organic compounds

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

tert-Butyl 5-methoxy-3-pentylindole-1-carboxylate

John F. Gallagher, ${ }^{\text {a* }}$ Claire M. Coleman ${ }^{\text {b }}$ and Donal F. O'Shea ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and
${ }^{\mathrm{b}}$ Centre for Synthesis and Chemical Biology, Department of Chemistry,
University College Dublin, Dublin 4, Ireland
Correspondence e-mail: john.gallagher@dcu.ie

Received 3 November 2003
Accepted 5 December 2003
Online 31 January 2004
The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$, is essentially planar, with all non-H atoms within $0.2 \AA$ of the ninemembered indole plane, except for the three tert-butyl C atoms. The C_{5} pentyl chain is in an extended conformation, with three torsion angles of 179.95 (13), 179.65 (13) and $-178.95(15)^{\circ}$ (the latter two angles include the C atoms of the C_{5} chain only). Three intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contacts are present $\left(\mathrm{C} \cdots \mathrm{O}<3.05 \AA\right.$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}>115^{\circ}$), and an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contact and $\pi-\pi$ stacking complete the intermolecular interactions.

Comment

The key biochemical roles played by the indole ring in nature ensure that this heterocyclic system continues to attract scrutiny from medicinal and synthetic chemists. It is a common motif for drug targets and, as such, the development of new diversity-tolerant routes to this privileged biological scaffold continues to be of significant benefit (Gribble, 1996) and forms the basis of a wide variety of drugs, including the antiinflammatory agent Indomethacin, Reserpine (exploited as a hypotensive agent) and Sumatriptan (used for the treatment of migraine). Historically, interest in indoles arose from the isolation and characterization of indole alkaloids, which, along with their semi-synthetic derivatives, have potent central nervous system activity. Many recent advances in indole synthesis have focused on metal-mediated procedures, with copper, palladium, tin, titanium and zirconium being the most prevalent (Sundberg, 1996; Gribble, 2000).

Recently, we reported a new approach to the synthesis of the indole scaffold, exploiting a controlled organolithium addition to functionalized styrenes, with the $\mathrm{C}-\mathrm{C}$ bond formation reaction as the key synthetic step. A significant benefit of this strategy is that it can provide a direct route for the introduction of further structural diversity onto the ring system (Coleman \& O'Shea, 2003), which may be of benefit
for combinatorial library generations. Despite the prevalence of indole structures in the Cambridge Structural Database (CSD; Allen, 2002), there are no structures that contain the indole skeleton and atoms substituted at the 1-(C), 3-(C) and 5 -positions (O) for direct comparison with the title compound, (I). However, many derivatives that contain the tryptophan residue are present in the CSD.

(I)

Pertinent bond lengths and angles for (I) are listed in Table 1 and the molecular structure is depicted in Fig. 1. The bond lengths and angles are as expected for indole systems (Fig. 1). Localization in the aromatic rings is discernible in (I), with a $\mathrm{C} 1 A-\mathrm{C} 2 A$ bond length of 1.3481 (19) \AA [the other NC_{4}-ring $\mathrm{C}-\mathrm{C}$ lengths are 1.4496 (19) and 1.4090 (18) $\AA]$, and $\mathrm{C}-\mathrm{N}$ distances of 1.4022 (16) and 1.4076 (18) \AA; in the C_{6} ring, the $\mathrm{C} 13-\mathrm{C} 14$ and $\mathrm{C} 15-\mathrm{C} 16$ bond lengths are 1.379 (2) and 1.386 (2) \AA, respectively. In the C_{5} pentyl chain, the $C-C$ bond lengths for atoms $\mathrm{C} 1-\mathrm{C} 5$ are in the narrow range 1.509 (2) -1.5195 (19) \AA; the $\mathrm{C} 2 A-\mathrm{C} 1-\mathrm{C} 2$ angle opens to 114.98 (12) ${ }^{\circ}$, and the remaining $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles along the chain are in the range 113.71 (12)-113.86 (12) ${ }^{\circ}$, indicating a slight opening up by 4° from the ideal $\left(109.5^{\circ}\right)$ tetrahedral angle. The pentyl chain is in an extended conformation, with

