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Abstract

One of the main aims of emerging audio-visual (AV) ap-
plications is to provide interactive navigation within a cap-
tured event or scene. This paper presents a view synthe-
sis algorithm that provides a scalable and flexible approach
to virtual viewpoint synthesis in multiple camera environ-
ments. The Multi-View Synthesis (MVS) process consists of
four different phases that are described in detail: surface
identification, surface selection, surface boundary blending
and surface reconstruction. MVS view synthesis identifies
and selects only the best quality surface areas from the set
of available reference images, thereby reducing perceptual
errors in virtual view reconstruction. The approach is cam-
era setup independent and scalable as virtual views can be
created given 1 to N of the available video inputs. Thus,
MVS provides interactive AV applications with a means to
handle scenarios where camera inputs increase or decrease
over time.

1. Introduction

One of the main aims of emerging audio-visual (AV) ap-
plications is to remove the passiveness of viewing a cap-
tured event or scene [8]. Such systems encourage users to
explore and navigate AV scenes by allowing them to specify
their own viewpoint and orientation. Recently, the Moving
Picture Experts Group (MPEG) of ISO/IEC formed a work-
ing group, called 3DAV, to investigate the need for standard-
ization in this area [9].

Theoretically, all the visual information associated with
a 3D scene can be specified using the 7D plenoptic func-
tion [1]. However, in practical terms it is not possible to
entirely define this scene representation method. Instead,
captured reference images of a scene can be regarded as
a sparse set of samples of the complete plenoptic function.
The more samples provided, the less additional scene geom-
etry information required for image-based novel view cre-
ation. Image-based rendering (IBR) techniques create vir-
tual views from a set of scene images with associated point

correspondences [7]. They are most suited to an environ-
ment where the scene interaction area is well defined and
can be captured using an N camera setup.

The process of identifying and combining information
from captured images to create novel views is called view
synthesis. A number of restrictive approaches exist for se-
lecting which camera in a stereo setup best captures a sur-
face and how these surfaces should be combined [2]. How-
ever, these techniques fail when migrated to an arbitrary
multi-camera environment. Existing multiple image view
synthesis approaches avoid surface identification and sim-
ply combine all available surface information, usually via
view orientation weighting, in order to create virtual views
[6]. This implies that although more original information is
available, errors due to occlusions, depth mismatches etc;
are incorporated into the final virtual view. In this paper we
present a new view synthesis approach that identifies and se-
lects only the best quality surface areas from available refer-
ence images, therefore reducing perceptual errors in virtual
view reconstruction. The approach is camera setup inde-
pendent and scalable as virtual views can be created given
1 to N of the available video inputs.

The layout of the paper is as follows: a new scalable vir-
tual view synthesis algorithm called Multi-View Synthesis
(MVS) is described in Section 2. In Section 3 experimen-
tal results are presented and verified by comparison with
ground truths. Finally, in Section 4 conclusions and future
work are described.

2. Scalable Virtual Viewpoint Synthesis

Of the AV application scenarios being investigated by
3DAV the most challenging is that of Free Viewpoint Video
(FVV) [9]. FVV applications are designed to allow unre-
stricted scene navigation and are captured using a multiple
camera setup. Current view synthesis solutions in FVV are
based on using either images with no scene geometry infor-
mation that are obtained via a dense sampling of the scene,
implying large information redundancy [10], or reconstruct-
ing complex 3D models of the scene from a sparse camera
setup [4].
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Figure 1. BUSINESS-MAN (a)-(d) Reference images A, B, C and D. (e) Ground truth. (f)-(i) 2D Surface
Sampling after warping (a)-(d) respectively.

The MVS algorithm provides a scalable and flexible ap-
proach to view synthesis for FVV. MVS is scalable as it’s
designed to handle an arbitrary number of reference images
and is therefore suitable for both sparse and dense camera
sampling. At the core of MVS is a flexible definition of
what constitutes a 3D scene surface. This flexibility ensures
that the best quality virtual view reconstruction is produced
from the available views. The MVS process is a virtual view
dependent approach implying that it examines the reference
images at the virtual viewpoint before the surface identifi-
cation and selection process occurs. It requires the camera
setup to be calibrated and that each reference image has a
corresponding disparity/depth map [3].

Fig. 1(a)-(d) presents four different camera views taken
within a test environment that will be used to illustrate the
MVS approach. Fig. 1(e) is taken from a camera placed
at the position of the final virtual view and will be used
as a ground truth to indicate the correctness of the approach.

