, since π̂ is continuously
differentiable. Actually, later on the following can be verified. The case I 6= ∅
can only happen if Ψ1 − Ψ0 > 0. However, in this case π̂ is strictly decreasing,
thus I is an interval of the form I = [0, t0].

Proof: For any admissible portfolio strategy π with

E [π(t)] < 2π∗

0 − π̂(t) for all t ∈ I

Lemma 3.4 applies basically analog. Hence, let us restrict to portfolio strategies
π, which satisfy

2π∗

0 − π̂(t) < E [π(t)] < π̂(t) for some t ∈ I.

Without loss of generality, let us assume that

2π∗

0 − π̂(t) < E [π(t)] < π̂(t) for all t ∈ I.

For simplicity, let us suppose that I is of the form I = [t0, t1]. Choosing t ∈ I,
the above inequality implies

ln (x) + E





t1∫

t

[

Ψ0 −
σ2

0

2
(π(s) − π∗

0)
2

]

ds





= ln (x) +

t1∫

t

[

Ψ0 −
σ2

0

2
(E [π(s)] − π∗

0)
2 −

σ2
0

2
Var (π(s))

]

ds

> ln (x) +

t1∫

t

[

Ψ0 −
σ2

0

2
(π̂(s) − π∗

0)
2 −

σ2
0

2
Var (π(s))

]

ds. (22)

The last inequality shows that any portfolio strategy π(t) satisfying (21) and with
a variance small enough has a higher expected final utility than the crash hedging
strategy π̂(t), if no crash occurs and if t ∈ I. It is straightforward to verify that
of these strategies only π∗

0 maximizes the expected final utility in the interval I,
if no crash happens.

Lemma 3.4 justifies that – without loss of generality – it is possible to set
π(t) = π̂(t) for t 6∈ I. Using this together with the above inequality (22) gives

νπ(t, x) > ν̂ (t, x) −
σ2

0

2

t1∫

t

Var (π(s)) ds,

which shows that any portfolio strategy π satisfying (21) and with a variance
small enough has a higher expected final utility than the crash hedging strategy

11



3 THE MAIN RESULT

π̂, if no crash occurs. It is straightforward to verify that of these strategies only
π̄ maximizes the expected final utility, if no crash happens. In order to show that
this maximizes the expected worst–case utility bound, one has to consider the
following two cases.

i) π∗

0 ≥ 0:
It suffices to verify that for all t ∈ I

νπ̄(t, x) ≤ ν1(t, x(1 − π∗

0k
∗))

⇐⇒

T∫

t

[

Ψ0 − Ψ1 −
σ2

2
(π̄(s) − π∗

0)
2

]

ds ≤ ln (1 − π∗

0k
∗) .

Since π̂ is decreasing and ending at π̂(T ) = 0, there exists an S ∈ [0, T )
such that π̄(s) = π̂(s) for s ∈ [S, T ]. The important case which has to be
considered is S ∈ (t, T ). Hence, the above reduces to

(Ψ0 − Ψ1) (S − t) +

T∫

S

[

Ψ0 − Ψ1 −
σ2

2
(π̂(s) − π∗

0)
2

]

ds

︸ ︷︷ ︸

=ln(1−π∗
0
k∗)

≤ ln (1 − π∗

0k
∗)

⇐⇒ Ψ1 ≥ Ψ0.

This last inequality can be verified easily, since it is only possible that π̂ ≥ π∗

0,
if Ψ1 ≥ Ψ0.

ii) π∗

0 < 0:
If Ψ1 ≥ Ψ0 than it is straightforward to verify that

νπ(t, x) ≤ ν1(t, x(1 − π(t)k∗))

for any admissible portfolio strategy π with π ≤ 0. Thus, let us consider the
case Ψ1 < Ψ0. It remains to confirm that

νπ̄(t, x) ≤ ν1(t, x(1 − π̄(t)k∗))

⇐⇒

T∫

t

[

Ψ0 − Ψ1 −
σ2

2
(π̄(s) − π∗

0)
2

]

ds ≤ ln (1 − π̄(t)k∗) .

Assume that π̄ ≡ π∗

0. This leads to

(Ψ0 − Ψ1) (T − t) ≤ ln (1 − π̄(t)k∗)

⇐⇒ t ≥ T −
ln (1 − π̄(t)k∗)

Ψ0 − Ψ1

.

