Evaluation of the Microstructural, Electronic

and Optoelectronic Properties of γ –CuCl Thin Films and

Their Fabrication on Si Substrates

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Doctor of Philosophy (Electronic Engineering)

By

Francis Olabanji LUCAS

B. Sc. (Eng), MEng.

DCU Dublin City University DCU School of Electronic Engineering

Research Supervisor

Prof. Patrick J. McNally

December 2007

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Student Number: ____52178803 ____ Signed: _____

Date: _____

Dedication

This thesis is dedicated to almighty God, the most merciful and most compassionate for providing all the resources for this work.

Acknowledgement

There are many people that I would like to thank, without their metal and physical support this Ph.D. thesis would not have been possible.

First, to my supervisor Prof. Pat McNally: Without your wisdom and foresight I may have never started down the path that I have taken. Your leadership and guidance have made the trip enjoyable and fruitful. I can only hope that one day I can be as good as a role model for the future engineers and scientists as you have been for me.

I will also like to thank our collaborators on this project. Dr. Louise Bradley and Dr. A. Mitra of the Semiconductor Photonics Group, Trinity College, Dublin 2, Ireland, for granting me access to carry out temperature dependent photoluminescence measurements in there laboratory.

Prof. Martin Taylor of the Polymer Electronics Research Group, School of Electronic Engineering, University of Wales, Bangor, Gwynedd, LL57 1UT, UK, Dr. Ken Durose and Dr. Y.Y. Proskuryakov, of the Durham Centre for Renewable Energy, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK, for granting me unlimited access to carry out temperature dependent electrical measurements in their laboratories.

I am also thankful to Dr. Stephen Daniels and Prof. David Cameron for their valuable help during the encapsulation and O_2 doping of CuCl films.

Special greeting goes to my folks both in the Republic of Ireland and abroad: Abid (Kekedo!), Akin Sensation, Adefunke (MM), Kesko & Yetunde, Dr. Bayo Olukoya (Lentini Gbanga), Dr. Tolulope Ayodele, Dr. Ladi Akeju (Baba 70), Dr. Olufemi Sanni (Skenky Dury Somebody), Dr Jovita Momoh, Faro, A.O. Bosky, Famsom, Abbey (Gol-ol-ol), Baddyzo, Ay Squizel, Lar and Adegoke Ladipo (GLE), I just want to say a big thank you for your understanding and support.

Finally, I would love to express my sincere thanks to my family. To my Dad,

Engr. J.O. Lucas: For mentoring, monitoring and persistently pointing out the importance of good education to me right from the beginning up to this stage. Your endless financial support and guidance has allowed me to pursue my goals and dreams. I can never repay you for what you have given me.

To my late Mum, Chief (Mrs) E.A. Lucas who passed away a few weeks after my final Ph.D. viva: It's so hard to accept the fact that you are gone. Many thanks for all the roles you played in my life, you will always be remembered.

To my brothers and sister, Tunde, Toyin Olumide and Yomi: For the love, care, financial assistance and understanding you gave me during this period.

To my uncles, Prof. Adetokunbo Lucas, Revd. Prof. Babajide Lucas, Prof. Olabode Lucas and Mr. Emmanuel Olowe (Sydenham): For your consistent invaluable elderly words of advice and supports during this period.

To my wife (Janet) and daughter (Oluwasolape): Janet, there are no words that can describe what you mean to me. You have been beside me as a friend and a loyal supporter. Thank you so much for enduring the long experiments that makes me disappear for weeks. Thank you for being there when I needed you most and for being the love of my life. Solape, thanks for being a darling at home while I was busy in the laboratory.

