## References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Crust. B35, 2331-2339.
Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Cyrañski, M. \& Krygowski, T. M. (1996). J. Chem. Inf. Comput. Sci. 36, 1142-1145.
Guttsait, A. V., Belyakov, S. V., Mishnev, A. F., Bleidelis, Ya. Ya. \& Gudrinietse. E. Yu. (1987). Khim. Geterotsikl. Soedin. pp. 12331237.

Kruszewski, J. \& Krygowski, T. M. (1972). Tetrahedron Lett. pp. 3839-3942.
Krygowski, T. M. \& Cyrañski, M. (1996a). Tetrahedron, 52, 17131722.

Krygowski, T. M. \& Cyrañski. M. (1996b). Tetrahedron, 52, $10255-$ 10264.

Kuma Diffraction (1991). KM-4 Software. Version 5.0. Kuma Diffraction, Wrocław, Poland.
Lesher, Y. \& Grvet, D. M. (1973). Fr. Demande, 138, 216.
Perez-Medina, L. A., Meriella, R. P. \& McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574-2579.
Sheldrick, G. M. (1990a). Acta Crust. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 1523-1525

# $\mathbf{O}-\mathbf{H} \cdots \mathbf{O}, \mathbf{C}-\mathbf{H} \cdots \mathbf{O}$ and $\mathbf{C}-\mathbf{H} \cdots \boldsymbol{\pi}_{\text {arene }}$ Intermolecular Interactions in (2R/2S)-2-(1-Oxo-1,3-dihydroisoindol-2-yl)-3-phenylpropanoic Acid 

Fiona Brady, John F. Gallagher and Peter T. M. Kenny<br>School of Chemical Sciences, Dublin City University, Dublin 9. Ireland. E-mail: gallagherjfg@dcu.ie

(Received 30 January 1998; accepted 20 April 1998)


#### Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$, forms a hydrogenbonded network in the solid state consisting of O $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}, \mathrm{C}_{\text {arene }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $\mathrm{C}_{\text {arenc }}-\mathrm{H} \cdots \pi_{\text {arene }}$ intermolecular interactions, with shortest $\mathrm{O} \cdots \mathrm{O}, \mathrm{C} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{C}$ distances of $2.625(2), 3.281$ (3) and 3.652 (3) $\AA$, respectively. The interplanar angle between the five- and six-membered rings of the isoindole system is $1.07(14)^{\circ}$, with the carbonyl O atom 0.110 (3) $\AA$ from the $\mathrm{C}_{4} \mathrm{~N}$ ring plane.


## Comment

The study of biologically active molecules is of primary importance in medicinal chemistry. Processes such as hormone processing, viral replication and cancer cell invasion are critically dependent on protease enzymes which have recently become attractive target molecules in drug design (Testa et al., 1993). Many inhibitors are based on modified amino acids which incorporate the basic structural features determining normal enzymesubstrate interactions. Phthalimidine (isoindolin-1-one) derivatives often display biological activity as potential anti-inflammatory agents and antipsychotics. The majority of structurally determined phthalimidine systems are either $N$-substituted or have a hydroxy substituent at the 3-position (McNab et al., 1997). The title compound, (I), synthesized as a racemic mixture from dL-phenylalanine, is part of an ongoing study of hydrogen-bonding interactions in amino acid derivatives.

(I)

A view of molecule (I) ( $S$ configuration) with the atomic numbering scheme is given in Fig. 1 and selected dimensions are given in Table 1. The bond lengths and angles in the heterocyclic ring are similar to those reported previously (McNab et al., 1997) and in agreement with expected values (Orpen et al., 1994). The angle between the five- and six-membered rings of the isoindole system is $1.07(14)^{\circ}$ and the maximum deviation from planarity for an atom in either ring plane is 0.021 (1) $\AA$ for C 3 , with the carbonyl O 3 atom 0.110 (3) $\AA$ from the $\mathrm{C}_{4} \mathrm{~N}$ ring plane. This ring is almost perpendicular to both the carboxylic acid $\mathrm{CO}_{2}$ plane $\left[84.74(15)^{\circ}\right]$ and the 3-phenyl ring plane


Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.
[84.78 (6) ${ }^{\circ}$ ]. Examination of (I) with PLATON (Spek, 1997a) revealed voids in the crystal lattice of volume $16 \AA^{3}$, which is too small a volume for a solvent molecule to occupy.

