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Abstract

We describe in this paper two methods for 3D shape in-
dexing and retrieval that we apply on two data collections
of the SHREC - SHape Retrieval Contest 2007: Watertight
models and 3D CAD models. Both methods are based on a
set of 2D multi-views after a pose and scale normalization
of the models using PCA and the enclosing sphere. In all
views we extract the models silhouettes and compare them
pairwise. In the first method the similitude measure is ob-
tained by integrating on the pairs of views the difference be-
tween the areas of the silhouettes union and the silhouettes
intersection. In the second method we consider the exter-
nal contour of the silhouettes, extract their convexities and
concavities at different scale levels and build a multiscale
representation. The pairs of contours are then compared by
elastic matching achieved by using dynamic programming.
Comparisons of the two methods are shown with their re-
spective strengths and weaknesses.

1 Introduction

We proposed two methods for the 3D Shape Retrieval
Contest 2007. Each one is based on a multi-view approach
which keeps 3D model coherence by considering simulta-
neously a set of 2D images in specific view directions. The
various silhouettes of a model being strongly correlated,
using a set of them help to better discriminate one model
among others.

First of all, we have to get a robust normalization of the
model pose and model scale in order to remain invariant to
various geometrical transformations (translation, rotation,
scaling). We used a Principal Continuous Component Anal-
ysis [4][5] and the smallest enclosing sphere [3] to solve
these problems.

The first method is based on silhouettes intersection. We

capture a set of views of a model and we extract its silhou-
ette in each view. The distance between two silhouettes is
chosen as equal to the number of pixels that are not common
to the two silhouettes intersection. The distance between
two models is defined as the sum of the distances between
their two sets of silhouettes.

The second approach is based on a multiscale represen-
tation of the external closed contour of non rigid 2D shapes
presented in [1]. We capture a set of views of a model and
for each view we extract and normalize the external border
of the silhouette, and we buid its multi-scale shape repre-
sentation where for each contour point we store information
on the convexities and concavities at different scale levels.
We then search the optimal elastic match between each pair
of silhouettes by minimizing the distance between matched
contour points and we integrate the distance over the silhou-
ettes pairs.

Section 2 presents the normalization method for the 3D
models. Section 3 describes the intersection methods and
section 4 presents the contour convexities and concavities
approach. Experimental results are shown in section 5.

2 Model normalization

Before comparing 3D models we need to proceed to a ro-
bust normalization of their pose and scale in order to remain
invariant to various geometrical transformations (transla-
tion, rotation, scaling). For the center and the scale, we
use the smallest enclosing sphere S [3] (see Figure 1). The
normalization then becomes:

x =
x− cx(S)

d(S)
, y =

y − cy(S)
d(S)

and z =
z − cz(S)

d(S)

where d(S) is the diameter of S and ci(S), i = x, y, z are
the i-th coordinates of its centre. The use of the smallest en-
closing sphere has several advantages: it is fast to calculate,
it allows maximizing the model size inside the unit sphere
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Figure 1. Smallest enclosing sphere.

and then its silhouette size in any view direction, with the
guaranty that the silhouette remains inside the unit disc in-
scribed in the image domain associated to this view (no risk
of accidental cropping of the silhouette).

For the normalization of the model pose we use the Con-
tinuous Principal Component Analysis [4][5] which defines
and orientates the three principal axis of a model in a robust
way and at a very reasonable computation cost.

3 Intersection descriptor

3.1 Signature extraction

The various silhouettes of a model being strongly cor-
related, using a set of them help to better discriminate one
model among others [2]. For this, we can use any set of
view directions regularly distributed in space. We consider
here simply the three orthogonal views along the oriented
principal axis with parallel projections. A higher number of
views could be used but we limit it to 3 to keep a reduced
size for the shape descriptors.

