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Abstract A method for solving the dense disparity stereo

correspondence problem is presented in this paper. This
technique is designed specifically for pedestrian detection
type applications. A new Ground Control Points (GCPs)
scheme is introduced, using groundplane homography in-
formation to determine regions in which good GCPs are
likely to occur. The method also introduces a dynamic
disparity limit constraint to further improve GCP se-
lection and dense disparity generation. The technique
is applied to a real world pedestrian detection scenario
with a background modeling system based on disparity
and edges.

1 Introduction

Many computer vision based applications depend on ac-
curate detection and segmentation of foreground objects
as a first step in their algorithmic process. Traditional
approaches often fail in unconstrained real-world envi-
ronments due to dynamic background conditions such as
moving backgrounds, changing lighting conditions and
shadows, and the variability in a foreground objects lo-
cal and global appearance. The use of stereo information
has been proposed as a means to guide object segmen-
tation, due to it having some distinct advantages over
conventional 2D techniques [1].

Many stereo correspondence techniques have been
proposed in literature, a taxonomy of many such tech-
niques can be found in [2]. This is a difficult process,
however, especially in areas of homogeneous colour or oc-
clusion. To improve results, many algorithms make use of
one or more constraints, such as the disparity limit con-
straint, which limits the region where a match for a pixel
in one image can occur in a second image. This reduces
ambiguities as well as decreasing computational expense.

* This material is based on works supported by Science
Foundation Ireland under Grant No. 03/IN.3/I361.

A second technique to improve results from stereo corre-
spondence algorithms is to use highly reliable matched
pixels, known as Ground Control Points (GCPs) [3], to
help guide results.

In this paper we define a dynamic programming based
stereo correspondence technique, using GCPs and dy-
namic disparity limit constraints, that has been devel-
oped specifically for pedestrian surveillance type appli-
cations. The technique for obtaining GCPs is a 3 stage
process; (1) using groundplane homography information,
regions are determined in which good GCPs are likely to
be found; (2) the best GCP disparities are selected based
on the region value built up from neighbouring pixels; (3)
background GCPs are found using background disparity
and edge models. In addition, we introduce a technique
for obtaining a dynamic disparity limit constraint to fur-
ther improve GCP selection and dense disparity genera-
tion, in addition to reducing algorithmic complexity.

This paper is organized as follows: Section 2 presents
the details of the developed algorithmic approach. Firstly,
an overview of homographic transformations is intro-
duced; we then illustrate how GCPs are obtained and
dense disparity is generated. In Section 3 we present ex-
perimental results from a real world outdoor situation.
Finally, Section 4 details conclusions and future work.

2 Algorithm Details
2.1 Groundplane Space

For convenience, we assume that the two input images
are rectified via [4]. Rectification aligns the images ver-
tically, so that epipolar lines are parallel. A second pre-
processing step is then applied that aligns the images
horizontally with respect to the groundplane. This tech-
nique is based on the application of a groundplane ho-
mography [5]. The homography maps the groundplane
in one image, I, to the groundplane in a second image,
I, using the equation
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where = denotes equality up to a scale factor, x is a
point in Iy, x’ is a point in I5 and H;5 denotes the plane
induced homography from I5 to I;. Applying this trans-
formation to the input image Is results in the alignment
of groundplane points between the two images I; and
Hi515, whereas points above or below the groundplane
do not correspond. Figure 1(a) shows two images I; and
His15 overlaid. Let the space wherein the two images Iy
and Hi5I, are be known as groundplane space.

2.2 Foreground Activity Regions (FARs)

GCPs can be found to help guide stereo correspondence
techniques resulting in more accurate results. However,
false GCPs can severely degrade the final matching re-
sults [3]. Introducing stricter constraints on the selection
of GCPs could decrease the number of false GCPs, but
could also reduce the total number of GCPs, leading to
the possibility of an insufficient number of GCPs being
available to guide the matching process successfully.

