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ABSTRACT
In this paper, we describe an approach designed to exploit
context information in order to aid the detection of land-
mark images from a large collection of photographs. The
photographs were generated using Microsoft’s SenseCam, a
device designed to passively record a visual diary and cover
a typical day of the user wearing the camera. The prolifera-
tion of digital photos along with the associated problems of
managing and organising these collections provide the back-
ground motivation for this work. We believe more ubiqui-
tious cameras, such as SenseCam, will become the norm in
the future and the management of the volume of data gen-
erated by such devices is a key issue. The goal of the work
reported here is to use context information to assist in the
detection of landmark images or sequences of images from
the thousands of photos taken daily by SenseCam. We will
achieve this by analysing the images using low-level MPEG-
7 features along with metadata provided by SenseCam, fol-
lowed by simple clustering to identify the landmark images.
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1. INTRODUCTION
The management of personal collections of digital photos is
becoming an increasingly difficult task. The proliferation of
digital cameras and cameraphones means that taking pic-
tures has never been easier. Gradually, we are getting closer
to Vannevar Bush’s 1945 Memex vision [3] of storing a life-
time’s worth of documents and photographs. However, the
usefulness of the collected photos is dubious, as the meth-
ods of managing digital photos have not kept pace with the
technology for acquiring them. Naaman et al [11] describe
how the photo collection management problem can be cat-
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egorized into tools which enable easy annotation of photos,
tools which allow fast visual scanning of the images and
content-based tools. However, they also identify the prob-
lems associated with each of these types of systems, such as
difficulties for consumers with annotation, inability of tools
to allow fast visual scanning to scale to many thousands of
images and the semantic gap in relation to content based
tools.

In future, digital cameras will become more ubiquitious,
and they will eventually be integrated into all facets of our
daily lives. This will only serve to exacerbate the prob-
lems with current photo management systems. Already,
researchers have started work on passive capture devices
- cameras which automatically take pictures without any
user intervention. Gemmell et al describe their work on
the SenseCam, the device used in our work, in [6]. They
describe how passive capture lets people record their ex-
periences without having to operate recording equipment,
and without having to give recording a conscious thought.
The advantages of this method of capturing photos are in-
creased coverage, and improved participation in the event
itself. Healey et al [8] describe a system called StartleCam
which is a wearable video camera, computer, and sensing
system which also passively captures images depending on
certain events detected by the sensors on the device.

However, the passive capture of photos presents new prob-
lems, particularly, how to manage and organise the mas-
sively increased volume of images captured. Traditional sys-
tems for content-based image retrieval are not adequate for
this task. In [5] the authors describe the MyLifeBits system,
which is a first step in tackling this problem, specifically in
relation to the images captured by SenseCam. MyLifeBits
also captures other forms of digital media and is a step to-
wards fulfilling Bush’s Memex vision.

The use of automatically collected metadata has been shown
to be helpful in the organization of photo collections. The
use of camera metadata, in combination with low-level fea-
tures, is discussed in [2], where a Bayesian network is used to
fuse content-based data and metadata, with some promising
results in specific contexts (e.g. indoor/outdoor classifica-
tion).

One approach which may be useful in tackling this problem
is to exploit context and in particular context histories. Wolf
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et al [14] describe how a dichotomy of useful information
sources exist to detect objects within an image: appearance
and context. They describe how appearance information
includes patterns of brightness, edge responses, color his-
tograms, texture cues, and other features commonly used
for object detection, whereas contextual-features are some-
what more loosely defined. They define context as informa-
tion relevant to the detection task but not directly due to the
physical appearance of the object and also describe how con-
textual metadata can serve as a memory cue and can also
imply the content of the image. Other authors who have em-
poyed context and content analysis to aid photograph and
video retrieval include [13] & [1].

In our work with SenseCam, we plan to use a combination
of low-level content analysis and metadata provided by the
SenseCam itself, to generate landmark images for a single
day’s SenseCam photographs. The ultimate goal is to gen-
erate a context history to allow us to usefully infer further
information from a number of days photos and to link land-
marks from different day’s photographs together.

The rest of this paper is organized as follows. In Section 2,
we provide a high level description of the low-level features
and metadata used in the experiments, along with a descrip-
tion of what constitutes a landmark image in the context of
our work. Section 3 describes the algorithm used to per-
form clustering and to detect the landmark images. Section
4 describes the experiment we performed, whilst Section 5
outlines the results obtained. Future work and our vision
for the future of this system are discussed in Section 6 and
some conclusions are drawn in Section 7.

2. LOW-LEVEL FEATURES & CONTEXT
DATA

A number of MPEG-7 low-level features, along with meta-
data taken directly from the SenseCam, were used in this
experiment. A brief description of these follows.

2.1 MPEG-7 features
The aceToolbox was used to extract low-level features from
the SenseCam images. A more detailed description of the
aceToolbox can be found in [12]. A brief description of the
descriptors used in this experiment is provided here and
more detailed information can be found in [10].

• Scalable Colour generates a colour histogram in the
hue saturation value (HSV) colour space that is en-
coded using a Haar transform thereby providing a scal-
able representation.