The hydrogen bonding in (I) is dominated by O $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}, \mathrm{C}_{\text {arene }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $\mathrm{C}_{\text {arene }}-\mathrm{H} \cdots \pi_{\text {arenc }}$ intermolecular interactions (Table 2 and Fig. 2). Conventional carboxylic acid $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between pairs of carboxylic acid groups with graph set $R_{2}^{2}(8)$ (Ferguson et al., 1995) is not observed. Hydro-gen-bonded rings with graph set $R_{2}^{2}(9)$ are formed from the combination of (i) carboxylic acid $\mathrm{Ol}-\mathrm{Hl} \cdots \mathrm{O}^{1}$ interactions with the heterocyclic ring $\mathrm{C}=\mathrm{O}$ group [O1…O3i 2.625 (2) $\AA$; symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y$, $z$ ] and (ii) phenyl ring $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{ii}}$ contacts with the carboxylic acid $\mathrm{C}=\mathrm{O}$ moiety [O2 $\cdots \mathrm{C} 5^{\mathrm{ii}} 3.281$ (3) $\AA$; symmetry code: (ii) $\left.\frac{1}{2}-x, y-\frac{1}{2}, z\right]$. Association of (I) about inversion centres as $R / S$ hydrogen-bonded pairs arises through $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions [ $\mathrm{C} 6 \cdots \mathrm{Cg} 2^{\text {iii }}$ 3.623 (2) $\AA$, with a corresponding shortest C $\cdots \mathrm{C}$ distance of 3.652 (3) $\AA$; Cg2 is the ring centroid of the 3-phenyl ring; symmetry code: (iii) $-x,-1-y, 1-z$ ]. The dimers are linked by $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions [C16 $\cdots C g 1^{\text {iv }} 3.739$ (2) $\AA ; C g 1$ is the ring centroid of the isoindolinone phenyl ring; symmetry code: (iv) $x-\frac{1}{2}$, $\left.-\frac{1}{2}-y, 1-z\right]$.


Fig. 2. A view of the hydrogen-bonding interactions in the crystal structure of (I).

The presence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions with stronger hydrogen bonds, e.g. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, has been commented on previously (Steiner, 1997). The formation of one-dimensional molecular zippers in calixarenes has been attributed to result from the in-
tramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds pairing off to define the calixarene molecular cavity with cooperative intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions determining the polymeric self-inclusion process (Böhmer et al., 1994; Gallagher et al., 1994). Further studies are in progress on interactions in related amino acid derivatives.

## Experimental

The title compound was prepared by the overnight reaction of DL-phenylalanine and $o$-phthalaldehyde in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ under $\mathrm{N}_{2}$ (Allin et al., 1996). Filtration of the hot solution and subsequent slow cooling of the filtrate allowed the isolation of large colourless crystals [m.p. 469-470 K (uncorrected)].

## Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=281.30$
Orthorhombic
Pbca
$a=11.4712(8) \AA$
$b=12.3457$ ( 8 ) $\AA$
$c=20.582(2) \AA$
$V=2914.9(4) \AA^{3}$
$Z=8$
$D_{r}=1.282 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=9.55-19.33^{\circ}$
$\mu=0.088 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block
$0.43 \times 0.38 \times 0.15 \mathrm{~mm}$ Colourless

## Data collection

Enraf-Nonius CAD-4
$\quad$ diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
5641 measured reflections
2558 independent reflections
1620 reflections with
$\quad I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.013 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 13 \\
& k=0 \rightarrow 14 \\
& l=-24 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$u \cdot R\left(F^{2}\right)=0.098$
$S=1.013$
2558 reflections
191 parameters
H atoms riding
$\begin{aligned} u= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0436 P)^{2}\right. \\ & +0.3708 P]\end{aligned}$
$+0.3708 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.138 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.128 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0040 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

| $\mathrm{Ol}-\mathrm{Cl}$ | $1.314(2)$ | $\mathrm{Cl}-\mathrm{C} 2$ | $1.519(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{Cl}$ | $1.194(2)$ | $\mathrm{C} 2-\mathrm{C} 21$ | $1.531(3)$ |
| $\mathrm{O} 3-\mathrm{C} 3$ | $1.239(2)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.469(2)$ |
| $\mathrm{NI}-\mathrm{C} 2$ | $1.452(2)$ | $\mathrm{C}-\mathrm{C} 10$ | $1.491(3)$ |
| $\mathrm{NI}-\mathrm{C} 3$ | $1.354(2)$ | $\mathrm{Cl1}-\mathrm{C} 21$ | $1.511(3)$ |
| $\mathrm{N} 1-\mathrm{C} 10$ | $1.458(2)$ |  |  |
| $\mathrm{C} 2-\mathrm{Nl}-\mathrm{C} 3$ | $121.55(14)$ | $\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 21$ | $112.07(14)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10$ | $123.06(14)$ | $\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$ | $123.78(16)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 10$ | $112.94(14)$ | $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$ | $129.44(16)$ |


| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$ | $124.00(18)$ | $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$ | $106.75(16)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$ | $112.05(16)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $129.84(18)$ |
| $\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$ | $123.95(18)$ | $\mathrm{C} 8-\mathrm{C}-\mathrm{C} 10$ | $129.88(18)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$ | $109.24(15)$ | $\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 9$ | $102.20(14)$ |
| $\mathrm{NI}-\mathrm{C} 2-\mathrm{C} 21$ | $112.79(15)$ |  |  |

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$
Cg 1 is the ring centroid of the isoindolinone phenyl ring and Cg 2 is the ring centroid of the 3-phenyl ring.

