A Low Complexity Hardware Architecture for
Motion Estimation

Daniel Larkin, Valentin Muresan and Noel O’Connor
Centre for Digital Video Processing, Dublin City University, Dublin, Ireland
Email: {larkind, muresanv, oconnorn }@eeng.dcu.ie

Abstract— This paper tackles the problem of accelerating
motion estimation for video processing. A novel architecture
using binary data is proposed, which attempts to reduce power
consumption. The solution exploits redundant operations in the
sum of absolute differences (SAD) calculation, by a mechanism
known as early termination. Further data redundancies are
exploited by using a run length coding addressing scheme, where
access to pixels which do not contribute to the final SAD value is
minimised. By using these two techniques operations and memory
accesses are reduced by 93.29% and 69.17% respectively relative
to a systolic array implementation.

I. INTRODUCTION

The ongoing global trend to shift multimedia applications
from desktop to mobile platforms has encountered several
technical hurdles: demanding real-time applications, low band-
width mobile networks, and mobile device hardware (HW)
limitations. The latter include low computational power, low
memory capacity, short battery life and strict miniaturisation
requirements. Therefore the computational complexity asso-
ciated with modern video codecs such as H.264, is highly
undesirable on mobile devices from a power consumption
perspective. The greatest scope for power savings (10x-20x)
occur at the algorithmic level, by using such techniques as
exploiting the nature of the media processing operations to be
accelerated (e.g. regularity, redundancy) [1].

Motion estimation (ME) is the most computationally de-
manding task within all video codecs. It is used to exploit
the temporal redundancies in video sequences, by (typically)
employing a block matching algorithm (BMA) to find the best
match for a block of pixels in the current frame by searching
in a reference frame. The similarity of a block match (BM)
is evaluated using a distortion metric, of which the sum of
absolute differences (SAD) is the most popular, due to its
optimum trade off between complexity and quality [2]. The
SAD formula for a 16 x 16 pixel macroblock (MB) is:

i=16 j=16

SAD (Bewrr, Breg) = > > |Bewrr (1,5) = Breg ()] (1)
i=1 j=1
Where B.... is the block under consideration in the current
frame and B.., is the block at the current search location in
the search frame. The reference block with the lowest value
SAD is chosen for further processing.

This paper proposes an efficient low complexity HW ar-
chitecture for motion estimation. To reduce the complexity
overhead, binary block matching is employed in conjunction
with a one-bit pixel preprocessing filter.

0-7803-9390-2/06/$20.00 ©2006 IEEE

2677

The rest of this paper is organised as follows: section II
details related prior research. Section III proposes a new binary
motion estimation routine which exploits early termination
properties in the distortion metric calculation and exploits
redundancies in the binary data with a run length coding
(RLC) addressing scheme. Section IV details an associated
hardware architecture. Section V details hardware synthesis
results and power consumption estimates, whilst section VI
draws conclusions about the work presented.

II. RELATED RESEARCH

There are numerous ways to reduce the complexity of the
full search BMA. Fast heuristic search strategies such as the
3 step search, logarithmic search, diamond search and block
based gradient descent have all been used to reduce the number
of search locations [2]. From a hardware implementation per-
spective the generation of non regular addresses increases the
control logic considerably. Also optimal motion vectors are not
guaranteed. On the other hand fast exhaustive search strategies
that employ such techniques as conservative SAD estimations
[3] or early exit mechanisms [4] achieve the same results as the
full-search ones, but reduce computation by skipping irrelevant
candidate blocks [2]. Another option to reduce complexity is
to use binary motion estimation (BME) approaches, which
reduce the complexity contribution of the distortion metric by
quantising 8 bit pixels to a binary representation [5] [6] [7]
[8]. This greatly simplifies the SAD operation (eqn. 1) since
the subtraction between the two processed binary valued pixel
reduces to a simple XOR calculation (eqn. 2) with the absolute
function inherent.