Francis Olabanji LUCAS Dublin, December 2007

List of Publications

- F.O. Lucas, A. Mitra, P.J. McNally, S. Daniels, A.L. Bradley, D.M. Taylor and D.C. Cameron "Evaluation of the Chemical, Electronic and Optoelectronic Properties of γ– <u>CuCl thin films and their Fabrication on Si Substrates</u>" J. Phys. D: Appl. Phys. 40 (2007) 3461
- F.O. Lucas, L. O'Reilly, G. Natarajan, P.J. McNally, S. Daniels, A. Mitra, D. Cameron, K. Durose and Y.Y. Proskuryakov "<u>Morphological, Optical and Electrical</u> <u>Properties of γ-CuCl thin films deposited by Vacuum Evaporation</u>" *J. Mater. Sci.: Mater. Electron.* DOI 10.1007/s10854-007-9309-2 (2007)
- A. Mitra, F.O. Lucas, L. O'Reilly, P.J. McNally, S. Daniels and Gomathi Najtarajan "Towards the Fabrication of a UV light Source based on CuCl thin Films" J. Mater. Sic.: Mater. Electron DOI 10.1007/s10854-007-9178-8 (2007)
- 4. L. O'Reilly, F.O. Lucas, G. Natarajan, P.J. McNally, S. Daniels, A. Mitra, L. Bradley, Gomathi Natarajan and D.C. Cameron "<u>Characterisation of n-type γ–CuCl on Si for</u> <u>UV Optoelectronic</u>" *J. Mater. Sci.: Mater. Electron* DIO 10.1007/s10854-007-9173-0 (2007)
- F. O. Lucas, L. O'Reilly, G. Natarajan, P.J. McNally, S. Daniels, A. Mitra, L. Bradley,
 D. Cameron and D.M. Taylor "<u>Encapsulation of the Heteroepitaxially Grown of Wide</u> <u>Band Gap γ-CuCl on Silicon Substrates</u>" *J. Cryst. Growth*, **287** (2006) 112
- L. O'Reilly, F.O. Lucas, G. Natarajan, P.J. McNally, S. Daniels, A. Mitra, L. Bradley,
 D. Cameron and A. Reader "<u>Impact on Structural, Optical and Electrical Properties of</u> <u>CuCl by incorporation of Zn for n-type Doping</u>" *J. Cryst. Growth*, **287** (2006) 139

- G. Natarajan, L. O'Reilly, F.O. Lucas, P.J. McNally, S. Daniels, A. Mitra, L. Bradley and D. Cameron "Growth of CuCl thin films by Magnetron Sputtering for Ultraviolet Optoelectronic applications" J. Appl. Phys. 100 (2006) 033520
- L. O'Reilly, F.O. Lucas, P. J. McNally, A. Reader, Gomathi Natarajan, S. Daniels, D. C. Cameron, A. Mitra, M. Martinez-Rosas and L. Bradley "<u>Room-Temperature</u> <u>Ultraviolet Luminescence from γ-CuCl on Silicon substrates</u>" *J. Appl. Phys.*, 98 (2005) 113512
- L. O'Reilly, G. Natarajan, P.J. McNally, D. Cameron, F.O. Lucas, M. Martinez-Rosas,
 L. Bradley and A. Reader "Growth and characterisation of Wide Bandgap I–VII optoelectronic materials on silicon" J. Mater. Sci. Electron. Mater. 16 (7) (2005) 415

Abstract

Cuprous chloride is a direct wide bandgap ($E_g = ~ 3.4 \text{ eV}$) semiconductor with a large excitonic binding energy (~ 190 meV). In this study, CuCl has been deposited by the vacuum evaporation method on a variety of substrates (amorphous silica glass, indium tin oxide (ITO) coated on glass and Silicon (100)) substrates, encapsulated and characterized as a potential material for optoelectronic applications. Some of the samples were also oxygen plasma treated for durations of 1, 2 and 3 minutes, respectively.

Room temperature x-ray diffraction (XRD) measurements show that CuCl grows preferentially in a (111) orientation irrespective of the underlying substrate. Microstructural properties of the films gave nearly the same values for untreated CuCl films deposited on glass, ITO and Si substrates (particle size, $L = 9.6 \text{ nm} \pm 1 \text{ nm}$). On the other hand, the microstructural properties of the plasma treated films vary as a function of plasma treatment duration.

