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Abstract

This thesis describes a complete framework for organising digital photographs

in an unsupervised manner, based on the appearance of people captured in the

photographs. Organising a collection of photographs manually, especially provid-

ing the identities of people captured in photographs, is a time consuming task.

Unsupervised grouping of images containing similar persons makes annotating

names easier (as a group of images can be named at once) and enables quick

search based on query by example.

The full process of unsupervised clustering is discussed in this thesis. Meth-

ods for locating facial components are discussed and a technique based on colour

image segmentation is proposed and tested. Additionally a method based on the

Principal Component Analysis template is tested, too. These provide eye loca-

tions required for acquiring a normalised facial image. This image is then pre-

processed by a histogram equalisation and feathering, and the features of MPEG-7

face recognition descriptor are extracted. A distance measure proposed in the

MPEG-7 standard is used as a similarity measure.

Three approaches to grouping that use only face recognition features for clus-

tering are analysed. These are modified k-means, single-link and a method based

on a nearest neighbour classifier. The nearest neighbour-based technique is cho-

sen for further experiments with fusing information from several sources. These

sources are context-based such as events (party, trip, holidays), the ownership of

photographs, and content-based such as information about the colour and texture

of the bodies of humans appearing in photographs. Two techniques are proposed

for fusing event and ownership (user) information with the face recognition fea-

tures: a Transferable Belief Model (TBM) and three level clustering. The three

level clustering is carried out at “event” level, “user” level and “collection” level.

The latter technique proves to be most efficient.

For combining body information with the face recognition features, three prob-

abilistic fusion methods are tested. These are the average sum, the generalised

product and the maximum rule. Combinations are tested within events and within

user collections. This work concludes with a brief discussion on extraction of key

images for a representation of each cluster.
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Chapter 1

Introduction

1.1 Digital photograph collections

1.1.1 Organising a collection

With the rapid increase in the use of digital cameras, the storage and management

of digital images is becoming an increasing problem. Hard drive capacities now

available enable the storage of huge digital photograph collections. It is important

to digital camera users that such collections are organised in the most efficient

and automated way. For example, browsing through the unsorted collection of

thousands image files named e.g. DSC00034.JPG when searching for one particular

photograph of one’s child at last year’s holiday can be very time consuming and

stressful if done in front of waiting family members.

A distinction must be noted between personal photograph collections and busi-

ness collections. This is especially true when one considers the different ap-

proaches that a home user and a business user take when searching through

the photographs. It is cost effective for the business user to annotate the collection

in a manual or semi-automated way in order to obtain accurate representations

and classes. Such organisation results in very effective and accurate search sys-

tem. In contrast to this, the home user is not keen on manually annotating her/his

photographs. As the home collections are usually much smaller than business col-

lections (e.g. Irish Times collection of photographs vs. MediAssist collection [5, 6])

it is sometimes easier and more straight forward for the home user to browse the

collection instead of searching by a textual query. Therefore, automated organi-

sation of photographs allowing the user to browse the specified subset of photos

seems to better match the home user’s needs. This thesis concentrates on a system

for organising a personal photograph collection, not a corporate one.

Some metadata associated with photographs can be used for organising pho-

tograph collections. The metadata can be categorised into two groups:

• content information: this is information on what is in an image; it can consist
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of low-level features such as colour or texture, or high-level features such

as identities of people captured, buildings, etc.

• context information: this is all information associated with the environment of

a photograph such as creation time, location, event at which the photograph

was captured, ownership, etc.

The metadata can be added through a manual annotation process or extracted in

an automated way, such as colour or texture descriptors. The creation time can

be also automatically obtained from an EXIF (Exchangeable Image File Format)

header and location may be acquired from a GPS (Global Positioning System)

device.

Research work on organising collections of digital images has been undertaken

for a number of years. The early systems such as Fotofile [7] were followed by

other research systems such as AutoAlbum [8], MiAlbum [9], PhotoTOC [10] or

PhotoFinder [11] and techniques as presented in [12, 13, 14] and [15].

The early approaches to automated organisation of photograph collections em-

ployed some low-level content features of images such as colour, colour histogram

and texture for example-based browsing and retrieval [7] or semi-automated an-

notating [9]. These systems require some amount of user feedback for the con-

firmation of validity of indexing. The content features are used in AutoAlbum [8]

for automatically organising photographs into albums, allowing the user to browse

through images contained in created albums. Some context information associated

with photographs is also utilised in this system [8] and in others. These early ap-

proaches obtain additional information from manual annotation. Later approaches

such as PhotoTOC [10] extract metadata from EXIF headers or from the parameters

of the image file (e.g. creation time). The grouping of images into albums is usually

based on temporal clustering in connection with colour (histogram) clustering [10].

Digital cameras are equipped with more and more tools such as integrated GPS

devices (e.g. Kodak Digital Science 420 camera [13]). These are exploited by re-

searchers for enhancing event detection and organisation in photograph collections

by using both the location and creation time [13, 16, 17].

Commercial products are also available. These provide some means of image

manipulation for enhancing photographs. They allow users to browse through

thumbnails or lists of files. However, many file managers nowadays also provide

the functionality of the thumbnail view of image files. The commercial software

does not or rarely does go beyond organising photographs in albums resembling

directories on a filesystem.

Modern commercial tools for managing home collections of photographs are

usually Internet-oriented. They provide convenient tools for creation of person-

alised web pages containing photograph albums, allowing easy sharing of pho-

tographs. Some systems go even further providing only a web interface, allowing
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the user to upload their photographs and then to browse them over the Inter-

net. The examples of such systems are Ryia 1.0 [18] or the MediAssist project [19]

(although MediAssist is not a commercial system).

Apart from Ryia 1.0 [18], which employs face recognition technology for label

propagation, commercial software does not fully exploit the potential of human

faces in photographs. The removal of red eye effect, brightening, sharpening

or smoothing of facial region (e.g. Canon PhotoPrint software) are usually the

only means of facial analysis used. However, this software does not provide

tools for automatically organising photographs according to humans captured in

photographs.

Modern photograph management systems provide some automated ways for

creating albums. However, these are limited only to grouping photographs from

the same event, time or location [13, 19]. In the case of the identities of people

presented in photographs all these systems require prior, at least partial, annotation

of faces, providing ways of automated propagation of labels to unlabelled faces.

Also, they rely heavily on face recognition techniques, which give excellent results

on pictures captured in constrained environment such as laboratories, but fail in

photographs taken by the user in various conditions.

A fully automated and unsupervised method for finding occurrences of the

same people is proposed in [20]. This work, however, concentrates on organising

the cast list in a video. Working with a video sequence is different than working

with still images. In the video sequence, the occurrences of the same person can

be tracked within a scene using object tracking techniques based on the colour

and texture of an object. In that way an initial grouping can be carried out and

images within such groups can be used for training a classifier. It has the additional

advantage of the multiple views of the same face.

This thesis proposes a system for automated, unsupervised grouping of similar

people in a collection of still images. The system is based on face recognition,

but also employs other techniques such as matching of clothing using the tech-

nique introduced in [21] and contextual information such as event and ownership

information.

1.1.2 A tool for organising a collection

A tool for organising a collection of digital photographs based on the appearance

of humans in images consists of two applications:

• an indexing tool, for organising the collection;

• a browsing tool, which enables an efficient browsing the collection.

As an example of the organisation tool one can imagine the following scenario:
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Barry has uploaded his recent photographs from his digital camera onto a PC. The system

goes through the photographs, finds faces in some pictures (faces indicate that humans are

present), extracts them and groups similar faces. The interaction between the system and

Barry might look like this:

S: I’ve found new photos and those faces in them; these 3 faces seem to be similar, are they

of the same person? [Yes/No]

B: Yes

S: What is this person’s name?

B: Deanne

S: What about these 5 faces, are they of the same person? [Yes/No]

...

The system creates, in an unsupervised manner, the groups of similar faces.

In an ideal scenario, these faces would be of the same person captured in different

photographs. The groups (clusters) of similar faces do not necessarily have to

have a label (the name of a person) assigned to them. Some people from a crowd

might have been captured in photographs and the user does not necessarily know

their identities and/or might want to regard them as outliers. It is also possible

that the system recognises such outliers and deals with them, as outliers represent

the noise in a data set and might affect in a negative way the effectiveness of a

clustering process.

Let us consider the scenario of Barry browsing his photo collection:

Barry browses the photographs from last holidays. He spent his holidays with

Deanne, Sean and Siobhan. He wants to see more photographs of Deanne, so he

clicks on Deanne’s face in one of already opened images. The system responds by

showing all images that contain faces from the same group as the clicked face of

Deanne. Or, in the case of the large number of images and the limited screen area,

only key images extracted from Deanne’s cluster.

It can be seen in the second scenario that browsing photographs and searching

through a collection for the photographs of a particular person does not require

labels (names) associated with clusters. The images of the same person can be

retrieved by getting all photographs in a cluster. If there is a limited area on which

the retrieved images are shown then the key images are chosen and presented.

1.2 Clustering

There are two distinct ways of grouping data:
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• supervised (called supervised clustering or classification) which assigns data

to groups created using labelled training data. This method is called “classi-

fication” in this thesis.

• unsupervised (called unsupervised clustering or simply clustering) which

groups unlabelled data. This method is called “clustering” in this thesis.

In the case of classification the number of groups can be learnt from the training

data. In contrast to that, the number of groups (clusters) in clustering must be either

given beforehand or estimated during the process.

Clustering of any data consists of at least 3 elements [22]:

1. the definition of a feature space and feature extraction

2. the definition of a similarity measure

3. grouping (classification)

Two further elements can be considered:

4. the creation of cluster prototypes (data abstraction)

5. evaluation

For the purpose of managing and organising a digital photograph collection,

the first four points are most important. The fifth point is vital for comparison

between different clustering techniques.

1.2.1 Feature space

A feature space gives a representation of a data set, ideally allowing one to dis-

cover patterns or a structure within the data set. This pattern representation may

be more convenient for processing than the raw data, such as in the case of dimen-

sionality reduction techniques, e.g. Principal Component Analysis (PCA), Linear

Discriminant Analysis (LDA) or Independent Component Analysis (ICA). Another

possibility is that features are constructed using parameters of a data model, as in

the case with some probabilistic representations. In the case of selecting a subset

of features it is essential to choose the most discriminative features. This leads to

dimensionality reduction but also improves the accuracy of the representation.

When one considers organising a photograph collection based on the people

captured in the photographs, face recognition technology seems to be an obvious

choice. This follows the observation that the human recognition is based mostly

on recognising human faces. Today’s state-of-the-art face recognition techniques

give excellent results in controlled environments such as laboratories. However,

in uncontrolled conditions (e.g. in personal photograph collections) the results of

recognition are far from satisfactory [23].
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(a) Euclidean (b) maximum

(d) cosine(c) Manhattan

Figure 1.1: Sample shapes of clusters with different distance measures.

Therefore, in order to improve the organisation of the collection, information

additional to face recognition should be used. This information may be based

on the context of the photograph, such as creation time and location, the event

at which the photograph was taken, or ownership. Other, content-based features

may be taken into consideration such as the body patch technique introduced in

[21]. These features, when combined in an efficient way, should provide highly

acceptable clustering.

1.2.2 Similarity measure

A similarity measure defines a degree of similarity between two points (faces) in a

data set. It is usually defined as a distance (proximity) between two points in the

feature space. Therefore, it is closely related to the feature extraction or selection

processes. The shapes of clusters are defined by the proximity measure and the

feature space. The boundaries of the shapes of clusters for various similarity

measures in two-dimensional linear feature space are presented in Figure 1.1.

The similarity measure is often chosen according to the feature space charac-

teristics, e.g. MPEG7 Face Recognition features are known to work best with the

weighted L1 norm [24]. The similarity measure is sometimes not a metric, i.e. does

not satisfy the triangle inequality [22]. It may happen when two faces (let say face

A and face B) of two women are in close proximity, and one of these faces (B) is

similar to her brother’s face C resulting in small distance between faces B and C.

Then the value of the distance between faces A and C may be higher than the

sum of distances between A and B, and B and C, because A and C are the faces

of people not similar at all (not related to each other and of different genders).

Some distance measures might also contain conceptual or contextual information
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employing so-called syntactic features [25]. The choice of similarity measure, how-

ever, is often driven by examining sample data and the patterns that the sample

data forms.

1.2.3 Grouping

Grouping is an essential part of the clustering process and can be carried out

in various ways [22]. The hierarchical approach produces different clusters at

different hierarchy levels. The techniques based on square error minimisation

(k-means), graph theory or mixture modelling usually result in hard grouping, i.e.

any given data point is assigned to only one cluster. Fuzzy algorithms provide soft

partitions, i.e. a membership function defines the degree of the assignment of data

points to clusters. Some grouping techniques are based on artificial intelligence

such as neural networks or genetic algorithms.

Several characteristics of grouping need to be analysed. The most important

are the order-dependency and the computational complexity. The results of a

good algorithm should not depend on the order of grouping the data i.e. grouping

should be order-independent. Computational complexity defines how quickly the

time of computations grows with the increase size of the data. The clustering of

large data sets can be very time consuming for very complex algorithms.

1.2.4 Data abstraction

Once the grouping of data is carried out, it is vital to represent clusters in an

efficient and convenient way. Therefore, the choice of cluster parameters for

representation of these groups is crucial. Usually such representation emerges

from the grouping algorithm, e.g. hierarchical grouping results in a hierarchical

representation, which might allow a user to browse through a hierarchy.

In organising a photograph collection, the representation of clustering results

can be seen from a special point of view. Clusters are to be presented to the

user on a limited area available on a computer screen. Therefore, as a trade-off

between the size of an image and the number of images that can be shown, the

key photographs that best represent the clusters can be presented to the user.

The choice of key photographs (let us call them key-frames, similarly to key-

frames in video) is not a trivial task. This choice can be based on several criteria

such as time spread, event spread, scenery spread etc. However, these criteria,

although they might be objective, do not necessarily reflect users’ preferences.

Additionally, the choice might depend on whether the presentation of clusters

results from a user query or is independent of the query, or it might depend on

how specific the query is. The non-query presentation of clusters can be viewed

as the query-based one, with a very unspecific (general) query.
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1.2.5 Evaluation

Although it is not that important for the user of a photograph collection to numeri-

cally evaluate the accuracy of clustering, it is vital for comparing various clustering

approaches. The user can visibly compare the results of clustering with different

algorithms and even might be able to correct the results manually. However, for

objective comparison of clustering methods, the numerical assessment of clustering

results is necessary.

The results of clustering can be assessed using various measures such as the

spread of image features inside clusters or the ratio of the variance of the features

inside clusters to the variance between clusters, etc. The most commonly used

measures are precision and recall. The precision measure inspects the internal

structure of clusters by examining how many images in a cluster are of the given

person, i.e. it gives an insight to how many false positives are captured. The

recall measure tells about how many photographs of all the photographs of the

given person are captured in a single cluster, i.e. it indicates the number of missed

positives.

The data set which is used for evaluation in this work consists of photographs

taken by people at various occasions in different conditions. These photographs

have been annotated both automatically (e.g. creation time is stored by digital

cameras in the EXIF format) and manually (e.g. identities of people in photographs).

Detailed description of the data set used by the author for experiments is available

in Appendix C.2.

1.3 Major contributions

The major contribution described in this thesis is the application of a region-based

colour image segmentation to the problem of locating facial components such as

eyes, eyebrows or lips (see Section 3.2 and [26]). This is based on the observation

that facial components differ in colour from other, skin coloured, areas of a human

face. Therefore, these colour differences are utilised for extracting regions of the

components and the locations are found as the centres of components’ regions.

The RSST and EM algorithms are employed for colour segmentation. They are

modified to suit the purpose of the facial components extraction.

Earlier approaches to locating facial components deal mostly with intensity im-

ages, stripped from colour information. This simplifies an image representation,

but removes colour information that is vital for the colour segmentation. Therefore,

the colour image segmentation could not be used in earlier approaches. However,

similar techniques were developed, e.g. deformable templates are fitted to an

image using edge information together with valley and peak information in an

intensity image [1]. Another similar work was carried out in [27], where an ob-
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servation that facial components have lower intensity values than other parts of

a human face was exploited. However, they utilised only grey-level information,

using colour information only for finding a full facial region in an image. The work

described in Section 3.2 and in [26] can be seen as a large extension to this work,

which adds colour information and uses more sophisticated algorithms (RSST and

EM).

A different flavour of colour segmentation with the modified RSST algorithm

was later used in [28] for locating eyes and lips. This is further used for finding

the position of a human face in an image. However, this approach did not exist

before the one described in [26].

The second major contribution in this thesis is the application and evaluation

of methods for unsupervised clustering of human faces, that are similar in appear-

ance (see Section 5). In the literature, one can find attempts to the unsupervised

creation of cast lists in movies [29], where additional temporal information is avail-

able. In the case of still images, face recognition algorithms were applied to the

problem of classification, not to unsupervised clustering. Three simple algorithms

for unsupervised clustering are tested in order to find out how well they perform

when dealing with the face recognition problem.

Another major contribution in this thesis is the application of the fusion of dif-

ferent sources of information for clustering of human faces. Context-based features

— the ownership of an image and an event at which a photograph was captured,

and content-based — the features of a part of human body, are fused with the

face recognition features. Those additional features enhance the clustering results

as the face recognition features provide limited, noisy information. Similar work

is presented in [30]. They use even more sources of contextual information, but

they perform only the classification and the label propagation, not unsupervised

clustering.