• Colour Layout is designed to capture the spatial distri-
bution of colour in an image or region by clustering the
image into 64 blocks and deriving the average colour
of each block. These values are then transformed into
a series of coefficients by performing an 8× 8 DCT.

• The Edge Histogram captures the spatial distribution
of edges, which are identified using the Canny algo-
rithm, by dividing the image into 16 non-overlapping
blocks and then calculating 5 edge directions in each
block.

• Homogeneous Texture describes directionality, coarse-
ness and regularity of patterns in images by partition-
ing the images frequency domain into 30 channels and
computing the energy and energy deviation of each
channel and outputting the mean and standard devi-
ation of the frequency coefficients.

2.2 SenseCam
Detailed technical information about SenseCam can be found
in [6]. We use version 2.3 of the SenseCam shown in Fig-
ure 1 along with an image of the device in Figure 2. The
SenseCam takes pictures automatically by default every fifty
seconds. It also has a number of sensors onboard the device
which trigger capture more frequently. The sensors include
a passive infra-red detector (similar to that used in home
alarm systems) which can detect people or other warm ob-
jects directly in front of the individual wearing the camera,
an accelerometer which captures data in the X, Y & Z di-
rections, a digital light sensor and a temperature sensor.
We propose to use the temperature, light and accelerometer
values in this experiment. In a typical day, SenseCam will
record anything between 2,000 and 3,000 photos.

Figure 1: Schematic of Microsoft SenseCam

Figure 2: Microsoft SenseCam



2.3 Landmark Images
A landmark can be defined as a prominent, identifying, fea-
ture of a landscape. Normally, it is associated with a single
object or place in the landscape. In our work, we define a
landmark to be a single image, or a number of images, which
are temporally aligned. In terms of the images produced by
SenseCam on a daily basis, a landmark will be an image, or
images, which represent a particular event in an individual’s
day. Our initial analysis is restricted to SenseCam images
from one day. An event in this context could be simply
defined as the elements that make up a persons day. For ex-
ample, in the morning the images taken when one gets out
of bed, prepares for work, and has breakfast could be consid-
ered an event. Another event would be when the individual
leaves the home to travel to work. The goal then for this
particular experiment is to try and detect these events and
to extract landmark images to represent them. Ultimately,
we would hope to generate a context history, using the low-
level features and metadata described above, to assist us in
generating landmarks over a period of days.

In Figure 3, an artificial graphical illustration of what a land-
mark image might be is given. The image depicts the tem-
perature, light sensor and accelermoter readings from the
SenseCam, as well as the combined low-level feature vector,
over a period of one day. Key points where both sensors
increase or decrease suddenly can be interpreted as being
event boundaries (i.e. a significant change from one event to
another within the days images). Other information might
also be usefully inferred from these readings. In the sce-
nario below, the accelerometer values increase sharply while
all other readings are falling. An analysis of these trends
within the data may reveal useful contextual information
which can aid detection. A landmark image could then be
selected from within each event. For example, an initial ap-
proach to this would be to simply select the middle image
within each event. However, more advanced methods will
be explored in future in order to choose landmark images
which are more representative of the detected events.

Figure 3: Landmark Detection over one day

3. CLUSTERING & DETECTION
As an initial step in this work, a simple clustering algorithm
has been employed to form clusters and to detect a set of
landmark images for the entire day’s collection. No event
boundary analysis has been employed in the experiments
reported here.

The algorithm used in based on the agglomerative hierar-
chical clustering approach [4]. This approach starts by con-

sidering each individual photograph as a cluster, and the se-
quence is then formed by successively merging clusters. The
merging is performed based on the nearest distance between
photographs, where the distance calculated is the Euclidian
distance based on a feature vector containing the normalised
low-level features and metadata for each image. The data
was normalised between values of 1 and 0. Time constraints
are also imposed on the clustering process based on an algo-
rithm proposed in [9]. This is implemented by considering
the time each photo was taken and penalising photos taken
further away from each other (in time) using a cost function,
thus increasing the distance measure. The cost function is
calculated based on the average squared distance of the data
set.

Once the merging process has been completed, a dendro-
gram [4] is created which graphically illustrates how the in-
dividual images have been clustered. Due to the large num-
ber of images used in this experiment, over 2000 per day, it
is not feasible to view the entire dendrogram as it contains
too much information. Instead, we will view the dendro-
gram at different offsets from the top of the tree. Figure 4
shows a dendrogram containing the top 20 nodes.

Figure 4: Dendrogram containing top 20 nodes

By analysing the tree at different levels, we can inspect the
clusters at that level and select a single landmark image
from within each cluster for that particular day. This type
of analysis is interesting in the context of the SenseCam
as we are more interested in getting a representative set of
landmark images at different times during the day than in
providing one single representative image for the whole day.
By selecting different cutoff points at different levels of the
tree, we can vary the amount of landmark images we wish
to select as the final result.