SAD (Bewrrs Breg) = 3 Y (Beurr (4,5) ® Brey (4,9)) (2)

Using BME as a preprocessing stage is proposed in [5] to
discount poor BM prior to a full resolution ME. A pixel
is quantised to a binary value based upon the value of the
pixel relative to the mean of an NxN surrounding pixel block.
Edge filtering is used in [6] to binarise the input pixels prior
to doing a full search BME. However, in sequences with
an absence of distinct edges, this approach can result in
poor motion vectors. Natarajan et al presents a 2D systolic
array BME hardware architecture, which employs a 17x17
convolution-based 1-bit transform [7]. A BME architecture
is proposed in [8], which uses a hierarchical search strategy.
In previous BME research no attempts have been made to
optimise the processing element (PE) datapath. We will present

ISCAS 2006

two redundancies within the datapath and propose solutions to
exploit them. This work assumes binarisation of the texture has
already been completed.

III. EXPLOITING BME REDUNDANCIES
A. Early SAD Termination

By employing early termination techniques the processing
overhead can be reduced. Early SAD termination means that
in certain block matches it is possible to cancel all further
operations for that block because the accumulated partial SAD
result is larger than the minimum SAD found so far within the
search window. Further processing of that particular reference
MB will only make the SAD result larger. Therefore the final
SAD result will also be greater than the minimum. To exploit
this feature, we propose that during each SAD processing
operation, the partial SAD calculated to date is subtracted
from a deaccumulation register, which initially holds the value
of the best SAD value calculated thus far. If a sign change
occurs during the deaccumulation step, there is no need to
continue further processing since the current minimum SAD
has already been exceeded. In order to allow cancellation,
a partial SAD must be available. This presents a challenge
for typical systolic array hardware architectures, due to the
granularity of the calculation. The problem is overcome in [4]
and our proposed architecture further extends the granularity
of early termination through a pixel subsampling technique.
This will be described in Section IV.

B. Exploiting Data Addressing Redundancies

Another characteristic of binary data that can be exploited to
reduce computational overhead becomes apparent by observ-
ing that there are unnecessary memory accesses and operations
when both B.,,, and B,.; pixels have the same value. This
happens because the XOR in eqn. 2 gives a zero result when
both B...¢,; and B,.;q ;) have the same value. To minimise
this effect, we propose using a RLC addressing scheme.
However to use the RLC addressing the SAD calculation must
be reformulated to the form given in eqn. 3 [9].

SAD = TOT,e; — TOTsur +2 % DIFF,pr (3)

Where TOT..,. is the total number of white pixels in the
current MB DIFF.,,,,. is the number of white pixels in the
current MB but not in the reference MB and TOT,.; is the
total number of white pixels in the reference MB. Equation 3
is beneficial from a low power hardware perspective because:

« TOT.,.,,, is calculated only once per search

« TOT,.; can be updated in 1 clock cycle

« Incremental addition of DIFF,,.. allows early termina-
tion if the current minimum SAD is exceeded

« By using run length coding to address the DIFF..,,
pixels, irrelevant data access is minimised.

The run length code is generated in parallel with the first match
of the search step, an example of typical RLC is illustrated
in fig. 1. It is possible to do this during the first match
because SAD early termination is not possible at this point.

Current Macroblock

The location of the white pixels are given by
the following run length codes (RL), which
are in the form: RLi(x,y), where x is the
relative offset from the last white pixel and y
is the number of consecutive white pixels

RL1(1,1) RL2(15,3)
RL3(13,4) RL4(12,5)
RL5(11,32) RL6(160,0)

Similarly, the location of the black pixels

are given by:

RLO(0,1) RL1(1,15)
RL3(3,13) RL4(4,12)
RL5(5,11) RL6(32,160)

Fig. 1. Regular and Inverse RLC pixel addressing

The first match always takes N x N (where N is the block
size) cycles to complete and this provides ample time for the
run length encoding process to operate in parallel. After the
RLC encoding, the logic would be powered down until the
next current block is processed. In situations where there are
fewer black pixels than white pixels in the current MB, it is
possible to use the black pixels instead to calculate the SAD
with eqn. 4. Fewer pixels translates into fewer operations (o
be completed, which has associated throughput and switching
benefits.

