Quinoline synthesis: scope and regiochemistry of photocyclisation of substituted benzylidenecyclopentanone \boldsymbol{O}-alkyl and \boldsymbol{O}-acetyloximes.

Mark Austin, Oliver J. Egan, Raymond Tully and Albert C. Pratt*
Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT]
${ }_{5}$ Publication data [DO NOT ALTER/DELETE THIS TEXT]
DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

Irradiation of substituted 2-benzylidenecyclopentanone O-alkyl and O-acetyloximes in methanol provides a convenient synthesis of alkyl, alkoxy, hydroxy, acetoxy, amino, dimethylamino and benzo substituted annulated quinolines. paraSubstituents yield 6 -substituted-2,3-dihydro- 1 H -cyclopenta[b]quinolines with 8 substituted products being obtained from ortho-substituted starting materials. Reactions of meta-substituted precursors are highly regioselective, with alkyl substituents leading to 5 -substituted 2,3 -dihydro- 1 H -cyclopenta $[b]$ quinolines and more strongly electron-donating substituents generally resulting in 7 -substituted products. 2-Furylmethylene and 2-thienylmethylene analogues yield annulated furo- and thieno-[2,3e]pyridines respectively. Sequential E - to Z - benzylidene group isomerisation and six π-electron cyclisation steps result in formation of a short-lived dihydroquinoline intermediate which spontaneously aromatises by elimination of an alcohol or acetic acid. For 2-benzylidenecyclopentanone O allyloxime, singlet excited states are involved in both steps.

> X=Alkyl, acetyl, H; Ar = Aryl; Heteroaryl Regioselective photocyclisation

Introduction

The quinoline nucleus is widely distributed in nature and is ${ }_{10}$ important in the fields of medicinal chemistry and agrochemicals. ${ }^{1}$ Consequently, though there are numerous syntheses available for quinoline derivatives, ${ }^{2}$ versatile routes to new quinoline intermediates from readily accessible precursors are of interest. Among these have been a limited 15 number of reports of quinoline formation from photocyclisation of β-phenyl- α, β-unsaturated oximino systems (Scheme 1). ${ }^{3}$ The open-chain oxime $\mathbf{1 a},{ }^{4} O$-benzoyloximes $\mathbf{1 b}-\mathbf{e}^{5}$ and O-acetyloximes $\mathbf{1 f}-\mathbf{i}^{6}$ underwent 6π-electron
cyclisation, involving both the carbon-nitrogen double bond 20 and the β-aryl group, followed by elimination of water or benzoic acid, to yield the corresponding quinolines $\mathbf{2 a - g}$, respectively. In contrast, O-methyloximes $\mathbf{1 j}$ and $\mathbf{1 k}$ underwent only competing geometrical isomerisation at the carbon-carbon and carbon-nitrogen double bonds on direct 25 and triplet sensitised excitation resulting, in both cases, in a photostationary state comprising the four possible geometrical isomers, but without accompanying cyclisation. ${ }^{7,8}$

Prerequisites for photocyclisation are (a) a Z-configuration at the α, β-double bond, achieved by initial geometrical ${ }_{30}$ photoisomerisation, and (b) significant contribution from

\qquad

$\mathrm{X}=\mathrm{OH} ; \quad \mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Ph} ; \mathrm{R}^{3}=\mathrm{H} ; \quad \mathrm{Y}=\mathrm{H}$
$\mathrm{X}=\mathrm{OBz} ; \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph} ; \mathrm{R}^{3}=\mathrm{H} ; \quad \mathrm{Y}=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{Cl}$
1f,g $\quad X=O A c ; \quad R^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Ph}, 2-\mathrm{MeOC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{3}=\mathrm{CONEt}_{2} ; Y=\mathrm{H}$
1h,i $\quad \mathrm{X}=\mathrm{OAc} ; \quad \mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{3}=\mathrm{CONEt}_{2} ; \mathrm{Y}=\mathrm{H}$
$\mathbf{1 j}, \mathbf{k} \quad \mathrm{X}=\mathrm{OMe} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{Y}=\mathrm{H}$
$\mathbf{1 1 , m} \quad \mathrm{X}=\mathrm{OMe} ; \quad \mathrm{R}^{1} \cdot \mathrm{R}^{2}=2,2^{-}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}, 1,8-\mathrm{C}_{10} \mathrm{H}_{6} ; \mathrm{R}^{3}=\mathrm{CONE}_{2} ; \mathrm{Y}=\mathrm{H}$

3a-d $\quad \mathrm{X}=\mathrm{OH} \quad \mathrm{n}=1,2,3,4 \quad \mathrm{Y}=\mathrm{H} \quad \mathbf{4 a}$-d 3e $\quad \mathrm{X}=\mathrm{OAcn} \mathrm{n}=2 \quad \mathrm{Y}=\mathrm{H} \quad 4 \mathrm{e}$
3f $\quad \mathrm{X}=\mathrm{OH} \quad \mathrm{n}=2 \quad \mathrm{Y}=\mathrm{Me}$

Scheme 1 Quinolines from photocyclisation of oximino systems.

[^0]conformers with an s-cis orientation at the $\mathrm{R}^{1} \mathrm{C}-\mathrm{CR}^{2}$ single bond. Systems with this bond within a ring are forced to adopt an s-cis conformation. Quinoline formation has been reported where the bond is incorporated within a dihydrophenanthrene ${ }_{35}$ or acenaphthene ring, ${ }^{9}$ involving formation of $\mathbf{2 1}$ and $\mathbf{2 m}$ from
$\mathbf{1 1}$ and $\mathbf{1 m}$ respectively, or within a cycloalkane, involving formation of 4a-f from 3a-f. ${ }^{10}$

A broad range of potential quinoline precursors is accessible by oximation of readily available α-benzylidene ${ }_{40}$ ketones. Aryl ring ortho- or para-substitution should lead to quinolines substituted at the 5- or 7-ring carbons respectively whereas meta-substitution provides the possibility for formation of either 6 - or 8 -substituted quinolines.
We have used a range of ortho- and para-substituted 45 benzylidenecyclopentanone O-alkyloximes and O acetyloximes (Scheme 3) to examine the scope of the photocyclisation/elimination reaction as a route to annulated quinolines of the 2,3-dihydro- 1 H -cyclopenta $[b]$ quinoline family, and the corresponding meta-substituted compounds ${ }_{50}$ (Scheme 6) to examine regiochemical outcomes. The required compounds were obtained by standard oximation procedures from the appropriate 2-benzylidenecyclopentanones which were in turn readily available from reaction of N -(1cyclopentenyl)morpholine with the corresponding aromatic ${ }_{55}$ aldehydes.

Results

Unsubstituted benzylidenecyclopentanone \boldsymbol{O}-alkyloximes

Irradiation of $E, E-O$-allyloxime 5^{\ddagger} in methanol resulted in initial E, Z-isomerisation at the carbon-nitrogen and carbon${ }_{60}$ carbon double bonds (Scheme 2). However isomerisation was accompanied by the slower formation of quinoline $\mathbf{7}$ as final product, involving photocyclisation of the E, Z-isomer (and/or the Z, Z-isomer) to dihydroquinoline $\mathbf{6}$, followed by rapid elimination of allyl alcohol. Quinoline 7 was also obtained ${ }_{65}$ from the corresponding O-methyloxime $\mathbf{8}$.

Scheme 2 Cyclisations without aryl substituents.

Unlike 5 and 8, E-2-diphenylmethylenecyclopentanone O methyloxime 9 has an appropriately Z-oriented phenyl group and does not require an additional E/Z-photoisomerisation step prior to photocyclisation. On irradiation 9 rapidly formed 70 a mixture of two products, one of which ($Z-9$) on further irradiation transformed to the other, final product 9-phenyl-2,3-dihydro- $1 H$-cyclopenta $[b]$ quinoline 10. Taking advantage of the suitably oriented phenyl group in $\mathbf{9}$, thermal cyclisation was attempted. However no reaction occurred on prolonged 75 heating of 9 in methanol or in ethylene glycol (bp $198^{\circ} \mathrm{C}$) under reflux. ${ }^{\S}$

ortho- and para-Substituted benzylidene systems

The ortho- and para-methyl-, and ortho- and para-methoxy${ }_{80}$ benzylidene O-methyloximes 11a-d cyclised to the corresponding 6- and 8 -substituted ${ }^{\text {I }}$ 2,3-dihydro- 1 H cyclopenta $[b]$ quinolines 12a-d on irradiation in methanol (Scheme 3). Similarly the para-hydroxy-, para-acetoxy-, and para- N, N-dimethylamino-benzylidene O-acetyloximes $11 \mathbf{e - g}$ 85 and the para-amino-benzylidene oxime $\mathbf{1 1 h}$ cyclised to the quinolines $\mathbf{1 2 e} \mathbf{- h}$ respectively. In each case, TLC analysis showed the initial formation of a number of products, presumed to be the various geometrical isomers and, on further irradiation, these underwent conversion to the 90 corresponding 2,3-dihydro- $1 H$-cyclopenta[b]quinoline. 2Benzylidenecyclohexanone O-methyloxime similarly yielded tetrahydroacridine $\mathbf{4 e}$.