At 10 K, the photoluminescence (PL) spectrum of the untreated CuCl/Si films using 244 nm excitation reveals four peaks: the Z_3 free exciton occurring at 3.203 \pm 0.003 eV, the I₁ impurity bound exciton located at 3.181 ± 0.003 eV, the M free biexciton occurring at 3.160 \pm 0.003 eV and N₁ impurity bound to bi-exciton located at 3.135 \pm 0.003 eV. However, the 20 K PL spectra of the untreated CuCl films deposited on all three substrates (using a 325 nm excitation) revealed only the Z_3 free exciton, the I₁ impurity bound exciton and the N_1 impurity bound biexciton at 3.204 eV, 3.18 eV and 3.152 eV, respectively, irrespective of the underlying substrate. The room temperature PL spectra of the films were dominated by the Z_3 free exciton. The measured band gap increased as the temperature increases, which is opposite to most conventional semiconductors. This anomalous effect is believed to be related to electron-phonon renormalization or coupling of the electronic structure of CuCl. On the other hand the PL spectra of the O_2 plasma immersed film were all mainly dominated by the free Z_3 free exciton only. In addition, at low temperatures a broad band ascribed to an oxygen related emission process is observed at $\sim 3 \text{ eV}$ in all the plasma treated samples. The band gap of the O_2 plasma immersed films follow the anomalous temperature dependency in a similar manner to the untreated films; however the plasma treated films were less sensitive to temperature.

Both steady state DC and AC impedance spectroscopy experiments suggested that the untreated CuCl is a mixed ionic-electronic semiconductor material. Room temperature steady state DC measurements using reversible electrodes (Cu) gave an Ohmic response while using irreversible electrodes (Au) gave an exponential I–V behaviour, both in conformance with Wagner's defect chemistry analysis of a mixed ionic-electronic material. An electronic conductivity of the order of 2.3×10^{-7} S/cm was deduced to be in coexistence with Cu⁺ ionic conductivity using irreversible electrodes (Au), while a total conductivity of the order of 6.5×10^{-7} S/cm was obtained using reversible electrodes (Cu) at room temperature. The Arrhenius plot of the electrical characteristics of the untreated films reveal two distinct regimes corresponding to electronic conduction below ~ 270 K and a Cu⁺ extrinsic ionic conduction mechanism

above that temperature. Due to the fact that at low temperatures, the thermal energy is inadequate for maintaining considerable ionic motion, it follows that the mode of conduction at lower temperatures is ascribed to electronic processes. On the other hand, the Arrhenius plot of the plasma treated films showed a single regime throughout most of the temperature range. This is interpreted to be an electronically dominant conduction mechanism. The large increase in the conductivity of the treated CuCl films (over 100 fold) is ascribed to effect of oxygen introducing an acceptor state in CuCl films. This is due to the fact that oxygen dissolves in cuprous halides on substitutional anionic sites.

Cathodic deposition of Cu metal via electrolytic decomposition was observed when a steady state voltage greater than 5 V was applied to both the untreated and the plasma treated films. This poses a great challenge in utilizing this material to fabricate optoelectronic devices under the influence of steady state source.

The untreated films were successfully encapsulated using organic polysilsesquioxane (PSSQ) and cyclo olefin copolymer (COC) dielectrics. However, both encapsulants failed to prevent the O_2 plasma immersed films from oxidising, and this will also represent a future challenge for this technology.