SAD = TOTyur = TOTres +2 X DIFFenrg; sox)

The location of the black pixels can be automatically derived
from the RLC for the white pixels. Thus, by reusing the
white pixel’s RLC, additional memory is not required and
furthermore the same SAD datapath can be reused with
minimal additional logic. The choice of which mode to use is
decided by the MSB of TOT.... To further minimise memory
accesses when using the inverse run length mode, we propose
decrementing a copy of the TOT,.., register (see fig. 2(a)) each
time a white pixel in the reference block is accessed. If the
copy of the TOT,., register decrements to zero, no further
contributions to the SAD are possible, since all the white pixels
have been examined and early termination is possible.

IV. ARCHITECTURE DESIGN

The proposed architecture can be implemented with varying
degrees of parallelism depending on the critical requirements
(area, power, throughput, technology) of the final system.
The basic PE will now be described, followed by a parallel
architecture which uses 4 processing elements.

A. Basic RLC SAD Processing Element

Fig. 2(a) shows a simplified view of the SAD PE. At the first
clock cycle the minimum SAD encountered so far is loaded
into DACC_REG. During the next cycle TOT..,, or TOT,.;
is added to DACC_REG (depending if TOT...[MSB] is 0 or
1 respectively). On the next clock cycle DACC_REG is de-
accumulated by TOT,..; or TOT...... If a sign change occurs
at this point the minimum SAD has already been exceeded
and no further processing is required. If a sign change has not
occurred the address generation unit (AGU) retrieves the next
run length code from memory. If TOT...,..[MSB] = 0 the run

2678

cur ref TOTref TOTeur
X
TOTref
local_sad_val ﬁ
N
prev_dacc_val TOTcur-msh
TOTeur-msh
PE CONTROL decTOTref
LoOGIC
pe_ctrl 1 TOTref
UNDERFLOW
LOGIC

il |
TOTcur-msh

¥

cin

DACC_REG

dacc_reg Sign Change Sign Change

Early Termination Early Termination

(a) RLC SAD Processing Flement

ORIGINAL MEMORY
Macroblock

a=Jo[=la = a]=a|=]a]=]a |~ o=
= [n [a [n e o & o (e v s o (s o s |n

W= (o =] = |- o=@ |=]a |- |«
an s [n]a o [o [m (o = o [& o (= [o
arfo=ja = lo|=]al=|a~ o~ o=

SR e (nle o (e [o]e o (= o= o [=]e

W= (0 =] = |- o=@ |=]a |- @]~
an e [n e o [o [a o = [o s o [= o
W= (o =] =@]= o=@ |=]a |~ |«
NN EINN
af= o [=la = (e~ o=@ |=]a = [@=

[e [n]a S [s o [a o = o]= o [= o
W= lw =] =@]= 0= @ |=]a |- @<
NN ND
W= (o =]a = |- o=@ |=]a |- |«
NN
= o |=]w |~ |@|= o= |0|= |0 =]

NN EDEOND
w = o [=]a = o= o= o|= o |=|o|=
NN EDEDND

PARTITIONED MEMORY

—

Sub_Block 0 Sub_Block

Sub_Block 2 Sub_Block 3

afafa

1 1 3 3

o [n|a]als[>]a]a
NANNROAE
NEENNOAn
NEEEEOOn
o (oo |o|s ==~

1
1
1
1
1
1
1
1

o [0] [0 oo oo
EACACRCACACECAC
o [0 v [0 o[|w
o [0 oo |o v |
EACACRCACACECAC
o [0 v [0 o[|w
CACACRCACACACE
NOEEROE
NNEEREn
o a|a]s|>]=

-
-~
-

TO BM DATAPATH SUB-BLOCKs

(b) Pixel Subsampling

Fig. 2. RLC SAD processing element and Pixel Subsampling

length pair code is processed unmodified. On the other hand
if TOT,.;[MSB] = 1, the inverse run length code is processed.
In either case the processing results in an macroblock pixel
address. This address is used to retrieve the relevant pixels
from the reference MB and the current MB. The pixel values
are XORed and the result is left shifted by one place and
then subtracted from the DACC_REG. If a sign change occurs,
early termination is possible. If not, the remaining pixels in the
current run length code are processed. If the SAD calculation
is not cancelled, subsequent run length codes for the current
MB are fetched from memory and the processing repeats.