A novel approach is proposed - a three level algorithm (see Section 5.5). This

is used for combining ownership and event information with the face recognition

features. It is based on the observation that clustering algorithms perform better on

smaller datasets and certain people appear in photographs captured only at some

events or by some users. An important conclusion drawn from the experiments is

that the appearance of human faces is event specific i.e. changes between events

are large enough to prevent merging the clusters that represent the same person.

1.4 Structure of the thesis

The structure of this thesis follows the steps of an unsupervised clustering process.

Firstly, in Chapters 2 and 3 methods for locating eyes in images with human faces

are described. These are used for extracting the face recognition features that
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are described in Chapter 4. The methods for the extraction of these features are

analysed. This is the first step in the unsupervised clustering process — the defi-

nition and extraction of features. The second step — the definition of similarity (or

distance) function is analysed in Chapter 4 together with the definition of features

for certain features work better with some similarity functions.

Chapter 2 provides the overview of state-of-the-art techniques for locating facial

components such as eyes, mouth, eyebrows, etc. It concentrates on finding eye

locations, because these locations are used by both component-based and holistic

face recognition algorithms. A novel approach to locating eyes in a facial region,

based on colour image segmentation, is introduced by the author in Chapter 3. This

method exploits the observation that components such as eyes, lips or eyebrows

differ significantly in colour from the skin coloured facial region. Experiments on

the MPEG-7 HHI facial database and results are presented in that chapter. Another

method, based on PCA is investigated for comparison. This method is quicker and

more convenient when the precise position of a human head is known.

In Chapter 4, the most successful algorithms for face recognition are analysed.

The analysis concentrates on investigating the suitability of the recognition algo-

rithms to provide features for unsupervised clustering. The well known techniques

such as Principal Component Analysis (PCA, eigenfaces), Linear Discriminant Anal-

ysis (LDA, Fisherfaces), probabilistic subspaces and Elastic Bunch Graph Matching

are described. The MPEG-7 Face Recognition descriptor is chosen to provide face

recognition features for experimentation with clustering algorithms. Two simple

techniques for pre-processing the normalised facial image are investigated: the

histogram equalisation and image feathering. The MPEG-7 standard does not rec-

ommend any pre-processing on normalised facial images, but it is shown that the

proposed pre-processing methods, although simple, greatly enhance the recogni-

tion ratio.

In Chapter 5 methods and algorithms for the third step of clustering process

— grouping — are investigated. A brief survey on techniques is presented. Then

three algorithms are chosen for further analysis, these are k-means, single-link

and a nearest neighbour-based one. Modifications applied to these approaches

are described. The modifications were made in order to deal with outliers and

estimate the number of clusters in data. Experiments conducted with these three

algorithms are described and results are presented and discussed.

The next chapter (Chapter 6) presents methods for enhancing the clustering by

using some sources of information additional to the face recognition features. Addi-

tional information that is used consists of information about events, the ownership

of photographs and the body part of detected persons. A survey on probabilistic

methods for information fusion is presented. It is followed by the description of

the implementation of the Transferable Belief Model (TBM) for clustering of iden-
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tities based on several sources of information. After that an alternative method is

proposed for combining events and ownership information with facial features. It

analyses the collection on 3 levels: event level, user (owner) level and the whole

collection level. This method is based on the observations made in Chapter 5. Fu-

sion of body information with facial features is investigated at the end of Chapter

6. Three probabilistic approaches are analysed: the average sum, the generalised

product and the maximum rule. The results of experiments with combining those

additional sources of information are presented and discussed.

Chapter 7 presents a discussion on choosing key images for representing clus-

ters in a photograph collection. Two approaches are described: browsing (non-

query-based) and searching (query-based). Some methods for evaluation are also

presented.

A summary of this thesis is presented in Chapter 8. Two directions that future

work can take are also presented in the same chapter. Another application of

Transferable Belief Model (TBM) is proposed as one possible direction. This TBM

is constructed solely on the similarity measure between data points unlike the TBM

proposed in Chapter 6, which is constructed on similarity measure between data

points and clusters. The second proposed direction would try to exploit an input

given by the user. This input is collected by means of corrections made by the

user to the clustering obtained in an automated way.

The thesis ends with four appendices. Appendix A contains derivations of

formulae for obtaining Maximum Likelihood in the case of Gaussian distribu-

tion. These are required for deriving the Expectation-Maximisation algorithm.

Appendix B presents the MPEG-7 Face Recognition descriptor in detail. Appendix

C describes the methodology of experiments carried out by the author, data sets

used and the definitions of measures and valid clusters. Appendix D contains

detailed results of experiments described in Chapter 5.
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Chapter 2

Facial component localisation and

extraction techniques

2.1 Introduction

The very first step of a clustering process is defining and extracting features from

the data. These features are then used for grouping data points (see Section

1.2). The extraction of features for face recognition requires the location of facial

components, most importantly the eyes. Even the holistic methods such as holistic

subspace algorithms need a normalised facial image, which is best defined by the

positions of eyes. This is the case for example with the MPEG-7 face recognition

descriptor, which defines precisely the normalised facial image (see Appendix B).

Other face recognition methods also require positions of facial components to

be known. This is vital for component based algorithms, but also for biometric

methods such as the Elastic Bunch Graph.

There has been a large amount of research in the area of facial feature ex-

traction and localisation and a number of different methods have been proposed.

However, those methods tend to work under specific conditions, e.g. particu-

lar pose, light conditions, constant resolution, high quality etc. The most popular

approaches are based on deformable templates [31, 32, 1], symmetrical layout of fa-

cial features [31] and the Gabor Wavelet Transform (GWT) [31]. Other techniques

seem to extend those methods listed above, i.e. neural networks are combined

with GWT [33] or genetic algorithms are used to match deformable templates [34].

This chapter provides a description of facial feature localisation using such tech-

niques as deformable templates, Active Shape Model, Hough transform, neural

networks, genetic algorithms, Principal Component Analysis and fuzzy logic. This

gives the context for the novel method proposed by the author in Chapter 3
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2.2 Geometric methods

2.2.1 Deformable templates

Deformable templates were introduced by Yuille et al [1]. These templates can

translate, rotate, change in size and change by a small controlled amount in shape

to best fit to the data. Matching templates is based on minimisation of various

energy functions. The parameters of templates are iteratively updated using the

steepest descent method. Due to the ability of the templates to deform, the method

should be flexible enough to work on images in various resolutions and size and

to take into account some rotation of the head. Figure 2.1 presents the eye and

mouth-open templates of archetypal features.
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Figure 2.1: Eye (a) and mouth-open (b) templates proposed by Yuille et al [1]. The
eye template’s parameters are the centre of the iris I, its radius r, the centre of
white E , parameters of the parabolas bounding white area a,b and c, rotation angle
θ and centres of whites p1 and p2. The mouth-open template is parameterised by
the mouth centre M, rotation angle θ , parameters of the parabolas bounding lips
b1,b2,ab,at ,hb and ht ; additionally there are two parameters u1 and u2 needed for
description of top edge of upper lip.

The success of matching the template depends heavily on the starting points,

since if the starting point is located above the eyes, the template can converge

either towards an eye or towards an eyebrow, causing errors [1]. The method is

computationally expensive [31, 1].

Another approach to eye templates was developed by Hallinan [31]. He models

an ideal eye as two regions with uniform distribution of intensity, the regions

correspond to an iris and the whites. All the differences between the ideal and

the actual eye in the image are seen as the noise. Hallinan uses an α-trimmed

distribution for template modelling rather than a uniform distribution. The best

overall precision rate1 of this method is at the level of 80% when using the α-

1The precision is defined as the percentage of the correctly localised features among all the
features localised in the testing dataset.
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trimmed distribution [31].

Kampmann and Zhang [32] use simplified templates and cost functions for eyes

extraction from video sequences. The eye template consists of the iris and two

parabolas parameterised by the iris centre point, the corners and the height of

the eyelid, while the radius of the iris is estimated from the distance between the

corner points of the eye.

2.2.2 Active Shape Model

The active shape model (ASM) is a statistical model of the shape of any object,

in particular facial components such as eyes, eyebrows, nose, mouth and the

curvature of a jaw. This technique was proposed by Cootes [35] and can be

viewed as a generalisation of deformable templates. It is based on PCA projection

of coordinates of the shape points. The shapes are modified by changing the PCA

features.

Figure 2.2: An ASM of a human face with 58 points and norms shown. (IMM
database [2]).

Figure 2.2 shows an example of ASM applied to a human face. This particular

model consists of 58 points.

The model was extended by Cootes to employ a texture within the object, in

addition to a shape, for more complete representation. This new model is called

an active appearance model (AAM). A comparison of ASM and AAM can be found

in [36].
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2.2.3 Symmetry operator

Facial features such as eyes, eyebrows and mouth have shapes and locations sym-

metrical about a vertical line through the centre of the face. Thus Reisfeld and

Yeshurun [31], Saber and Tekalp [37] and Jacquin and Eleftheriadis [38] employ

symmetry operators for features localisation. Reisfeld and Yeshurun locate fea-

tures in points with the highest values of symmetry measure. They report that

their method is robust to changes in scale and rotation. However, whenever the

location of the face area is unknown, it is highly computationally expensive. A

precision of 95% was reported in experiments with the database containing facial

images with facial area occupying 15%−60% of the image area [31].

A symmetry functional is used for eye localisation within an elliptical face blob

by Jacquin and Eleftheriadis [38]. They use a rectangular window such as the eyes-

nose-mouth model and locate features by scanning the rectangular search area

with that window, followed by matching using a symmetry functional. Jacquin and

Eleftheriadis [38] report 95% accuracy of tracking facial features and the method’s

robustness to conditions such as the presence of eye-glasses or beard.

2.2.4 Hough transform

The Hough transform is a transform used to find analytically described shapes [31,

39]. The transform was used for eye extraction by Nixon [39]. He uses magnitude

and directional information of the intensity gradient for localisation of analytically

described shapes. There are two shapes defined for an eye region: the iris and

the perimeter of eye sclera. The iris is represented by a circle and the sclera is

defined as an ellipse. The ellipse is deformed with an exponential function to more

precisely fit eye shape in the corners further from the centre of the face. A Sobel

operator is used to obtain gradient magnitudes and directions. The accuracy of

localisation of the centres of irises reported in [39] is on average 0.33 pixels. The

mean value of error of sclera localisation is 1.33 pixels.

2.2.5 AI algorithms

Artificial neural networks

A very simple approach to facial components extraction using artificial neural

networks (NN) is based on a multilayer perceptron (MLP). Vincent et al [33] have

described experiments with the MLP for eyes extraction from greyscale facial

images. The images they use contain frontal views of faces and shoulders. The

localisation process is performed by scanning the image or a part of the image

with a rectangular window. The pixels covered by the window are inputs to the

MLP. The searching area does not cover the whole image but is restricted to a
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rectangular area in the neighbourhood of eye regions when the higher resolution

images are processed. This speeds up the processing time and increases training

efficiency since the number of examples containing an eye region appears more

often when the scanning area is reduced [33].

The MLP was trained (using the backpropagation algorithm) to give response

1 when the window was centred over an eye and 0 otherwise in the case of low

resolution images. For higher resolution images the response was set between 0

and 1 when the searching window was centred within the six pixels distance from

the centre of the eye, increasing towards the eye centre. Vincent et al [40] report

the results of between 86-91% success. However, they also report a problem with

spurious detections.

Several methods are proposed for increasing the efficiency of the MLP eye

locator. Hand et al [41] present a fast method of projecting weights from the

neural network of one level (i.e. lower resolution) to another level network. Since

the lower resolution images were obtained by subsampling original images by

the factor of 2 (height and width of the image each time are reduced to half of

their values), the Quad Tree method is used for projecting weights to another

level. This increases the processing speed using the multiresolution approach and

weights projection, as well as decreasing the number of spurious localisations.

Vincent et al [40] improve neural network performance by using second degree

neurons. Such neurons can produce more complex decision surfaces unlike simple

neurons, which have a decision surface of a single hyperplane. Good results have

been obtained for verification of eyes localisation using second degree neurons for

lower resolution images.

Debenham et al [42] propose to use radial basis functions (RBF) as the acti-

vation functions for neurons in the hidden layer. The neurons with radial basis

functions (called RBF neurons) are capable of producing a finite (closed) decision

surface while neurons with conventional activation functions give an infinite sin-

gle hyperplane. The multiresolution experiments with RBF neurons presented by

Debenham et al [42] gave good results in the localisation of eyes.

Reinders et al [43] propose a few modifications to the simple MLP (multilayer

perceptron) extractor. They reduce the search area by prediction of the most

probable feature location from the previous frames. However, the location of

eyes in the first frame has to be done manually or by a computationally expensive

search in the whole image. In order to solve the problem of wide variations of

eyes appearance in the images of different people, Reinders et al [43] introduce the

idea of micro-features. They propose four micro-features: left and right hand side

corners and top and bottom eyelids. Additionally they introduce a probabilistic

approach for post-processing the results produced by the neural network. The

experiments made by Reinders et al show an average of 96% success in micro-
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feature location using neural networks with probabilistic post-processing.

2.2.6 Genetic algorithms

Lin and Wu [3] use a genetic algorithm for fitting templates to facial components in

an image. They construct simple templates for every feature, like eyes, eyebrows,

mouth or nosetip. The templates are matched to the features in particular areas

of the face. Figure 2.3 shows a block diagram of the genetic algorithm applied for

facial feature template matching [3].
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Figure 2.3: Block diagram of the genetic algorithm adopted for facial features
extraction [3].

Huang and Wechsler [44] use genetic algorithms to evaluate finite state au-

tomata (FSA) and Decision Trees (DT) in order to locate eyes. First they create

a saliency map of potential eye locations using FSA. The FSA moves through the

image using information derived from the present location and feature map. The

feature map consists of mean, standard deviation and entropy of the intensity val-

ues of the image. Once the saliency map is obtained it is examined to see if it

contains the eyes. The eye recognition is based on Decision Trees combined with

the genetic algorithm. To avoid redundant eye locations the winner-take-all algo-

rithm is applied to post-processing during the eye recognition stage [44]. Huang

and Wechsler report a success rate of 95% eye localisation without any false clas-

sifications. They also report that removing the saliency map creation stage results

in increasing processing time and decreasing success rate to 87.5% [44].
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2.3 Subspace techniques

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) was proposed by Turk and Pentland as a

technique of face recognition [45]. They propose the projection of facial images

into a space of eigenvectors called “eigenfaces”. The faces can be then classified

by comparing their position in the eigenfaces space.

Spors et al [46] and Talmi and Liu [47] adopted this technique of eigenvectors to

eye localisation purposes. They call the eigenvectors of eyes the “eigeneyes” in the

same manner as facial eigenvectors are called “eigenfaces”. The PCA technique

was also used for extraction of other facial components, so eigennoses, eigeneyes

and eigenmouths were created [47].

2.3.2 Independent Component Analysis

Independent Component Analysis (ICA) is a technique based on higher order statis-

tics. The main applications of this technique are Blind Signal Separation (BSS) and

feature extraction. Takaya and Choi [48] adopted ICA for eyes and mouth extrac-

tion from facial images.

Once Takaya and Choi compute the basis vectors, they use simple heuristics

to find facial features within basis images. The technique based on ICA requires

knowledge of the position of the face and that can achieved by colour segmentation.

However, a method based on wavelet subband filtration is proposed in [48] to

remove the components occupying large areas, leaving details only. Then the

facial localisation is no longer necessary.

2.4 MPEG-7 Face Location

The Motion Picture Expert Group (MPEG) has proposed an algorithm for locali-

sation of facial areas within colour and monochrome pictures for the purpose of

extraction and creation of the MPEG7 Face Recognition descriptor [24]. This algo-

rithm is based on such techniques as skin colour segmentation, Gaussian derivative

filtering, heuristics and template matching. The algorithm for face detection confir-

mation has been proposed as well. The correlation between the facial images and

the face-valley and face-ridge filters is used for confirmation of the face candidates.
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2.5 Other techniques

2.5.1 Gabor functions extensions

Gabor functions are broadly used to improve the performance of other techniques

of facial features extraction [31, 33, 48, 34]. These functions locate the high curva-

ture points, thus they can be used for finding eye and mouth corners, nostrils, etc.

[31, 34].

Lisboa [49] proposes to use wavelet coefficients as the input to an artificial

neural network instead of the intensity values. This decreases the input size from

a 16×16 pixel matrix to 72 wavelet coefficients. In spite of reducing the number

of inputs, the results obtained with this method are similar to results obtained with

the normal neural networks.

Feris et al [34] use a two-level hierarchical wavelet networks for localisation

of corner points of eyes, mouth and nostrils. The first level is used for face

matching, the second one for feature localisation. The Gabor wavelet transform

in conjunction with a bijective geometric transformation is used in the first level

wavelet network. Feris et al use brute-force search within the facial area in order

to find a location that gives the minimum difference between the wavelet network

and the target feature [34].

2.5.2 AdaBoost

The “boosting” technique was introduced for face localisation by Viola et al [50].

However they also apply the technique to find the eye region within the facial

region in an image.

The AdaBoost method uses a cascade of “weak” classifiers. This structure, with

appropriate training using boosting technique gives an efficient “strong” classifier.

By using simple and quick weak classifiers the technique can be fast and very

efficient.