In marked contrast ortho- and para-nitro-, ortho- and para-chloro- and para-cyano-benzylidenecyclopentanone O 95 methyloximes $\mathbf{1 1 i} \mathbf{- m}$, and 2,4-difluorobenzylidene O acetyloxime 11 n were converted to complex mixtures whose separation was not pursued further.

Other participating π-systems

Other π-systems may replace the 2π-electron contribution of the β-phenyl group in these systems (Scheme 4). Thus 2-(1-
${ }_{05}$ naphthylmethylene)cyclopentanone O-methyloxime yielded fused benzo[f]quinoline $\mathbf{1 3}$ and 2-(1phenothiazinylmethylene)cyclopentanone O-acetyloxime was converted to the novel pyrido $[3,2-a]$ phenothiazine 14. 2-(2Furylmethylene)cyclopentanone O-methyloxime yielded N, O 110 heterocycle 15 and N, S-heterocycle 16 was similarly obtained from 2-(2-thienylmethylene)cyclopentanone O-acetyloxime. Compound 17, a photoisomer of 2cinnamylidenecyclopentanone O-acetyloxime, also cyclised, yielding pyridine 18 and requiring the adoption of an s-cis 115 arrangement for the open-chain dienyl unit in addition to prior E,Z-isomerisation at the 2-exo methylene unit to achieve a viable cyclic transition state for carbon-nitrogen bond formation.

120 meta-Substituted benzylidene systems

Cyclisation is possible for meta-substituted benzylidene derivatives either from rotamer 19, giving 5-substituted-2,3-dihydro- $1 H$-cyclopenta $[b]$ quinoline 21, or from rotamer 22, giving the 7 -substituted isomer 24 (Scheme 5).
125 A meta-methyl substituent results in closure at the aryl 2position, ortho to the methyl group (Scheme 6). 2-(3-

Scheme 5 Alternatives with meta-substituents.

Methylbenzylidene)cyclopentanone O-methyloxime 25a yielded a single photoproduct, 5-methyl compound 26a. Inclusion of an additional ring substituent, a para-methyl or 130 para-methoxy group, similarly resulted in closure at the 2position, with 3,4-dimethyl- and 3-methyl-4-methoxy substrates 25b and 25c giving 5,6-dimethyl- and 5-methyl-6-methoxy-2,3-dihydro-1H-cyclopenta[b]quinolines 26b and $\mathbf{2 6 c}$ respectively. Increasing the steric demand of the meta135 alkyl substituent again resulted in strong preference for cyclisation/elimination involving the crowded aryl 2-position, with meta-t-butyl compound 25d giving 5-t-butyl-2,3-dihydro- $1 H$-cyclopenta $[b]$ quinoline 26d. ${ }^{\#}$

In contrast, a meta-methoxy group results in closure at the 140 aryl 6-position, para to the methoxy substituent. Both 3methoxybenzylidene O-methyloxime 25e and O-acetyloxime 25f yielded a single photoproduct, 7-methoxy compound 27e. Incorporation of an additional substituent, methyl or methoxy, in the para-position again resulted in closure at the aryl 6145 position, with 3,4-dimethoxy and 3-methoxy-4-methyl compounds $\mathbf{2 5}$ g and $\mathbf{2 5 h}$ giving 6,7-dimethoxy- and 6-methyl-7-methoxy-2,3-dihydro-1H-cyclopenta $[b]$ quinolines $\mathbf{2 7 g}$ and $\mathbf{2 7 h}$ respectively. 2,5-Dimethoxybenzylidene O-acetyloxime 28 (Scheme 7), with the position para to the meta-methoxy 150 group blocked by the 2-methoxy substituent, cyclised at the vacant ortho site to give 5,8-dimethoxy-2,3-dihydro- 1 H cyclopenta[b]quinoline 29.

26a-d, I'

27e-I

	R^{1}	R^{2}	X		Yield (\%) ${ }^{a}$		Yield (\%) ${ }^{a}$
25a	Me	H	OAc	26a	32		
25b	Me	Me	OAc	26b	17		
25c	Me	OMe	OAc	26 c	15		
$25 d$	$\mathrm{Bu}^{\text {t }}$	H	OAc	26d	13		
25e	OMe	H	OMe	-		27e	63
$25 f$	OMe	H	OAc	-		27e	63
25g	OMe	OMe	OAc	-		27g	21
25h	OMe	Me	OAc	-		27h	57
$25 i$	OH	H	OAc	-		27i	30
25j	NMe_{2}	H	OAc	-		27j	6
25k	NH_{2}	H	OH	-		27k	26
251	OAc	H	OAc	$\mathrm{Cl}^{261}{ }^{1}$		271	20
25m	NO_{2}	H	OAc	-		-	
$25 n$	Cl	H	OAc	-		-	
250	CN	H	OAc	-		-	
25p	F	H	OAc	-		-	

${ }^{a}$ Yields are reported for recrystallised products.
Scheme 6 Cyclisations with meta-substituents.

155
Other electron-donating substituents having a nitrogen or oxygen in the meta-position of the benzylidene group similarly resulted in closure at the aryl-6 position (Scheme 6). 160 Thus 3-hydroxy- and 3-N,N-dimethylaminobenzylidene O -
acetyloximes $\mathbf{2 5 i}$ and $\mathbf{2 5 j}$, also the 3 -aminobenzylidene oxime $\mathbf{2 5 k}$, photocyclised to the corresponding 7 -substituted products $27 \mathrm{i}-\mathrm{k}$, respectively.

In contrast to these cyclisations from which a single 165 product was isolated, irradiation of 3 -acetoxybenzylidene O acetyloxime $\mathbf{2 5 1}$ resulted in competitive closure, involving both the aryl-6 and aryl-2 positions, and giving both 7-acetoxy and 5-hydroxy products $\mathbf{2 7 1}$ and 261'. The deacetylation step leading to 261 must have occurred subsequent to cyclisation 170 since, if loss of acetyl from $\mathbf{2 5 1}$ had preceded cyclisation, the resulting initially-formed 3-hydroxybenzylidene O acetyloxime $\mathbf{2 5 i}$ would have cyclised to 7 -hydroxy compound 27i rather than to 5-hydroxy compound 261'. No accompanying photo-Fries rearrangement products were 175 isolated from this reaction.

As observed for the analogous ortho- and para-substituted benzylidenecyclopentanone derivatives $\mathbf{1 1 j} \mathbf{- n}$, irradiation of 3-nitro-, 3 -chloro-, 3 -cyano- and 3 -fluoro-benzylidene O acetyloximes $\mathbf{2 5 m} \mathbf{- p}$ proved not to be synthetically useful.
${ }_{180}$ Only complex product mixtures were obtained and these were not investigated further.

2-(2-Naphthylmethylene)cyclopentanone $\quad O$-acetyloxime 30a and O-methyloxime 30b (Scheme 7) cyclised at the naphthyl 1-position to give 9,10-dihydro- 8 H -
185 benzo[h]cyclopenta[$b]$ quinoline 31, rather than at the naphthyl 3 -position. ${ }^{13}$

Scheme 7.

Discussion

Excited state considerations

The inclusion of various concentrations (up to 1.0 M) of the 190 triplet quencher isoprene in methanol solutions of $E, E-5$ did not affect the course of product evolution, consistent with both the isomerisation and cyclisation processes arising from singlet excited states on direct irradiation.
The four geometrical isomers of O-allyloxime 5 exhibit strong 195 uv absorption in the 300 nm region, probably due to the π, π^{*} band of the conjugated α, β-unsaturated system submerging the much weaker n, π^{*} band. With n, π^{*} transitions in such systems being generally localised at the carbon-nitrogen double bond it is likely that cyclisation of $\mathbf{5}$ requires a lowest 200 energy π, π^{*} excited state. In ethyl acetate cyclisation of 5 does not occur, ${ }^{\ddagger}$ suggesting a lowest energy n, π^{*} transition in this solvent. Methanol may assist the formation of quinoline 7 from 5 by hydrogen bonding to the nitrogen lone pair of the O-allyloxime thereby ensuring a lowest energy π, π^{*} excited

205 state and methanol may also facilitate elimination of allyl alcohol from dihydroaromatic intermediate 6. In acetonitrile formation of $\mathbf{7}$ from $\mathbf{5}$ is approximately 25 times less rapid, consistent with hydrogen-bonding playing a role in facilitating the photocyclisation/elimination process. The rate of ${ }_{210}$ quinoline formation was approximately doubled for both meta- and para- N, N-dimethylaminobenzylidene O acetyloximes, $\mathbf{2 5 j}$ and $\mathbf{1 1 g}$ respectively, by inclusion of a small amount of trifluoroacetic acid but, whereas the yield of quinoline $\mathbf{2 7} \mathbf{j}$ from meta-dimethylaminobenzylidene oxime 215 acetate $\mathbf{2 5} \mathbf{j}$ improved (from $\mathbf{6 \%}$ to $\mathbf{3 5 \%}$) in the presence of the acid, no improvement in cyclisation yield (26%) was observed for para-dimethylaminobenzylidene oxime acetate $\mathbf{1 1}$. Methanol with added mineral acid has been used as the medium for quinoline formation from oximes $\mathbf{3 a}-\mathbf{d}, \mathbf{f} \mathbf{.}^{10}$