The properties of the groundplane space can be ap-
plied to find areas, called Foreground Activity Regions
(FARs), in which depth discontinuities are likely to oc-
cur. These regions are typically a good place to extract
a large number of strong GCPs as they tend to occur in
areas of high texture. FARs occur due to foreground ob-
jects being above the groundplane, and therefore they do
not match in groundplane space, see Figure 1(a). For an
illustrative example, take Figures 1(c) and (d), which are
corresponding sections from I; and Hiols respectively.
As white region in the two images is part of the pedestri-
ans hand, which is foreground, the hand in I; and Hi215
does not correspond, see Figure 1(e). This can be more
clearly seen by viewing the position of the edge points
in I; (in green), with respect to the corresponding edge
points in Hial (in blue) in Figure 1(f). The key prop-
erty is that, in groundplane space, neither the two sets of
edges nor any pixel between the two edges match in both
colour intensity and gradient information. These pixels
are denoted in red in Figure 1(g). Let these regions of
non-correspondence be called FARs. An important as-
pect is that, in general, if there is a jump in disparity,
then this disparity discontinuity is incorporated within
a FAR.

Once FARs are determined, the FAR is then searched
for matching GCPs between images I1 and Hy515. How-
ever, an advantage to obtaining FARs to determine GCPs,
instead of just regions or points of high texture within
an image, is that a dynamic disparity limit constraint is
determined for each GCP match. For a static disparity
limit, the closer an object is to the camera rig, the larger
the disparity limit should be. This is an ill-posed prob-
lem as the distance of the object to the camera is not
determined until the object’s depth is obtained. The con-
straint is therefore usually fixed at the largest expected
disparity that should occur in the scene. Using the FARs
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Fig. 1 (a) Groundplane Space; (b) FARs; (¢) I1; (d) Hizlo;
(e) I and Hi21; (f) Edges; (g) FARs; (g) Disparity

regions, it is possible to roughly estimate the mazimum
possible disparity. In general, if there is a jump in dis-
parity within a FAR then a match for every point in the
FAR will be at a disparity less than the width of that
FAR. Observing Figure 1(h) notice how the width of the
FAR, d, is greater than that of the disparity of the two
edges. The search for GCPs in each FAR is implemented
using this variable disparity limit constraint.

2.8 Multiple Initial Ground Control Points (MIGCPs)

Obtaining GCPs from FARs is a three stage process;
(1) multiple initial GCP matches are found at various
disparities; (2) the best choice of disparity for these GCP
matches are determined; (3) control point regions are
determined.

The first step involves finding Multiple Initial Ground
Control Points (MIGCPs). In general it is more difficult
to determine the accurate disparity of a point that has
homogeneous rather than heterogeneous neighbours. For
this reason, we ensure that the matches for the MIGCPs
are instantiated by edges that have an edge gradient
greater than a threshold, tsg, which is vertically oriented
with respect to the scanline. We refer to a point that
meets this criteria as a maximum vertical edge, maze.

To determine the MIGCPs for a given FAR on a
particular scanline, each max,. within the FAR of I,
called maz?._, is compared to each maz,. in Hiols, called

ve?r
max?,, that is within a disparity of the width of the
FAR from maxl,. The two maz,. are compared us-
ing the sum of absolute square distances (SAD) in their
RGB colour intensities. If the SAD is less than a thresh-
old, tpazAccept, then a possible match between the two
mazx,. exists. If this is the case then the process of ob-
taining additional collaborating information is under-
taken. Initially the number of the collaborating value,
valeo, is 1. Collaborating information is gathered by
moving the current point in each image left by a sin-
gle pixel along the scanline. The new image points fails

to be collaborating the maz?l, and maz?, match if

1. The current point in either image is outside of the
FAR or homogeneous in colour with its neighbours;

2. SAD(curry, curry) > tyazAccept, Where curry is the
current pixel in I; and currs is the current pixel in
Hia1y
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If neither of the above is true, then val.,; is incremented
by one, as another pixel match agrees with the choice
of MIGCP match. A similar technique is then applied
from mazl, and maz?, in the opposite direction along
the scanline. The greater the value of val.,;, the more

likely the match is of being correct.