Due to characteristics of the detector and its simplicity, this method gives ex-

cellent results in the case of frontal views of faces, without in-plane rotations.

Detecting faces and their components in the case of in-plane rotated faces requires

running the algorithm at different rotation angles. This, due to the simplicity and

speed of the algorithm is not difficult to do.

2.5.3 Fuzzy logic

Johnson et al [51] present a neural technique for feature extraction based on fuzzy

logic. The fuzzy logic is applied to find the corners within the image, which are

used to form critical points. Five critical points are introduced: the eye, the tip

of the nose, the point under the nose, the lips and the chin. The feature vectors
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are formed based on relative distances and angles between critical points. The

recognition is based on the feature vectors and is robust to translation rotation and

scale [51]. The authors report a significant reduction in the computational cost of

their approach in comparison with traditional neural networks with 98% success

rate in feature extraction.

2.5.4 Corner detection

The SUSAN corner detection operator was proposed for facial feature extraction

by Wu et al [52]. They obtain face area and facial features regions using colour

information in conjunction with information of edge strength and orientation. Then

the SUSAN operator is used to locate corner points of features to detect features

points. They report that the system is invariant to changes in translation, slight

rotations and facial expressions [52].

2.5.5 Colour segmentation

A use of full colour representation for the extraction of facial components was first

proposed by the author in [26]. This technique, based on colour segmentation, is

described in detail in Chapter 3.2.

Cooray et al [28] propose a similar technique based on colour segmentation

and probability distribution. Firstly they find the facial region using skin colour

information. Then they obtain feature candidate regions by applying the RSST

algorithm to the chrominances of a facial image. A region which is inside the

facial area and has a dominant red value is assumed to represent the mouth. The

eyes are found as the regions with the largest values of luminance variations. The

authors report good results for good quality frontal view images.

2.6 Summary

This chapter presents techniques and algorithms developed over the years for the

facial components localisation problem. There are very precise methods such as

e.g. deformable templates which give very accurate locations of the components.

However, this comes with the cost of computational complexity and initialisation

issues.

In the next chapter, the author proposes a novel approach to facial components

localisation that is based on colour segmentation. This is followed by a description

and results of the experiments carried out by the author in order to evaluate the

proposed algorithm. Another approach based on a PCA template is presented for

comparison.
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Chapter 3

Face Component Localisation

3.1 Introduction

In the previous chapter techniques and algorithms for facial components locali-

sation developed over the years by many researchers are described. These al-

gorithms usually deal with gray level facial images in a fixed scale environment

(although there are exceptions such as deformable templates).

In this chapter, a method for locating eye positions is proposed by the author

and analysed. It is based on colour segmentation techniques and can be used

for locating any face components that differ in colour from the human skin, such

as eyes, lips, and eyebrows. The colour segmentation is realised with Recursive

Shortest Spanning Tree (RSST) and Expectation-Maximisation (EM) algorithms, and

components are classified using simple heuristics. Another technique presented in

this chapter locates eye positions within a bounding box outlining the facial area. It

is based on PCA projection of the candidate eye regions. This method is presented

here for comparison with the one proposed by the author.

3.2 Facial components extraction via image seg-

mentation

3.2.1 Algorithm overview

The algorithm proposed by the author for facial components extraction and local-

isation consists of three steps:

• initial segmentation

• face localisation

• facial components extraction.
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The algorithm uses initial segmentation to obtain an initial set of regions that are

used for the final object extraction. The object of interest (in this case a human face

with facial components) needs to be specified by the user. Two approaches are

investigated: the first one uses lines (scribble) drawn by a user to mark the human

face and the background; the second one employs an automated face localisation

algorithm. Once the facial object in an image is specified, the final extraction of

components from the object is carried out.

The initial segmentation (presented in detail later in this chapter) is carried

out using the RSST algorithm similarly to Cooray’s et al [53] approach. Other

automated segmentation techniques are available as well, including the watershed

used for initial segmentation by O’Connor [54], pyramidal region growing or colour

clustering [55]. The RSST was chosen because it produces connected regions due

to the fact that it merges neighbouring regions and it thus provides a good initial

segmentation for facial components extraction. This is an efficient algorithm with

easy control of the segmentation granularity [53, 55]. Section 3.2.2 provides more

details about the RSST.

The second step, face localisation, is provided with simple skin colour seg-

mentation. However, initially, simple user interaction was used for localising the

facial region, requiring the user to draw a simple line over the facial object and

another one over the background. This user interaction is the same as used by

O’Connor [54] who draws lines (called scribbles) over the object of interest and

the background. This approach is different from the Cooray approach [53] where

the user clicks on the regions of interest within the object.

The face localisation algorithm is used in order to remove the user interac-

tion. The algorithm is similar to the method proposed by Sobottka et al [56, 27],

however, the skin colour segmentation is performed on the region level deliv-

ered by the initial segmentation instead of on the pixel level (as it is in Sobottka’s

approach). For each separated skin-coloured region the best matching ellipse is

calculated. The ellipse approximates the head blob [56] and is used for marking

the facial object and the background. These objects do not necessarily have to be

marked very precisely since the final step of extraction provides accurate bound-

aries. However, better skin segmentation provides more accurate information for

further processing. Details about the face localisation are presented in Section

3.2.3.

The last stage of the algorithm is the final extraction of the facial components.

The EM algorithm described in detail in Section 3.2.4 is employed at this step.

Since the face is represented by a multimodal Gaussian distribution, the facial

components may be represented by the separate modes. Thus, when the facial

object is extracted from the image, the modes are searched for components. In

the next three sections, the algorithms are described in more detail.
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3.2.2 Initial segmentation — the RSST algorithm

Recursive Shortest Spanning Tree (RSST) is based on graph theory which was

successfully used for the image segmentation [57]. This hierarchical automatic

algorithm segments the image iteratively from a huge number of small regions

(on the pixel level) to several regions with relatively large area (which is the final

result in this process).

Initialisation

Find the link
with lowest cost

Merge regions joined
by that link

Recompute the
links’ costs

number of
regions?

enough

Ireg

too many

IYUV

Figure 3.1: The RSST algorithm diagram.

A block diagram of the RSST algorithm is shown in Figure 3.1. The process

begins with an initialisation step, where each pixel is mapped as a separate region

and the links between adjacent pixels are created. Then, the cost of each link is

calculated using the equation [53, 58]:

d(Ri,R j) =
[

(YRi −YR j)
2+(CrRi−CrR j)

2+(CbRi−CbR j)
2]× NRi ×NR j

NRi +NR j
(3.1)

where Ri and R j denote the regions joined by the link with the cost (distance)

d(Ri,R j), YR is the mean value of the luminance of the region R, CrR and CbR are

the mean values of chrominances of the region R, and NR denotes the number of

pixels in the region R (the size of this region).

Once the costs for all links are obtained, the regions with the lowest link cost

between them are found. The next step is to merge these regions, which gives a

new region with new mean values of luminance and chrominances. These values

must be recalculated. The size of the new region is the sum of sizes of merged

regions. Every link belonging to one of the regions being merged is attached to

the newly created region. Then, all the duplicated links are removed, since they
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are not needed any longer. The number of regions is decreased at each iteration.

Next, the number of regions is examined. If there are more regions than

specified by the user, the link costs must be recalculated for the new region. Then

the next iteration is carried out.

When the specified number of regions is reached, the merging process is

stopped and the regions are mapped to the image, giving the final segmentation.

Because the final number of regions depends on the characteristics of the image,

Cooray et al [53] introduced the PSNR (Peak Signal to Noise Ratio) as the crite-

rion of the convergence of the RSST algorithm [53]. However, this is achieved at

the cost of increased processing time due to the calculation of the PSNR at every

iteration.

3.2.3 Face localisation — skin colour segmentation

The initial face localisation is introduced in order to remove the user interaction

from the algorithm. The facial areas are found by examining the RSST regions in

order to find skin-coloured regions. Then the adjacent regions are merged and the

separate disconnected skin coloured regions are obtained. Since this chapter is not

focused on face localisation, it is assumed that the facial image contains a single

face and the face occupies a biggest region with skin colour within the image. The

face localisation technique described in the remainder of this section is based on

the algorithm developed by Sobottka and Pitas [56, 27]. It differs from the original

approach in that the colour of regions is analysed, not the colour of pixels as it is

in the original algorithm.

Firstly the search for the skin coloured regions is carried out. The RSST regions

are represented by mean colour so that colour information with thresholding is

used for finding potential facial regions. The thresholds are defined in the YUV

colour space and work on the chrominances values. Sobottka and Pitas [56, 27]

use the HSV colour space, but since the RSST and EM algorithms use the YUV

representation and there is no need to make additional conversion to HSV space.

The thresholds are set to bound the area of skin colour extracted from the sample

facial images. The sample points and the bounding lines are presented in Figure

3.2.

The area in the colour space corresponding to skin tones, based on the points

presented in Figure 3.2 is defined with the following equations:

Cr > 80 (3.2)

Cb > 140 (3.3)

Cb−0.67Cr < 107 (3.4)

Cb+1.6Cr < 356 (3.5)
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Figure 3.2: The points of the skin coloured pixels on the UV plane and the lines
bounding the skin colour area.

These equations were obtained by the author and they are different from the ones

presented by Sobottka and Pitas, because a different representation of colour is

used and partially because of a different dataset. It can be seen in Figure 3.2

that some of the skin coloured points are outside the area defined by the above

equations. However, this does not affect the overall process of facial components

extraction since only a rough idea about the facial regions is required. If the defini-

tion of the skin colour area is too wide, it can result in classifying the background

regions as the facial regions, which affects the extraction results. Additionally the

dark areas, which usually represent the hair, are removed by excluding all the re-

gions with the mean value of luminance below 100. Figure 3.3 presents examples

of skin regions that were found using the thresholds defined above.

Figure 3.3: The sample facial images with the skin colour regions extracted using
thresholding. The upper images are originals while the bottom ones show the
extracted skin regions and the best fitted ellipses.

The neighbouring skin colour regions are merged in the next step, thus con-

nected larger regions are created (these regions are separated from each other).

The ellipses that fit best to these regions are calculated. The ellipse computation

is based on the work of Sobottka and Pitas [27]. The ellipse is defined with its

centre point xm,ym, the lengths of two axes a and b and the orientation θ [27]. The

centre point of the ellipse is calculated as the centre of gravity of the region:

xm =
N

∑
i=0

xi, ym =
N

∑
i=0

yi, (3.6)
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where N denotes the number of pixels within the region.

The orientation of the ellipse and the lengths of the axes are computed using

moments, which lead to the following equations [27]:

θ = 0.5arctan

(

2µ1,1

µ2,0−µ0,2

)

(3.7)

a =

(

4
π

)1/4[(Imax)
3

Imin

]1/8

(3.8)

b =

(

4
π

)1/4[(Imin)
3

Imax

]1/8

, (3.9)

where

µp,q =
N

∑
i=0

(xi − xm)p(yi − ym)q (3.10)

Imax =
N

∑
i=0

[(xi − xm)cosθ − (yi − ym)sinθ ]2 (3.11)

Imin =
N

∑
i=0

[(xi − xm)sinθ − (yi − ym)cosθ ]2. (3.12)

The ellipse of the biggest region in the image (it is assumed that the image

contains no more than one face and that this face occupies the biggest of the skin

coloured regions) is used to produce two stamps to mark the facial and background

areas.

3.2.4 Facial components extraction with the EM algorithm

An image as the set of objects and regions

An image, unless this is a pattern image such as a chess board, usually contains

meaningful regions called objects. Thus the image can be considered as a set of

objects, at least two: a foreground and a background. The background particularly

is not necessarily a meaningful object.

The object can be seen as the set of regions, e.g. a human body contains the

regions such as a head, shoulders, arms, legs etc. The facial object is the object

of the special interest in this chapter. The face can be considered as consisting of

regions such as eyes, lips, nose, eyebrows etc.

Regions consist of pixels characterised by relatively high homogeneity and usu-

ally their structure is not very complicated. On the other hand, the complexity

of objects might be very high and they might contain regions of very different

characteristics. Among the features describing a region there are low-level char-

acteristics such as both vertical and horizontal coordinates and the mean colour

of the region. The number of these features depends on the representation of the
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colour, usually there are three colour coordinates. This gives five features in total

— two spatial coordinates and three coordinates of mean colour.

The Gaussian distribution is a very common model for real signals. This con-

venient model is used for modelling the regions within the objects and particularly

the face. The multivariate (multivariate since there are several variables (features)

describing the region) Gaussian Probability Distribution Function (PDF) is defined

as [54, 59]:

pdf(x,θ) =
1

(2π)
k
2 |θ2|

1
2

e−
1
2(x−θ1)

T θ−1
2 (x−θ1), (3.13)

where θ = [θ1 θ2]
T is the set of parameters, θ1 = mx denotes the vector of the mean

values of the features and θ2 is the covariance matrix. The value of k equals to

the number of features, which determines the dimension of the θ1 vector (in our

case k = 5). When the features (the components of the parameter vector) are

independent, the covariance matrix consists only of variances of the features and

is denoted by [54]:

θ2 =













σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
k













(3.14)

Figure 3.4 (a) presents the histogram of the colour of the eye regions in the YCrCb

colour space. The Gaussian distributions modelling the eye features are shown in

Figure 3.4 (b). The model obtained with the Gaussian PDF gives good represen-

tation of the regions [54], such as eye or lips regions and is used for modelling of

facial image.
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Figure 3.4: The histogram (a) and the Gaussian model (b) of the colour components
of the region representing the eyes.

The full facial object requires more complex representation in order to reflect

its more complicated structure. Such an object can be viewed as a set of regions,

therefore can be modelled with the superposition of the regions PDFs. The Gaus-
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sian model of each region within the object is called a mode and the PDF of the

object is then named a multimodal Gaussian distribution. This multimodal object

PDF can be obtained as the weighted sum of each region PDF [54]:

pdf(x,θ) =
G

∑
g=1

πgpdfg(x,θg), (3.15)

where pdf(x,θ) denotes the object PDF, G is the number of modes (regions within

the object) and pdfg(x,θg) is the PDF of the gth region. The symbol πg denotes the

weight at which the gth PDF is summed. If the condition ∑G
g=1 πgi = 1 is met then

πg is considered as the given (prior) probability that the xth pixel belongs to the

region g.

An example of a multimodal distribution modelling the facial object is presented

in Figure 3.4. Only the luminance component is shown for better visualisation.

The object consists of four regions — thus there are four modes which form the

distribution. To show clearly how the multimodal distribution is created, the sum

of modes is not weighted and is not normalised. It can be seen, by examining

the shape of the distribution function, that in this case just two modes would be

enough to represent the facial object sufficiently. However, if the facial components

are to be found, the number of modes has to be increased, so a separate mode

is applied to each component. By doing so the object may be over-represented,

however this over-representation is justified when the facial components, rather

than the facial object, are to be extracted.
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Figure 3.5: An example of multimodal distribution as the model of the facial object.

Since the image is considered as a set of objects (i.e. faces and the background)
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and each object is modelled with a multimodal PDF, the image can be seen as

a mixture of the multimodal PDFs. The PDF does not have to be a Gaussian

distribution in general. However, this distribution is very similar to the distribution

of colour samples of the facial features (see Figure 3.4) and thus was chosen for

modelling the facial components.

Facial component extraction with the EM algorithm

This section describes the EM algorithm applied for extraction of the facial object

and its components. It is assumed that the image of the face is a frontal view

shot of the face and both eyes are visible. The head is not in-plane rotated or

else is rotated with a very small angle, so it is assumed that the components are

horizontally aligned. In Section 3.3 it is assumed that there is only one face in

an image. In the case of multiple faces in an image, the image can be seen as a

set of M objects: M −1 faces and the background. Alternatively the image can

be split into M −1 subimages, each containing only one face, thus consisting of

two objects: the face and the background. In the description of the algorithm the

latter approach is taken, with M objects (faces and the background). The flow

chart in Figure 3.6 shows the structure of the EM algorithm used for the object

extraction. The very first step is the calculation of the initial parameters of the

multimodal PDFs modelling the objects. This requires some information about the

object. Then the iterative loop consisting of two steps is run. These steps are

the E-Step (Expectation Step), where the estimations of the posterior probabilities

are calculated, and the M-Step (Maximisation Step), where the updates for the

parameters are computed in order to maximise the expectation of the likelihood

function.

The algorithm is run on two levels — the object level, where the objects (faces

and the background) are represented with the multimodal PDFs, and the region

level where the regions (facial components or background conponents) are mod-

elled with the unimodal Gaussian PDFs and the set of regions forms the object

PDF.

The initialisation step

The initialisation step provides the initial values for the parameters of the objects

and the regions. Some information about the objects has to be known giving

some data at the start the of algorithm. This data does not have to be complete.

However, the more data available the better the objects are represented. The

information about the face and the background is provided by the user, who

draws lines (scribbles [60, 54]) on the objects or is derived by the face localisation

algorithm presented in Section 3.2.3.

Since the image is pre-segmented with the RSST algorithm, lines ( scribbles
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Figure 3.6: The object extraction via the EM algorithm — a system diagram.

[60, 54]) are drawn over the regions. The regions marked with these lines are

merged until the number of the regions within each object reaches the specified

value. It is assumed that the number of marked regions is higher than the number

of modes. If this is not true then some of the modes represent no region and

should be removed. Then, either the number of modes should be decreased, or

the number of regions of the initial segmentation should be increased.