Figure 1
A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
three torsion angles of $179.95(13)(\mathrm{C} 2 A-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3)$, 179.65 (13) ($\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4)$ and $-178.95(15)^{\circ}(\mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 4-\mathrm{C} 5)$. Indeed, the C_{5} pentyl chain makes an angle of 4.41 (13) ${ }^{\circ}$ with the NC_{4} ring, and the largest deviation of an atom from the C_{5} plane is 0.011 (1) \AA for atom C3. In the tertbutoxycarbonyl group, the three $\mathrm{C}-\mathrm{C}$ bond lengths lie between 1.511 (2) and 1.515 (2) \AA, while the three $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles are $102.60(12), 109.89(12)$ and $108.92(13)^{\circ}$, the lowest being that involving atom C 8 , which is not involved in an intramolecular contact; the three tert-butyl $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are in the range $109.58(14)-113.28(15)^{\circ}$.

The five- and six-membered rings are coplanar, with an interplanar angle of $1.74(8)^{\circ}$. The molecule of (I) is essentially planar, the largest deviations of non-H atoms from the indole plane being for the two atoms of the tert-butyl group

Figure 2
A graph of $\mathrm{O}_{\mathrm{Me}}-\mathrm{C}-\mathrm{C}$-angle differences plotted against their corresponding $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle for $2299\left[-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{CH}_{3}\right]$ structures (x axis) (CSD; Version 5.24 of July 2003; Allen, 2002). The intersect of the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ lines $\left(\sim 120^{\circ}\right)$ correlates well with the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles (triangles) between 60 and 120° (y axis).

Figure 3
A view of the overlay of the alternating indole rings in the $\pi-\pi$ stacking arrangement.
[1.110 (3) \AA for atom C10 and 1.402 (3) \AA for atom C9]; all other atoms are within $0.2 \AA$ of the nine-membered indole plane (apart from the three tert-butyl C atoms). The MeO group at atom C 14 displays an $\mathrm{O}-\mathrm{C}-\mathrm{C}$ distortion, with $\mathrm{O} 3-$ C14-C13/C15 angles of 115.60 (13) and 123.34 (13) ${ }^{\circ}$ (transoid to atom C 13 and the C_{5} chain). These distortions, especially that of the $\mathrm{C}_{\mathrm{Me}}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion-angle orientation with respect to the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle, have been commented on previously (Bruno et al., 2001; Gallagher et al., 2001; Wiedenfeld et al., 2003).

A review of the CSD (Version 5.24 of July 2003; Allen, 2002) was undertaken for structures containing an aromatic MeO group (analysed for para- $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{CH}_{3}$ with threedimensional coordinates, $R<0.10$ and no disorder). In Fig. 2, 2299 structures are plotted along the x axis $(1 \rightarrow 2299)$, with both $\mathrm{O}_{\mathrm{Me}}-\mathrm{C}-\mathrm{C}$ angles plotted (between 100 and 140°, y axis) and correlated with their corresponding $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles. The overall trend is that when the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angles (series 3 in Fig. 2) are ~ 0 or 180°, corresponding to a nearly planar $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ fragment, the methoxy group usually exhibits a $5-10^{\circ}$ difference between the two $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles (series 1 and 2 in Fig. 2); when the disposition of the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle tends towards 90° [mid-table on the x axis (abscissa)] for structures $1100-1300$ and $60-120^{\circ}$ on the y axis (ordinate), both $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles are usually $\sim 120^{\circ}$. For structures 1-1100/1300-2299, the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles differ from 120° as the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle tends towards $0 / 180^{\circ}$. The majority of para-anisole derivatives have a $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle close to planarity ($<15^{\circ}$ or $>165^{\circ}$), with a significant difference in their $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles that can be attributed to steric and electronic effects. Two related examples have been reported by Wiedenfeld et al. (2003).