12



3 THE MAIN RESULT

The right side of the last inequality has been defined in (17) to be S.
This inequality shows that π∗

0 is an optimal worst–case portfolio strategy
on [max (S, 0) , T ]. Obviously, at time S equality holds. Suppose that S > 0,
then

νπ∗
0
(t, x) > ν1(t, x(1 − π∗

0k∗)) for t ∈ [0, S).

In this situation the worst case is given by an immediate crash. However, it
is clearly possible to improve this worst–case utility by reducing π∗

0. Equality
is by construction reached for π̃. Since νπ is strictly increasing for π < π∗

0

and ν1(t, x(1−πk∗)) is strictly decreasing for π, it is straightforward to verify
that π̃ is optimal in this situation.

This concludes the assertion. �

Lemma 3.7
Any admissible portfolio strategy π which satisfies

E [π(t)] > π̄(t) for some t ∈ [0, T ] (23)

has a lower worst–case utility bound than the optimal crash hedging strategy π̄.

Proof: First, let us suppose that E [π(0)] ≤ π̄(0) as well as E [π(T )] ≤ π̄(T ).
Hence, there exists t⋆ ∈ [0, T ) and ε > 0 such that

E [π(t)] ≤ π̄(t) for t ∈ [0, t⋆] and E [π(t)] > π̄(t) for t ∈ (t⋆, ε].

Such a construction is always possible due to assumption (1ii) in Definition 2.1.
Without loss of generality, let us suppose that π(t) = π̄(t) for t ∈ [0, t⋆].

It suffices to show that

ν1 (t, x (1 − π(t)k∗)) < ν1 (t, x (1 − π̄(t)k∗)) for t ∈ (t⋆, ε].

However, this can be seen straightforward

ν1 (t, x (1 − π(t)k∗)) = ln(x) + E [ln (1 − π(t)k∗)] + Ψ1(T − t)

≤ ln(x) + ln (1 − E [π(t)] k∗) + Ψ1(T − t)

< ln(x) + ln (1 − π̄(t)k∗) + Ψ1(T − t)

= ν1 (t, x (1 − π̄(t)k∗)) . (24)

Hence, an immediate crash of the worst possible size at time t gives a lower final
expected utility for the portfolio strategy π than for the crash hedging strategy
π̂.

It is easy to verify that inequality (24) holds for t = 0 or t = T as well, if
E [π(0)] > π̄(0) or E [π(T )] > π̄(T ), respectively.

13



3 THE MAIN RESULT

Since ν1 (t, x (1 − π̄(t)k∗)) is already the worst–case utility bound for π̄, this
proves the assertion. �

Proof of Theorem 3.2: The differential equations have been derived above.
Furthermore, it is straightforward to verify that any crash hedging strategy has
to satisfy π̂(T ) = 0.

ν̂ (T, x) = ν1 (T, x (1 − π̂(T )k∗))

⇐⇒ ln (x) = ln (x) + ln (1 − π̂(T )k∗) .

Since k∗ 6= 0, this is only possible for π̂(T ) = 0.

Let us prove that π̂ is bounded. The upper bound 1
k∗ of π̂ can be verified

in equation (12) due to the fact that this equation has a pole for π̂(t) = 1
k∗ for

an arbitrary t ∈ [0, T ]. The economic meaning of this being that the investor
would be bankrupt in case of π̂(t) ≥ 1

k∗ and a crash of size k∗ at time t. The

bound π∗

0 −
√

2
σ2

0

(Ψ0 − Ψ1) is due to the fact that it is a zero of the right side

of (13) or (15), if Ψ1 ≤ Ψ0. This bound will never be reached by the continuous
crash hedging strategy, since this would imply that the continuous crash hedging
strategy would eventually become constant, which can not be the case. The other
bounds have been shown above.

In order to prove the existence and uniqueness of a solution for the differential
equation let us denote

F (t, y) :=

(

y −
1

k∗

)[
σ2

0

2
(y − π∗

0)
2 + Ψ1 − Ψ0

]

.

Clearly, F is continuously partial differentiable and therefore especially locally
Lipschitz–continuous with respect to y. This gives then already the uniqueness
of the solution for the differential equation (13) with terminal value (14).