220 Analogy with stilbene cyclisation
The photocyclisation/elimination process for quinoline synthesis is analogous to the well-established conrotatory photocyclisation process for 1,3,5-hexatrienes, the most studied being the oxidative photoconversion of stilbenes to 225 phenanthrenes ${ }^{14,15,16}$ via dihydrophenanthrene intermediates which aromatise either in the presence of oxygen or, more commonly, in the presence of an added oxidant such as iodine. Though chloro, fluoro and cyano substituents are compatible with stilbene photoconversion to phenanthrenes, ${ }^{14 c, 15,17}$ also
230 with quinoline formation from p-chlorophenyl O benzoyloxime $\mathbf{1 e},{ }^{5}$ this is not the case for quinoline formation from benzylidenecyclopentanone oxime ethers or acetates $\mathbf{1 1 k} \mathbf{k}$ and 25n-p. Possibilities for this difference in behaviour include (a) enhanced intersystem crossing for these ${ }_{235}$ particular β-aryl α, β-unsaturated oxime derivatives, with alternative reaction pathways being available to the triplet excited state, ${ }^{\dagger \dagger}$ (b) the nature of their lowest excited singlet states, with n, π^{*} states being generally less amenable to $6 \pi-$ electron cyclisation and (c) the intervention of other reaction ${ }_{240}$ pathways, possibly involving radicals and leading to alternative reaction outcomes. The lack of photocyclisation when electron-withdrawing groups are present on the β-aryl ring may imply the necessity for a polarised transition state in which electron density is transferred through the π-system 245 from the aryl ring to the oximino nitrogen, facilitating arylnitrogen bond formation and detachment of the leaving group.

Regioselectivity

In general 2-naphthyl homologues of stilbene (Scheme 8) have been found ${ }^{15}$ to undergo oxidative photocyclisation at 250 the 1 -naphthyl position, though more recent studies have shown that reaction may also occur at the naphthyl 3-position.

Scheme 8 Alternative cyclisation options from ground state rotamers.

Thus the ground state rotamers 32 and 33 of Z-di(2naphthyl)ethene undergo competitive $1,1^{\prime}$ ' and $1,3^{\prime}-$ 255 cyclisation respectively to give the corresponding dihydrophenanthrenes on excitation ${ }^{19,20, \text { 䉼 }}$ and oxidative conditions can be adjusted to yield predominantly dibenzo $[c, g]$ phenanthrene or dibenzo $[b, g]$ phenanthrene respectively. ${ }^{19,21}$ Prediction of the preferred cyclisation route
260 for diarylethenes has been assisted by the use of calculated free valence numbers or electronic overlap populations ${ }^{22}$ as measures of reactivity for electrocyclic processes, with most success being for polycyclic aromatic substituents.

Though more favourable substituent-dependent frontier 265 orbital overlap in the transition state for cyclisation of one of the rotamers of a meta-substituted stilbene may play a contributing part in determining regioselectivity, it would not seem to be a determining one since, for many meta-substituted stilbenes, approximately equal amounts of the corresponding 2702 - and 4 -substituted phenanthrenes are found. ${ }^{14,23}$ Recent consideration of the photocyclisations of styrylpyridines and 2-aminostyrylpyridines ${ }^{24}$ has pointed to the role of rotamers and led to the suggestion that the regiochemical outcome for a meta-substituted stilbene analogue is determined by the
275 relative rates of oxidation and ring-opening of the intermediate dihydrophenanthrenes. Similar substituentrelated competition between ring-opening and elimination steps for the non-aromatic intermediates from metasubstituted benzylidenecyclopentanone oxime derivatives, 20
280 and 23 from rotamers 19 and 22 respectively (Scheme 5), probably also determines whether 5 -substituted or 7substituted products, $\mathbf{2 1}$ or $\mathbf{2 4}$ respectively, are obtained. The nature and interactions of these substituent effects has yet to be determined.
${ }_{285}$ Other observations
The nature of the group eliminated does not affect the cyclisation outcome. Both O-allyloxime 5 and O-acetyloxime 8 yielded 2,3-dihydro-1 H -cyclopenta[b]quinoline 7 (24% and 29%, respectively). Similarly O-acetyloxime 30a and O -
290 methyloxime 30b yielded 9,10-dihydro- 8 H -benzo[f]cyclopenta[b]quinoline 31 and 7-methoxy-2,3-dihydro-1Hcyclopenta[b]quinoline 27 e was obtained from both O methyloxime 25 e and O-acetyloxime $\mathbf{2 5 f}$. Initial studies were undertaken with O-methyloximes but, when it became
295 apparent that the cyclisation outcome was independent of the nature of the leaving group, the more readily prepared O acetyloximes were subsequently used.

Photocyclisation of the O-acetyloximes 34 of 2phenylbenzaldehyde, 2-phenylacetophenone and 2${ }_{300}$ phenylbenzophenone to the corresponding phenanthridines 35 (Scheme 9) has recently been reported. ${ }^{25}$ The 2 -vinyl analogues are similarly converted to the corresponding isoquinolines. These outcomes may also be rationalised by a six π-electron cyclisation process. However iminyl radicals
${ }_{305} 36$ have been proposed as intermediates in the formation of 35, generated by nitrogen-oxygen bond photocleavage. Such homolysis, yielding acyloxy and aryliminyl radicals, occurs in the photochemistry of O-acyloxime derivatives of simple aromatic carbonyl compounds such as benzaldehyde,
310 acetophenone, benzophenone and 9 -fluorenone and has been
used as a convenient source of carbon-centred radicals for synthetic investigations ${ }^{26,27}$ and as a photochemical source of amines for polymer cross-linking, the amines resulting from hydrolysis of the imines formed following nitrogen-oxygen 315 bond cleavage. ${ }^{28}$

Whether the phenanthridines $\mathbf{3 5}$ are formed by a six π electron photocyclisation process in competition with radical formation, or are formed through the intermediacy of photogenerated iminyl radicals 36, is unclear. Iminyl radicals 320 may be readily generated by a variety of non-photochemical routes, ${ }^{29}$ and there is precedence for radicals analogous to $\mathbf{3 6}$ undergoing closure to phenanthridines and quinolines ${ }^{30}$ though five-membered ring formation has been reported to accompany quinoline formation in favourable cases. ${ }^{31}$

325 Benzaldehyde O-alkyloximes undergo very inefficient carbon-nitrogen bond photocleavage on direct or triplet sensitised excitation, ${ }^{32}$ though the efficiency of radical formation from benzaldehyde O-acyloximes can be increased by the use of triplet photosensitisers. ${ }^{33}$ However, given that 330 the compounds which comprise the present study lack the phenone O-acyl or O-alkyloxime functionality which seems to be essential for such cleavage on direct excitation, it can be concluded that these cyclisations proceed by the proposed six π-electron photocyclisation. ${ }^{\S \S}$ This conclusion is supported 335 by the absence of reports of nitrogen-oxygen bond homolysis on direct or triplet sensitised excitation of a wide range of other O-alkyl and O-acyloximes such as acetophenone O methyloxime, ${ }^{35}$ acetonaphthone O-methyloxime, ${ }^{36} \beta$-phenylα, β-unsaturated oximino systems $\mathbf{1 a}-\mathbf{m},{ }^{4-10} \beta$-ionone O ${ }_{340}$ ethyloxime, ${ }^{37} \quad \beta, \gamma$-unsaturated oxime acetates 38 and cholestanone O-acetyloximes. ${ }^{39}$

Conclusions

This photocyclisation/elimination process provides a convenient route to a wide variety of substituted 2,3-dihydro-
${ }_{345} 1 H$-cyclopenta $[b]$ quinolines from readily accessible precursors and has the potential for extension to the synthesis of numerous novel fused pyridines/quinolines of biomolecular interest derived, for example, from terpenoid or steroidal ketones.

${ }_{350}$ Acknowledgements

Enterprise Ireland, Forbairt, the Irish American Partnership and Dublin City University are gratefully acknowledged for supporting this work.

Experimental Section

355 NMR spectra were recorded on a Bruker AC-400 instrument operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$. Unless otherwise stated, spectra were recorded using CDCl_{3} as solvent, with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. TLC was on silica gel plates containing a fluorescent indicator (Riedel-de-Haen,
${ }_{360} \mathrm{DC}$-Cards SiF, layer thickness 0.2 mm). Light petroleum for recrystallisation had bp $80-100{ }^{\circ} \mathrm{C}$, unless stated otherwise. Yields were not optimised. Melting points are uncorrected. Satisfactory elemental analyses were obtained for all new compounds.
365 Photochemical reactions were carried out using a watercooled immersion well containing a Photochemical Reactors 400W medium pressure mercury vapour lamp fitted with a Pyrex filter ($\lambda>300 \mathrm{~nm}$). Solutions for photochemistry used high purity grade solvents which were deoxygenated by
${ }_{370}$ passing a stream of nitrogen or argon through the solution for 30 minutes prior to irradiation and the inert gas atmosphere was maintained over the solutions during irradiation.
Preparative details and nmr spectra are reported here for the annulated quinolines. Other analytical data for the quinolines,
${ }_{375}$ also experimental and spectral data for the other compounds included in this work, are reported in the Electronic Supplementary Information accompanying this paper. ${ }^{\dagger}$

Preparation of 2-benzylidenecyclopentanones

Preparations involved reaction of the morpholine enamine of 380 cyclopentanone with the appropriate aromatic aldehyde. ${ }^{40}$

Preparation of 2-benzylidenecyclopentanone oximes

Preparations involved reaction of the ketones with hydroxylamine hydrochloride in pyridine.