We choose an image size of 256x256 for each silhouette.
This resolution gives a good tradeoff between precision and
computation time. To keep the maximum information from
a silhouette, the simplest way is just to keep its image (see
Figure 2). We will then compare two silhouettes by su-
perposing them and comparing their intersection with their
union. A silhouette being a binary image we can stored it
in a lossless compression format fast to read and to decode
when comparing silhouettes. The signature of a model is
then simply constituted by the three compressed silhouettes
corresponding to the three oriented principal directions.

Figure 2. Three silhouettes of a model.

3.2 Signature matching

The distance between two models is defined as the dis-
tance between their two sets of silhouettes. The three sil-
houettes of each set being sorted according the three princi-
pal axis, this distance is then just defined as the sum of the
distances of the three pairs of silhouettes, one pair per axis.
The distance between two silhouettes is chosen as equal to
the number of pixels that are non common to the two silhou-
ettes, i.e. the difference between the areas of the silhouettes
union and the silhouettes intersection (see Figure 3). This
measure can be computed very efficiently directly on the
files compressed with a simple run length encoding. The
distance computation between two models is then straight-
forward and fast. To answer a query we just measure its
distance to every database models and sort the list accord-
ingly (see Figure 4).

Figure 3. Intersections of two models. In black their
common parts, in blue the parts of the first model and
in red the parts of the second one

4 Contour convexities and concavities de-
scriptor

4.1 Signature extraction

We use 256x256 silhouettes for both the CAD and Wa-
tertight models tracks. We also test 64x64 silhouettes on
the Watertight models: this smaller image resolution allows
a reduction of the descriptor size and of the computation
time at the price of a stronger sampling noise leading to
a lower retrieval precision. The descriptor of a silhouette
contour C is obtained by normalizing the contour length
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Figure 4. 15 first results for shape retrieval us-
ing the intersection method on the Watertight model
database. The query 65.off is on the top left.

with 100 sampled contour points and by extracting convex-
ity/concavity information at each sampled contour point and
at 10 scale levels [1]. The representation can be stored in
the form of a 2D matrix where the columns correspond to
contour points (contour parameter u) and the rows corre-
spond to the different scale levels σ. The position (u, σ)
in this matrix contains information about the degree of con-
vexity or concavity for the contour point u at scale level
σ. The simplified boundary contours at different scale lev-
els are obtained via a curve evolution process. It should be
noted that we use the same number of sample contour points
at each scale. Let the contour C be parameterized by arc-
length u : C(u) = (x(u), y(u)), where u ∈ [0, N ]. The
coordinate functions of C are convolved with a Gaussian
kernel φσ of bandwidth σ ∈ {1, 2...σmax}. The resulting
contour Cσ becomes smoother with increasing σ value, un-
til finally the contour becomes convex (see Figure 5).

We propose a very simple measure for the convex-
ity/concavity of the curve. It is defined as the displace-
ment of the contour between two consecutive scale lev-
els. If we denote the contour point u at scale level σ as
p(u, σ), the displacement d(u, σ) of the contour between
two consecutive scale levels at point p(u, σ) can be defined
as the Euclidian distance between positions of p(u, σ) and
p(u, σ − 1).

4.2 Signature matching

When comparing two contours A and B, it is neces-
sary to examine the distance between each sampled contour
point of both contours. If two contour points uA and uB

are represented by their multi-scale features dA(uA, σ) and
dB(uB , σ) respectively, then the distance between the two

Figure 5. Example of extracting the MCC shape
representation: (a)-original shape image, (b)-filtered
versions of the original contour at different scale lev-
els, (c)-final MCC representation for 100 contour
points at 14 scale levels.

contour points can be defined as:

d(uA, uB) =
1
K

K∑
σ=1

|dA(uA, σ)− dB(uB , σ)|

where K is the number of scale (here 10).
As part of the matching process, the best correspondence

between contour points must be determined. We use a dy-
namic programming method with an N ∗N distance table to
conveniently examine the distances between corresponding
contour points on both shapes. The columns represent con-
tour points of one shape representation and the rows repre-
sent the contour points of the other. Each row/column entry
in the table is the distance between two corresponding con-
tour points calculated according to the previous equation.