Moreover, since F is continuous and locally Lipschitz–continuous on [0, T ]×R

the theorem of Picard–Lindelöf gives the existence of a solution for the differen-
tial equation (13) with terminal value (14) on a suitable neighbourhood of any
arbitrary point y ∈ R. This gives the existence of a solution for the differential
equation on any compact set [a, b] ⊂ R with a < b. Choosing a and b sufficiently
large, this proves the existence of a solution for the differential equation (13),
since π̂ is bounded.

Replacing k∗ by k∗ shows that the same statement holds for the differential
equation (15) with terminal value (16).

Applying Lemma 3.4, Lemma 3.5 and Lemma 3.7 gives the optimality of π̄ in
both cases. All in all, this concludes the Theorem. �
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4 EXAMPLES

4 Examples and Further Remarks

In order to compare the results in this paper with the results of Korn and Wilmott
[9] let us name the optimal portfolio strategy of the market i given that the
market conditions do not change after a crash φ̂i. This is the situation of Korn
and Wilmott [9].

The cases

1. Ψ1 = Ψ0 and π∗

0
≥ 0

2. Ψ1 > Ψ0 and π∗

0
≥ 0

3. r0 ≤ Ψ1 ≤ Ψ0 and π∗

0
≥ 0

will not be scrutinized in the following since they have already been discussed in
Korn and Menkens [8]. Thus, only the following remaining cases will be consid-
ered.

4. Ψ1 < r0 and π∗

0
≥ 0

The crash hedging strategy which is also an optimal crash hedging strategy
is negative. This means that the investor goes short of the risky asset in this
situation (see Figure 1). This is due to the fact that the earning potential
after a crash Ψ1 is even less as the risk free interest rate today r0. This
implies that the investor can increase his expected worst–case utility by
going short and thus takes substantial losses into account as long as no
crash happens. However, if a crash happens the investor is able to transfer
some of his utility to the market 1 by using a short strategy which give him
substantial gains in utility.

It is amazing that it is optimal for the investor to go short even if the
probability of a crash is by no means sure.

5. Ψ1 > Ψ0 and π∗

0
< 0

The crash hedging strategy in this case is positive and greater or equal than
φ̂0 (see Figure 2). This is even though φ̂1 is only greater or equal than either
the crash hedging strategy or φ̂0 close to the terminal investment period.
The optimal crash hedging strategy is given by π∗

0.

6. r0 ≤ Ψ1 ≤ Ψ0 and π∗

0
< 0

In this situation the crash hedging strategy is positive (see Figure 3).
Clearly, this is not optimal since it is like throwing away money (or utility
for that reason). Hence, it is optimal for the investor to take the portfolio
strategy π∗

0 at the end of her investment period and favoring a crash. How-
ever, if the investment period is so large that S defined in (17) is positive,
the partial crash hedging strategy π̃, given by the solution of (18) and (19),
is an optimal crash hedging strategy and makes the investor crash indiffer-
ent on [0, S]. However, on (S, T ] a crash is favorable for the investor.
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4 EXAMPLES

Figure 1: Example Ψ1 < r0 and π∗
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7. Ψ1 < r0 and π∗

0
< 0

The crash hedging strategy is negative (see Figure 4 and Figure 5). How-
ever, it is still not the optimal worst–case portfolio strategy. As in the last
case the optimal worst–case portfolio strategy is given by π̃. For S > 0 the
optimal crash hedging strategy is given by π∗

0 on [S, T ] and by π̃ on [0, S].
Again, as in case 6, the investor is crash indifferent on [0, S] and favors a
crash on (S, T ] if she uses the optimal crash hedging strategy.

This case (as well as case 6) shows the Bellman principle or optimality
principle nicely. The Bellman principle (or optimality principle) asserts
that a section of an optimal trajectory is also an optimal trajectory (see
Bellman [2], compare also with Korn [6]). Without knowing the Bellman
principle, one might — wrongly — guess that min {π̂, π∗

0} is the optimal
crash hedging strategy. Since π̂ is not optimal on [S, T ], it can neither be
optimal on [0, S], which is due to the Bellman principle. Therefore, applying
the Bellman principle leads to the solution π̃.
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5 BLURRED INFORMATION

Figure 2: Example Ψ1 > Ψ0 and π∗
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5 The Investor with Blurred Information