Preparation of benzylidenecyclopentanone \boldsymbol{O}-methyloximes

385 Preparations involved reaction of the required oxime with excess dimethyl sulphate in the presence of sodium hydroxide.

Preparation of benzylidenecyclopentanone \boldsymbol{O}-acetyloximes

Preparations involved reaction of the required oxime with acetyl chloride in pyridine.
${ }_{390}$ General procedure for synthesis of 2,3-dihydro-1Hcyclopenta $[b]$ quinolines

A methanol solution ($250-350 \mathrm{~cm}^{3}$) of the appropriate O methyloxime, O-acetyloxime or oxime $\left(2.5-10.0 \times 10^{-3} \mathrm{M}\right)$ was irradiated under the standard conditions. Reaction progress
395 was monitored by TLC using light petroleum/ethyl acetate [ethanol in the cases of $\mathbf{1 2 g}, \mathbf{1 4}$ and $\mathbf{2 7} \mathbf{j}$]. In general a number of products appeared soon after irradiation began and on continued irradiation one of these became the sole/predominant product, at which time irradiation was
400 discontinued. Removal of the methanol yielded the crude 2,3-dihydro- $1 H$-cyclopenta $[b]$ quinoline. Purification was by recrystallisation or by chromatography on silica, with light petroleum/ethyl acetate as eluent, prior to recrystallisation. Unless otherwise stated, recrystallisation was from light ${ }^{405}$ petroleum/ethyl acetate.

2,3-Dihydro-1H-cyclopenta[b]quinoline 7 (24% from 5; 29% from 8), mp $60-61{ }^{\circ} \mathrm{C}$ (lit., $\left.{ }^{41} 60-61{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}} 2.18(2 \mathrm{H}, \mathrm{qn}$, $J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.06\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.14(2 \mathrm{H}, \mathrm{t}, J$
7.4, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.43(1 \mathrm{H}, \mathrm{t}, J 7.7)$ and $7.59(1 \mathrm{H}, \mathrm{t}, J 7.9)(\mathrm{arH}-7$ 410 and arH-6), $7.70(1 \mathrm{H}, \mathrm{d}, J 7.7$, arH-8), $7.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \operatorname{arH}-9)$ and $8.00(1 \mathrm{H}, \mathrm{d}, J 7.9, \operatorname{arH}-5)$; $\delta_{\mathrm{C}} 23.62,30.50,34.60(3 \mathrm{x}$ CH_{2}), 125.49, 127.43, 128.30 and 128.51(benzenoid- CH), 130.29 (pyridyl-CH), 127.37, 135.77, 147.48 and 167.91 (quaternary Cs).
9-Phenyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-cyclopenta $[b]$ quinoline 10 (72\%), mp 132-134 ${ }^{\circ} \mathrm{C}$ (methanol) (lit., ${ }^{42} 134-135{ }^{\circ} \mathrm{C}$); δ_{H} 2.16 ($2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.90\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.24\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.36(3 \mathrm{H}, \mathrm{m}), 7.49(3 \mathrm{H}, \mathrm{m})$ and $7.62(2 \mathrm{H}, \mathrm{m})(8 \mathrm{x} \mathrm{arH}), 8.08(1 \mathrm{H}, \mathrm{d}, J 8.4$, $\operatorname{arH}-5) ; \delta_{\mathrm{C}} 23.42$, ${ }_{42} 30.22,35.08$ ($3 \mathrm{x} \mathrm{CH}_{2}$), 125.39, 125.54, 126.09, 127.88, $128.13,128.39,128.68,129.18,133.55,136.62,142.59$, 147.81 and 167.31 (13 x arC).

8-Methyl-2,3-dihydro-1H-cyclopenta $[b]$ quinoline 12a (35\%), mp 64-65 ${ }^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.21$ ($2 \mathrm{H}, \mathrm{qn}, J 7.4$, $\left.{ }_{225} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.11\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.16\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.28(1 \mathrm{H}, \mathrm{d}, J 8.4$, arH-7), 7.50 $(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{arH}-6), 7.87(1 \mathrm{H}, \mathrm{d}, J 8.4$, arH-5) and $8.07(1 \mathrm{H}$, s , arH-9); $\delta_{\mathrm{C}} 18.83$ (Me), 23.65, 30.72 and $34.50\left(3 \times \mathrm{CH}_{2}\right)$, $126.12,126.53,126.75,126.89,127.94,133.98,135.22$, 430147.68 and 167.23 (9 x arC).

6-Methyl-2,3-dihydro-1 \mathbf{H}-cyclopenta $[b]$ quinoline 12b (37%), mp $86-88^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.20(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.07\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.15\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.30(1 \mathrm{H}, \mathrm{d}, J 8.2$, arH-7), 7.63 ${ }_{435}(1 \mathrm{H}, \mathrm{d}, J 8.2, \operatorname{arH}-8), 7.79(1 \mathrm{H}, \mathrm{s}, \mathrm{arH}-5)$ and $7.85(1 \mathrm{H}, \mathrm{s}, \mathrm{arH}-$ 9); $\delta_{\mathrm{C}} 21.82(\mathrm{Me}), 23.66,30.48$ and $34.63\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 125.37$, $127.07,127.70,128.98,130.15,131.93,134.73,138.49$ and 167.80 (9 x arC).

8-Methoxy-2,3-dihydro-1H-cyclopenta $[b] q u i n o l i n e ~ 12 c$ $440(48 \%), \mathrm{mp} 76-77{ }^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.21(2 \mathrm{H}, \mathrm{qn}, J 7.6$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.15(2 \mathrm{H}, \mathrm{t}, J 7.6$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.99(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 6.81(1 \mathrm{H}, \mathrm{d}, J 8.1$, arH-7), 7.51 $(1 \mathrm{H}, \mathrm{t}, J 8.1$, arH-6), $7.61(1 \mathrm{H}, \mathrm{d}, J 8.1$, arH-5) and $8.33(1 \mathrm{H}$, s , $\operatorname{arH}-9$); $\delta_{\mathrm{C}} 23.61,30.64,34.62$ ($3 \mathrm{x} \mathrm{CH}_{2}$), 55.68 (OMe), 445 103.62, 119.56, 120.89, 125.06, 128.17, 134.76, 148.34, 155.07 and 168.05 (9 x arC).

6-Methoxy-2,3-dihydro-1 \boldsymbol{H}-cyclopenta $[b] q u i n o l i n e ~ 12 d$ (53%), mp $58-60^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.20$ ($2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.15(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.{ }_{450} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.12(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.2$, $\operatorname{arH}-7)$, $7.37(1 \mathrm{H}, \mathrm{d}, J 2.2$, arH-5), $7.62(1 \mathrm{H}, \mathrm{d}, J 8.8$, arH-8) and 7.82 $(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9) ; \delta_{\mathrm{C}} 23.58,30.32,34.59\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 55.35$ (OMe), 106.95, 118.20, 122.34, 128.30, 130.23, 133.31, $148.98,159.86$ and 167.98 (9 x arC).
455 6-Hydroxy-2,3-dihydro-1H-cyclopenta[b]quinoline $\mathbf{1 2 e}$. (36\%), mp 168-169 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.09(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.93-3.01 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Ar}$), $7.00(1 \mathrm{H}, \mathrm{dd}, J$ $8.8,2.2$, arH-7), 7.24 ($1 \mathrm{H}, \mathrm{d}, J 2.2$, arH-5), $7.50(1 \mathrm{H}, \mathrm{d}, J 8.8$, arH-8), $7.73(1 \mathrm{H}, \mathrm{s}, \mathrm{arH}-9)$ and $9.65(1 \mathrm{H}, \mathrm{br}$ s, OH$) ; \delta_{\mathrm{C}}$ ${ }_{460}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 22.64,29.27,33.59\left(3 \times \mathrm{CH}_{2}\right), 109.30,117.16$, 120.73, 127.36, 129.43, 131.50, 148.06, 157.06 and 166.67 (9 $\mathrm{x} \operatorname{arC}$).

6-Acetoxy-2,3-dihydro-1H-cyclopenta $[b]$ quinoline 12 f (36\%), mp 96-97 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.21$ ($2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), ${ }_{465} 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 3.08\left(2 \mathrm{H}, \mathrm{td}, J_{\mathrm{t}} 7.6, J_{\mathrm{d}} 1.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.08$ ($2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Ar}$), $7.24(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.4$, arH-7), $7.71-$ $7.74\left(2 \mathrm{H}, \mathrm{m}\right.$, arH-5/8) and $7.88\left(1 \mathrm{H}, \mathrm{br}\right.$ s, arH-9); $\delta_{\mathrm{C}} 21.19$
(Me), 23.58, 30.42, 34.57 (3 x CH$_{2}$), 119.64, 120.80, 125.40, $128.34,130.15,135.62,147.91,150.46,168.57$ and 169.41 (9 $470 \mathrm{x} \operatorname{arC}+\mathrm{C}=\mathrm{O})$.