| $D-\mathrm{H} \cdots \mathrm{A}$ | D-H | H $\cdots A$ | D..A | $D \ldots \mathrm{H} \cdots \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: |
| OI-HI . . $\mathrm{O}^{\prime}$ | 0.87 | 1.78 | 2.625 (2) | 163 |
| $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {¹ }}$ | 0.93 | 2.36 | 3.281 (3) | 171 |
| C6-H6 . . $\mathrm{Cg}^{211}$ | 0.93 | 2.69 | 3.623 (2) | 176 |
| C16-H16..CgI" | 0.93 | 2.97 | 3.739 (2) | 141 |

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, z ;$ (iii) $-x,-1-$ $y, 1-z ;$ (iv) $x-\frac{1}{2},-\frac{1}{2}-y, 1-z$.
H atoms were allowed for as riding atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$; the coordinates of the carboxylic acid H atom were located in a difference Fourier map in the latter stages of refinement and included in the structure-factor calculations with $\mathrm{O}-\mathrm{H} 0.87 \AA$ and $\mathrm{C}-\mathrm{O}-\mathrm{H} 110^{\circ}$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997b). Molecular graphics: NRCVAX96, ORTEPII (Johnson, 1976) and PLUTON (Spek, 1997b). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

JFG thanks the Research and Postgraduate Committee of Dublin City University, the Royal Irish Academy and Forbairt for the generous funding of a research visit to the University of Guelph (June-August, 1997), and especially Professor George Ferguson for use of his diffractometer and computer system.

[^0]
## References

Allin, S. M., Hodkinson, C. C. \& Taj, N. (1996). Synlett, pp. 781-782.
Böhmer, V., Kraft, D., Vogt, W., Ferguson, G. \& Gallagher, J. F. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 1221-1230.

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.
Ferguson, G., Gallagher, J. F. \& McAlees, A. J. (1995). Acta Cryst. C51, 454-458.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gallagher, J. F., Ferguson, G., Böhmer, V. \& Kraft, D. (1994). Acta Cryst. C50, 73-77.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
McNab, H., Parsons, S. \& Shannon. D. A. (1997). Acta Cryst. C53, 1098-1099.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation. Vol. 2. edited by H.-B. Bürgi \& J. D. Dunitz., Appendix A. Weinheim: VCH Publishers.
Sheldrick. G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1997a). PLATON. Molecular Geometry Program. Version of May 1997. University of Utrecht, The Netherlands.
Spek, A. L. (1997b). PLUTON. Molecular Graphics Program. Version of May 1997. University of Utrecht, The Netherlands.
Steiner, T. (1997). J. Chem. Soc. Chem. Commun. pp. 727-734.
Testa, B., Kyburz, E., Fuhrer, W. \& Giger, R. (1993). Editors. Perspectives in Medicinal Chemistry. Basel: Verlag Helvetica Chimica Acta.

Acta Cryst. (1998). C54, 1525-1527

## 6-(4-Chlorophenyl)-3-methyl-2,4a-diphenyl-5,6-dihydro-1 $\mathrm{H}, 4 \mathrm{a} \boldsymbol{H}$-1,3-oxazino $[2,3-d][1,5]$ -benzothiazepin-1-one

Jiaxi Xu, ${ }^{a}$ Sheng Jin, ${ }^{a}$ Zeying Zhang ${ }^{b}$ and<br>Thomas C. W. Mak ${ }^{b}$<br>${ }^{a}$ College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China, and ${ }^{b}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong. E-mail: jxxu@chemms.chem. pku.edu.cn

(Received 5 Junuary 1998; accepted 16 April 1998)

## Abstract

The title compound, $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{2} \mathrm{~S}$, has a cis-ringfusion tricyclic structure, which is formed from a benzene ring, a seven-membered heterocyclic thiazepine ring and a 1,3 -oxazinone ring. The 1,5 -thiazepine ring has a slightly distorted boat-like conformation, whereas the 1,3-oxazinone ring adopts a half-chair conformation.

## Comment

Benzothiazepines, especially those with a fused heterocyclic ring, are potential pharmaceutical agents (Corral et al., 1985; Bock et al., 1989; Xu \& Jin, 1994). 5,6-Dihydro- $1 H, 4 \mathrm{a} H$-1,3-oxazino $[2,3-d][1,5]$ benzothiazepin1 -one derivatives with potential anxiolytic and hypnotic activities (Sternbach, 1979; Xu \& Jin, 1992) were synthesized by the Diels-Alder reaction of 2,4-diaryl-2,3-dihydro-1,5-benzothiazepine derivatives and $\alpha$-diazo-$\beta$-diketone (Capuano \& Gartner, 1981; Capuano \& Wamprecht, 1986). When an asymmetric $\alpha$-diazo- $\beta$ diketone, such as 2 -diazo-1-phenyl-1,3-butanedione, is


[^0]:    Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1250). Services for accessing these data are described at the back of the journal.

