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ABSTRACT

In this paper, we describe an approach to video object seg-
mentation using combined analysis of visible spectrum and far
infrared imaged data captured using a novel camera rig. Com-
bined infrared-visible spectrum analysis can produce higher qual-
ity object segmentation results than those possible when only one
modality is considered, as well as being very robust to lighting
changes that severely affect traditional surveillance systems. The
presented approach uses adaptive filtering and thresholding of in-
frared data coupled with background modeling and change detec-
tion in colour video sequences. To illustrate the effectiveness and
application of the approach, a prototypical surveillance system is
described that detects when a person has entered a restricted area,
even in total darkness, using combined analysis of infrared and
visible spectrum video of an indoor scene.

1. INTRODUCTION

Visual surveillance is currently a very active research area and in-
corporates many computer vision techniques such as image and
video analysis, object recognition and data fusion, as well as ma-
chine learning techniques. Hu et al [1] conduct an extensive survey
on the state of the art in visual surveillance. They concentrate on
the surveillance of people or vehicles, noting that they are typical
of surveillance applications in general. Interestingly, an important
trait that people and vehicles share is that their temperature is typ-
ically different to the background, thus by using infrared imaging,
people and vehicles can be extracted and tracked more efficiently.
As the technology develops, thermal infrared imaging devices are
becoming more common and have been used in a variety of re-
search areas. The use of infrared in pedestrian detection to reduce
night-time accidents is investigated in [2] and [3]. A very compre-
hensive overview of image processing techniques and their appli-
cation to infrared imagery is described in [4].

In this paper, we demonstrate that combined infrared-visible
spectrum analysis can produce higher quality object segmentation
results than those possible when only one modality is considered,
as well as being very robust to lighting changes that severely af-
fect traditional surveillance systems. In section 2, we describe
the novel camera rig that allows the simultaneous capture of in-
frared and visible spectrum video. Section 3 describes our algo-
rithm which uses adaptive filtering and thresholding of infrared
data coupled with background modeling and change detection in
colour video sequences to segment video objects. Section 4 pro-
vides example segmentation results, including segmentation in to-
tal darkness and some results from our prototypical surveillance
system, which detects entry into a restricted area.

Fig. 1. Visible/Infrared Camera Rig

2. HARDWARE CONFIGURATION

Figure 1 shows the configuration of the visible and thermal cam-
eras. A pane of standard window-glass was positioned between
them to act as a beam-splitter. There are other more suitable types
of material but we wanted to demonstrate that standard glass would
be effective enough. The glass absorbs a significant portion of the
infrared radiation and reduces the infrared image contrast as a re-
sult, but it solves the image registration problem of aligning the
visible and infrared images, creating a four-band image. An auto-
matic alignment technique that can be used for images of very dif-
ferent modalities (such as thermal and visible images) is proposed
in [5]. They make an assumption that the scene is planar but this
assumption does not hold in the indoor environments that this pa-
per is concerned with. We use a Raytheon ControlIR 2000B ther-
mal imaging video camera that is sensitive to wavelengths of 7um-
14pm, along with a Panasonic WV-CP470 video camera. The two
cameras are synchronised (gen-locked) to ensure that they capture
frames simultaneously. The analogue video output is captured and
digitised by a Falcon Quattro multi-channel frame-grabber. The
video frames from the visible and infrared bands were aligned us-
ing a planar homography [6].

3. ALGORITHMIC DETAILS

Figure 2 shows a simplified diagram of our system architecture,
which is described in detail in this section.

3.1. Visible Background Modelling

To extract regions of interest in the visible spectrum, background
modelling is used to detect pixels that are new or unusual and are
thus classified as foreground pixels. The background-modelling
algorithm used in this paper is based on [7], which is an improve-
ment of the method described in [8]. The improved algorithm de-
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Fig. 2. System Diagram

creases the background model initialisation time substantially by
estimating the Gaussian model parameters using the expected suf-
ficient statistics equations and then switching to the L-recent win-
dow update equations when the first L frames have been processed.
In the background model, each pixel is modelled by a mixture of
K Gaussian distributions with the assumption that the red, green
and blue components are independent and have the same variance.
This assumption is designed to decrease the computational com-
plexity. Based on the weights of the Gaussian distributions, a sub-
set of them is chosen to represent the pixel’s background distribu-
tion. A pixel from a new frame is compared to each of the Gaus-
sians that make up the background model. If it is not within 2.5
standard deviations of any of them, it is classified as a foreground
pixel. Foreground pixels may be reclassified as shadows if the
colour distortion is small and the brightness has decreased slightly.
We modified the algorithm so that the variance of each Gaussian
was not permitted to drop below a certain minimum threshold. It
was found that without this rule, the Gaussians’ variance would be-
come very small and as a result it did not account well for camera
noise.