There are three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {ester }}$ intramolecular contacts present, involving atoms $\mathrm{C} 9, \mathrm{C} 10$ and C 16 [with $\mathrm{C} \cdots \mathrm{O}$ distances shorter than $3.050(2) \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles larger than 115°; Table 2]. A direction-specific C15$\mathrm{H} 15 \cdots \mathrm{O} 1^{\mathrm{i}}$ contact about inversion centres generates a weakly bonded dimer $\left[\mathrm{C} 15 \cdots \mathrm{O} 15^{\mathrm{i}}=3.4812\right.$ (19) Å; symmetry code: (i) $-x, 1-y, 1-z]$. These dimeric units stack through aryl $\pi-$ π stacking interactions. The mean planes of the indole units in these $\pi-\pi$ stacks lie within $3.54 \AA$ of one another, and the separations of the aromatic ring centroids are 3.6843 (9) and 3.6846 (9) \AA for $C g 1 \cdots C g 1^{\text {ii }}$ and $C g 1 \cdots C g 2^{\text {ii }}$, respectively [symmetry code: (ii) $1-x, 1-y, 1-z ; C g 1$ and $C g 2$ are the centroids of the five- and six-membered rings; Fig. 3]. These interactions are $0.2 \AA$ longer than, although similar in nature to, the $\pi-\pi$ stacking in graphite, where the interplanar spacing is $3.35 \AA$ (Wells, 1984). Examination of the structure with PLATON (Spek, 2003) showed that there were no solventaccessible voids in the crystal lattice.

Experimental

tert-Butyl (4-methoxy-2-vinylphenyl)carbamate ($0.4 \mathrm{~g}, 1.6 \mathrm{mmol}$) and tetramethylethylenediamine ($0.48 \mathrm{ml}, 3.2 \mathrm{mmol}$) were dissolved in dry diethyl ether (25 ml) and cooled to 195 K under $\mathrm{N}_{2} . n-\mathrm{BuLi}$ ($3.3 \mathrm{ml}, 1.87 \mathrm{M}$ in pentane, 6.4 mmol) was added dropwise, via a
syringe, over a period of 30 min . The temperature was raised to 248 K and the mixture was stirred for 2 h , during which time an orange-red colour developed. The solution was cooled to 195 K , anhydrous dimethylformamide $(1.5 \mathrm{ml}, 20 \mathrm{mmol})$ was added and the solution was warmed to room temperature. The diethyl ether was evaporated and replaced by tetrahydrofuran (THF, 25 ml), and the mixture was stirred at room temperature under N_{2} for 5 h . The THF was then evaporated, and the residue was extracted with diethyl ether $(2 \times 30 \mathrm{ml})$ and dried over sodium sulfate. The solvent was evaporated to give a dark-yellow oil. Flash chromatography, eluting with hexane/diethyl ether (9:1), gave the product as a white solid (yield $0.40 \mathrm{~g}, 80 \%$; m.p. $327-328 \mathrm{~K}$). Colourless crystals were obtained by slow evaporation of an ethanol solution. IR $\left(\mathrm{cm}^{-1}\right): v_{\mathrm{C}=\mathrm{O}} 1721$ (KBr); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 0.88(t, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-$ $1.37(m, 4 \mathrm{H}), 1.61(s, 9 \mathrm{H}), 1.62-1.68(m, 2 \mathrm{H}), 2.62(t, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(s, 3 H), 6.93(d d, J=2.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(s, 1 \mathrm{H}), 7.90(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 14.2, 22.7, 25.1, 28.5, 29.0, 32.0 56.0, 83.2, 102.3, 112.6, 116.1, 125.3, 130.1, 133.2, 150.1, 155.9; EI-MS: m/z 317.3. HRMS: $(M+\mathrm{H})^{+}$ 318.2080 found; $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires 318.2069. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$: C 71.89, H 8.57, N 4.41%; found: C 71.94, H 8.60, N 4.33\%.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=317.42$
Triclinic, $P \overline{1}$
$a=8.9414$ (6) A
$b=8.9955$ (6) A
$c=11.7433(6) \AA$
$\alpha=105.001$ (4) ${ }^{\circ}$
$\beta=93.265(6)^{\circ}$
$\gamma=98.902(6)^{\circ}$
$V=896.69(10) \AA^{3}$
$Z=2$