Assume now that the investor knows the market coefficients of the initial market
0 (e.g. by observation or by estimation). However, the investor does not know
the market coefficients after a possible crash. Instead he does only know possible
ranges for the market coefficients after a possible crash. More specific, let us
suppose that the investor thinks that the market coefficients of market 1, that is
r1, µ1, and σ1 will be within the range of [r1∗, r

∗

1], [µ1∗, µ
∗

1], and [σ1∗, σ
∗

1] with σ1∗ >

0, respectively. An investor with such information will be called an investor
with blurred information and his crash hedging strategy will be named π̂bi.
Hence, the worst–case scenario portfolio problem of the investor with
blurred information is

inf
r1∈[r1∗,r∗

1],
µ1∈[µ1∗,µ∗

1],σ1∈[σ1∗,σ∗
1]

sup
π(·)∈A(x)

inf
0≤τ≤T,

k∈K

E [ln (Xπ(T ))] . (25)

Observe that this situation is most relevant in practise since in general the investor
has only a notion of the whereabouts of the market coefficients after a possible
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5 BLURRED INFORMATION

Figure 3: Example r0 ≤ Ψ1 ≤ Ψ0 and π∗
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crash.

Proposition 5.1
1. If Ψ1min

≥ r0, then there exists a unique crash hedging strategy π̂bi, which is
given by the solution of the differential equation

π̂′

bi(t) =

(

π̂bi(t) −
1

k∗

)[
σ2

0

2
(π̂bi(t) − π∗

0)
2 + Ψ1min

− Ψ0

]

, (26)

and π̂bi(T ) = 0. (27)

Moreover, this crash hedging strategy is bounded by 0 ≤ π̂bi ≤
1
k∗ , if Ψ1min

>

Ψ0. In the case of Ψ1min
≤ Ψ0, the crash hedging strategy is additionally

bounded by

0 ≤ π̂bi ≤ π∗

0 −

√

2

σ2
0

(Ψ0 − Ψ1min
).

2. If Ψ1min
< r0, then there exists a unique crash hedging strategy π̂bi, which is

18



5 BLURRED INFORMATION

Figure 4: Example Ψ1 < r0 and π∗
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given by the solution of the differential equation

π̂′

bi(t) =

(

π̂bi(t) −
1

k∗

)[
σ2

0

2
(π̂bi(t) − π∗

0)
2 + Ψ1min

− Ψ0

]

, (28)

and π̂bi(T ) = 0. (29)

Furthermore, this crash hedging strategy is bounded by

π∗

0 −

√

2

σ2
0

(Ψ0 − Ψ1min
) ≤ π̂bi(t) < 0 for t ∈ [0, T ).

3. If Ψ1min
< Ψ0 and π∗

0 < 0, there exists a partial crash hedging strategy π̃bi

(which is different from π̂bi), if

S := T −
ln (1 − π∗

0k∗)

Ψ0 − Ψ1min

> 0. (30)

With this, π̃bi is on [0, S] given by the unique solution of the differential
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5 BLURRED INFORMATION

Figure 5: Example Ψ1 < r0 and π∗
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equation

π̃′

bi(t) =

(

π̃bi(t) −
1

k∗

)[
σ2

0

2
(π̃bi(t) − π∗

0)
2 + Ψ1min

− Ψ0

]

, (31)

and π̃bi(S) = π∗

0. (32)

On [S, T ] set π̃bi(t) := π∗

0. This partial crash hedging strategy is bounded by

π∗

0 −

√

2

σ2
0

(Ψ0 − Ψ1min
) ≤ π̃bi ≤ π∗

0 < 0.