2.1. Surface Identification

The first step in MVS surface identification is to warp
the reference images to the virtual view position. After im-
age warping, surface holes arise due to both sampling gaps
and surface disclosures [2]. The 2D displacement across the
surfaces is a measure of the extent of the sampling of the 3D
surfaces within the reference image and can be used as cri-
teria for virtual view surface quality recognition. Fig. 1(f)-
(i) illustrates the 2D sampling of the surface points (every
fifth sample) at the virtual viewpoint for reference images
Fig. 1(a)-(d), respectively. Examining the 2D surface sam-
pling we can determine the following:

• Corresponding 3D scene points/surfaces visible across

reference images are warped to the same position at
the virtual viewpoint.

• These matching virtual view areas/surfaces in the
warped images have varying sampling densities.

Therefore, each reference image defines its own representa-
tion of the 3D surfaces required at the virtual view position.
How we identify their surface quality is determined using
the Sampling Density Map (SDM).

Let q be a surface sample in the reference image that is
warped to position q′ in the virtual view. Let q1 − q8 be the
set of reference image neighbours of q defined by a 3 × 3
block centred at q, we call these samples the local surface
of q. The displacement between a sample q′ = [x′, y′] and
any of its warped reference image neighbours q′i = [x′

i, y
′
i]

can be determined via Eq. (1):

ρq′(q′
i) =

√
(x′

i − x′)2 + (y′
i − y′)2 (1)

A measure of the extent of the displacement of q′ with re-
spect to its warped local surface is computed using the sam-
pling density function:

δ(q′) =
∑N

i=1 ρq′(q′
i)

N
(2)

where N is the number of reference image sample neigh-
bours of q in the local surface. A sampling density value is
computed for every pixel sample in the warped reference
image and stored in the SDM. The higher the value at a
sample the larger the displacement from its local surface in
the warped view. Implying the surface is either undersam-
pled in the reference image or that the sample’s reference
image neighbourhood lies on different sides of a depth
discontinuity visible from the virtual viewpoint.
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Figure 2. (a)-(d) Improvement in virtual viewpoint SDM as reference images added incrementally.
Colour-bar indicates SDM values.(e) Surface Map for surface selection of (d). (f)-(i) Surface recon-
struction corresponding to surface selections of (a)-(d).

2.2. Surface Selection

The MVS surface selection process determines the sur-
faces across the available surface representations to be used
for view synthesis. This selection process is based on a sam-
pling density weighting scheme. We have previously noted
that corresponding 3D scene points or surfaces visible in
more than one reference image are warped to the same po-
sition in the virtual view. Therefore, examining the SDM
of two reference images A and C, we know that the surface
sample at position δA

(x,y) the SDM of A and position δC
(x,y)

in the SDM of C indicate the reference image’s sampling
density for the same virtual view position. Hence, we can
compute a sampling density weight function for the surface
sample Q in the SDM of image A, α̂δA

Q , via Eq. (3):

α̂δA

Q = 1 − δA
Q∑N

i=1 δi
Q

(3)

where N is the number of reference images. We then nor-
malise the surface sample sampling density weight across
the SDMs to sum to unity via:

αδA

Q =
α̂δA

Q∑N
i=1 α̂δi

Q

(4)

The approach to surface selection is to loop through the N
available SDMs selecting a non-processed surface with the
highest αδ weight on each pass Eq. (5):

ΛQ = Φ(αδk

Q ) (5)

where ΛQ represents the final virtual view surface sample
at Q, the αδi

Q weight is a measure of the sampling density at
surface sample Q based on reference view i, where i ranges
from [1, N ], and Φ is a function which selects the surface
sample associated with the maximum weight. Although the
approach is sample based it dynamically groups local sam-
ple neighbourhoods into surfaces of similar sampling den-
sities. This ensures a virtual viewpoint related surface divi-
sion as opposed to a strict depth or texture surface identifi-
cation.

Fig. 2(a) illustrates a 3D representation of the SDM
at the virtual viewpoint when surface samples are taken
exclusively from the warped reference image A (Fig. 1(a)).
Each SDM value is presented as a height, the higher the
value the more sparse the sampling, Fig. 1(f). In Fig. 2(b)
reference image B is added to the surface selection process.
It can be determined that this new SDM is smoother, as the
sampling density spikes have decreased, indicating that the
surface sampling is denser and therefore the virtual view
surface quality has improved. Fig. 2(c) and (d) illustrate the
added improvement in surface quality as images C and D,
respectively, are included in the surface selection process.
A denser surface sampling implies an increase in surface
quality at the virtual view.