6- N, N-Dimethylamino-2,3-dihydro-1H-

cyclopenta[b]quinoline $\mathbf{1 2 g}(26 \%)$, mp $104-106{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.16$ ($2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.01\left(2 \mathrm{H}, \mathrm{td}, J_{\mathrm{t}} 7.5, J_{\mathrm{d}} 1.0\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.13$
$475(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.6, \operatorname{arH}-7), 7.14(1 \mathrm{H}, \mathrm{d}, J 2.6, \operatorname{arH}-5), 7.55$ $(1 \mathrm{H}, \mathrm{d}, J 8.8, \operatorname{arH}-8)$ and $7.72(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9) ; \delta_{\mathrm{C}} 23.60,30.33$, $34.70\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 40.60\left(\mathrm{NMe}_{2}\right), 107.11,115.15,119.93$, $127.86,130.08,131.41,149.20,150.67$ and 167.77 (9 x arC). A similar yield (24\%) of 6-N,N-dimethylamino-2,3-dihydro-
4801 H -cyclopenta[b]quinoline $\mathbf{1 2 g}$ was obtained following similar irradiation in the presence of added trifluoroacetic acid (1 equiv., 3.6 mM). Isolation, by diethyl ether extraction and chromatography, followed initial adjustment of the irradiated solution to $\mathrm{pH} \sim 8$ by addition of 10% aq. sodium carbonate 485 solution.

6-Amino-2,3-dihydro-1H-cyclopenta[b]quinoline $\quad \mathbf{1 2 h}$ (36\%), mp 94-96 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.15$ (2 H , qn, $J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.02\left(2 \mathrm{H}, \mathrm{td}, J_{\mathrm{t}} 7.6, J_{\mathrm{d}} 1.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.26\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $4.22\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.89(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.3$, arH-7), $7.36(1 \mathrm{H}$, 490 S , arH-9), $7.50(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{arH}-8)$ and $7.80(1 \mathrm{H}, \mathrm{d}, J 2.3$, $\operatorname{arH}-5)$; $\delta_{\mathrm{C}} 22.73,30.31,31.17$ ($3 \mathrm{x} \mathrm{CH}_{2}$), 99.83, 118.84, $121.96,123.55,129.47,133.34,141.82,148.14$ and 152.25 (9 x arC).

9,10-Dihydro-8H-benzo $[f]$ cyclopenta $[b]$ quinoline $\quad 13$
495 (69%), mp $126-128{ }^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.27$ ($2 \mathrm{H}, \mathrm{qn}, J$ $\left.7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.19\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArCH}_{2}\right), 3.22(2 \mathrm{H}, J 7.4$, $\left.\mathrm{ArCH}_{2}\right), 7.61(1 \mathrm{H}, \mathrm{t}, J 7.4)$ and $7.66(1 \mathrm{H}, \mathrm{t}, J 7.4)(\operatorname{arH}-2 / 3)$, $7.92(3 \mathrm{H}, \mathrm{m}$; arH-1/4/5), $8.60(1 \mathrm{H}, \mathrm{d}, J 7.8$, arH-6) and 8.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{arH}-11$); $\delta_{\mathrm{C}} 23.66,30.92,34.47$ ($3 \times \mathrm{CH}_{2}$), 122.36,
${ }_{500} 123.99,125.75,126.60,126.69$, 127.91, 128.61, 129.63, $129.82,131.48,135.82,147.08$ and 166.86 (13 x arC).

1,2,3,12-Tetrahydrocyclopenta[5,6]pyrido[3,2-
a]phenothiazine 14 (12%), mp $67-68{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.14$ ($2 \mathrm{H}, \mathrm{qn}, J$ $\left.7.2, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.44(2 \mathrm{H}, \mathrm{t}, J 7.2)$ and $3.29(2 \mathrm{H}, \mathrm{t}, J 7.2)(2$
$\left.{ }_{505} \mathrm{x} \mathrm{CH}_{2} \mathrm{Ar}\right), 6.38(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.68(1 \mathrm{H}, \mathrm{dd}, J 7.2,0.8), 6.95$ $(2 \mathrm{H}, \mathrm{m}), 7.10(3 \mathrm{H}, \mathrm{m})$ and $7.32(1 \mathrm{H}, \mathrm{dd}, J 8.8,1.0)(7 \mathrm{xarH})$; $\delta_{\mathrm{C}} 16.69,24.56,29.78\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 107.64,116.34,116.46$, $116.74,117.19,119.18,123.02,123.77,124.74,126.52$, $127.56,128.25,136.08,136.18$ and 137.56 (15 x arC).
${ }_{510}$ 6,7-Dihydro-5H-cyclopenta[b]furo[2,3-e]pyridine $\mathbf{1 5}$ (45%), mp $64-65{ }^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.15$ ($2 \mathrm{H}, \mathrm{qn}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.97\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.02(2 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.84(1 \mathrm{H}$, d $J 2.5$, furoH-3), $7.51(1 \mathrm{H}, \mathrm{s}$, pyridylH-8) and $7.70\left(1 \mathrm{H}, \mathrm{d}, J 2.5\right.$, furoH-2); $\delta_{\mathrm{C}} 24.14,30.70,33.65$ (3 x
${ }_{515} \mathrm{CH}_{2}$), 107.68, 114.64, 133.36, 145.67, 147.31, 147.74 and 162.15 (furopyridine).

6,7-Dihydro-5H-cyclopenta[b]thieno[2,3-e]pyridine 16 (51%), mp $84-85{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.21$ (2 H , qn, $J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.03\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.11\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.47$
${ }_{520}(1 \mathrm{H}, \mathrm{d}, J 5.9)$ and $7.52(1 \mathrm{H}, \mathrm{d}, J 5.9)$ (thienoH-2/3), $7.95(1 \mathrm{H}$, s, pyridylH-8); $\delta_{\mathrm{C}} 23.83,30.45,33.87$ ($3 \mathrm{x} \mathrm{CH}_{2}$), 124.43, $125.70,128.66,131.24,133.10,154.64$ and 164.39 (7 x arC).

2-Phenyl-6,7-dihydro-5H-cyclopenta $[b]$ pyridine 18 (10%), mp $79-80{ }^{\circ} \mathrm{C}$ (lit., ${ }^{43} 81-82{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.04(2 \mathrm{H}, \mathrm{qn}, J 7.6$, ${ }_{525} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.84\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.96(2 \mathrm{H}, \mathrm{t}, J 7.6$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.24(1 \mathrm{H}, \mathrm{tt}, J 7.6,1.2), 7.32(3 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{d}, J$
7.6) and $7.81(2 \mathrm{H}, \mathrm{m})(7 \mathrm{x} \mathrm{arH})$; $\delta_{\mathrm{C}} 23.23,30.48$, 34.41 (3 x CH_{2}), 118.25, 126.89, 128.32, 128.64, 132.56, 135.41, 140.00, 155.87 and 165.83 (9 x arC).

5-Methyl-2,3-dihydro-[1H]-cyclopenta[b]quinoline 26a (32%), mp $92-94^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 2.19$ ($2 \mathrm{H}, \mathrm{qn}, J 7.4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.05\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2}\right), 3.16$ ($2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2}$), $7.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.3$, arH-7), $7.44(1 \mathrm{H}, \mathrm{d}, J$ 8.3, arH-8 or -6$), 7.55(1 \mathrm{H}, \mathrm{d}, J 8.3$, arH-6 or -8$)$ and $7.81(1 \mathrm{H}$, ${ }_{535} \mathrm{~s}$, arH-9); $\delta_{\mathrm{C}} 18.32(\mathrm{Me}), 23.72,30.43,34.87\left(3 \mathrm{x} \mathrm{CH}_{2}\right)$, $125.04,125.52,127.22,128.54,130.46,135.08,136.20$, 146.63 and $166.88(\mathrm{arC})$.

5,6-Dimethyl-2,3-dihydro- $\mathbf{1 H}$-cyclopenta $[b]$ quinoline

26b (17%), mp $90-91{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.10(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.{ }_{540} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.98(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2}\right), 7.19(1 \mathrm{H}, \mathrm{d}, J 8.2)$ and $7.40(1 \mathrm{H}, \mathrm{d}, J 8.2)(\mathrm{arH}-7$ and $\operatorname{arH}-8), 7.71(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9) ; \delta_{\mathrm{C}}$ 13.48, 20.64 ($2 \times \mathrm{Me}$), 23.75, 30.33, $34.88\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 124.45$, $125.55,128.17,130.46,133.49,133.97,135.91,146.53$ and ${ }_{545} 166.75$ (9 x arC).