Finding the optimal match between the columns corre-
sponds to finding the lowest cost diagonal path through the
distance table (see Figure 6 where the contours feature vec-
tors are illustrated as grey levels along each axis).

The three silhouettes of each set being sorted according
to the three principal axis, the distance between two models
is just defined as the sum of the distances of the three pairs
of silhouettes, one pair per axis (see Figure 7).

5 Experimental results

5.1 Experimental results for Watertight
track

We propose three runs for the SHREC’07 Watertight
models track:
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Figure 6. Matching of two MCC representations by
using dynamic programming.

Figure 7. 15 first results for shape retrieval using
the contour convexities and concavities method on the
Watertight model database. The query 186.off is on
the top left.

• Run 1: The contour convexities and concavities de-
scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 256x256 pixels for each silhouettes.

• Run 2: The contour convexities and concavities de-
scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 64x64 pixels for each silhouettes.

• Run 3: The multi-view intersection descriptor, with 3
silhouettes aligned with the principal axis and a resolution
of 256x256 pixels for each silhouettes.

The contour convexities and concavities descriptor pro-
vides better results than the multi-view intersection descrip-
tor, see Figure 8 (top and bottom). The two different image
resolutions produce practically the same results, see Figure

Figure 8. 15 first results for the Watertight query
107.off. Top: run 1, Middle: run 2, Bottom: run 3.

8 (middle). We present in Table 1 the classwise DCGs for
each run. We observe that run 1 and run 2 perform per-
fectly results for the plier class. For the contour convexities
and concavities descriptor the worst DCGs are obtained for
spring and vase classes. These two classes contains models
with heterogeneous shapes. For the multi-view intersection
descriptor the worst DCG is obtained for armadillo and oc-
topus.

5.2 Experimental results for CAD track

We propose two runs for the SHREC’07 CAD models
track:

• Run 1: The contour convexities and concavities de-
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Class DCG Run 1 DCG Run 2 DCG Run 3
airplane 92.9 93.6 66.5

ant 91 89.7 46.7
armadillo 82.4 80.3 46.3
bearing 86.1 80.1 80.8

bird 87.1 89.7 61.6
buste 87 85.9 66.3
chair 92 93.4 87.7
cup 77.2 77.1 73.7
fish 94.3 93.2 76.9

four leg 90.4 85.5 68.1
glasses 90.8 91 92.5
hand 81.8 77.2 56.6

human 82.8 77.4 68
mechanic 89.1 91 85.6
octopus 79.2 74.2 41.2

plier 100 100 97
spring 55.3 54.5 50.6
table 77.7 81.6 81.9
teddy 95.6 96 80
vase 52.2 53.7 56.3

Table 1. Classwise DCGs performance for the three
runs on the Watertight models.

scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 256x256 pixels for each silhouettes.

• Run 2: The multi-view intersection descriptor, with 3
silhouettes aligned with the principal axis and a resolution
of 256x256 pixels for each silhouettes.

The contour convexities and concavities descriptor pro-
vides again better results than the multi-view intersection
descriptor (see Figure 9). The first method is more robust
against small variations of the shape and against the mir-
rored silhouettes problem. But the computation time per
query model is very different between the two methods:
with the contour convexities and concavities descriptor the
CPU time per query is ∼ 20 s and with the multi-view in-
tersection descriptor ∼ 0,06 s.

6 Conclusion

We have tested two different methods on the SHREC’07
contest. We observe that we obtain the best results with
the convexities/concavities descriptor. We notice that the
intersection method is not very robust with small defor-
mations of the models. The contour convexities and con-
cavities method needs much more computation time, but
this weakness could be strongly reduced by optimizing the
source code.

Figure 9. 15 first results for the CAD query 40.stl.
Top: run 1, Bottom: run 2.
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