As can be seen in Figure 3.5, two regions representing the facial object should

be sufficient for the facial object extraction. However, these regions would not

contain the separated facial components. Thus the number of regions has to be

as high as the number of components or higher. Then each facial component is

represented with a separate region what provides the components extraction.

The clustering algorithm used for the regions merging is similar to the RSST

algorithm in the way that it iteratively merges the scribbled regions spanned with

the lowest link cost. The cost of the link is:

d(Ri,R j) = [fmRi − fmR j]
T [fmRi − fmR j], (3.16)

where the feature vector fmR contains the features of the Rth region. Since it is

assumed that the components are horizontally aligned, the vectors fR contain the

vertical coordinate value and colour components fT
R = [YR CrR CbR yR] where yR

denotes the vertical coordinate of the centre of weight of the region R. Additionally,
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it is worth mentioning that disjoint components like eyes, eyebrows or nostrils

are represented with the same region, which means that for example one region

contains both eyes and there is not a separate region to represent each of the eyes.

Once the required number of regions within each object is obtained, the initial

values of the parameters are calculated. The mean and variance values of the G

regions (modes) PDFs are calculated using equations:

mgl =
1
N

N

∑
n=1

xgnl (3.17)

σ2
gl =

1
N

N

∑
n=1

(xgnl −mgl)
2 (3.18)

where g = 1, . . . ,G denotes g-th region and n = 1, . . . ,N denotes n-th pixel. The

parameters l are colour components in the YCrCb space and the spatial coordi-

nates, which provides the five dimensional PDFs. The prior probability must also

be assigned to each region. Since the knowledge at the beginning is not com-

plete, an equal value of the prior probability is assigned to every pixel which

is not scribbled. Thus the probability becomes πgn = 1/G for g = 1,2, . . . ,G and

n = 1,2, . . . ,N where N is the number of pixels in the image and the G is the

number of modes within the object. The prior probability of the pixels belonging

to the marked regions are assigned πgn = 1 if they belong to the gth region, and

πgn = 0 otherwise.

Once the PDFs and prior probabilities for the regions (modes) are obtained,

the initial object PDFs pdfm(xn,θm), m = 1,2, . . . ,M, where M denotes number of

objects, are computed using the Equation 3.15. If the nth pixel does not belong to

any object (its region has not been marked) the prior probability πmn, m = 1,2, . . . ,M

that the pixel belongs to mth object is set to 1/M. If the nth pixel was marked as

belonging to the pth object its prior probability πpn = 1 and πmn = 0 for all m 6= p.

The expectation step

The Expectation Step (E-Step) is the first step in the iteration loop. During the first

iteration, all the information and the parameters required for the calculations are

provided with the initialisation step. For the subsequent iterations, the PDFs are

obtained from the M-Step of the previous iteration and the posterior probabilities

from the previous iteration become the prior probabilities in the current one. The

actual posterior probability τmn, m = 1,2, . . . ,M for each object is calculated using

Bayes rule [54]:

τgn =
πgnpdfg(xn,θg)

∑G
g=1 πgnpdfg(xn,θg)

. (3.19)

The calculation of the posterior probabilities gives the soft segmentation of the

image into objects. A hard segmentation assigns pixels to the regions and objects
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by examining the posterior probability. The nth pixel becomes the member of

this object which has the highest probability τmn.

There might be some pixels which do not belong to any object. These pixels

are called outliers. A particular pixel becomes an outlier when the posterior

probabilities that this pixel belongs to any object have a very low value. The

outliers are found by thresholding the posterior probabilities and are removed

from the following iterations since they provide no information about objects [54].

The maximisation step

The Maximisation Step (M-Step) updates the parameters of the objects PDFs in

order to maximise the likelihood expectation with the current pixel’s membership

of the objects. This is carried out by updating the parameters of every region

within each object. Firstly, the posterior probabilities that the given pixel n belongs

to the gth region within the object this pixel belongs to (from the hard segmentation

of the E-Step on the object level) is calculated. Bayes rule (Equation 3.19) is used

for these calculations assuming that there are G regions within the object. These

calculations can be seen as the E-Step and a soft segmentation at the region level.

Once the posterior probabilities are available, the hard segmentation is carried

out. The pixels are assigned to this region within the object, which has the highest

posterior probability that this particular pixel belongs to this region. This classi-

fication results in the updated regions which can be seen as the estimation of the

likelihood function for the current parameters [54].

The parameters of each region PDF are updated in order to maximise the

likelihood estimation. The updated parameters are calculated using the equations:

mgl =
∑N

n=1 τgnxnl

∑N
n=1 τgn

. (3.20)

σ2
gl =

∑N
n=1 τgn(xnl −mgl)

2

∑N
n=1 τgn

, (3.21)

These parameters form the updated region PDFs: pdfg(xn,θg), g = 1,2, . . . ,G where

G denotes the number of regions in the given object. The mth object PDF pdfm is

calculated using the region’s PDFs with Equation 3.15.

If the convergence condition is not met, the updated PDFs and the posterior

probabilities are used in the next iteration of the algorithm, and the current pos-

terior probabilities become the prior probabilities in the following iteration.

Convergence

Convergence is achieved when the estimation of the Maximum Likelihood reaches

the Maximum Likelihood point or at least gets very close to that point. One of

the ways to find out when the convergence is met is to examine the changes of
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the parameters θ . The EM algorithm is stopped when the PDF parameters do

not change more than a given threshold. In the case of the object extraction from

the digital image, the algorithm can be stopped when only very small number of

pixels change their membership to the objects. In the experiments described in

the Chapter 3.3, the latter condition is used and it is assumed that the convergence

is reached when less than 5% of all pixels in the image change their membership

in an iteration.

Post-processing

Post-processing is applied to the final facial object extraction. When the automatic

face localisation algorithm presented in Section 3.2.3 is used for marking the facial

object and the background, the ellipse created as the facial blob is used in post-

processing. All the pixels placed inside the blob ellipse are considered as the pixels

belonging to the facial object and its components. All the others are removed from

the components regions giving more accurate boundaries of the facial features.

Components classification with heuristics

The algorithm described produces a set of regions which contain facial features.

However, this does not determine which region contains any particular component.

Simple heuristics are hereby proposed by the author to assign regions with the

components. Some geometric dependences and the colour characteristics of the

features are used for the classification.

It is usually the case that the components such as eyes and eyebrows are

placed above the centre point of the face and the mouth is localised below this

point. The eyebrows and the eyes usually have a lower mean intensity value

than the facial skin. Due to the symmetrical nature of the facial components to the

vertical line going through the centre of the face, the horizontal centre of gravity of

the component region should remain close to the centre of the face. It is important

that dual features such as eyes or eyebrows are represented with a single region

so their horizontal centre of gravity should be located near the centre of the face.

The observations presented above lead to a set of heuristics rules. First of all,

the mean values of the intensity of the regions are examined and their horizon-

tal distance from the centre of the face is calculated. The Euclidean distance is

calculated

DE = Y 2
R +(xR − xF)2, (3.22)

where DE denotes the distance measure, YR is the mean luminance value of the

region, which is in the range of (0,255), so the value of the distance measure is

lower for darker regions. The symbol xR denotes the horizontal coordinate of the

centre of weight of the region and xF is the horizontal coordinate of the centre of
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the facial object. Once the distances for each region within the facial object are

calculated, three regions are chosen: the region with the lowest distance measure

among the regions placed below the centre of the face and two regions with the

lowest distance measure above the centre of the face. The region which is below

the facial centre is regarded as the mouth region. The bottom region from the two

upper regions is seen as the region containing the eyes and the most upper one

should contain the eyebrows.

3.3 Experiments

3.3.1 Facial components extraction with user interaction

The extraction of facial components requires somewhat different conditions than

object segmentation. The scribbles that mark the objects now have to be more

complicated, especially the line drawn over the face object. That line should pass

through all features that are to be extracted. The background line should cover

also the hair area, since it is vital that hair is removed from the facial object to

avoid inclusion of the hair regions in the regions of other components. Figure 3.7

shows examples of the scribbles used for the experiments.

(a) as07.jpg (b) cf01.jpg (c) clai33.jpg (d) fb03.jpg (e) fore33.jpg (f) gh04.jpg

Figure 3.7: Examples of scribbles used for facial components extraction; colours
of the lines drawn by the user have been changed for better visibility.

The number of modes within the facial object has to be increased due to the

more complex structure of such an object. When the number of modes is too low

the algorithm tends to gather surrounding image parts into component regions.

The experiments were carried out for three cases: 10, 15 and 20 modes applied

to the facial object. The number of modes higher than 20 provides many modes

containing no pixels at all, thus experiments were not carried out for more than

20 modes for the facial object.

Figures 3.8 and 3.9 present results of eye and mouth extraction. The initial

segmentation was carried out with 150, 200, 250, 300 and 600 RSST regions. The

number of modes used for facial object representation was set to 10, 15 and 20.

It can be seen that there is a particular number of modes and RSST regions that

gives good results. In many cases the modes cover regions which do not belong

to the facial components. However, it is possible to find parameters giving good

results for each image.
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Figure 3.8: Results of facial features extraction from the frame of “Foreman” se-
quence.

In the first case illustrated, the “Foreman” video sequence, very good eye

extraction was achieved with 20 modes applied when the number of regions of

initial segmentation ranges from 200 to 300. A lower number of facial modes

results in a merging of the eyebrows with the eyes. The results show that mouth

extraction requires a high number of modes, the best results were obtained using

20 modes. The shadows below the nose and the nostrils are included in the lips

region when the number of modes is too low.

Results obtained for the “Claire” image are less accurate. The eye extraction

encounters problems caused by the hair that is regarded, by the algorithm, as the

part of the eye region. Additionally the extraction of both eyebrows is impossible

to achieve since one of the eyebrows is covered by hair. Some parts of hair are
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Figure 3.9: Results of facial features extraction from the frame of “Claire” sequence.

included in the eye regions. A smaller number of facial modes results in more hair

being included in the eye regions. In this sequence the number of RSST regions

is very important. Setting this number to 300 gives the best results according to

the number of non-eye pixels included in the eye region. Even the best results

require post-processing for removing hair pixels. This can be achieved i.e. by

considering only these pixels that are placed within the skin coloured area of the

face.

The results obtained with 20 modes applied to the facial object are an example

of too many modes being used for modelling the object as shown in Figure 3.9.

One of the eyes is completely excluded from the eye region except for the very

fine initial segmentation level (600 RSST regions). It is desired in the presented

approach (as outlined in Section 3.2.4) that both eyes are represented with single
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mode, thus a mode containing only one eye is considered as an error.

The best results of mouth-lips extraction were obtained with the parameters

in the middle range of their values: 200 – 250 RSST regions combined with 10 –

15 modes. In these cases both upper and lower lips were extracted giving precise

vertical location of the mouth. However, the nostrils are included in the lips region.

When only the lower lip is extracted it is separated from nostrils, i.e. when 20

modes are applied to facial region.

(c) dz07.jpg

RSST regs: 200

fg modes: 15

(b) fb03.jpg

RSST regs: 200

fg modes: 20

(a) gh01.jpg

RSST regs: 200

fg modes: 20

(d) gh04.jpg

RSST regs: 200

fg modes: 20

Figure 3.10: Results of eye extraction and localisation. The parameters used for
extraction are presented at the bottom of each picture.

Figure 3.10 presents results of the eye extraction and localisation obtained using

sample images from the HHI database. The image presented in Figure 3.10(a)

shows perfect extraction and localisation of eyes in spite of the appearance of

eyeglasses. Figure 3.10(b) presents an example of a false localisation, when the

eyebrows are included in the eye regions. The locations of the eyes are then

shifted up towards the eyebrows. The localisation errors caused by the reflections

on the eyeglasses and eyeglasses frames together with the eyebrows are presented

in Figure 3.10(c) and (d). In both cases additional pixels belonging to the eyeglasses

add an error to the eye locations.

(a) as07.jpg
RSST regs: 150
fg modes: 10

(b) cf01.jpg
RSST regs: 200
fg modes: 15

(c) clai33.jpg
RSST regs: 200
fg modes: 15

(d) fb03.jpg
RSST regs: 250
fg modes: 20

(e) fore33.jpg
RSST regs: 150
fg modes: 15

(f) gh04.jpg
RSST regs: 200
fg modes: 15

Figure 3.11: Results of the mouth extraction.

Additional results with the mouth extraction are presented in Figure 3.11. Im-

ages 3.11(a), (b) and (e) present very good results, however, some pixels from the
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surrounding background or shadows are extracted as well. The algorithm gets

confused by the moustache as shown in Figure 3.11(d). The lips together with the

moustache and the nostrils are considered as a single mode providing false mouth

extraction. Since the algorithm extracts horizontally aligned features, it is sensi-

tive to vertical shadows. Figure 3.11(d) and (f) provide sample images with such

shadow. This results in partial extraction of the mouth feature, as the remaining

part differs in brightness from the extracted part.

The experiments carried out show that the presented technique can be used

for facial components extraction under certain conditions. The number of RSST

regions and the number of facial modes are critical for the extraction results. It is

possible to find the values of these parameters that give good results. However,

these values are different for each image. The lighting conditions have a great

impact on the algorithm performance. This is particularly true when the vertically

aligned shadows cause the algorithm to fail (see Figure 3.11 (d) and (f)).

3.3.2 Facial components extraction with automated face lo-

calisation

In order to remove the user interaction, the automated face localisation algorithm

was proposed by the author as described in Section 3.2.3. The experiments that

were carried out used two marking stamps created from the facial ellipse: the

smaller ellipse and its interior marking the facial object, the larger one with its

exterior marking the background. The gap between these two marks gives the

algorithm an opportunity to extract facial boundaries accurately. However, some

difficulties are encountered when the pixels in the gap are falsely classified as

facial components. The set of 48 images taken from the HHI database was used

for carrying out the experiments. The extraction and localisation were obtained

for 150, 200, 250, 400 and 600 RSST regions and 10, 15 and 20 facial modes were

used for each image.

Figure 3.12 presents some results of the eye localisation using the algorithm

with the face area marked automatically. The locations of the eyes are compared

with the reference location points obtained from the images containing eye masks.

These mask images were created with the manually segmented eye regions. Thus

they can be viewed as the “ideal” eye regions serving as a reference. The lo-

calisation errors presented were computed as the Euclidean distance between the

locations obtained with the algorithm and the reference locations. The error in

eye locations ranges from 0 up to 3 pixels. However, there are different algorithm

parameters used for each image. Most of the eyes were located using 20 modes for

the facial object. The number of RSST regions was usually set to 400. However,

the lower values often give equally good results.

The graph in Figure 3.13 presents the average error of the eye localisation for
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(a) as03.jpg
RSST regs: 300
fg modes: 15
right eye err: 0.51
left eye err: 1.16

(b) as06.jpg
RSST regs: 200
fg modes: 10
right eye err: 3.08
left eye err: 0.62

(c) bs01.jpg
RSST regs: 400
fg modes: 15
right eye err: 1.88
left eye err: 1.26

(d) cf01.jpg
RSST regs: 400
fg modes: 15
right eye err: 1.92
left eye err: 1.29

(e) dz06.jpg
RSST regs: 200
fg modes: 20
right eye err: 0.55
left eye err: 1.13

(f) dz07.jpg
RSST regs: 300
fg modes: 20
right eye err: 1.29
left eye err: 1.58

(g) fb05.jpg
RSST regs: 400
fg modes: 20
right eye err: 0.99
left eye err: 1.45

(h) hk06.jpg
RSST regs: 400
fg modes: 20
right eye err: 0.69
left eye err: 1.20

(i) km01.jpg
RSST regs: 400
fg modes: 15
right eye err: 1.21
left eye err: 1.43

(j) ml06.jpg
RSST regs: 250
fg modes: 20
right eye err: 1.77
left eye err: 1.56

(k) ml07.jpg
RSST regs: 250
fg modes: 20
right eye err: 1.49
left eye err: 2.01

(l) wp07.jpg
RSST regs: 400
fg modes: 20
right eye err: 0.69
left eye err: 0.87

Figure 3.12: Images with lowest error rates. Numbers of RSST regions and fore-
ground modes are given at the bottom of each image.

48 images from the HHI database. The error decreases when the number of RSST

regions is increased. However, if that number rises above 400, the error decrease

is not that significant and in the case of 10 modes for the facial object the error

even increases. The smallest average error was obtained for 20 modes applied to

the facial object. A further increase of the number of modes results in the presence

of modes containing no pixels and does not improve the error rate while being

computationally more expensive.

The average error rates are not small enough to use this technique to success-

fully locate the eyes. In order to improve the error rate some post-processing is

necessary. During the post-processing, all the pixels that are outside the ellipse

computed from the skin region, are removed from the facial modes. Thus all the

regions of a dark background should be removed from the facial feature regions,

thus improving the precision of the localisation.

Figure 3.15 presents images with the eyes located using the algorithm with the

post-processing stage applied. The errors in localisation of each eye are shown

as well as the parameters for extraction. The error values have decreased in the

presented cases. There are less variations in the number of facial modes giving

best results. However, the number of RSST regions varies substantially between

images.

The graph presented in Figure 3.14 shows an average error obtained with

the post-processing applied. The values of the error have decreased and are

less dependent on the number of RSST regions, the graph is more even. The

errors obtained with 15 and 20 facial modes are approximately equal for both
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Figure 3.13: The square root error of the eye locations obtained using an approach
with an automated skin colour segmentation as the function of the number of RSST
regions and the number of foreground modes.

cases in the range of 200 to 250 RSST regions. The overall error rate has been

decreased by applying post-processing. However, the values of average error are

still unacceptably high. Although in the best cases the location errors for the eyes

are acceptable.