5-Methyl-6-Methoxy-2,3-dihydro-1H-

cyclopenta[b]quinoline $26 \mathrm{c}(15 \%), \mathrm{mp} 89-91{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.12$ ($2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.98(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.5, \mathrm{CH}_{2}\right), 3.10\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2}\right), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.15$ $550(1 \mathrm{H}, \mathrm{d}, J 9.0, \operatorname{arH}-7), 7.50(1 \mathrm{H}, \mathrm{d}, J 9.0$, arH-8) and $7.73(1 \mathrm{H}$, s, arH-9); $\delta_{\mathrm{C}} 9.94$ (Me), 23.78, 30.30, $35.00\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 56.41$ (OMe), 112.25, 121.54, 122.47, 125.56, 130.47, 132.81, $147.15,156.68$ and 167.65 (9 x arC).
5-t-Butyl-2,3-dihydro-1H-cyclopenta[b]quinoline ${ }^{\# \quad 26 d}$ 555 (13%), mp 62-64 ${ }^{\circ} \mathrm{C}$ (light petroleum); $\delta_{\mathrm{H}} 1.70\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $2.20\left(2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.07\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArCH}_{2}\right)$, $3.14\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right), 7.36(1 \mathrm{H}, \mathrm{t}, J 7.6$, arH-7), 7.58 (2 H , coincident doublets, $J 7.6$, arH-6 and arH-8) and 7.83 ($1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9$); $\delta_{\mathrm{C}} 22.61,28.68,29.39,30.03,33.82\left(3 \mathrm{x} \mathrm{CH}_{2}\right.$, ${ }_{560} \mathrm{CMe}_{3}$ and $\left.\mathrm{CMe}_{3}\right), 123.73,123.78,125.35,127.04,129.50$, 132.94, 145.59, 146.31 and 163.70 (9 x arC).

7-Methoxy-2,3-dihydro-1H-cyclopenta[b]quinoline 27e (63% from both $\mathbf{2 5 e}$ and $\mathbf{2 5 f}$), $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (light petroleum) (lit. ${ }^{44} 99-$ $\left.100^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}} 2.72\left(2 \mathrm{H}, \mathrm{qn}, J 7.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.58(2 \mathrm{H}, \mathrm{t}, J$ $\left.5657.9, \mathrm{ArCH}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArCH}_{2}\right), 4.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.53(1 \mathrm{H}, \mathrm{d}, J 2.5, \operatorname{arH}-8), 7.81(1 \mathrm{H}, \mathrm{dd}, J 8.9,2.5$, arH-6), $8.32\left(1 \mathrm{H}, \mathrm{s}\right.$, arH-9), and $8.45\left(1 \mathrm{H}, \mathrm{d}, J 8.9\right.$, arH-5); $\delta_{\mathrm{C}} 23.28$, 30.18, 33.93 ($3 \mathrm{x} \mathrm{CH}_{2}$), 55.06 (OMe), 105.16, 120.07, 127.87, $128.93,129.46,135.52,143.05,156.70$ and $164.98(9 \mathrm{xarC})$
6,7-Dimethoxy-2,3-dihydro-1H-cyclopenta[b]quinoline $\mathbf{2 7}$ g (21\%), mp 99-100 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{45} 112-113{ }^{\circ} \mathrm{C}$; lit., ${ }^{46} 120-121^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.12\left(2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.98\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2}\right)$, $3.04\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2}\right), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(3 \mathrm{H}, \mathrm{s}$, OMe), $6.92(1 \mathrm{H}, \mathrm{s}$, arH-8), $7.31(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-5)$ and $7.68(1 \mathrm{H}$, ${ }_{575} \mathrm{~s}$, arH-9); $\delta_{\mathrm{C}} 23.59,30.46,34.34\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 55.90,55.94$ (both OMe), $105.21,107.53,122.44,129.10,133.69,143.99$, 148.82, 151.34 and 165.24 (9 xarC).

6-Methyl-7-methoxy-2,3-dihydro-1H-

cyclopenta[b]quinoline $\mathbf{2 7 h}(57 \%), \mathrm{mp} 129-130{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.10$ $580\left(2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.96(2 \mathrm{H}, \mathrm{t}, J$ $7.4, \mathrm{CH}_{2}$), $3.03\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.85$ $(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-8)$ and $7.68\left(2 \mathrm{H}\right.$, coincident singlets, arH-5/9); δ_{H} $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.01\left(2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.03$ ${ }_{585}(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-8), 7.55(1 \mathrm{H}, \mathrm{s})$ and $7.74(1 \mathrm{H}, \mathrm{s})(\operatorname{arH}-5 / 9) ; \delta_{\mathrm{C}}$
17.01 (Me), 23.62, 29.49, 34.24 ($3 \mathrm{x} \mathrm{CH}_{2}$), 55.34 (OMe), $103.72,126.75,129.05,129.20,130.93,134.54,143.07$, 156.21 and 164.83 (9 x arC).

7-Hydroxy-2,3-dihydro- $\mathbf{1 H}$-cyclopenta[b]quinoline $\quad \mathbf{2 7 i}$ $590(30 \%), \mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.08$ ($2 \mathrm{H}, \mathrm{qn}, J 7.6$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$ and $\left.\mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right), 6.96(1 \mathrm{H}, \mathrm{d}$, $J 2.4, \operatorname{arH}-8), 7.13(1 \mathrm{H}, \mathrm{dd}, J 8.9,2.4$, arH-6), $7.63(1 \mathrm{H}, \mathrm{s}$, $\operatorname{arH}-9), 7.70(1 \mathrm{H}, \mathrm{d}, J 8.9, \operatorname{arH}-5)$ and $9.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 23.19,30.00,33.68$ ($3 \mathrm{CH}_{2}$), 108.45, 120.09,
595 128.14, 128.48, 128.91, 135.22, 141.99, 154.44 and 164.02 (9 x arC).

7- N, N-Dimethylamino-2,3-dihydro- $\mathbf{1 H}$ -

cyclopenta[b]quinoline $27 \mathbf{j}$ (6%), mp $122-123{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.10$ ($2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.96\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArCH}_{2}\right), 2.98$
$600\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 3.03\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArCH}_{2}\right), 6.71(1 \mathrm{H}, \mathrm{d}, J 2.6$, $\operatorname{arH}-8), 7.21(1 \mathrm{H}, \mathrm{dd}, J 9.2,2.6, \operatorname{arH}-6), 7.65(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9)$ and $7.80\left(1 \mathrm{H}, \mathrm{d}, J 9.2\right.$, arH-5); $\delta_{\mathrm{C}} 23.48,30.57,34.14$ (3 x $\left.\mathrm{CH}_{2}\right), 40.88\left(\mathrm{NMe}_{2}\right), 105.75,118.27,128.70,128.83,128.87$, $135.75,141.29,148.18$ and 163.56 (9 xarC).
${ }_{605}$ A higher yield (35\%) of 7-N,N-dimethylamino-2,3-dihydro1 H -cyclopenta[b]quinoline $\mathbf{2 7} \mathbf{j}$ was obtained following similar irradiation in the presence of added trifluoroacetic acid (1 equiv., 2.4 mM). Isolation, by diethyl ether extraction and chromatography, followed initial adjustment of the irradiated
610 solution to $\mathrm{pH} \sim 8$ by addition of 10% aq. sodium carbonate solution.

7-Amino-2,3-dihydro-1H-cyclopenta[b]quinoline $\quad \mathbf{2 7 k}$ (26\%), mp 121-122 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.00\left(2 \mathrm{H}, \mathrm{qn}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $2.85\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArCH}_{2}\right), 2.94\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArCH}_{2}\right), 3.80$
$615\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.67(1 \mathrm{H}, \mathrm{d}, J 2.4, \operatorname{arH}-8), 6.89(1 \mathrm{H}, \mathrm{dd}, J 8.8$, 2.4 , arH-6), $7.47(1 \mathrm{H}, \mathrm{s}$, arH-9) and $7.68(1 \mathrm{H}, \mathrm{d}, J 8.8, \operatorname{arH}-5)$; $\delta_{\mathrm{C}} 23.51,30.37,33.93\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 107.91,120.13,128.39$, $128.59,128.46,135.75,142.14,143.81$ and 163.90 (9 xarC).