Table of Contents

Declaration				
Dedication Acknowledgement				
Abs	viii			
1	Intro	Introduction and Overview		
	1.1	Introduction	2	
	1.2	Motivation of this Research	3	
	1.3	7		
2	Mate	erials Preparation and Experimental Methods	14	
	2.1	Introduction	15	
	2.2	Substrate Preparation	15	
	2.3	2.3 Materials		
	2.4	SiO ₂ Deposited by PECVD	17	
		2.4.1 General Description	17	
		2.4.2 Deposition	17	
		2.4.3 Applications	18	
	2.5	Polysilsequioxane (PSSQ)	19	
		2.5.1 General Description	19	
		2.5.2 Chemical Preparation	20	
		2.5.3 Deposition	20	
		2.5.4 Applications	20	
	2.6	Cyclo Olefin Copolymer (COC)	21	

	2.6.1	General Description	21	
	2.6.2	Chemical Preparation	21	
	2.6.3	Deposition	22	
	2.6.4	Applications	23	
2.7	Coppe	er (I) Chloride	23	
	2.7.1	Physical Properties	23	
	2.7.2	Optical and Band gap Properties	25	
	2.7.3	Electrical Properties	27	
	2.7.4	Chemical Preparation	28	
	2.7.5	Deposition Techniques	29	
	2.7.6	Plasma Treatment of CuCl Films	35	
	2.7.7	Applications	38	
2.8	2.8 Characterization Techniques			
Structural and Morphological Properties				
3.1	Introduction			
3.2	Literature Review			
	3.2.1	X-Rays	47	
	3.2.2	X-Ray Diffraction	49	
	3.2.3	Atomic Force Microscopy (AFM)	55	
3.3	Experi	imental	57	
	3.3.1	Film Deposition	57	
	3.3.2	Characterisation Techniques	58	
3.4	Results			
	3.4.1	Structural Properties of the As Deposited CuCl films	59	
	3.4.2	Structural Properties of the O ₂ Plasma treated CuCl films	64	

3

		3.4.3	Morphological Properties of the As Deposited CuCl films	68
		3.4.4	Morphological Properties of the O ₂ Plasma treated CuCl films	71
	3.5 Conclusion			74
4	Optic	al Prop	erties	79
	4.1	Introd	uction	80
	4.2 Literature Review			80
		4.2.1	Absorption	80
		4.2.2	Photoluminescence	88
	4.3	Exper	imental	95
		4.3.1	Film Deposition	95
		4.3.2	Characterisation Techniques	95
	4.4 Results			96
		4.4.1	Absorption Spectroscopy of the As Deposited CuCl films	96
		4.4.2	Absorption Spectroscopy of the O ₂ Plasma treated CuCl films	97
		4.4.3	Photoluminescence Spectroscopy of the As Deposited CuCl films	98
		4.4.4	Photoluminescence Spectroscopy of the O ₂ Plasma treated CuCl films	101
	4.5	4.5 Conclusion		113
5	Electi	rical Pr	operties	119
	5.1	Introduction		120
	5.2	Literature Review		120
		5.2.1	Ionic Conduction in Solids	120
		5.2.2	Electronic Conduction in Solids	129
		5.2.3	Intrinsic and Extrinsic Semiconductors	133

	5.3	Experimental		140
		5.3.1	Film Deposition	140
		5.3.2	Characterisation Techniques	141
	5.4	Result	ts	143
		5.4.1	DC Measurements of the As Deposited CuCl films	143
		5.4.2	AC Measurements of the As Deposited CuCl films	147
		5.4.3	DC Measurements of the O2 Plasma treated CuCl films	152
		5.4.4	AC Measurements of the O2 Plasma treated CuCl films	155
		5.4.5	Electrolytic Decomposition of CuCl Films	160
	5.5 Conclusion			163
6	Encaj	psulatio	n	168
	6.1	Introd	uction	169
	6.2	Exper	imental	171
		6.2.1	Film Deposition	171
		6.2.2	Characterisation Techniques	172
	6.3	Result	ts	173
		6.3.1	UV/Vis Spectra of the As deposited CuCl films	173
		6.3.2	IR Spectra of the As deposited CuCl films	178
		6.3.3	UV/Vis and IR Spectra of the O ₂ Plasma treated CuCl films	181
		6.3.4	Dielectric Constant	184
	6.4	Conc	lusion	186
7	Concl	usions	and Further Work	189
	7.1	Concl	usions	190
	7.2	Furthe	er Work	194