2.4 Final Ground Control Points (FGCPs)

However, determining GCPs based on horizontal matches
alone, as is done in MIGCP, can result in false matches.

This second step finds collaborating pixels vertically across
scanlines, enforcing interline consistency for selecting GCPs.

The technique to achieve this can be shown in the fol-
lowing example.

Let Figure 2(a) represent the set of MIGCPs in I3,
so for example on scanline 1 there is 1 MIGCP at pixel
1C;, where the subscript 1 represents I;. Let Figure
2(b) represent the possible match disparities in Hyo 15 for
the MIGCPs in (a), therefore, for example, the MIGCP
in scanline 1 has 3 possible matches at 1A,, 1C5 and
1F5, where the subscript 2 represents Hisl5. For each
MIGCP in I; it is checked to see if there exists one or
more MIGCPs in the previous scanline within a distance
of 1 pixel. In this example, for 2B; there is a MIGCP
in the previous scanline at 1Cy. If more than one exists,
the MIGCP that has the closest colour intensity and
gradient information to 2B is chosen. For each possible
disparity match of 2B;; determine if 1C; has a corre-
sponding possible disparity match in Hi2/5 in the same
vicinity. In this case, the match 2B; — 2E5, 1C; has
a corresponding match from 1C; — 1F5. However, the
match 2By — 2Bs, has two corresponding matches from
1C; — 1A, and 1C; — 1Cs. In this case the pixel from
1A5 or 1C; that is closest in colour intensity and gra-
dient information to 2B; is chosen, assume it is 1Cy. If
a corresponding match is found then the wval,., for the
two pixels in I; for the matched disparity are added to-
gether. In this case the val.,; for matching 2B; — 2E,
and 1C; — 1F; are added together, as are the val., for
matching 2B; — 2B; and 1C; — 1Cy, see Figure 2(c).

This process continues to the next MIGCPs in the
image. In scanline 4, there is only one match to 4Cq,
namely 4F5. This means that the chain in Hi3ls con-
taining 1C, 2B and 3A cannot continue. However the
chain containing 1F, 2E and 3E grows longer to contain
1F, now the val., of any of the pixels in this chain is
the sum of all the initial MIGCP wval.,; in the chain. By
using this technique, longer chains have larger values for
valeo;. FGCPs are then found by obtaining the highest
val.o for each pixel. Finally, in post processing, we re-
move all FGCPs that are not bidirectional, all FGCPs
where the highest val.,; is not at least twice that of the
second highest and all FGCPs that do not have a chain
that spans at least 3 scanlines. In addition we use dy-
namic programming to enforce the ordering constraint
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Fig. 2 FGCPs (a) I1; (b) Hi2l2; (¢) Hi2l links;

in FCGPs. These post processing steps ensure that most
ambiguous FGCPs are removed.

2.5 Ground Control Point Regions

At this point it is possible to obtain more GCPs by ex-
tending the FGCPs across regions of homogeneous tex-
ture. An initial step for this process is to cluster FGCPs
into regions of homogeneous disparity using connected
components, where two separate regions, r; and ry, can
merge if
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where 7{ is the disparity of r1, r¢ is the disparity of o,
74 is the lowest disparity of the two regions and 6 is the
maximum disparity difference allowed for every o pixels
of disparity that exists in rZ. In our experiments 6 =
1.5 and ¢ = 10, allowing 1.5 pixels disparity difference
when 7¢ = 10, 3 pixels disparity difference when r¢ =
20, and so on. This allows pixels closer to the camera
to cluster together easier, allowing for fluctuations in
the objects surface. Two separate FGCPs regions can
then be merged, if they are separated by a region of
homogeneous texture. If this is the case then all pixels
between the two FGCPs regions are also classified as
FGCPs.