2.3. Surface Boundary Blending

Integrating only the best view of each required surface
implies that neighbouring surfaces in the final virtual
view may be supplied from different reference images.
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Figure 3. RABBIT (a)-(d) Reference images A, B, C and D. (e) Ground truth. (f)-(i) Improvement in
view synthesis results from incrementally adding images A, B, C and D respectively to the MVS
process.

Fig. 2(e) illustrates a Surface Map indicating the chosen
surface samples from images A, B, C and D for the virtual
view defined in Fig. 2(d). A surface map is designed to
indicate from which reference view the chosen virtual
view surfaces originate. Here, the colour red represents
surfaces from image A, blue from image B, green from
image C and yellow from D. At these surface boundaries,
specularity and other photometric differences across the
images can cause perceptual seams to appear in the virtual
view. In order to lessen this effect a weighted blending is
implemented on an extended boundary region (e.g. five
pixels) around the connected surfaces. We use a fixed
linear ramp blending in these overlapping areas to compute
colour values for the final virtual view.

2.4. Surface Reconstruction

View synthesis surface reconstruction deals with two is-
sues: those of surface visibility and hole filling during novel
view creation at the virtual viewpoint.

Resolving surface visibility occurs at two levels: within
each warped reference image during surface identification
and across the N images used during view synthesis. To
solve the former issue we implement a back-to-front warp
order [5] to avoid surface occlusion errors. During mul-
tiple image view synthesis the surface selection weighting
scheme, which identifies only one reference image for a re-
quired surface area, resolves any visibility issues.

View synthesis hole filling involves identifying areas
within warped surfaces where virtual view required surface
information is missing. There are two different types of
holes. Smaller sampling gaps in continuous surfaces are
filled using interpolation. While surface disclosures, which
arise due to the movement of a foreground object with
respect to the background, are filled using the MVS surface
selection approach. This approach ensures that all the
surfaces across the N reference images are considered for
hole filling and therefore reduces perceptual errors during
surface reconstruction.

3. Experimental Results

The MVS algorithm provides a scalable and flexible ap-
proach to view synthesis. To indicate the correctness of the
approach we compare the view synthesis results from the
two test sequences illustrated in Fig. 1 and Fig. 3 with their
respective ground-truths. In order to demonstrate the scal-
ability of the MVS view synthesis method we incremen-
tally add reference images to the view synthesis process and
compare all the resulting virtual views. This allows a di-
rect comparison of the improvements in virtual view recon-
struction as more reference images are added to the MVS
process.

It also indicates the flexibility of the view synthesis
approach as we can clearly determine that the approach can
gracefully deal with both a decrease and increase in camera
inputs. Fig. 4(a) presents the results of PSNR measures
between the MVS view synthesis and the ground-truth over
the 60 frame BUSINESS-MAN test sequence. The graph
details how the PSNR improves as reference images are
added to the view synthesis process. This improvement
is from an average of 29dB for the sequence when just
one image is used to an average of 32dB when using all
four. A subjective result is provided in Fig. 2(f)-(i). The
second test sequence is the 20 frame RABBIT sequence.
Fig. 3(a)-(d) presents a frame from the four camera in-
puts, Fig. 3(e) is the ground truth. The PSNR measures
between the MVS view synthesis and the ground-truth
are presented in Fig. 4(b). The graph details how the
PSNR improves as reference images are added to the view
synthesis process. This improvement is from an average of
25dB, when just one image is used, to an average of 33dB
using all four. A subjective result is provided in Fig. 3(f)-(i).
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Figure 4. Graph of scalable view synthesis improvements (PSNR) in (a) BUSINESS-MAN (b) RABBIT
test sequence.

4. Conclusions and Future Work

In this paper we discussed the shortcomings of current
multiple image view synthesis approaches. We then pre-
sented the MVS algorithm that provides a scalable and flex-
ible approach to view synthesis in multiple camera environ-
ments.

The process consists of four different phases that are
described in detail: surface identification, surface selec-
tion, surface boundary blending and surface reconstruction.
MVS identifies and selects only the best quality surface ar-
eas from the set of available reference images, thereby re-
ducing perceptual errors in virtual view reconstruction. The
approach is camera setup independent and scalable as vir-
tual views can be created given 1 to N of the available
video inputs. Thus, MVS provides interactive AV appli-
cations with a means to handle scenarios where camera in-
puts increase or decrease over time. Experimental results
were presented and verified using both objective (PSNR)
and subjective comparisons.

Ideas for future work include: a pre-processing step
to identify from a very large number of available video
input streams only those input streams that contain surfaces
required for the current virtual viewpoint synthesis; and
incorporating a system’s currently available bandwidth and
processing power into the scalability process.
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