The optimal portfolio strategy for an investor, who wants to maximize his
worst–case scenario portfolio problem, is given by

π̄bi(t) := min {π̂bi(t), π̃bi(t), π
∗

0} , (33)

where π̃bi(t) is only taken into account if it exists. π̄bi will be denoted the optimal
crash hedging strategy of the investor with blurred information.
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6 CRASH HORIZON AND IMPLIED VOLATILITY

Proof: Considering the market 1, which eventually reigns after a crash, the
worst case for an investor is that Ψ1 – the utility growth potential – will be
minimal. Defining

Ψ1min
:= min {Ψ1 | r1 ∈ [r1∗, r

∗

1] , µ1 ∈ [µ1∗, µ
∗

1] , σ1 ∈ [σ1∗, σ
∗

1]} ,

the proof follows now as the proof of Theorem 3.2. �

A special case is the clueless investor. The clueless investor has only a notion
of what the interest rate might at least be. However, the clueless investor has
no idea about neither the expected rate of return nor the volatility. Hence, in
this situation the range of the market coefficients are r1 ∈ [r1∗,∞), µ1 ∈ R,
and σ1 ∈ (0,∞). It is straightforward to verify that the minimal utility growth
potential in market 1 is given by Ψ1min

= r1∗. Thus the crash hedging strategy
of the clueless investor which will be named π̂cl calculates as in Proposition 5.1,
but with Ψ1min

= r1∗.

Remark 5.2
Note that r1∗ can be either positive or negative. However, the cases r1∗ = 0 and
r1∗ = r0 are probably the most important ones.

1. Given that the clueless investor assumes that r1∗ = r0, which implies that
π̂cl ≡ 0, this theory can explain why most people are not investing into the
stock market. No other portfolio theory can explain this fact.

However, if the clueless investor supposes that r1∗ = 0 < r0, which implies
that π̂cl < 0, the clueless investor should go short in the stock market. This
cannot be observed in practise.

2. Also if the case π̂cl > π∗

0 is for π∗

0 > 0 theoretical possible, it is practically
irrelevant. Moreover, in general, it is valid that π̂cl ≪ π∗

0.

6 Crash Horizon and Implied Volatility

So far we have assumed that the time horizon T is the investment horizon. The
assumption was then, that within this investment horizon, there exists the pos-
sibility of a crash.

Let us suppose now that the investment horizon is T and the time horizon
for a possible crash is Sc with Sc < T . This means that the investor expects to
see a crash in the time interval [0, Sc]. Thus, Sc will be called the possible crash

horizon. The smaller Sc is, the more imminent a crash is considered possible
from the point of view of the investor.

Observe that the crash hedging strategy changes over time t, since the in-
vestment horizon changes over time. In other words, the crash hedging strategy
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6 CRASH HORIZON AND IMPLIED VOLATILITY

π̂(t) belongs to the investment horizon T − t. Thus, if the investment horizon is
T + t for some t ∈ [t0 − ε, t0 + ε] with t0 ∈ (0, T ) and ε > 0 sufficiently small, the
investment horizon would stay at T for that period. Correspondingly, the crash
hedging strategy would be constantly staying at π̂ (t0) as long as the time is in
the interval [t0 − ε, t0 + ε].

This observation justifies the following approach for the crash horizon. As
long as the crash horizon Sc does not change and is smaller than the investment
horizon T , the investor keeps a constant portfolio. More precisely, the investor
keeps π̂(0; Sc) with a hypothetical investment horizon Sc.

π∗

c (Sc) := π̂(0; Sc) := π̂(0), (34)

where π̂(0) is the initial investment strategy of an investor who has the investment
horizon Sc. Using that the optimal portfolio process in the crash free model is
given by π∗

0, equation (34) can be used to calculate an implied volatility.

σ̂2
c (Sc) :=

µ0 − r0

π̂(0; Sc)
. (35)

This is the implied variance in the crash model given a specified utility function
and a crash horizon Sc. Subtracting the variance of the risky asset, one gets the
implied variance (read risk) of a crash.

σ2
c (Sc) :=

∣
∣σ̂2

c (Sc) − σ2
0

∣
∣ .

Using the fact that

π̂(0; Sc) = π̂(T − Sc; T ) for arbitrary T ≥ Sc,

one can rewrite equation (35) as follows

σ̂2
c (Sc) :=

µ0 − r0

π̂(T − Sc; T )
for T ≥ Sc.

Therefore, it is possible to differentiate σ̂2
c with respect to Sc

dσ̂2
c (Sc)

dSc

=
µ0 − r0

π̂2(T − Sc; T )
π̂′(T − Sc; T ).