3.3.3 Facial components extraction with the regions classi-

fication based on heuristics

The simple heuristics described in the Section 3.2.4 were applied for the classifi-

cation of the modes. The heuristics determine which of the facial regions contain

eye information and could be used for the location computing.

Table 3.1 presents the percentage of correct classifications. The percentages

are very low. However, this statistic was created by comparing the results of

heuristics with one single mode viewed as the reference. Often two modes can

give good locations of the eyes, i.e. it may happen that one of the modes contains

a pupil region only and another one white areas of the eyes. Thus both should be

considered as correct regions.

The overall performance of the algorithm deteriorates when the heuristics are

used. The graph presented in Figure 3.16 shows an average error obtained using

the algorithm with the heuristics applied. These errors are unacceptably high,

however, they show characteristics similar to the previously presented results.

The error rates decrease when the number of modes and the number of RSST
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Figure 3.14: The square root error of the eye locations obtained using an improved
approach with an automated skin colour segmentation as function of the number
of RSST regions and the number of foreground modes.

No of modes No of RSST regs
150 200 250 300 400 600

10 40 38 38 35 42 29
15 29 35 33 27 27 29
20 25 21 31 23 27 31

Table 3.1: The percentage of the correct mode classification when searching the
for eyes region.

regions increase.

3.4 PCA template

3.4.1 Assumptions

The method described in previous sections extracts eye regions, which can lead to

accurate eye locations, however segmentation of an image is time consuming and

may yield different results depending on background complexity and other envi-

ronmental conditions in a photograph. Considering that a bounding box outlining

the position of a head is given, the approach to eye localisation can be simplified.

The bounding box roughly surrounds both eyes and possibly eyebrows and at the

bottom it is restricted by position of mouth. Sample bounding boxes of faces are

presented in Figure 3.17.
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(a) bs01.jpg
RSST regs: 600
fg modes: 20
right eye err: 1.9
left eye err: 1.0

(b) as06.jpg
RSST regs: 200
fg modes: 20
right eye err: 0.6
left eye err: 0.5

(c) bs01.jpg
RSST regs: 300
fg modes: 20
right eye err: 1.3
left eye err: 1.6

(d) cf01.jpg
RSST regs: 400
fg modes: 20
right eye err: 1.0
left eye err: 1.9

(e) hk01.jpg
RSST regs: 400
fg modes: 20
right eye err: 0.9
left eye err: 1.1

(f) jo02.jpg
RSST regs: 300
fg modes: 10
right eye err: 1.1
left eye err: 1.0

(g) km01.jpg
RSST regs: 400
fg modes: 20
right eye err: 1.2
left eye err: 1.4

(h) km04.jpg
RSST regs: 400
fg modes: 20
right eye err: 1.0
left eye err: 0.5

(i) ls02.jpg
RSST regs: 150
fg modes: 20
right eye err: 1.4
left eye err: 1.4

(j) ml07.jpg
RSST regs: 300
fg modes: 20
right eye err: 1.0
left eye err: 1.6

(k) wl06.jpg
RSST regs: 600
fg modes: 20
right eye err: 1.3
left eye err: 1.4

(l) wp07.jpg
RSST regs: 600
fg modes: 20
right eye err: 0.7
left eye err: 0.9

Figure 3.15: The images with the lowest error rates. The numbers of RSST regions
and the foreground modes are given at the bottom of each image.

It can be seen in Figure 3.17 that the size of the head region can be estimated

by a size of the bounding box. Thus, having given the bounding box, only the in

plane rotation of a head needs to be estimated. For non-rotated faces, eyes are

centred roughly in the places shown in the template scheme presented in Figure

3.18.

3.4.2 Locating eyes

Estimation of in-plane rotation angle

The angle of in-plane rotation of the given face in an image is found by rotating

the facial region at several angles and extracting the eye region with eye positions

defined as in Figure 3.18. The angles are between −45◦ and 45◦ at every 5◦ dis-

tance, which gives 19 sampling positions. The sampling of every 5◦ was arbitrarily

chosen as a trade-off between precision and processing time.

At every sample rotation the eye region is extracted and projected onto a PCA

eigeneyes subspace. The PCA projection is described in the following section.

Once the PCA projections are obtained the distance of the projections to the centre

of eigeneyes subspace is calculated for every projection. Then the angle at which

the projection is closest to the centre of eigeneyes subspace is regarded as the

angle of in-plane rotation of the face.
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Figure 3.16: The graph of the average location error when the heuristics are
applied.

PCA eye template

The decision whether the given region contains eyes is based on a PCA template.

An eye region of a face is projected onto the PCA eye subspace and the distance

of this projection from the centre of the subspace is calculated. The region which

contains eyes would be projected closer to the subspace centre than non-eye re-

gions.

The eye region containing both eyes is normalised before the projection to the

size of 33× 11, with eyes centred in 6th row and 9th and 24th columns. This

region is then converted into a vector x of length 363 by row-wise scanning. For

extracting the projection, firstly the mean eye region x̄ is subtracted from the eye

vector and then the resulting zero-mean vector is projected onto the matrix of

basis vectors W = {w1|w2| . . . |wN}T :

y = W(x− x̄). (3.23)

Pre-processing

The normalised eye region of size 33×11 consists of intensity values only. This re-

moves dependency on colour bias, or white balance of the region. However there

is still dependency on illumination values, whether the given face is in a shadow

or in strong light. Therefore the eye region is pre-processed with histogram equal-

isation in order to bring up details and equalise illumination conditions in each

region.
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Figure 3.17: Sample human faces extracted from a photograph collection.

dy

dx

dx/4

 4
dy

Figure 3.18: Positions of eyes in bounding box for non-rotated face.

(a) (b)

Figure 3.19: Sample eye regions, (a) before and (b) after histogram equalisation.
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Algorithm

The algorithm for finding eye positions, or rather the in-plane rotation of the face

within the bounding box using eye PCA templates is presented below.

Algorithm:

1. Get facial bounding box

2. Choose rotation angle

3. Rotate facial region

4. Extract eye region

5. Calculate PCA projection of eye region

6. Calculate and store the distance of the projection

to the eigeneye space

7. if all rotation angles considered go to step 8,

else go to step 2

8. choose the angle at which the distance of the

projection to the centre of eigeneye space is

lowest

3.4.3 Results

The algorithm presented above was tested by the author using the test dataset

described in Appendix C.2. As human faces in the test set are of different sizes, the

error rate must be normalised in order to give meaningful values. Therefore the

distances between ground truths and automatically found locations are normalised

by the distance between ground truth locations of left and right eyes dt . The mean

normalised error is the sum of individual errors for left and right eyes calculated

for all K = 1127 images in the dataset:

ē =
1
K

K

∑
k=1

||pak −ptk||
dtk

(3.24)

where pa denotes vector of coordinates of location of an eye found using the PCA

template method, pt is a ground truth position of the eye and dtk is the distance

between both eyes in k-th facial image calculated using ground truth locations of

these eyes.

The average error of 0.218 of the distance between left and right eye means

that if there are faces of such a size that distance between eyes is 32 pixels, then

the average error of locations from the centre of an eye would be 7 pixels. If such
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Table 3.2: Error of eye localisation.

mean error left eye 0.208
mean error right eye 0.228
mean error both eyes 0.218
maximum error left eye 1.58
maximum error right eye 2.26
minimum error left eye 0.0
minimum error right eye 0.0
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Figure 3.20: Average error of location of left and right eye normalised by the
distance between eyes.

an error is in the horizontal direction, then the depicted location would still remain

within the boundaries of an eye.

However, in some situations the error values become large, as the maximum

error values shown in Table 3.2 and the spread of the error shown in Figure 3.20.

This happens when a region that is far from the true eye region, produces the

projection closest to the centre of the eigeneye space. Then the rotation angle can

be very different from the true one resulting in large localisation error. This can

also happen if the required in-plane rotation angle is outside the sampling range.

The technique based on PCA template is efficient. However, its accuracy de-

pends heavily on accuracy of the bounding box. In some situations a small change

in bounding box results in large errors in eye locations.

3.5 Conclusion

In this chapter techniques for localisation of facial components, with emphasis

on locating eyes, are discussed. A novel localisation method based on colour

segmentation of a facial image is proposed here and analysed. However this

method is computationally expensive, which results in long computation times. In

consumer applications the user is not eager to wait too long especially if the time

exceeds the time needed for manual localisation. Therefore a quicker method

based on PCA projection of candidate eye regions within a facial bounding box is

analysed as a replacement. Both methods locate eyes with similar error, however

the second method is faster and able to locate eye in wider range of face sizes and
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in-plane rotations.

The next chapter presents face recognition techniques and examines the MPEG-

7 face recognition descriptor (Appendix B) from the perspective of some enhance-

ments to normalised facial image. The normalised facial image is based on eye

positions and the influence of automated eye localisation realised with the PCA

based method on face recognition results is analysed.
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Chapter 4

Face recognition

4.1 Introduction

The major features used for clustering of similar persons in a photograph collec-

tion presented in Chapter 5 are face recognition features. It is essential to know

what features are available and how suitable they are for unsupervised clustering.

Therefore, in this chapter, an overview of face recognition techniques is presented.

It is highlighted how they can be employed for unsupervised clustering of persons

similar in appearance. The face recognition techniques suitable for unsupervised

clustering should provide good generalisation. Also, it should be possible to ob-

tain parameters for feature extraction (e.g. subspace basis vectors) without prior

knowledge about classes (identities) in a data set. Then, the parameters for ex-

traction can be obtained using a publicly available facial image database such as

the FERET database [61] or MPEG-7 HHI face database.

Methods for locating eyes and other components of a human face are presented

in the previous chapters. Accurate locations of facial components are required by

many face recognition algorithms, especially the ones that are based on biometric

data of a human face. However, the holistic methods also depend on the locations

of eyes for normalisation of the facial image.

4.2 Face recognition techniques

4.2.1 Subspace methods

Subspace methods such as Principal Component Analysis (PCA), Linear Discrim-

inant Analysis (LDA) and Independent Component Analysis (ICA) became very

popular recently, due to fast and yet reliable processing. These methods analyse

the structure of data and reduce the data size and redundancy. The similarity of

faces is measured by computing the distance between points in multidimensional

space obtained by projecting face images onto the basis vectors.
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The subspace methods are characterised by a good generalisation. Addition-

ally, such subspaces as PCA, Kernel PCA (KPCA) or ICA can be easily created

using an arbitrary training set and another data set can be easily projected onto

these subspaces. Similarities between data points from a projected data set can

be easily found, despite the fact that a given subspace is not optimised for a given

data set. An exception is the LDA method, which is optimised for a given training

set, thus generalisation is expected to be poorer than of other subspace methods.

Principal Component Analysis

The PCA and ICA methods are presented in Chapter 2 in context of facial compo-

nent extraction. Here their application to face recognition is discussed.

The PCA method is based on eigenvector decomposition of data and was first

proposed for face representation by Sirovitch and Kirby [62] and used for recogni-

tion by Turk and Pentland [63]. The method provides orthogonal vectors with the

principal direction pointing at the direction of the highest variance of the data. As

eigenvectors of face images are face-like in appearance, they are called eigenfaces.

This method gives good results in controlled environment with little changes to

view points, i.e. usually is used for frontal views of faces. Many other techniques

perform PCA decomposition as a pre-processing step for reducing data dimension-

ality.

Independent Component Analysis

ICA introduces a stronger condition than PCA as it assumes statistical mutual in-

dependency of basis vectors or input data, in other words that the random vectors

are drawn from two or more statistically independent random sources. ICA re-

duces not only first and second order statistics as PCA does, but also reduces to

zero higher order statistics. In that way more redundancy in the data can be re-

moved and the representation can be more compact. Bartlett et al [64] employed

ICA for face recognition in two scenarios: the first having independent basis vec-

tors, and the second for independent coefficients used for image representations.

She reports similar results for both scenarios with the latter giving better results

and both outperforming the PCA method. However, the comparison of PCA and

ICA given in [65] finds no difference in performance between PCA and ICA.

Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) method is based on Fisher’s Linear Dis-

criminant (FLD). This method searches for a subspace where the ratio of between-

class scatter matrix and within-class scatter matrix is maximised. Thus the pro-

jection of the data is optimal for linear separation of classes. Kucharski et al [66]
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project face vectors onto the space of LDA basis vectors for matching face images.

Gross et al [23] report improved performance when using LDA in comparison to

PCA.

LDA maximises the ratio [66]:

∣

∣

∣

∣

ΦT SbΦ
ΦT SwΦ

∣

∣

∣

∣

(4.1)

were Sb is a between-class scatter matrix:

Sb =
M

∑
m=1

Nm(x̄m − x̄)(x̄m− x̄) (4.2)

and Sw denotes within-class scatter matrix:

Sw =
M

∑
m=1

Nm

∑
i=1

(xi − x̄m)(xi − x̄m) (4.3)

where M denotes the number of classes and Nm is the number of instances in mth

class. By maximising the expression in Equation 4.1 LDA searches for the subspace

in which classes are most separable [66]. The dimension of such a subspace is at

most M−1.

Locality preserving subspace

Recent approaches exploit nonlinear characteristics of the appearance of human

faces in digital images. The next section presents kernel methods which are one

way for utilising nonlinearities in facial appearances. Another way is trying to find

the nonlinear submanifold on which facial images might reside. One of the latter

methods for representing human faces is locality-preserving subspace (LPS) based

on locality-preserving projections (LPP) [67], called Laplacianfaces [68]. Other meth-

ods for nonlinear subspaces are also available such as Isomaps [69], local linear

embedding (LLE) [70] and Laplacian eigenmaps [71]. However, these methods, de-

fine maps only for training data [68], thus they have problems dealing with new

classes. They are not easy to use in unsupervised clustering, unless only a closed-

world scenario is considered.

The locality-preserving projection preserves the local structure of the data,

unlike PCA which preserves the global structure. In the case of nearest neighbour

classification, which is most commonly used in face recognition, the local struc-

ture is more important than the global structure [68]. Additionally the locality-

preserving projection produces a nonlinear manifold for the construction of the

locality-preserving subspace, which gives superiority over linear PCA. The man-

ifold is constructed as an adjacency graph [68].
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Kernel methods

Techniques presented in previous sections provide dimensionality reduction of the

data by trying to find any linear structure within the data. A different approach is

proposed in kernel methods, where firstly additional dimensions are created with a

kernel function and then dimensionality reduction is carried out using PCA or LDA.

Kernels are usually made of nonlinear functions that project n-dimensional data

onto a f -dimensional space, f ≫ n. Because kernel functions are nonlinear, kernel

methods are often referred as nonlinear subspace methods. The Gaussian kernel

is used in most applications due to Gaussian characteristics of data. However,

other mappings can be used such as polynomial or sigmoidal functions. The

kernel subspace methods such as Kernel PCA (KPCA) or Kernel LDA (KLDA) can

be viewed as generalisations of respectively PCA and LDA, as the linear subspace

can be easily obtained with kernel methods by using polynomial kernels of first

order [72].

Shakhnarovich et al [65] show that the kernel method outperforms PCA and

ICA methods. Experiments presented in [72] confirm these findings. However,

the dimensionality of subspaces created with kernel methods is higher than their

linear counterparts.

View-invariant subspace methods

Pentland et al [73] propose a view-invariant face recognition algorithm in sub-

spaces created for each view angle separately. For M individuals, each captured

from C view points, C eigenspaces are calculated. The first step in this approach

is to determine the pose of the head. This is done by selecting the eigenspace

which describes the facial image in the best way e.g. by examining the likelihood

estimate [73].

Another approach to the view-invariant eigenspace is presented in [74]. A sin-

gle eigenspace is extracted from all MC images. This eigenspace describes both

identity and pose of the face in an input image. Matching in such a eigenspace

is based on the observation that the points representing the images of a given

individual can be linked, creating a path (eigensignature) in the eigenspace (see

Figure 4.1). The eigensignatures are located in different places for different indi-

viduals. However, the shapes of eigensignature curves are similar. Therefore,

there exists one general shape of a facial eigensignature that can be used for es-

timating a specific eigensignature based on the projection of a single facial image

[74]. The eigensignatures are generated using the Radial Basis Function Network

(see Section 2.2.5) and the matching process is carried out by matching a facial

image to a virtual eigensignature using the nearest neighbour classifier with the

Euclidean distance.
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Figure 4.1: Eigensignatures of three identities in a three-dimentional eigenspace.

4.2.2 Probabilistic approaches

The probabilistic approach (similarly to LDA) defines two classes of variations

of facial images: intrapersonal and extrapersonal [75] and (unlike LDA) models

them as probability distributions. The former one corresponds to changes in face

appearance of the same person, due to e.g. changes in expression, illumination

or pose. The latter one corresponds to differences in face appearance between

various people. The distance measure S(Ω) is calculated as the intrapersonal

posterior probability P(ΩI|∆) that the given facial image ∆ belongs to a certain

class:

S(∆) = P(ΩI|∆) =
P(∆|ΩI)P(ΩI)

P(∆|ΩI)P(ΩI)+P(∆|ΩE)P(ΩE)
, (4.4)

where ΩI denotes intrapersonal variations and ΩE denotes extrapersonal varia-

tions. The probabilities are modelled as multivariate Gaussians within the PCA

representation of parameter space, which reduces the number of parameters. It

also allows such modelling in environments with the limited number of data. The

face that is matched is projected onto two subspaces: the first one consists of

eigenvalues of intrapersonal Gaussians, the second one contains eigenvalues of

extrapersonal Gaussians. These projections are used for calculating the posterior

probability with the Bayesian rule. The resulting probability is seen as a similarity

measure and can be used for simple Euclidean distance matching, or for calcu-

lating Maximum Likelihood measure. This method outperforms the techniques

presented previously, according to experiments carried out by Shakhnarovich et

al [65].