A drawback of this background modelling approach is that it
models each pixel separately and does not take the scene context
into account. For example, if the colour of a person’s clothing
is very similar to the background that it is occluding it will not
be detected as foreground. Methods to overcome this limitation
might involve using information about previously tracked objects
and other high-level reasoning techniques. However, the low-level
approach we take is to notice that although the foreground and
background may have identical colours in the visible spectrum,
they may have features in other spectral bands that can discrim-
inate between them. Combining infrared segmentation with the
foreground detection, as will be explained shortly, produces much
cleaner and more accurate results. After each pixel is classified as
background, shadow or foreground, some morphological cleaning
is performed to remove noise.

3.2. Infrared Background Modelling

The infrared background is modelled using a simple averaging of
frames method, using the expected sufficient statistics equations
and then switching to the L-recent window update equations when
the first L frames have been processed, as described in [7] and
equation 1.

Fig. 3. Visible Image, Filtered Infrared Image, Filtered image
thresholded at different thresholds: 0, 1, 2, 8
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where Bé’y is the background model of the pixel at location
(w,y) at time ¢ and I, is the pixel at location (z, y) of the frame
at time ¢. L is a parameter that controls how quickly a new object is
incorporated into the background model. The infrared foreground
is calculated by simply subtracting the background model from the
current frame, filtering the result and thresholding, as described by
the equation:

t
Bz,y -

F!, = Mr(A(I., - B.))) )

where F' is a binary image representing the detected fore-
ground of the infrared band at time ¢, M is a thresholding function
returning a binary image using the threshold 7" and A is an adap-
tive filter described in the next section.

3.3. Detection of Hot Regions

Due to the nature of infrared imaging and to the absorption of the
glass beam-splitter, the infrared foreground images obtained from
the rig are very noisy and have low contrast. The first step is to
remove as much noise as possible while preserving the important
details. Gaussian smoothing [9] is effective at noise removal but it
also blurs edges and removes the finer details. In our approach, we
use adaptive filtering which takes the edge orientation into account
and performs smoothing along the edge but not perpendicular to



it. Firstly, the magnitude and direction of edges are computed by
smoothing the image with a Gaussian mask and then calculating
the gradients in the x and y direction. If the magnitude of the edge
at a pixel is below a certain threshold, it is smoothed with a tra-
ditional Gaussian filter. Otherwise, the pixel is smoothed with a
directional Gaussian mask, oriented along the pixel’s edge direc-
tion. The filtered image must then be thresholded to detect regions
that are warmer than the background noise. A threshold value, T,
classifies pixels with a value below 7' as background, otherwise
they are foreground. As can be seen in Figure 3, a low thresh-
old will include too much noise but a higher threshold will lose
the fine segmentation details and will remove the colder and more
insulated parts of the person, usually the legs and lower torso.

There are various approaches to choosing the correct thresh-
old. A constant threshold may work well for some test images but
it may not work well if the scene changes. A dynamic threshold
could be calculated based on image features. However, an effec-
tive threshold selection process should take advantage of the in-
formation available from the visible image. The foreground pixels
extracted from the visible image provide information that allows
us to judge the similarity between our infrared thresholding and
the visible foreground detection. Using the idea of mutual infor-
mation, a ratio can be defined to measure the agreement between
the infrared and visible spectrum foreground detection. Thus, we
wish to choose a value of 7" that will maximise the ratio. We define
two ratios:
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where P(, .y is the total sum of pixels whose visible classi-
fication is « and whose infrared classification is y. For example,
P(o,1) is the total number of pixels who are classified as back-
ground by the visible analysis and as foreground by the infrared
analysis. Therefore, R: is the ratio between agreed foreground
pixels and total disagreed pixels. R- is the ratio of total agreed
pixels to total disagreed pixels. The foreground selection thresh-
old, T', for the infrared image is chosen so as to maximise R;. If
the value of the ratio is less than 0.1 then 7" is chosen so as to max-
imise R». This is because R; puts more emphasis on agreeing on
foreground pixels and can cause the threshold to drop very low to
agree with the foreground noise when there are no objects in the
scene.