If π′ is continuous from the right, one can take the limit T ↓ Sc, yielding

dσ̂2
c (Sc)

dSc

=
µ0 − r0

π̂2(0; Sc)
π̂′(0; Sc),

thus showing the differentiability of the implied variance σ̂2
c (Sc).
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Using the differential equation (13), the derivative calculates to

dσ̂2
c (Sc)

dSc

=
µ0 − r0

π̂2(0; Sc)
π̂′(0; Sc)

=
µ0 − r0

π̂2(0; Sc)

(

π̂(0; Sc) −
1

k∗

)[
σ2

0

2
(π̂(0; Sc) − π∗

0)
2 + Ψ1 − Ψ0

]

.

The derivative of σ̂2
c is decreasing for π∗

0 > 0 and Ψ1 > r0, which is in accordance
with intuition. The implied variance gets lower as the crash horizon gets farther
away. The weaker threat of a possible crash is favorable for the investor. The
same is true for π∗

0 < 0 and Ψ1 < r0. Here, the threat of a crash comes not from
the crash itself (since π∗

0 < 0 it is acually favorable for the investor), but from
the very bad earning potential after a crash Ψ1 < r0.

However, the derivative of σ̂2
c is increasing for π∗

0 < 0 and Ψ1 > r0. The
implied variance gets greater as the crash horizon gets farther away. In this
situation the investor would favor a crash happening. This is due to the fact
that π∗

0 < 0. The same is true for π∗

0 > 0 and Ψ1 < r0. However, there is no
explanation for this behavior.

Notice that it is also possible to define an implied volatility via the optimal
crash hedging strategy π̄ instead of the crash hedging strategy π̂. Denoting this
implied variance by σ̄2

c , it measures only the one–sided risk of a possible crash.
σ̄2

c does not measure both sides of a possible crash as σ̂2
c does. Using σ̄2

c the
investor seems to be indifferent in certain situations to a change in the crash
horizon which is clearly not the case.

This variance depends on the investors risk behavior as well as on the crash
horizon, which is also fixed by the investor. Moreover, the implied variance
depends on the market coefficient after a possible crash. Thus, this is only the
individually perceived risk of a crash.

However, this model gives an explanation for the observed change in the
volatility over time, which is not possible within the Black–Scholes model.

Furthermore, this calculated implied volatility can be used for option pric-
ing. Another application might be the possibility to calculate the intrinsic crash
horizon of the market.

For another approach to value options in a jump diffusion model, see Merton
[12]. There, however, one need the knowledge of the distribution of the jumps,
while in the worst–case scenario model one need to know only the crash horizon.
However, both approaches make use of the utility function of the investor.

7 Conclusion and Outlook

Considering changing market conditions leads to interesting phenomena (see Sec-
tion 4). Just to mention one phenomenon, in the case of an initial short market
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(namely π∗

0 < 0), it can happen that the optimal portfolio strategy is completely
different from the corresponding crash hedging strategy. Scrutinizing these phe-
nomena analytically, the definition of the utility growth potential (see Definition
2.3) is very useful (see Theorem 3.2).

It has already been pointed out that the investment horizon is very important
in crash modelling. This paper does so by defining the crash hedging strategy to
be the portfolio strategy which balances out – at any time where the investor
is invested – the expected utility of the final wealth of the investor between the
case of no crash occurring and the one of a crash occurring.

Next to the optimal portfolio under the threat of a crash, developed in Korn
and Wilmott [9], this is the only approach known to the author which takes the
investment horizon into account. By doing so, this model does not need the
worst–case concept developed by Korn and Wilmott [9]. However, examining the
optimality of the crash hedging strategy, it shows that the crash hedging strategy
is — at most — optimal in the sense of the worst–case concept, thereby revealing
its close relationship with the worst–case scenario portfolio model.

The investment strategies which can be observed in practice (e.g. the invest-
ment schemes of German pension funds) are taking their investment horizon into
account. These strategies are similar to the portfolio strategies developed in this
paper as well as in Korn and Wilmott [9] and Korn and Menkens [8]. Korn [7]
applies the worst–case scenario concept to the optimization problem of insurers.

Another interesting approach has been developed in Lui et al. [10] where they
consider price processes for the stock with stochastic volatility and where both
the price process as well as the stochastic volatility process have jumps. They
conclude that within this setting it is not optimal for the investor to take leveraged
or short positions. However, they still derive an optimal portfolio strategy which
is independent from the investment horizon. Therefore, it might be interesting
to try to merge this approach with the approach used in this paper.
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