It is not clear, however, how the Bayesian method could be used for unsu-

pervised clustering. The Bayesian method as proposed in [65] requires training
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of each class, as intrapersonal and extrapersonal probabilities must be computed.

Therefore, when a new class is to be added, these probabilities must be recalcu-

lated. The probabilities cannot be obtained from a training set that would contain

classes different than the data set. This method could be used for unsupervised

clustering as a kind of post-processing or refining tool. However, there is a danger

of carrying the erroneous classification from the initial clustering.

Another attempt to exploit the probabilistic framework for face recognition is

the use of Hidden Markov Model (HMM). The HMM is a statistical model for repre-

senting an unobservable Markov chain of finite number of states. The probabilities

of states are approximated with density functions, which are estimated from data.

The HMM can be trained using a Viterbii algorithm, which is a special case of the

EM algorithm (for information on the EM algorithm see Section 3.2.4).

A 1-dimensional HMM for recognition is proposed in [4]. Five states of HMM

are defined, each representing different parts of a human face: hair, forehead, eyes,

nose and mouth. The face is analysed in the same order i.e. from the top to the

bottom. The HMM is fed with 2D DCT (2-dimensional discrete cosine transform)

vectors extracted from each part of the face (regions covered by these parts might

overlap). Figure 4.2 presents the states of the HMM representing a human face.

1 2 3 4 5

hair forehead eyes nose mouth

a12 a23 a34 a45

a11 a22 a33 a44 a55

Figure 4.2: 1D HMM states for face representation [4] (ai j are coefficients of the
state transition matrix A).

As HMM is built and trained for each class, it is not easy to adopt this method

for unsupervised clustering. Therefore, it is probably best to use it as a second

stage, in two-stage clustering, for refining initial clustering results. Then, the initial

results might be used for training the HMM and if no new identity is expected to

occur in new data, these HMMs can be used.

4.2.3 Biometric-based methods

The biometric-based methods exploit the structure of a human face. Early ap-

proaches, such as the pioneering system of Kanade [76], use just geometric infor-

mation. Modern techniques utilise graph matching methods.

Elastic Bunch Graph Matching (EBGM) is a modern method based on graph

matching and wavelet theory. It is an extension of a Dynamic Link Architecture

(DLA) [77]. The Dynamic Link Architecture consists of a rectangular graph with
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jets1 in nodes. The local wavelet coefficients of jets are invariant to changes in

lighting, rotation, scaling and translation.

The EBGM extends the dynamic link architecture by using an elastic graph with

jets placed in fiducial points2 on a facial image. Additionally, in order to speed up

calculations, each node contains several jets. Then the architecture is called the

bunch graph representation [78] and the full graph representing a human face

is named the face bunch graph (FBG) [77]. This provides better generalisation of

the model, and therefore, an unknown face can be modelled more accurately.

For the recognition process the pose of a person’s head is estimated firstly using

graphs adapted to different poses. These graphs are learnt on a training set. Once

the pose is estimated an elastic FBG is matched to the face — the fiducial points

are found and jets placed onto them. Then, the similarity between faces is found

by means of similarity matching between the FBGs of the faces in the same pose.

The biometric methods depend heavily on accurate locations of fiducial points.

Therefore, they require facial images with a certain minimal size (say 128x128

pixels [78]), so that details of facial components are well visible. This restricts the

use of biometric methods for analysing a photograph collection as in many cases

the facial area is smaller than required. If images have sufficient details, the EBGM

is suitable for unsupervised clustering.

4.2.4 3-dimensional techniques

The methods and techniques presented above utilise only 2D information. Those

methods have difficulties matching faces at various view-points, as differences in

appearance between various views of the same face are larger than differences

between two various faces at the same view [74]. A couple of approaches have

been proposed for face recognition using 3D techniques in order to solve the

problem of multi-view recognition.

A 3D model of a human head provides enough information to produce 2D

representations of the face from unknown view-points. A representation of a face

surface based on polyhedral approximation and multidimensional scaling (MDS)

is proposed in [79]. This way a representation that is invariant to isometric defor-

mations is obtained. This representation allows the mapping of 2D facial texture

images into 3D facial geometry images. These are then decomposed with PCA.

A morphable 3D model for face recognition is proposed in [80]. Common

computer graphics algorithms are used for creating a 3D model, and estimating

the 3D shape and textures by fitting the morphable 3D model to the facial image.

Faces are represented as parameters of 3D shape and texture. Good results were

1Jets are Gabor wavelet coefficients extracted locally at points of graphs nodes placed on an
image

2Fiducial points are points on a human face which strongly determine shape of a face and facial
components such as e.g. corners of lips or eyes, high curvature points on the outline of nose, etc.
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obtained in experiments carried out on FERET and CMU PIE databases. However,

they are similar to the results of the Bayesian approach [80].

4.2.5 Other techniques

There are many more face recognition techniques developed over the 30 years

of research on computer face recognition. The methods presented above are the

most popular and best known.

The subspace methods such as PCA, ICA and LDA presented above, are holistic

methods, i.e. they analyse a human face as a one region. There are variations

of each of these subspace methods that work with facial components instead of

the full face. For example, the authors of [73] create PCA projections of facial

components named eigenfeatures. Eigenfeatures give higher recognition rate than

eigenfaces for low dimensionality, and a small increase in recognition rates when

combined with eigenfaces.

The combination of different techniques leads to hybrid methods. It is pro-

posed in [81] that PCA should be combined with local feature analysis (LFA). They

argue that PCA should be used for estimating eigenmodes of the highest corre-

sponding eigenvalues, while the LFA for other (higher-order) eigenmodes. The

reason for this is that the PCA eigenmodes represent the global structure of a fa-

cial image and the first eigenmodes correspond to low frequency images. On the

other hand, the eigenmodes of lower eigenvalues correspond to higher frequency

images, which are better estimated with the LFA since the LFA preserves local

topological information.

The algorithms of artificial intelligence (AI) such as neural networks or genetic

algorithms are very often used for classification and combined with other face

recognition methods. The Evolution Pursuit (EP), which is a type of a genetic al-

gorithm, is used for face recognition in [82]. This technique is based on eigenspaces

and Evolution Pursuit is used for searching for basis vectors, which minimise a

fitness function. Support vector machines (SVMs) are also very often used for

classification. The SVM is a two class classifier, therefore, several SVMs must be

combined for recognising several identities (there are as many SVMs required as

there are identities) [83].

4.3 Recognition with MPEG-7 descriptor

4.3.1 MPEG-7 Face Recognition

The MPEG-7 Face Recognition descriptor (MPEG-7 FRD) is a visual descriptor

defined in the MPEG-7 standard [84] that aims at providing a face recognition

functionality for content based image retrieval (CBIR). This descriptor employs a
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holistic linear subspace method for face recognition. The mean human face and

48 basis vectors are defined by the standard. Also, the normalised facial image

containing only illumination values is defined. The MPEG-7 FRD features are

extracted by projecting the normalised facial image onto the subspace defined by

the basis vectors. The final step of extraction is the normalisation of features. The

MPEG-7 standard also proposes the weighted L1 norm as a similarity measure

for matching faces [24]. Detailed information on the MPEG-7 FRD is presented in

Appendix B.

The MPEG-7 FRD is well suited for unsupervised clustering of similar faces.

Because the basis vectors are already defined, there is no need for a training

set. There is also some flexibility in choosing a distance measure, as the one

proposed by the standard [24] can be replaced by Euclidean, cosine or any other

suitable distance measure. The descriptor was designed with high generalisation

ability in mind as its primary usage is matching faces of individuals that were not

captured in the training set. Similarly to other holistic subspace methods, MPEG-7

FRD depends heavily on the accuracy of creation of a normalised facial image.

This image is defined using locations of eyes and hence the performance of the

descriptor depends heavily on the accuracy of the eye localisation process [85].

4.3.2 Pre-processing

The MPEG-7 standard does not propose any pre-processing of the facial image

other than normalisation. It is prone to strong lighting changes and variations of

background, as the area covered by the normalised facial image contains some

background around the human face.

Histogram equalisation is carried out in this section on the normalised facial

image, in order to remove lighting variations. The equalisation is not capable of

removing strong shadows. This is especially true when the direction of strong

light changes significantly. However, in most images, the appearance of faces

of the same individual is equalised to some extent. Additionally, the histogram

equalisation greatly enhances the contrast of the normalised facial image, which

helps in outlining facial features. Figure 4.3 presents some examples of normalised

facial images before (a) and after (b) histogram equalisation.

The best solution for removing the background influence on recognition is ex-

tracting a face using a colour segmentation of the normalised facial image. How-

ever, this could be time consuming and not possible when working on intensity

values only.

So-called feathering is used here in order to simplify the background removal.

When an image is processed by feathering the values of intensity are multiplied

by a 2-dimensional Gaussian function centred over the object (in this case a human

face). As a human face is expected to be in the centre of the normalised facial
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(c)

(b)

(a)

Figure 4.3: Examples of normalised facial image; (a) before any pre-processing,
(b) after colour histogram equalisation, (c) after colour histogram equalisation and
feathering with σ = 0.2.

image the Gaussian is centred in the middle of the image. If intensity values in an

image are in range 0−255, feathering can be denoted with the Equation 4.5:

I f (x,y) = G(x,y,σ)∗ (I(x,y)−127)+127, (4.5)

where

G = exp

(

−(x− xc)
2

(wσ)2 − (y− yc)
2

(hσ)2

)

and I(x,y) is the intensity value at the point (x,y), I f (x,y) is the intensity value after

feathering, xc and yc denote the coordinates of the centre of an image, and w and

h are respectively the width and height of an image. The value of σ determines

the width of the Gaussian.

Figure 4.3(c) presents sample images after feathering. For comparison, they

are shown alongside images that were not pre-processed in any way and images

processed with histogram equalisation.

4.3.3 Experiments

Some experiments were carried out by the author for assessment of the influence

of pre-processing on recognition with MPEG-7 FRD. Two data sets were used for

assessment: a small dataset containing photograph from one personal collection

and a set containing 1127 facial images from several collections. For details on the

data sets see Appendix C.2.

The experiments were carried out in 12 scenarios summarised in Table 4.1.

For each data set, MPEG-7 FRD features were extracted using facial images nor-

malised using manually marked locations of eyes and, for comparison, locations

automatically found with the PCA technique described in Section 3.4.

The experiments were carried out by matching each of the faces in the database

to the other faces using the nearest neighbour classifier. The nearest neighbour

68



Table 4.1: Scenarios for experiments with recognition.
experiment scenario

1 small data set, manual eye locations, no preprocessing
2 small data set, manual eye locations, histogram equalisation
3 small data set, manual eye locations, histogram equalisation + feathering
4 small data set, auto eye locations, no preprocessing
5 small data set, auto eye locations, histogram equalisation
6 small data set, auto eye locations, histogram equalisation + feathering
7 large data set, manual eye locations, no preprocessing
8 large data set, manual eye locations, histogram equalisation
9 large data set, manual eye locations, histogram equalisation + feathering
10 large data set, auto eye locations, no preprocessing
11 large data set, auto eye locations, histogram equalisation
12 large data set, auto eye locations, histogram equalisation + feathering

classifier used in these experiments is based on the distance measure defined

for the FR descriptor in the MPEG-7 standard [24]. If the label of the queried

face is the same as the matched nearest neighbour, then it is said that this face

was recognised correctly, otherwise it is said that the face was not recognised.

Correctly recognised faces are counted and their number is divided by the number

of all faces in the database giving the recognition ratio.

As it can be seen in Figure 4.4, where recognition rates for scenarios from

Table 4.1 are shown, the pre-processing does indeed improve recognition rates in

most scenarios. It is not the case for a small data set with automatically located

eyes. The reason for this can be the data set itself, as it is small and a few errors in

eye localisation can cause significant errors in recognition. As feathering removes

information placed near the edges of an image, any misplacement of a face outside

the centre of an image reduces the number of facial details, thus reducing the

recognition effectiveness.

An important observation must be made on the relation between the size of

the data set and the recognition ratio. For a small data set, recognition ratios are

higher than for the larger data set, even in the case of automated eye localisation.

This results from higher variations of faces in the larger set and the higher number

of outliers, which can be seen as a noise, and which affect the recognition.

4.4 Conclusion

In this chapter face recognition algorithms are presented and an analysis of how

they can be used for unsupervised clustering is carried out. The subspace methods

are best suited for unsupervised clustering as it is easy to extract recognition

features from new images and new classes. Additionally such methods as PCA are

characterised by good generalisation. Therefore, the basis vectors can be created

using a training set containing none of the classes that can be found in the data
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scenario 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 4.4: Recognition rates for different scenarios.

set used for recognition.

Histogram equalisation and feathering are proposed in this chapter for pre-

processing of the normalised facial image before the MPEG-7 FR features are

extracted. This pre-processing enhances the recognition effectiveness. The recog-

nition ratios are much lower than ratios published in other works, but the experi-

ments presented in this chapter were conducted using a database of photographs

captured in an unconstrained environment. The recognition is less effective in

such images than in images obtained in constrained conditions in a laboratory.

In the next chapter, the MPEG-7 FR features obtained with pre-processed nor-

malised facial images are used for grouping photographs into clusters consisting

of images of persons similar in appearance. Ideally, a cluster should contain pho-

tographs of only one individual. Therefore, effectiveness of grouping is measured

by means of precision and recall of photographs of the same individual.
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Chapter 5

Clustering

5.1 Introduction

In the previous chapter, features for face recognition are examined. This is the

first step of a clustering process. The second step, a choice of similarity measure,

is indirectly analysed in the same chapter, as similarity measure is closely related

to features. In this chapter, grouping algorithms are analysed — grouping is the

third step of unsupervised clustering. Some experiments with a modified k-means

algorithm, a single-link algorithm and an algorithm based on the nearest neighbour

classifier are described. The results of these experiments are also included and

analysed. The evaluation of the algorithms presented in this chapter realises the

fifth step of the clustering algorithm (see Section 1.2).

Unsupervised grouping is not a trivial task, as many parameters need to be

found or estimated, based on limited knowledge of the data. It is important to

distinguish between supervised clustering (supervised classification, discriminant

analysis) and unsupervised clustering [22]. In unsupervised clustering, parameters

of each cluster such as the shape and area have to be estimated, appropriate

points classified to the clusters and most importantly the number of clusters needs

to be estimated. The latter task is not trivial and usually is based on some kind of

thresholding, or a pre-defined number of clusters is used. Supervised clustering

usually estimates some parameters of a given number of known classes based on

labelled training data and then classifies unknown data points to those classes.

Noise, in terms of outliers, is a difficult problem for clustering. Outliers change

the parameters of the clusters. This can result in erroneous classifications. There-

fore, there is a need for some mechanisms for outlier detection and removal (or

any other means of dealing with them, e.g. placing outliers in a separate cluster

dedicated to outliers).

The well known clustering algorithms like k-means [22], the Expectation-Maximisation

algorithm [86] or N-cuts [87] require a pre-defined number of clusters (classes). The

cumulative agglomeration (CA) algorithm [88] and its generalisations [89, 90] deal
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with the problem of the number of clusters by discarding all clusters with cardi-

nalities lower than the predefined number. This is effectively a threshold applied

to the minimal number of points within each cluster.

Some known clustering algorithms were modified by the author in order to

estimate the number of clusters represented by the analysed data set. These

modifications are presented in this chapter. The modifications based on outliers

detection are applied to the k-means and single-link algorithms. Those algorithms

are employed by the author for unsupervised grouping of photographs containing

people who are similar in appearance. The author also uses the algorithm based

on the nearest neighbour classifier. This algorithm is very convenient, because it

does not require any thresholding for estimating the number of clusters.

5.2 Known techniques

Clustering algorithms can be divided into the following classes [22]:

• hierarchical

– single link

– complete link

• partitional

– square error

– graph theoretic

– mixture modelling

• fuzzy

• artificial intelligence

– neural networks

– evolutionary algorithms

– simulated annealing

5.2.1 Hierarchical algorithms

Hierarchical algorithms are based on grouping the data set into hierarchical struc-

ture, usually a tree [22]. Each of the levels of the tree gives a partitioning of the

data at a certain coarseness or level of detail (LOD). Closer to the root of the tree

fewer clusters are observed and fewer details of the data are obtainable.

Hierarchical algorithms can be either agglomerative or divisive. However, the

former one is more popular. In an agglomerative algorithm, each data point firstly
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forms a separate cluster. Then, the ordered list of links between clusters is found.

The order is usually based on a distance between clusters. Clusters linked with the

minimal distance are merged and distances between clusters are updated. This

procedure is repeated until there is only one cluster left. The required partition

can be found by following the hierarchy.

The divisive algorithm splits clusters rather than merges them. The hierar-

chical divisive algorithm begins with a single cluster consisting of all data points

and splits the clusters until the number of clusters is the same as number of data

points, with each cluster consisting of single data point.