When a SAD has been calculated or terminated early, the
AGU moves the reference block to a new position. Provided
a circular or full search is used TOT,.; can be updated in
one clock cycle. This is done by subtracting the previous row
or column (depending on search window movement) from
TOT,.; and adding the new row or column.

B. 4xPE Block Matching Architecture

In order to exploit early termination, an intermediate partial
SAD must be generated. This requires SAD calculation to
proceed in a sequential manner, but this reduces throughput,
and is not desirable for real time applications. To increase
throughput, parallelism must be exploited. Our proposed par-
allel architecture can be seen in fig. 3. The architecture carries
out motion estimation on one MB at a time. In the case of
a 16x16 block match, the MB is split into four 8x8 blocks
by using a simple pixel subsampling technique shown in fig.
2(b). Each of the four PE operates on one 8x8 block. The four
parallel PE generate partial SAD values. The decision-making
unit then uses these accumulated SAD values to make a SAD

early termination decision. The early termination can occur at
any point during the BM processing. If early termination does
not occur in all 4 PE, it is necessary to examine the 4 PE SAD
values and see if a new minimum SAD has been found, thus
the update stage is invoked. This checks if the SAD is less
than the minimum SAD encountered so far. The update logic
consists of a single adder/subtracter and an accumulator. The
update is carried out sequentially to reduce area.

Rather than reducing throughput by stalling the PE while
the update state operates, the update stage can run in parallel
with a new block match. Further SAD cancellations can occur
in the next match without effecting the performance of the
update logic. If the new match is cancelled then it would
also cancel for the new updated minimum SAD value. If after
accumulating the block level SAD values, the result is negative
anew minimum SAD has been not found. The update can then
stop processing and the logic is powered down. However if the
accumulated block level SAD value is positive, this means that
a new minimum SAD has been found. As a result, the block
level minimum SAD and total minimum SAD values now need
to be updated. In addition an adjustment must be made to
the current block matches in progress. This is because that
block match started deaccumulation from the old minimum
SAD (MIN_SADorp) rather than the new minimum SAD
(MIN_SADngw). Since MIN_SADngw = MIN_SADorp —
DACC_REG, an adjustment of DACC_REG is required at the
PE. This value is stored in pe;_dacc registers in the update
block. This demonstrates that the update can occur in parallel
with the next block match, which is of considerable benefit
since it means the PE does not need to be stalled until the
update has finished.

2679

TABLE I
RLC BME_4XPE VERSUS CONVENTIONAL SYSTOLIC ARRAY BME

[

MAX }—[1 j blko_bc

blk1_bc

total_dacc_reg

BLK_BC_MUX

total_minBC

blk3_bc
MAX

Fig. 3.

4xPE Block Matching Architecture

V. EXPERIMENTAL RESULTS

The motion compensated PSNR is dependant predominately
on the choice of the binarisation filter, consequently PSNR will
not be considered further in these results. The 4xPE design
was captured using Verilog HDL. The design was targeted to
a Xilinx Virtex 2 FPGA and also synthesised using a 90nm
TSMC library characterised for low power. The results for
the datapath can be seen in table II. Synplicity Pro and Syn-
opsys Design Compiler were used for synthesis, whilst Xilinx
XPower and Synopsys Prime Power were used to generate the
power consumption figures. The ASIC implementation, due to
the dedicated logic rather than configurable logic has smaller
area and lower power than the FPGA implementation. From an
area and power perspective direct comparisons with previous
hardware implementations of BME is difficult since they do
not quote these figures [7] [8]. For this reason and issues with
normalisation across different semiconductor processes we
have chosen to benchmark our implementation in terms of 1 bit
pixel memory accesses, 1 bit operations and number of clock
cycles (see table I). Using standard MPEG-4 test sequences
with a BM size of 16x16 and a search window of -8/+7,
experiments showed we achieved a 93% average reduction in
the number of operations compared to a SA implementation
[7]. This figure also compares favourable to the early SAD
termination HW design presented in [4], which achieves 45%
to 51% reduction in operations. Our improvement can be
attributed to the subsampling and the use of RLC addressing
for the binary data. A systolic array implementation cannot