Data collection

Bruker P4 diffractometer ω scans
4895 measured reflections
4071 independent reflections
3004 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0687 P)^{2} \\
&+0.12 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.133$
$S=1.03$
4071 reflections
213 parameters
H -atom parameters constrained

$$
\begin{aligned}
& h=-11 \rightarrow 1 \\
& k=-11 \rightarrow 11 \\
& l=-15 \rightarrow 15 \\
& 4 \text { standard reflections } \\
& \quad \text { every } 296 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Compound (I) crystallized in the triclinic system; space group $P \overline{1}$ was assumed and confirmed by the analysis. All H atoms were treated as riding atoms using SHELXL97 defaults (for 294 K), the $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.98 \AA$. The three largest peaks in the final difference map are in the vicinity of atom C11.

Data collection: XSCANS (Bruker, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 6$	$1.2029(17)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.4076(18)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.3365(18)$	$\mathrm{N} 1-\mathrm{C} 1 A$	$1.4022(16)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.4838(16)$	$\mathrm{C} 1-\mathrm{C} 2 A$	$1.5001(18)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.3846(18)$	$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.3481(19)$
$\mathrm{O} 3-\mathrm{C} 31$	$1.410(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.4090(18)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.3829(17)$	$\mathrm{C} 12-\mathrm{C} 2 A$	$1.4496(19)$
C6-O2-C7	$120.16(11)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 16$	$131.59(12)$
$\mathrm{C} 14-\mathrm{O} 3-\mathrm{C} 31$	$116.97(13)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 2 A$	$107.87(12)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1 A$	$127.03(12)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 2 A$	$132.65(12)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 11$	$125.12(11)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 13$	$115.60(13)$
$\mathrm{C} 1 A-\mathrm{N} 1-\mathrm{C} 11$	$107.83(11)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15$	$123.34(13)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$126.73(13)$	$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{N} 1$	$110.69(12)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 1$	$123.03(14)$	$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 12$	$106.73(11)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{N} 1$	$110.24(12)$	$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 1$	$128.14(13)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	$106.87(11)$	$\mathrm{C} 12-\mathrm{C} 2 A-\mathrm{C} 1$	$125.11(12)$
C7-O2-C6-O1	$-0.3(2)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 6-\mathrm{O} 1$	$2.7(2)$
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15$	$10.4(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2 A-\mathrm{C} 1 A$	$5.0(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9C \cdots O1	0.96	2.36	$2.944(2)$	119
C10-H10A O1	0.96	2.46	$3.033(2)$	118
C16-H16 \cdots O1	0.93	2.42	$2.9356(19)$	115

PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks Dublin City University for the purchase of a diffractometer and computer system. DOS and CC thank Enterprise Ireland for grants in aid of research.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1287). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1994). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, G., Nicoló, F., Rotondo, A., Gitto, R. \& Zappalá, M. (2001). Acta Cryst. C57, 1225-1227.
Coleman, C. M. \& O'Shea, D. F. (2003). J. Am. Chem. Soc. 125, 4054-4055.
Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Gallagher, J. F., Hanlon, K. \& Howarth, J. (2001). Acta Cryst. C57, 1410-1414. Gribble, G. W. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., Vol. 2, pp. 207-257. New York: Pergamon Press.
Gribble, G. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1045-1075.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sundberg, R. J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., Vol. 2, pp. 120-206. New York: Pergamon Press.
Wells, A. F. (1984). In Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press.
Wiedenfeld, D. E., Nesterov, V. N., Minton, M. A. \& Glass, D. R. (2003). Acta Cryst. C59, o700-o702.