A difference between different agglomerative hierarchical algorithms is in the

distance measure and the method of updating cluster parameters. Single-link

algorithms [22] use the distance between the two points from different clusters

that are closest to each other i.e. it is the minimum of all the distances between

points of the two clusters. The complete-link algorithm [22] uses the maximum

distance between points of two clusters as the distance measure between the two

clusters. As a result complete-link algorithms produce more compact clusters,

however, they are not able to model some complex structures of clusters that can

be modelled by single-link algorithms. On the other hand, there is a danger of the

chaining effect in the single-link algorithm [22].

Recent hierarchical clustering methods include Recursive Shortest Spanning

Tree (RSST) and Binary Partition Tree (BPT) [53]. The BPT is a convenient rep-

resentation of the data, most efficiently obtained by storing each level of RSST

as a binary tree. The RSST is a recursive and iterative version of the Shortest

Spanning Tree algorithm [57].

5.2.2 Partitional algorithms

Partitional algorithms aim at producing a single, optimal partition rather than a

hierarchy of partitions. They usually require some initial partition (even a random

one) to begin with and a stopping criterion for finishing the clustering process.

Square error

The family of k-means algorithms is best known for partitional clustering. The

k-means and similar algorithms are based on minimisation of the squared error,

where the error is a distance between points in a cluster and its centroid. The

algorithm starts with an initial partition and reassigns data points to clusters of

most similar centroids. Then, the centroids are recalculated and data points are

again reassigned. This process is ceased when a stopping criterion is met. The

process can be stopped, for example, when none of the data points changes its

membership or a very small number of data points do so. A detailed analysis
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of the variation of the k-means algorithm for unsupervised clustering introduced

here is presented in Section 5.3.1.

The shape of the clusters depends on the distance measure. Typically, the

Euclidean distance is used. This results in the creation of hyperspherical clusters.

Therefore, the best results are obtained for data containing hyperspherical classes.

If hyperellipsoidal clusters are expected, the Mahalanobis1 distance should work

best. The Mahalanobis distance also gives good results in situations where features

are correlated [22].

Among the variations of k-means algorithms described in literature are the

Generalised Lloyd Algorithm (GLA) [91] and the ISODATA algorithm [92]. The GLA

aims at the choice of initial partition by starting with a single cluster containing

all data points, and iteratively splitting clusters until a convergence is met. At

each iteration clusters are formed using the k-means algorithm. The ISODATA

algorithm allows both splitting and merging clusters based on the variance of the

data within each cluster [22]. The number of clusters is estimated by discarding

clusters with cardinalities below a pre-defined threshold.

Graph theoretic clustering

In the clustering algorithms based on graph theory, data is viewed as points on a

connected graph. An example of the graph theory based algorithm is the minimal

spanning tree (MST). It is a divisive algorithm based on splitting clusters at the

links of the highest distance (cost) [93, 94].

The family of hierarchical clustering algorithms is directly related to graph-

based algorithms as the hierarchy tree is a form of a graph. The Recursive Shortest

Spanning Tree (RSST) algorithm is an example of a hierarchical agglomerative

algorithm [57]. It is successfully used for image segmentation (see Section 3.2.2),

in which case clusters consist of pixels belonging to the same region. The RSST

algorithm starts with each data point in a separate cluster and recursively merges

the neighbouring clusters, i.e. the ones with the lowest merging cost (Section 3.2.2).

Another popular algorithm based on graph theory is the minimum cut (M-

cut) presented in [95]. This divisive algorithm partitions the data set in order to

minimise the maximum cut between segments.

If one considers a graph V consisting of two disjoint subgraphs A and B, A∪B =

V , A∩B = /0, with data points u ∈ A and v ∈ B, the cut is defined as:

cut(A,B) = ∑
∀u∈A,∀v∈B

w(u,v), (5.1)

where w(u,v) denotes the cost of the edge (link) between points u and v.

1Mahalanobis distance is a distance between a point described by the vector x = {x1, . . . ,xN}T

and a cluster C described by its centre of gravity m = {m1, . . . ,mN}T and the covariance matrix Θ
(of size N ×N). The distance is expressed as dMahalanobis(x,C) =

√

(x−m)T Θ−1(x−m).
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Figure 5.1: Sample clusters created with the nearest neighbour technique.

The iterative algorithm for finding partitions by using the minimum cut criterion

starts with a single cluster — a graph spanning all data points. Then, the data is

recursively bisected at the point of the minimum cut. This process stops when a

predefined number of partitions is reached [95].

Mixture modelling

The mixture modelling algorithms are based on the observation that clusters can

be described by a probabilistic distribution. The Expectation-Maximisation (EM)

algorithm [86, 96] is the most common and the most efficient among the mixture

modelling algorithms. The EM algorithm estimates parameters of distributions

based on maximising expectation of the likelihood function in regard to param-

eters of distributions. More details on the EM algorithm are available in Section

3.2.4. The multivariate multimodal Gaussian distribution is the most common rep-

resentation of clusters.

Nearest neighbour

Nearest neighbour clustering is a convenient and simple algorithm based on the

proximity of points in the data set. Clusters are created by linking a given point

with the point that is closest in terms of a given distance measure. This technique

is very simple, yet very convenient as it does not require the number of clusters to

be given in advance. Additionally the shape of clusters is not determined by any

model of clusters, thus this technique can produce the clusters of any shape. The

distance measure can be thresholded — if the distance to the nearest neighbour

is higher than a threshold the current point is not linked and is regarded as an

outlier.

There is a variant of the nearest neighbour technique used in supervised clus-

tering — the k-nearest neighbours (k-NN). This algorithm is similar to the voting

method in information fusion (see Chapter 6). Here, k points from the labelled

data, that are nearest to the data point being classified, “vote”. The label that

receives the highest number of votes is assigned to the analysed data point [97].
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5.2.3 Fuzzy algorithms

Most of the algorithms presented above provide hard partitions, i.e. they classify

a given data point to one and only one cluster. Soft or fuzzy clustering allows

a degree of membership to each cluster to be assigned to every data point. For

example, if there are 3 clusters, the membership of a data point can be described

by three values: 0.6,0.1,0.3. Numbers in this example mean that the given point

belongs to the first cluster with a degree of membership 0.6, to the second cluster

with the membership degree 0.1 and to the third cluster with the degree 0.3. The

hard partition can be obtained from a soft one by assigning a data point to the

cluster with the highest value of the membership degree [98], although probabilistic

assignment based on the degree is also possible.

The best known soft clustering algorithm is the fuzzy c-mean (FCM) algorithm

[99]. This algorithm is based on minimisation of the objective function, which

incorporates the membership function:

JFCM =
N

∑
n=1

C

∑
c=1

uncd2(xn,xc) (5.2)

where N is the number of data points, C denotes the number of clusters, unc is

the value of the membership function of the nth point belonging to the cth cluster

and d2(xn,xc) denotes the distance between the features of the nth data point xn

and a representation of the cth cluster with its centre xc = ∑N
n=1 uncxn. This method

requires an explicitly specified number of clusters C.

The EM algorithm described in Section 3.2.4 also provides fuzzy partitioning

and can be viewed as a combination of fuzzy clustering with mixture modelling

techniques. The posterior probability in the EM model is the membership function,

which is a basis for soft clustering. However, instead of minimising the objective

function, the estimation of the likelihood function is maximised.

5.2.4 Artificial intelligence

Neural networks

Artificial neural networks (ANNs) are inspired by the structure of the human brain

and nervous system. General information on neural networks, how they are con-

structed and how they work can be found in [100]. They were and still are exten-

sively used for classification, because they usually provide good generalisation.

For unsupervised clustering, the ANN was used in [101] as the basis of learn-

ing vector quantisation (LVQ) and a self organising map (SOM). The competitive,

winner-take-all ANNs can be also used for clustering [22].

The architectures of ANNs for clustering are simple. They are usually single

layer networks, therefore, they do not require any sophisticated learning algo-
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rithms such as the back propagation algorithm. Some relationships can be found

between ANNs for clustering and classical algorithms, e.g. the LVQ algorithm can

be related to the k-means algorithm [102]. Outputs of an ANN can be regarded as

probabilities, thus exhibiting similarities to mixture modelling methods.

Self organising maps became very popular and are used successfully in speech

recognition. They produce a two-dimensional map, which is a visually convenient

representation of a multidimensional data set. However, the results heavily depend

on the initialisation of weights. An essential feature of a self organising map is that

it preserves neighbourhood relationships between points.

All ANN algorithms require a predefined number of clusters, as the number of

clusters is limited by the number of outputs of the net.

Evolutionary algorithms

Evolutionary algorithms (EAs) are based on the concepts of natural evolution.

They seek for an optimal solution in a parallel way, modelling the solutions as

chromosomes and applying genetic operators to modify them. The most known

algorithms of this type are genetic algorithms (GA). The idea of a GA is presented

in Section 2.2.6.

Evolutionary algorithms are used for clustering as solutions to the problem

of minimising of the square error. What distinguishes GAs from other clustering

algorithms is that GAs search for the global solutions, unlike other algorithms that

utilise local information. Using such operations as crossover or mutation genetic

algorithms are capable of finding new solutions that are very different from the

existing ones.

For GA clustering, the representation of a data set proposed in [104] is a K-nary

string of length N, where K denotes the number of clusters and N is the number of

data points. However, this representation is not free of problems. For K clusters

there are K! chromosomes representing each partition of the data, which increases

the search space by K!. Additionally there is a risk associated with the crossover

operator, whereby using this operator can result in creating inferior clusters.

Various modifications have been proposed to solve these problems [22]. It is

proposed in [105] to add a separator symbol to denote the border between parti-

tions. In that way the clustering becomes a permutation problem, as partitioning

is performed by moving the separator symbol.

Another modification, proposed in [106], models the clusters as closed graphs.

The crossover operation is carried out in such manner that offsprings inherit edges

(links) from their parents. However, this approach is computationally very expen-

sive (of order O(K6 + N), where K denotes the number of clusters and N is the

number of points). Therefore, it is not suitable for large data sets.
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5.2.5 Modern approaches

Competitive agglomeration

The competitive agglomeration algorithm is a modern approach to fuzzy agglom-

erative clustering. It is based on minimising the objective function that in general

can be formulated as [89]:

J = J1+αJ2, (5.3)

where J1 is similar to the objective function in the fuzzy c-mean algorithm (Equation

5.2) and is responsible for the shapes and sizes of clusters. It forces clusters to be

compact [88] as it reaches its minimum when each point is in a separate cluster.

The second term J2 is intended to reduce the number of clusters. In the original

algorithm [88] J2 is proposed in a form:

J2 = −
C

∑
c=1

[

N

∑
n=1

ucn

]2

(5.4)

which reaches its minimum when all points are in a single cluster. The weight

α provides the balance between the two components of objective function. By

choosing carefully the value of α , the right combination of the number of clusters

with their compactness can be obtained.

The membership function is constrained by the condition:

C

∑
c=1

unc = 1, for n ∈ {1, . . . ,N}. (5.5)

An essential advantage of this algorithm is its ability to estimate the number of

clusters required for accurate representation of the data. This is achieved by the

careful choice of α values and by removing the clusters with cardinalities below

a predefined threshold [89]. It is suggested in [88] to start with each data point in

a separate cluster and to use a large value of α to allow rapid reduction in the

number of clusters at the beginning of the clustering process. Then, the value of

α should be decreased gradually to force clusters to compete for data points.

Some modifications to this algorithm were proposed in [89] and [90]. In the

former article it is proposed to use the entropy function as the J2. In the later pa-

per [90], an algorithm based on competitive agglomeration, called adaptive robust

competition (ARC), is introduced. The ARC algorithm takes into account outliers

that occur in data.

Normalised cuts (N-cuts)

Normalised cuts is a modern divisive (top-down) algorithm based on graph the-

ory. It extends the idea of minimum cut [95] for partitioning a graph [87]. The
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minimum cut depends on the number of links and the size of each subgraph and

favours the creation of small subgraphs. In contrast, the normalised cuts criterion

is independent of the size of subgraphs, avoiding the bias towards small clusters

[87].

If one considers a graph V consisting of two disjoint subgraphs A and B, A∪B =

V , A∩B = /0, with data points u ∈ A and v ∈ B, the normalised cut is defined as [87]:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V)
, (5.6)

where cut(A,B) is defined in Equation 5.1 and

assoc(A,V) = ∑
∀u∈A,∀t∈V

w(u, t), (5.7)

where w(u, t) denotes the cost of the edge (link) between points u of the subgraph

A, and points t of the full graph V . The major disadvantage of the N-cuts algorithm

is the lack of ability to estimate the number of clusters.

A solution to finding optimal N-cuts for image segmentation by converting the

problem to a generalised eigenvalue problem is proposed in [87]. It is also proposed

to solve this problem in two ways: recursive two-way cut and simultaneous k-

way cut with multiple eigenvectors. The former solution bipartitions the data

set recursively, so that Ncut is minimised. The decision to divide the current

partition depends on the stability of the solution and the value of Ncut (which

should be below a predefined value). The latter method deals with the problems

of oscillatory eigenvectors, which is not fully resolved in the former solution. It

also is computationally more effective, because k partitions are created at each

iteration [87].

5.2.6 Conflicting information

In recent years clustering has been approached using Belief Theory (BeT). BeT is

described in detail in Section 6.2.2. The clustering methods based on BeT utilise

the ability of the BeT to find out conflicting information.

In [97, 107] the k-NN (k-nearest neighbours) technique is adapted for utilising

BeT. It is assumed that N patterns in a training set {x1, . . . ,xN} are to be classified

into C classes Ω = {ω1, . . . ,ωC}. The classes form the set Ω of hypotheses and the

basic belief assignment (BBA) function m(ωc|xn) expresses the amount of belief that

evidence xn belongs to the class ωc. The value of BBA is derived from a distance

measured between the given data point xn and the cth cluster:

m(ωc|xn) = αφ(dcn) (5.8)

m(Ω|xn) = 1−m(ωc|xn) (5.9)
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m(A|xn) = 0, ∀A ∈ 2Ω −{Ω,{ωc}} (5.10)

where m(ωc|xn) is the weight of belief that the nth data point belongs to class

ωc given its distance dcn to this cluster, and α denotes the value of discernment,

indicating the reliability of given similarity measure. The function φ(d) maps the

distance measure into the range of (0,1) providing φ(0) = 1 and limd→∞ φ(d) = 0.

A function commonly used for Gaussian clusters is [97]:

φ(d) = exp(−γd2) (5.11)

5.3 Clustering of similar faces

Three methods, from the ones described above, were chosen by the author and

modified in order to deal with outliers and to estimate the number of clusters. The

first approach chosen was k-means. The k-means algorithm was chosen because

of its popularity and proven efficiency despite its simplicity. The modifications

dealing with the initial number of clusters were inspired by the generalised Lloyd

algorithm (GLA), a variant of k-means algorithm used in colour quantisation (see

Section 5.2.2). Details on the modifications and the method and experiments carried

out with the k-means algorithm are presented in Section 5.3.1.

The second algorithm chosen for further investigation and experimentation is

a variant of a single-link algorithm. This method was chosen in order to test the

behaviour and efficiency of an agglomerative clustering algorithm. Additionally

this method exploits similarities between data points, not between a data point

and the model of a cluster, and this seems to be more appropriate approach for

clustering applied to face recognition.

The last method chosen is the nearest neighbour-based algorithm (see Section

5.2.2). This approach was chosen because the nearest neighbour classifier is most

commonly used in face recognition. This method estimates the number of clusters

and is flexible enough to create clusters of various, sometimes complicates shapes.

Therefore, it should work well with face recognition data.

5.3.1 Approach I: Outlier based divisive algorithm

The algorithm

The algorithm provided in this section estimates the number of required clusters

using outlier information. The outliers are detected by simple thresholding, i.e.

points with the distances to all clusters above a given threshold are treated as

outliers. The outliers are used for creating new clusters, as they are seen as points

lying too far from any of existing clusters. The algorithm is realised in an iterative

way.
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Algorithm modified k-means:

1. Create one cluster containing all data points

2. Compute parameters of this cluster

3. find outliers by thresholding, create new cluster

consisting of outliers

4. stabilise new clusters

(a) calculate clusters parameters

(b) reassign data points to clusters

(c) if the number of clusters which changed

membership is below a threshold stop;

otherwise go to step 4a

5. if there is at least one empty cluster stop;

otherwise go to step 3

Iteration

The algorithm starts with one cluster that contains all data points. Then, its pa-

rameters are calculated and distances of all points from the centre of the cluster

are computed. These distances are used for detecting outliers by thresholding.

The outliers are used for the creation of a new cluster. Now any of the cluster-

ing algorithms such as k-means or EM can be used for performing clustering on

these two clusters. Once the convergence of these algorithms is reached (clusters

are stabilised) outliers are detected. A new cluster is created and its parameters

are computed as all current outliers become members of this new cluster. Then,

another set of iterations of a classic clustering algorithm such as k-means is run

on the increased number of clusters.

Stopping criterion

The number of clusters can be increased to a certain level, above which empty

clusters would appear. When an empty cluster appears it means that no more

clusters can be created, as points are attracted to the existing clusters, and detected

outliers do not form any separate cluster. Therefore, the iterations are stopped

when an empty cluster is detected.