4. EXPERIMENT
The set of images produced by SenseCam taken on the 9th
June 2006 by the first author contained typical events from
a normal day, and also some unusual events. The number of
photos used in the experiment was 2,243 with the first pho-
tograph being taken at 08:34 in the morning and the last
photograph taken at 21:41 in the evening. The aceToolbox
was used to generate the MPEG-7 features outlined above
and the results for each low-level feature were concatenated
together to create one representative vector for each image.
The accelerometer, temperature and light sensor readings
were extracted from the CSV file produced by SenseCam.
All data was normalised before the Euclidian distance was



calculated. The distance was calculated separately for the
low-level features and for each of the metadata features giv-
ing 4 distance measures for each image. The results of these
were then concatenated together. Time constraints were im-
plemented by extracting the time each photo was taken from
the same CSV file. As this analysis was being undertaken
within the context of a single day, these times were converted
into the number of seconds from midnight. The cost func-
tion was then calculated and the time constraints imposed
on the distance matrix, giving a final matrix, 2433 × 2433,
containing the distances between each image and all the oth-
ers in the database. The clustering approach outlined above
was then used to generate the landmark images for the day’s
collection.

Finally, in order to allow for an evaluation of the results, the
images for this particular day were manually segmented into
events (as defined above) and these events can be seen in the
table below. Landmark images were not manually chosen for
each event in this particular experiment, as the landmarks
extracted are simply the middle image of each event. By
examining the results obtained in this experiment, we can
see whether the landmarks chosen represent the manually
annotated events. This provides us with an initial evaluation
of our work.

Manually Annotated Events
Morning time at home
Leaving home to cycle to the park
Meeting a friend in the park
Cycling and chatting in park
SenseCam covered by cycling jersey
At home in the afternoon
Leaving home and going shopping
At home in the evening
SenseCam taken off and pointing out to balcony
At home watching TV and having dinner

Table 1: Manually annotated events

5. RESULTS
The results presented show landmark images selected from
dendrograms containing 5, 10, 15 and 20 nodes. These val-
ues were selected at random and any number of nodes could
have been selected in order to view results at that particu-
lar level. The thumbnails in figures 5, 6, 7 and 8 show the
landmark images selected at each of the offsets above.

An initial analysis of the results shows that all events have
been recognised in the sequence of landmark images shown
in figure 5. For example, the first 3 images on the top row
represent the first event Morning time at home. The second,
third and fourth images on the second row represent the sec-
ond, third and fourth events and the last two images on the
third row along with the first two images on the fourth row
represent the event Leaving Home and going shopping. In
figures 6, 7 and 8, we lose certain events as we reduce the
number of images being presented to the user. This is an
expected outcome of this method of displaying a flexible re-
sult set. The completely black image contained in figures
5, 6 and 7 represents the SenseCam covered by cycling jer-
sey event. At this particular point in the day, the user had
placed the SenseCam underneath a cycling jersey without

Figure 5: Landmark Images from top 20 nodes

Figure 6: Landmark Images from top 15 nodes

turning the device off. These images are quite distinctive,
so one would expect them to have been recognised as a seper-
ate event. We also note the presence of some blurred images
which, although representative of a particular event, are not
the best images to display as a final result. However, the na-
ture of the SenseCam application environment means that
although these images are not the best photographs to dis-
play to another user, they should prove meaningful to the
individual who wore the SenseCam while the photographs
were being taken.

As a first step, we believe our results show that the sim-
ple approach used in this work demonstrates the potential
benefits of using low-level features and context information
to generate a representative collection of landmark images
from the SenseCam data.

6. FUTURE WORK
Future work will focus on the refinement of the algorithm
outlined in this work, in order to improve results. The
method employed to detect landmark images within a single
day’s SenseCam photographs will be improved by exploring
more intelligent clustering methods, including new methods
of imposing time constraints, as well as exploring the use of



Figure 7: Landmark Images from top 10 nodes

Figure 8: Landmark Images from top 5 nodes

other low-level MPEG-7 features available within the ace-
Toolbox. We will also focus on more sophisticated methods
of fusing the low-level features and SenseCam metadata in
order to improve results.

We are also currently gathering SenseCam images and cor-
relating with external sources of metadata. A single user
wearing a SenseCam can also wear a heart-rate monitor and
a BodyMedia device and carry a GPS device in order to pro-
vide a richer metadata set to explore. Again, the possibilites
to incorporate this extra metadata into our application to
improve results will be explored. We also plan to investi-
gate partial image analysis, perhaps using segmentation or
salience (using Harris point detectors [7]), or even face de-
tection techniques in order to acquire improved results.

7. CONCLUSIONS
This paper has demonstrated an initial approach to using
context in helping to detect landmark images from within
the several thousands of images which make up a single day’s
SenseCam photographs. The approach is simple, but works
well, and can efficiently highlight events and images of inter-
est from an individual’s day. We have started to use some
simple context, namely the temporal aspect and SenseCam
metadata, for our landmark detection but there is a large
range of correlated metadata which we can also incorporate
into the process. This paper also outlines our vision for fu-
ture work in the area with SenseCam images and we have
outlined our vision for an application exploiting context his-
tories within the SenseCam application environment. This
future work continues.
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