7-Acetoxy-2,3-dihydro-1H-cyclopenta $[b]$ quinoline 271 and
${ }_{620} 5$-hydroxy-2,3-dihydro-1 \boldsymbol{H}-cyclopenta $[\boldsymbol{b}]$ quinoline 261': The two products which remained following irradiation of 2-(3acetoxybenzylidene)cyclopentanone O-acetyloxime were separated on a silica column with mobile phase 10:90 light petroleum/ethyl acetate to give:
${ }_{625}$ (i) 7-acetoxy-2,3-dihydro-1H-cyclopenta[b]quinoline 271 (20\%), mp 118-119 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.13$ (2 H , qn, J 7.5, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.99\left(2 \mathrm{H}, \mathrm{td}, J_{\mathrm{t}} 7.5, J_{\mathrm{d}} 1.2, \mathrm{ArCH}_{2}\right), 3.07$ ($2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}$), 7.27 ($1 \mathrm{H}, \mathrm{dd}, J 8.9,2.5$, arH-6), 7.39 $(1 \mathrm{H}, \mathrm{d}, J 2.5, \operatorname{arH}-8), 7.76(1 \mathrm{H}, \mathrm{s}, \operatorname{arH}-9)$ and $7.95(1 \mathrm{H}, \mathrm{d}, J$
${ }_{630} 8.9$, arH-5); $\delta_{\mathrm{C}} 20.17$ (Me), 22.59, 29.49, $33.45\left(3 \mathrm{x} \mathrm{CH}_{2}\right)$, 117.21, 122.27, 126.62, 128.84, 129.05, 135.35, 144.38, 146.81, 166.94 (9 x arC) and $168.53(\mathrm{C}=\mathrm{O})$;
(ii) 5-hydroxy-2,3-dihydro-1H-cyclopenta $[b]$ quinoline 261' (17%), mp $74-75^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.14(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.{ }_{635} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArCH}_{2}\right), 6.98(1 \mathrm{H}, \mathrm{dd}, J 8.0$, 1.6 , arH-6) and $7.28(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.6, \operatorname{arH}-8), 7.32(1 \mathrm{H}, \mathrm{t}, J$ 8.0 , arH-7), $8.03\left(1 \mathrm{H}, \mathrm{s}\right.$, arH-9) and $8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}$ $23.65,30.47,34.11\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 109.15,117.65,126.39$, $127.53,130.35,136.60,137.35,151.49$ and 165.70 (9 xarC).
${ }_{640} \quad$ 5,8-Dimethoxy-2,3-dihydro-1H-cyclopenta $[\boldsymbol{b}]$ quinoline
29 (8\%), mp 104-105 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{47} 98-100^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.11(2 \mathrm{H}, \mathrm{qn}, J$ $7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.00\left(2 \mathrm{H}, \mathrm{td}, J_{\mathrm{t}} 7.5, J_{\mathrm{d}} 1.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.13$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.61(1 \mathrm{H}, \mathrm{d}, J 8.8)$ and $6.77(1 \mathrm{H}, \mathrm{d}, J 8.8)(\mathrm{arH}-6 / 7), 8.22(1 \mathrm{H}$,
$\left.{ }_{645} \mathrm{~s}, \operatorname{arH}-9\right) ; \delta_{\mathrm{C}} 22.62,29.64,33.86\left(3 \mathrm{x} \mathrm{CH}_{2}\right), 54.76,54.89$ (OMe), 101.89, 104.76, 119.58, 124.20, 134.44, 138.64, 147.73, 148.24 and 166.25 (9 xarC).

9,10-Dihydro-8H-benzo[h]cyclopenta $[b]$ quinoline 31 (74% from 30a; 72% from 30b), mp $115-116^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.23(2 \mathrm{H}, \mathrm{qn}, J$ $\left.6507.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.07\left(2 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArCH}_{2}\right), 3.26(2 \mathrm{H}, \mathrm{t}, J$ 7.9, ArCH_{2}), $7.59(1 \mathrm{H}, \mathrm{d}, J 8.5), 7.70(3 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{s}$, arH-7), $7.89(1 \mathrm{H}, \mathrm{dd}, J 7.9,0.9 \mathrm{~Hz})$ and $9.35(1 \mathrm{H}, \mathrm{d}, J 8.5) ; \delta_{\mathrm{C}}$ 23.57, $30.49,34.70(3 \mathrm{x} \mathrm{CH} 2), 124.12,124.90,125.52$, $126.30,126.48,127.34,127.55,130.60,131.42,133.20$, 655 135.85, 145.32 and 166.14 (13 x arC).

Notes and references

\ddagger Compound 5 was obtained as a single isomer on reaction of 2benzylidenecyclopentanone with O-allylhydroxylamine. In ethyl acetate 5 underwent only E, Z-photoisomerisation to a photostationary state 660 comprising the $E, E-(19 \%), Z, E-(48 \%), E, Z-(23 \%)$ and $Z, Z-(10 \%)$ isomers. These were separated chromatographically and their stereochemistries assigned.
§ The analogous open-chain O-acetyloxime of 4,4-diphenylbut-3-en-2665 one $\left(\mathrm{Ph}_{2} \mathrm{C}=\mathrm{CHCMe}=\mathrm{NOAc}\right)$ undergoes conversion to 2-methyl-4phenylquinoline at $187^{\circ} \mathrm{C}$. Semi-empirical calculations have been used in support of a pericyclic mechanism involving disrotatory closure to an intermediate analogous to $\mathbf{6}$, followed by subsequent intramolecular elimination of acetic acid via a cyclic transition state. ${ }^{11}$ O-Methyloxime 67011 undergoes closure/elimination above $120{ }^{\circ} \mathrm{C}$ to yield $21 .{ }^{9}$ The low activation barrier was ascribed to aromatic stabilisation of the cyclised intermediate due to generation of a phenanthrene unit prior to methanol elimination. In the case of $\mathbf{9}$ however no such stabilisation is possible.

675 If Nomenclature convention results in different numbering of the aromatic ring positions for quinolines and 2,3-dihydro- 1 H -cyclopenta $[b]$ quinolines. Benzenoid ring positions $5,6,7$ and 8 in the former correspond to positions $8,7,6$ and 5 respectively in the latter.

680 || Possible in principle for ortho-substituted benzylidene analogues, cyclisation with elimination of a 2 -substituent (R) has not been observed, presumably because of the difficulty of eliminating a species such as MeOR or AcOR. Replacement of 2-substituents has been observed for 2substituted stilbene oxidative cyclisations, involving elimination of HR. ${ }^{12}$
\# Prior to recrystallisation, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the chromatographed product showed it to be 5-t-butyl-2,3-dihydro- 1 H cyclopenta[b]quinoline (92\%) together with a small amount of another t -butyl-containing component (8%), possibly the other regioisomer.
690
$\dagger \dagger$ For the currently included substituents this seems likely only for the nitro group. There do not appear to have been any reports of oxidative photocyclisations of nitrostilbenes.
$695 \ddagger \ddagger$ The principle of non-equilibration of excited rotamers (NEER) implies that the ground state populations of $\mathbf{3 2}$ and $\mathbf{3 3}$ determine the excited state populations. ${ }^{18}$
§§ In the presence of excited 1,5-dimethoxynaphthalene (DMN) as a 700 single electron transfer agent, γ, δ-unsaturated ketone O-acyl and O methyloximes are converted to radical anions which cyclise by an iminyl radical mechanism to 3,4 -dihydro- 2 H -pyrroles. Alternatively triplet energy transfer from excited DMN may result in the iminyl radical formation and cyclisation. ${ }^{34}$ Such reaqction conditions were absent from 705 the present study.

1 M. Balasubramanian and J. G. Keay, in Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, 710 Pergamon Press, Oxford, 1996, vol. 5, p. 245.

2 G. Jones, in Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon Press, Oxford, 1996, vol. 5, p. 167.
3 For reviews of carbon-nitrogen double bond photochemistry see: (a) A. Padwa, Chem. Rev., 1977, 77, 37-68; (b) A.C. Pratt, Chem. Soc. Rev., 1977, 6, 63-81; (c) H. Suginome, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed., ed.: W. M. Horspool and F. Lenci, CRC Press, Boca Raton, FL, 2004, 94/1-94/55.

4 J. Glinka, Pol. J. Chem., 1979, 53, 2143-2148.
7205 D. Armesto, M. G. Gallego, and W. M. Horspool, J. Chem. Soc., Perkin Trans. 1, 1989, 1623-1626.
6 W. Verboom, P. J. S. S. Van Eijk, P. G. M. Conti and D. N. Reinhoudt, Tetrahedron, 1989, 45, 3131-3138.
7 A. Okami, T. Arai, H. Sakuragi and K. Tokumaru, Chem. Lett., 1984, 289-292; K. Ikoma, A. Okami, T. Arai, H. Sakuragi and K. Tokumaru, Tetrahedron Lett., 1984, 25, 5161-5164.
8 A. C. Pratt and Q. Abdul-Majid, J. Chem. Soc., Perkin Trans. 1, 1986, 1691-1693.
9 V. H. M. Elferink and H. J. T. Bos, J. Chem. Soc., Chem. Commun., 1985, 882-883.
10 R. J. Olsen, Tetrahedron Lett., 1991, 32, 5235-5238; R. J. Olsen, J. Photochem. Photobiol., A, 1997, 103, 91-94.
11 J. Suwiński and M. A. A. Mohamed, Pol J. Chem., 2001, 75, 965974; M. A. A. Mohamed, U. Siedlecka and J. Suwiński, Pol. J. 735 Chem., 2003, 77, 577-590.