Memory Accesses (1 bit pixels) Operations (1 bit XOR & addition) Clock Cycles
Sequence 2D SA [7] BME _4xPE 2D SA [7] BME _4xPE 2D SA [7] BME _4xPE
Akiyo 1.5206 x 10% | 4.5208 x 10 4.0170 x 10° | 2.6105 x 10 3.2252 x 107 | 6.8858 x 107
Hall Monitor 1.5206 x 10 | 4.8202 x 10 4.0170 x 10° | 2.7847 x 10 3.2252 x 107 | 7.3362 x 107
Foreman 1.5206 x 10% | 4.7137 x 10 4.0170 x 10° | 2.6942 x 10 3.2252 x 107 | 7.0999 x 107
Average 69.17% reduction 93.29% reduction 220.37% increase
TABLE 11
BME_PE pe0_dace UPDATE LOGIC
o] BME 4XPE SYNTHESIS RESULTS
e Pe Area Max Freq. Power
[Virtex 2 FPGA| 14,615 gates | 120 MHz | 12.951 mW
TSMC 90nm 10,117 gates | 250 MHz 1.220 mW
BME_PE | |
2
””””” take advantage of RLC addressing and this leads to the concern
BMEFE| that our architecture could suffer from input/output bandwidth

inefficiencies. However this is not the case, as can be seen
in table I, due to the early termination, on average 69.17%
fewer 1 bit pixel memory accesses are required. The reduction
in operations and memory accesses comes at the expense of
reduced throughput compared to [7], that requires a constant
271 cycles per macroblock. This compares to our design,
which after allowing for early termination, requires on average
598 clock cycles per MB. If throughput is essential our design
scales to 16 PE, however the effectiveness of early termination
is reduced.
VI. CONCLUSIONS AND FUTURE WORK

One concern with using BME is that for small BM sizes
the quality of the motion vectors degrades. This along with
more accurate benchmarking and research into binarisation
filters, which have not been discussed, will form the basis of
future work. Overall this paper has presented an efficient BME
architecture, which reduces computational complexity through
the use of an novel binary early termination SAD architecture
which uses a RLC addressing scheme. Reducing the number of
computations and memory accesses is of considerable benefit
since it reduces dynamic power consumption in the datapath.

REFERENCES

[1] M. Pedram and J. M. Rabaey, Power Aware Design Methologies. Kluwer
Academic Publishers, 2002.

[2] P. M. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Springer, June 1999.

[3] V. Do et al., “A Low-Power VLSI Architecture for Full-Search Block-

Matching Motion Estimation,” [EEE Trans. Circuits Syst. Video Technol.,

vol. 8, no. 14, pp. 393 — 398, Aug. 1998.

M. Takahashi et al, “A 60-MHz 240-mW MPEG-4 Videophone LSI with

16-Mb Embedded RAM,” IEEE J. Solid-State Circuits, vol. 35, no. 11,

pp. 1713-1721, Nov. 2000.

Feng, Lo, Mehrpour, and Karkowiak, “Adaptive block matching motion

estimation algorithm using bit plane matching,” in /EEE Int Conf Image

Processing, Washington D.C., USA,, vol. NA, 1995, pp. 496-499.

[6] M. Mizuki, U. Desai, I. Masaki, and A. Chandrakasan, “A binary block

matching architecture with reduced power consumption and silicon area,”

in Proc. IEEE ICASSP-96, vol. 6, Atlanta, USA, 1996, pp. 3248-3251.

B.Natarajan, V. Bhaskaran, and K. Konstantinides, “Low complexity

block based motion estimation via one bit transform,” [EEE Trans.

Circuits Syst. Video Technol., vol. 7, no. 4, pp. 702-706, Aug. 1997.

[8] J. H. Luo et al, “A Novel All-Binary Motion Estimation (ABME) with
Optimized Hardware Architectures,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 8, pp. 700 — 712, Aug. 2002.

[9] D. Larkin, V. Muresan, and N. O’Connor, “An Effi cient Motion Estima-
tion Hardware Architecture for MPEG-4 Binary Shape Coding,” in /rish
Signals and Systems Conference, Dublin, Ireland, Sept. 1-2, 2005.

[4

finar

[5

=

[7

—

2680