2.6 Background Ground Control Points (BGCPs)

Background objects, such as walls, do not, in general,
change position within an input image. If a sequence of
images of the same scene is used, background disparity
and edge models can be built. The initial background
disparity model can be set to have the same disparity
as the groundplane space. The model will then be up-
dated over time to incorporate the background objects
such as walls, bollards, etc. These background models
can be used to eliminate the need for searching for GCPs
that arise from background objects. To implement this,
we first stop looking for GCPs that occur due to back-
ground objects by using the background disparity model
to detect FARs instead of the groundplane space. Back-
ground objects will therefore not cause FARs, and thus
no GCP will be searched for in these regions. Background
GCPs (BGCPs) are then determined using background
maximum vertical edges, bmaz,., which are strong ver-
tical edges that do not appear as foreground in either
the background edge or disparity model. If two bmaz,.



are separated vertically by a region of homogeneity that
does not contain a FAR then all points between the back-
ground maximum vertical edges are defined as a BGCP
region. A BGCP region can propagate downward to the
next scanline iff there is no FAR anywhere inside the
BGCP region on the next scanline. Finally a propagated
BGCP region can extend left and right until a FAR or
a maximum vertical edge is reached. Figure 3(d) shows
results from obtaining FGCPs and BGCPs.

2.7 Dense Disparity Estimation

The GCPs can be used as a basis to guide various dif-
ferent stereo correspondence algorithms. We used them
in conjunction with a single pass dynamic programming
based approach, allowing GCPs to have zero cost in the
matching process. It optimises the scanlines by minimis-
ing an energy function that is similar to [3];

E(d(z, 1)) = Y Cla,y1,d(z, 1)) +

Z()\(l‘,yl)P(d(xayl) - d(.’IJ + 1) yl)) +

x

Az, y1)p(d(z,y1) — d(x,y1 — 1)))

where y; is the current scanline, p is the Potts model
and A(z,y1) is a weight function, set to 30 in our exper-
iments. A cost added for both a vertical and a horizon-
tal difference in disparity to help enforce inter scanline
consistency. In addition the idea of a dynamic disparity
limit constraint is used. The limit for a given scanline is
found as the maximum of the previous lines dense dis-
parity, the current and next lines background model and
GCP disparity.

3 Experimental Results

Figure 3(e) shows results of the dense disparity estima-
tion technique using two cameras from a Digiclops [6]
stereo camera rig. The end goal of this research is to
count pedestrian numbers in a scene. It is clear from
the results that the disparity information obtained will
greatly aid pedestrian segmentation, but this informa-
tion, in itself, is not enough. Take for example, Figure
3(e), row 3, where a man has roughly the same disparity
as the wall. We are are therefore unable to separate the
pedestrian by stereo information alone. It is also impor-
tant to also notice that only the pedestrians head and
hands appear as FARs. This is due to the pedestrians
torso and the background having the same colour and
therefore there are no edges or indication of a disparity
jump. This problem can also occur if one pedestrian is
occluded by another wearing the same coloured clothes.
The result of this would be an undefined region between
the two pedestrians as there would be no visible dispar-
ity discontinuity.
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Fig. 3 (a) Groundplane Space; (b) FARs; (c) FGCPs; (d)
FGCPs and BGCPs; (e) Disparity

4 Conclusions and Future Work

This paper described a technique for dense disparity
matching designed for pedestrian detection type appli-
cations using GCPs and a dynamic disparity limit con-
straint. In future work, the use of temporal data along
with the improvement of the dense disparity algorithm to
enforce better inter scanline consistency would increase
the accuracy of the dense disparity data. Current work
includes the use of disparity and biometric information,
such as height/width, being applied to segment objects,
even at the same depth, into separate objects and the
classification of that object as pedestrian or otherwise.
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