After the threshold selection, a binary image is created so that
each pixel has value one if it is classified as foreground by the visi-
ble or infrared analysis, zero otherwise. All connected regions that
do not contain at least one visible foreground pixel and an infrared
foreground pixel are removed. Regions with a small number of
pixels are considered noise and are also removed.

4. RESULTS

The video sequences used in our experiments have a resolution
of 192x144 and were captured at 25 frames per second. Figure 4
shows a typical example of where techniques such as background
modelling and motion analysis would have severe difficulties when
considering only visible spectrum video. Multimodal analysis is
able to provide robust segmentation of the person in this case.
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Fig. 4. (a) visible image. (b) aligned infrared image. (c) back-
ground subtracted infrared. (d) adaptive filtering on infrared. (e)
foreground detected in visible domain. (f) visible and infrared fu-
sion.
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Fig. 5. Segmentation using infrared only: (a) aligned image. (b)

filtered background subtracted image. (c) thresholding with 7.
(d) thresholding with T’ . (e) combined hysteresis segmentation.

4.1. Changing Lighting Conditions

One particular scenario that interested us was to investigate how a
system could cope without any relevant data from the visible video
stream. Visible background modelling often fails due to abrupt
changes in lighting conditions, such as lights being dimmed or
turned on/off, as well as changes in ambient lighting. We detect
these failures of the background model in the visible spectrum by
detecting when 80% of the image is classified as foreground, sim-
ilarly to [10]. Previously, our detection of hot regions was based
on using the visible information for threshold selection and seed-
ing the resulting regions with the foreground pixels. Without the
visible signal, we set a low threshold, 7'z, and we opt to use only
regions that contain ‘very hot’ pixels. These usually correspond
to exposed skin regions such as the head and forearms. Pixels are
classified as ‘very hot’ if their value (in the infrared background
subtracted image) is greater than a high threshold, Tx. This is
essentially a hysteresis [9] segmentation using the high and low
thresholds. An example of this can be seen in Figure 5.

4.2. Intruder Detection

To simulate a real surveillance application, we defined a restricted
area and aimed to detect whether a person had entered this area.
To establish the likelihood of a given object being inside the area,
a bounding box was defined and an alarm measure was calculated.

overlap(Oy, B)
area(Oy)

where Oy, is the bounding box of object k in the frame and B
is the bounding box of the restricted area. The resulting signal is

probability of intruder = 5)



Fig. 6. Intruder detection; Top row: restricted area in yellow, ob-
ject bounding box in blue, detected object on right. Bottom row:
detection in total darkness. Histogram equalised infrared image on
left, detected object on right
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Fig. 7. Typical example of intruder detection

median filtered to reduce the effects of spurious noise. Figure 6
shows two examples of detection. Since the output is a probability
and not a binary value, it is possible to control the sensitivity of
the alarm. In our application, it was found that checking if the
alarm measure was above 0.8 for 5 seconds was a reliable method
of intruder detection. Two examples of unauthorized access are
detected in the data shown in Figure 7 between 30 and 42 seconds
and between 85 and 93 seconds. The first detection is achieved
in total darkness. The (non-intruder) spikes in the graphs were
caused by people walking in front of the restricted area, occluding
it, and therefore their bounding box would partially overlap with
the restricted area.

S. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated the advantages of multi-modal video
analysis for object segmentation, both in terms of more accurate
video object extraction and in its improved robustness to lighting
changes. Short-term future work will focus on the refinement of
object boundaries using edges in the visible spectrum. Face and
skin detection is another low-level module that could be made sig-
nificantly more robust by combining infrared and visible analysis
since exposed skin and especially the human head area, emit sig-
nificant amount of infrared radiation.

Long-term work will focus on incorporating additional input
devices into the hardware rig. The challenge of building a multi-

modal analysis system involves determining the optimum method
of combining the analyses of the individual modalities, so as to
utilise the strengths of each one while remaining robust to failures
of some of the modalities. Besides visible and infrared informa-
tion, knowledge of depth is the next modality we will investigate.
We plan to add a second CCTV camera to the rig and to use stereo-
vision techniques to incorporate depth information, which is useful
both in the boundary detection of objects and also in object track-
ing during occlusion.
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