12 See, for example: (a) M. P. Cava, P. Stern and K. Wakisaka, Tetrahedron, 1973, 29, 2245-2249; (b) R. G. F. Giles and M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, 1974, 2447-2450.
13 Closure at the naphthyl 3-position would have yielded the known 2,3-dihydro-1H-4-aza-cyclopenta $[b]$ anthracene, mp 181-184 ${ }^{\circ} \mathrm{C}$: E. Taffarel, S. Chirayil, R. Thummel and P. Randolph, J. Org. Chem., 1994, 59, 823-828.
14 For reviews see: (a) E. V. Blackburn and C. J. Timmons, Q. Rev. Chem. Soc., 1969, 23, 482-503; (b) W. H. Laarhoven, Recl. Trav.
745 Chim. Pays-Bas, 1983, 102, 185-204; (c) F. B. Mallory and C. W. Mallory, Organic Reactions (N.Y.), 1984, 30, 1-456; (d) L. Hazai and G. Hornyák, ACH-Models in Chemistry, 1998, 135, 493-514; (e) A. Gilbert, in CRC Handbook of Organic Photochemistry and Photobiology, 1 st ed. (Eds.: W. Horspool and P.-S. Song), CRC Press LLC, Boca Raton, Florida, 1995, 291-300; (f) A. Gilbert, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed. (Eds.: W. Horspool and F. Lenci), CRC Press LLC, Boca Raton, Florida, 2004, 33/1-33/11.
15 J. B. M. Somers and W. H. Laarhoven, J. Photochem. Photobiol., A, 1987, 40, 125-143; J. B. M. Somers and W. H. Laarhoven, J. Photochem. Photobiol., A, 1989, 48, 353-374.
16 F. D. Lewis and R. S. Kalgutkar, J. Phys. Chem. A, 2001, 105, 285291; F. D. Lewis, T. L. Kurth and R. S. Kalgutkar, Chem. Commun., 2001, 1372-1373.
76017 C. S. Mallory and F. B. Mallory, J. Org. Chem., 1964, 29, 33733377; H. Jungmann, H. Gusten and D. Schulte-Frohlinde, Chem. Ber., 1968, 101, 2690-2696.
18 For reviews of the NEER principle see: (a) H. J. Jacobs and E. Havinga, Adv. Photochem., 1979, 11, 305-373; (b) U. Mazzucato and
765 F. Momichioli, Chem. Rev., 1991, 91, 1679-1719.
19 T. Wismonski-Knittel, G. Fischer and E. Fischer, J. Chem. Soc., Perkin Trans. 2, 1974, 1930-1940.
20 Y. Ittah, A. Jakob, K. A. Muszkat, N. Castel and E. Fischer, J. Photochem. Photobiol., A, 1991, 56, 239-247.
77021 V. F. Razumov, S. P. Kazakov and T. S. Zyubina, High Energy Chemistry, 1996, 30, 257-260.
22 (a) W. H. Laarhoven, T. J. H. M. Cuppen and R. J. F. Nivard, Tetrahedron, 1970, 26, 4865-4881; (b) K. A. Muszkat, G. Seger and S. Sharafi-Ozeri, J. Chem. Soc., Faraday Trans. 2, 1975, 71, 1529$775 \quad 1544$.

23 F. B. Mallory and C. W. Mallory, J. Am. Chem. Soc., 1972, 94, 60416048.

24 F. D. Lewis, R. S. Kalgutkar and J.-S. Yang, J. Am. Chem. Soc., 2001, 123, 3878-3884.
78025 R. Alonso, P. J. Campos B. Garcia and M. A. Rodriguez, Org. Lett., 2006, 8, 3521-3523.

26 M. Hasebe, K. Kogawa and T. Tsuchiya, Tetrahedron Lett., 1984, 25, 3887-3890; M. Hasebe and T. Tsuchiya, Tetrahedron Lett., 1986, 27, 3239-3242; M. Hasebe and T. Tsuchiya, Tetrahedron Lett., 1987, 28, 6207-6210; M. Hasebe and T. Tsuchiya, Tetrahedron Lett., 1988, 29, 6287-6290.
27 A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 2000, 2399-2409; E. M. Scanlan, A. M. Z. Slawin and J. C. Walton, Org. Biomol. Chem., 2004, 716-724; G. A. DiLabio, E. M. Scanlan and J. C. Walton, Org. Lett., 2005, 7, 155-158; E. M. Scanlan and J. C. Walton, Helv. Chim Acta, 2006, 89, 2133-2143.

28 J. Lalevée, X. Allonas, J. P. Fouassier, H. Tachi, A. Izumitani, M. Shirai and M. Tsunooka, J. Photochem. Photobiol., A, 2002, 151, 2737 and references therein.
79529 J. Boivin, A.-M. Schiano and S. Z. Zard, Tetrahedron Lett., 1994, 35, 249-252; J. Boivin, E. Fouquet and S. Z. Zard, Tetrahedron, 1994, 50, 1745-1756; J. Boivin, E. Fouquet and S. Z. Zard, Tetrahedron, 1994, 50, 1757-1768; J. Boivin, E. Fouquet, A.-M. Schiano and S. Z. Zard, Tetrahedron, 1994, 50, 1769-1776; S. Z. Zard, Synlett, 1996, 1148-1154; A. G. Fallis and I. M. Brinza, Tetrahedron, 1997, 53, 17543-17594; X. Lin, D. Stien and S. M. Weinreb, Org. Lett., 1999, 1, 637-639; Y. Guindon, B. Guérin and S. R. Landry, Org. Lett., 2001, 3, 2293-2296; K. Narasaka and M. Kitamura, Eur. J. Org. Chem., 2005, 4505-4519. Soc., Perkin Trans. 1, 1979, 612-615.
31 S. Atmaram, A. R. Forrester, M. Gill and R. H. Thomson, J. Chem. Soc., Perkin Trans. 1, 1981, 1721-1724.
32 A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 2000, 1868-1875.
33 A. J. McCarroll and J. C. Walton, Chem Commun., 2000, 351-352.
34 M. Kitamura, Y. Mori and K. Narasaka, Tetrahedron Lett., 2005, 46, 1083-1086.
35 A. Padwa and F. Albrecht, J. Am. Chem. Soc., 1972, 94, 1000-1002; A. Padwa and F. Albrecht, J. Am. Chem. Soc., 1974, 96, 4849-4857; A. Padwa and F. Albrecht, J. Org. Chem., 1974, 39, 2361-2366.

36 A. Padwa and F. Albrecht, Tetrahedron Lett., 1974, 1083-1086.
37 P. Baas, H. Cerfontain and P. C. M. Van Noort, Tetrahedron, 1981, 37, 1583-1588.
82038 D. Armesto, W. M. Horspool and F. Langa, J. Chem. Soc., Chem. Comтип., 1987, 1874-1875; D. Armesto, M. G. Gallego and W. M. Horspool, Tetrahedron Lett., 1990, 31, 2475-2478; D. Armesto, A. R. Agarrabeitia, W. M. Horspool and M. G. Gallego, J. Chem. Soc., Chem. Commun., 1990, 934-936; D. Armesto, M. G. Gallego and W. M. Horspool, Tetrahedron, 1990, 46, 6185-6192; D. Armesto, W. M. Horspool, F. Langa and A. Ramos, J. Chem. Soc., Perkin Trans. 1, 1991, 223-228; D. Armesto, W. M. Horspool, M. G. Gallego and A. R. Agarrabeitia, J. Chem. Soc., Perkin Trans. 1, 1992, 163-169; D. Armesto, W. M. Horspool, M. J. Mancheño and M. J. Ortiz, J. Chem.
830 Soc., Perkin Trans. 1, 1992, 2325-2329; D. Armesto and A. Ramos, Tetrahedron, 1993, 49, 7159-7168; D. Armesto, M. J. Ortiz, A. Ramos, W. M. Horspool and E. P. Mayoral, J. Org. Chem., 1994, 59, 8115-8124; D. Armesto, A. Ramos and E. P. Mayoral, Tetrahedron Lett., 1994, 35, 3785-3788; D. Armesto, M. G. Gallego, W. M. Horspool and A. R. Agarrabeitia, Tetrahedron, 1995, 51, 9223-9240; D. Armesto, A. Ramos, E. P. Mayoral, M. J. Ortiz and A. R. Agarrabeitia, Org. Lett., 2000, 2, 183-186.
39 M. Onda and K. Takeuchi, Chem. Pharm. Bull., 1975, 23, 677-680.
40 L. Birkofer, S. M. Kim and H. D. Engels, Chem. Ber., 1962, 95, ${ }^{840}$ 1495-1504.

41 W. H. Perkin and S. G. P. Plant, J. Chem. Soc., 1928, 639-646.
42 E. A. Fehnel, J. Org. Chem., 1966, 31, 2899-2902.
43 E. C. Taylor, J. E. Macor, and L. G. French, J. Org. Chem., 1991, 56, 1807-1812.
84544 H. Miyashita, Yakugaku Zasshi, 1976, 96; 968-983 (Chem. Abstr.,1977, 86, 89564h).
45 W. Borsche and J. Barthenheier, Justus Liebigs Ann. Chem., 1941, 548, 50-63.
46 Y. Arata and S. Sugasawa, Chem. Pharm. Bull., 1961, 9, 104.
${ }_{850} 47$ J. L. Lim, S. Chirayil, and R. P. Thummel, J. Org. Chem., 1991, 56, 1492-1500.

[^0]: School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. E-mail: albert.pratt@dcu.ie; Fax: +353-(0)1-700-5888; Tel: +353-(0)-1-700-5310
 \dagger Electronic Supplementary Information (ESI) available: Experimental details and spectral data for the precursors; additional quinoline data. See http://dx.doi.org/10.1039/b000000x/