Distance measure

The distance measure between points and cluster centres is the Lp norm. For p = 2

it ensures the Euclidean measure in the subspace. However, it does not take into

account the spread of points within a cluster. Therefore, a given threshold results

81



in all clusters having a similar spread of points. However, this is not necessarily

true, as clusters may contain points of wider spread than other clusters. In order

to take into account the spread of points within clusters, the distance measure is

normalised by the variance of clusters.

The L2 norm ensures circular distribution of points within a cluster. In the

case of the MPEG-7 face recognition descriptor, a weighted L1 norm is used for

finding distances between points (see Appendix B).

Outliers detection

The outliers are detected by simple thresholding. It is assumed that the points lying

far from the centres of all clusters (“far” in this case is defined as a value above

a threshold) do not belong to any of the clusters and thus they are outliers. The

accurate threshold is found by carrying out the clustering for several different

values of the threshold and choosing the one that gives the highest number of

clusters.

If the threshold is too low, then all points are viewed as outliers and assigned

to one cluster — the one containing outliers. If the threshold is too high, then only

the initial cluster is created and no outliers are detected. For a value of threshold

between these extremes, the number of clusters is higher than one. If the number

of clusters for a given threshold is higher than for any other threshold, then this

threshold is well balanced between too strict and too weak outlier detection. At

this value of threshold, results should be close to the optimal ones.

Evaluation

The evaluation of the technique was carried out by the author using the data set

presented in Appendix C.2. The MPEG-7 FR features were used for similarity

matching. In order to evaluate how outliers affect the clustering process, the ex-

periments were carried out in both situations: using a data set with outliers (with

“Unknown” identity) and with outliers removed (with every “Unknown” person re-

moved from data set). Also, the influence of automated eye localisation (presented

in Section 3.4) on the accuracy of the clustering process was analysed by running

experiments with features extracted from facial images created using both manual

and automated eye localisation.

The experiments were carried out in eight scenarios. These scenarios are

presented in Table 5.1. For each scenario, several clustering experiments were

carried out using thresholds from specified ranges. Figure 5.2 presents results

obtained for each scenario with the best thresholds. These thresholds were chosen

using the rule by which the best threshold is the one that gives the highest number

of created clusters. Detailed results for different ranges of thresholds are presented

in Appendix D.1.1. Figures D.1, D.2, D.3 and D.4 present results of clustering using
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Figure 5.2: Summary of results obtained with modified k-means algorithm for
scenarios presented in Table 5.1.
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Table 5.1: Scenarios of experiments with clustering of similar faces.

scenario data set outliers eye locations

1 large yes manual
2 large yes auto
3 large no manual
4 large no auto
5 small yes manual
6 small yes auto
7 small no manual
8 small no auto

MPEG-7 FR features extracted with manually located eyes. Figures D.5, D.6, D.7

and D.8 present detailed results of clustering in similar scenarios, but the eyes

were located in an automated way described in Section 3.4. The meaning of

values presented, such as precision, recall and the number of valid clusters is

described in Appendix C.

In scenario 1, 38 valid clusters were produced at the threshold 420. This gives

precision 0.235 and recall 0.265. The number of valid clusters is lower than the

desired number, indicating that not all identities were captured in the clustering

process. There is a high peak in both precision and recall at threshold 670 (see

Figure D.1). However, in this case only two clusters are regarded as valid, thus

this situation must be discarded.

In the case of the smaller set, the choice of optimal threshold is not easy as the

highest number of clusters appears for a number of threshold values. Overall, for

the smaller set, the precision is higher than for the larger set. This observation is

exploited in Chapter 6 for enhancing clustering results.

In scenarios 3 and 4, the data sets without outliers are used. Still, the clustering

process produces small number of non-valid clusters i.e. clusters consisting of one

element. The appearance of faces in those clusters must be so distinct that they

are seen as outliers even when there are no outliers.

When the automatically obtained eye locations are used for feature extraction,

the range of usable values of threshold is narrowed (see Appendix C). In the

second scenario, 51 clusters are produced, forty of which are valid. This gives

average precision 0.190and recall 0.145. For a small data set (scenario 6), just one

threshold produces the highest number of clusters. Thus, there is no ambiguity in

the choice of the threshold. For the threshold 290 there are 14 clusters. Seven of

them are valid giving precision 0.671 and recall 0.385.

Similar experiments were conducted with a different distance function, which

takes into account the spread of points within each cluster. There are two distance

measures considered:

• the multivariate Gaussian distribution, equivalent to Mahalanobis distance
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• one-dimensional normalised distance based on the dimension of the distance

measure used

dm(x,xc) =
d2(x,xc)

σ2
c

(5.12)

where d(xi,xc) is a distance (weighted Manhattan distance in the case of

MPEG-7 FR) between the ith point xi and the centre xc of cth cluster, σ2
c =

1/Nc ∑Nc
i=1d(xi,xc)

2 is an average spread of data points xi, i = 1, . . . ,Nc (Nc

denotes number of points in cth cluster) in the cth cluster measured in an

appropriate distance.

The latter of the proposed distance measures does not describe shapes of clus-

ters (which are described by the original distance d(xi,xc) used) but rather the

spread of points within the cluster. For example, if d(xi,xc) is the Euclidean dis-

tance, the clusters have a hyperspherical shape, but might have different diameters

depending on the spread of points within clusters.

The results of experiments carried out with the modified k-means algorithm

and the normalised distance are presented in Figure 5.3. It can be clearly seen

that this algorithm works well with a small data set but fails on a larger data

set. Additionally the number of valid clusters is very low. Detailed examination

of the results of clustering on the large data set (see Appendix D.1.2) allows one

to conclude that the higher values of threshold are required, since most of the

data points are classified as outliers. This suggests that the value of threshold

depends on the size of a data set. Therefore, it should be adjusted for each data

set separately.

5.3.2 Approach II: Single-link

The algorithm

The single-link method proposed in this section is an agglomerative version of

the outlier detection-based algorithm. The neighbourhood of each data point is

searched within the distance defined by a threshold. Any point which lies within

such defined neighbourhood is merged with the current point.

This algorithm is very quick as the process is not iterative. It uses distances

between points stored in a distance matrix, which requires pre-computing of all

n(n−1) distances.

The algorithm inherits the drawback of outliers detection algorithm that the

performance depends on a good choice of the threshold.

Distance measure

The distance measure used in this algorithm is a value of distances between each

data point, not between a data point and a cluster centre as it is in the k-means
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Figure 5.3: Results of clustering in scenarios outlined in Table 5.1 obtained with a
use of Mahalanobis-like distance measure.
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Algorithm single-link:

1. calculate all n(n−1) distances between points

2. go through every data point, for each:

(a) find points within a given distance

(b) merge these points to the cluster of current

point

3. if all points visited stop; otherwise go to step 2

algorithm presented in the previous section. This distance measure in the case of

MPEG-7 face recognition features is the weighted L1 norm. For n points, n(n−1)

distances need to be calculated. These are pre-computed before grouping is started

and are stored in a matrix. This reduces the computational time as distances are

computed only once.

Outliers detection

Again outliers are detected by simple thresholding. However, the values of thresh-

olds are from ranges different than previously, as thresholding is applied to dis-

tances between points, not between points and clusters. In contrast to the previous

method, where outliers are put into a dedicated cluster, in this method each outlier

is placed into a separate cluster. Therefore, the number of all clusters can be very

high.

It is more difficult to find an accurate threshold in this case. If the value

of threshold is too large, the algorithm produces just one cluster containing all

data points. However, if the threshold is too small, all points are detected as

outliers and remain as separate clusters. Therefore, the method of finding the

optimal threshold must be modified, as the maximal number of clusters is obtained

when each data point is in a separate cluster, i.e. when the value of threshold

is extremely small. A simple solution is to modify counting of clusters in such

way that all clusters containing just one data point are omitted. Then, for small

numbers of the threshold, the number of clusters with more than one member is

small, increasing with increased value of threshold and then decreasing when the

threshold becomes too large.

Evaluation

The experiments were carried out by the author using the testing collection de-

scribed in Appendix C.2, with measures as in Appendix C.3. Figures D.17 – D.24

present graphs showing precision and recall for single-link clustering at different
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threshold levels in scenarios outlined in Table 5.1. The summary of results is

presented in Figure 5.4. The summary contains analysis of results obtained for

the values of thresholds that give the highest number of clusters with cardinalities

higher than one. This is the rule for choosing an optimal threshold in this method.

In scenario 1, clustering using the threshold 220 gives 40 valid clusters with

precision 0.731 and recall 0.165. This looks very promising. However, it does

not take into account the structure of created clusters. This clustering method

produces one large cluster and many small clusters. The small clusters have large

precision, but they contain just a fraction of all images of a given identity. The

large cluster contains a high number of photographs e.g. for a threshold of 220, this

large cluster contains 84 faces, which is almost 7.5% of all faces in the collection.

The structure of clusters in other scenarios is very similar to clusters created in

scenario 1, i.e. there is one large cluster with several small ones.

5.3.3 Approach III: nearest neighbour

The algorithm

The algorithm based on the nearest neighbour classifier is an agglomerative method

similar to the single link one. Unlike the single-link algorithm, for every data point

just one other point is considered — the one that is closest in terms of a distance

measure. This nearest point is linked to the current point. Linked points form

a cluster that might consist of all points in a space. However, most often it re-

sults in a few large clusters surrounded by small clusters consisting of few points.

Choosing only one data point to be linked can be seen as a thresholding. Here,

thresholding is applied to the number of points in the neighbourhood in contrast

to the approaches presented previously. This method also emerges from typical

face recognition algorithms, where unknown faces are labelled with the label of

the most similar known face, rather than the mean face of a given class (identity).

The advantage of this approach is that there is no need to determine the number

of classes before running the clustering process. Points within a cluster might form

several different and sometimes complex shapes, e.g. paths, stars, rings (see Figure

5.1).

Distance Measure

The distance measure is applied (similarly to the single-link algorithm) to the dis-

tance between data points. As the nearest points are merged into a cluster (these

points might be already members of separate clusters), this can be viewed as a

lowest distance between the edges of clusters. The distances between points can

be pre-computed. Therefore, this computation is carried out only once and it

speeds up the execution time of the algorithm.
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Figure 5.4: Summary of results obtained with modified single-link algorithm for
scenarios presented in Table 5.1.
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Algorithm nearest neighbour based:

1. calculate all n(n−1) distances between points

2. go through every data point, for each:

(a) find the closest point

(b) merge cluster of the closest point with the

cluster of the current point

3. if all points visited stop; otherwise go to step 2

Outliers

The outlier detection can be realised again by thresholding. A data point that lies

at a distance higher than a given threshold (given by means of the value of the

distance) to any nearest point might be considered as an outlier. However, points

that are very distant from other points might form very small clusters containing

only a pair of data points. Therefore, even if the threshold is not set for outliers

detection, outliers may be separated in small, two-points clusters.

Evaluation

The algorithm was evaluated by the author using the test collection described in

Appendix C.2, with measures as in Appendix C.3. Similarly to evaluating the k-

means algorithm, the experiments were run using the data set containing outliers

and the second set with outliers removed. The results are presented in Table 5.2

(there is no threshold to be set, therefore a single value is obtained) and the graph

in Figure 5.5.

One can observe that the nearest neighbour-based algorithm produces more

valid clusters than the previously investigated techniques. This number is larger

than the number of identities in collections. This behaviour is more suitable for

organising a photograph collection as several clusters can be presented to a user,

thus most of the photographs of a given identity can be shown.

5.3.4 Conclusion

In assessing the effectiveness of clustering of human faces, the following measures

must be analysed: precision, recall and the number of created clusters. The ideal

number of clusters is 54 for the large data set and 7 for the small data set, as

there are that many known identities in each data set. The nearest neighbour

based technique gives the best results in estimating the number of clusters of the

larger database. When outliers are included, the number of valid clusters is larger

than the number of identities in the data set. This, however, can be seen as an
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Figure 5.5: Results of clustering with nearest neighbour technique.
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Table 5.2: Precision and recall of clustering using nearest neighbour based algo-
rithm.

scenario no of all no of valid precision recall
clusters clusters

1 201 79 0.548 0.152
2 187 59 0.516 0.178
3 97 82 0.676 0.169
4 83 57 0.583 0.144
5 18 11 0.837 0.286
6 16 12 0.730 0.250
7 13 11 0.789 0.292
8 13 11 0.721 0.252

advantage. In the situation when recall values are not high, it gives a greater

possibility that the higher number of known faces is included in the valid clusters.

It is important to note that the number of valid clusters does not depend much on

the existence of outliers, it rather depends on the method of finding locations of

eyes (see Figure 4.5(b)). For the smaller data set, the number of valid clusters is

independent of scenario and again produces more valid clusters than the number

of identities.

In the case of the k-means and simple-link algorithms, the estimated number

of clusters is lower than the number of identities when dealing with the large data

set. This is a serious drawback of these methods as it means that some identities

are rejected as outliers. This happens even when the outliers are excluded from

the data set. Similarly to the nearest neighbour-based method, the number of valid

clusters does not depend on the existence of outliers in the data set, it depends

more on the accuracy of eye locations. The k-means algorithm does not behave

well in the scenario with the automated locations of eyes and removed outliers

(scenario 4), as it produces very few valid clusters. When dealing with the smaller

data set, the estimates of the number of clusters given by both algorithms are

similar to the number of identities in the data set. However, considering a rather

low recall in these cases, it would be preferable to have a larger number of valid

clusters, which is provided with the nearest neighbour-based algorithm.

The presented clustering methods can be compared in regard to precision

and recall using Figure 5.6. Points placed more to the right and higher indicate

better performance. It can be clearly seen that the simple-link algorithm gives best

results for all scenarios. The nearest neighbour-based technique gives good results

in the scenarios with the larger data set. For the smaller data set the precision

values are high, however, at the expense of low recall. As it is mentioned above

this behaviour is compensated with the higher number of valid clusters. The

method based on the k-means algorithm gives worst results among all three tested
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Figure 5.6: Precision as a function of recall for three clustering methods: k-means,
simple-link and nearest neighbour based.

methods in the case of large data set. As it matches other methods in the recall

values, precision values are very low. A different situation is when the smaller

data set is considered. Then, the recall values given by the k-means algorithm are

best among tested methods, which in a combination with relatively high precision

values suggests that good quality clusters are produced by this algorithm.

The most convenient of the three presented techniques is the nearest neighbour-

based one. This method does not require any threshold. A threshold can be set

for detecting outliers. However, it is not compulsory as outliers are isolated by

the algorithm itself. The two other techniques require a threshold to be set. The

value of the threshold can be obtained by experiment. The clustering process

needs to be carried out for several different values of the threshold, then the

”best” threshold is chosen. However, this is less convenient and computationally

more expensive.

In summary the nearest neighbour based method works best in the terms of

estimating the number of clusters. It gives the average results in most scenarios

if recall and precision are considered. However, they are acceptable, as they are

consistent. The low values of recall can be explained by the higher number of valid

clusters than the number of identities in the data set. The simple-link algorithm

gives the best results regarding values of precision, without any loss in recall in

the comparison to other techniques. The number of valid clusters produced with

this technique is lower than the number of identities. This can be seen as a serious

drawback. The k-means approach produces clusters characterised with the best

recall. However, this is achieved at the cost of low precision and the small number
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of valid clusters. This can be clearly seen in the case of the larger data set. For

the smaller data set, k-means provides the best balance between precision and

recall.

In the case when the number of clusters and precision are priorities, the near-

est neighbour technique is the method of choice among the three presented tech-

niques.

5.4 Duplicates detection

It might happen that due to similar environmental conditions or any other similar-

ity, two faces appearing in the same image are classified to the same cluster. This

should not happen as it is very unlikely that the same person appears twice in the

same photograph, unless a reflection of the face was captured in such a way that

both the face and its reflection are visible. Therefore, if two faces from the same

photograph are classified to the same cluster, it indicates that at least one of them

is wrongly classified and should be removed from this cluster.

Although detection of duplicates is trivial, the correction of such situation is not.

In order to correct such wrong classification some decisions must be made. One of

the most important is which one of the instances of persons should be removed. If

the parameters of a cluster are available, as it is in the case of k-means clustering,

the solution might be to remove the person (face) that is further away from the

centre of the cluster, since it is less similar to the average content of that cluster.

In the case of nearest-neighbour clustering, choosing the data point for re-

moving and the process of removal is not that simple. All points in a cluster

are connected to their neighbours with links. Therefore, it is hard to find the

parameters for a cluster, as it resembles a connected graph, and as a result of

this there is no basis for making the decision on which point should be removed.

Furthermore, removing a point would very often result in broken links in the clus-

ter graph, splitting this cluster into two subclusters. It is then difficult to find the

optimal cut point.

One could try to artificially increase the distance in a feature space between

two faces appearing in the same image to a very large value. The higher distance

should ensure that they will not be connected. However, they still can end up in

the same cluster as they might get connected through other data points.

Another solution could be calculating the centre of the cluster and analysing

distances of points inside this cluster from its centre. This would not describe the

structure of the cluster properly. However, it would be much easier to choose

which of the data points should be removed. As a side effect this would upset the

parameters of the other cluster.
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5.5 Conclusion

In this chapter three approaches to grouping of points similar in terms of face

appearance are described. This is the third step of a clustering process as outlined

in Section 1.2. The only features used for this grouping are features based on the

appearance of the human face. These features are not sufficient for finding similar

people in a large photograph collection as the efficiency of clustering decreases

with the increase of the size of the collection.

In the next chapter the use of context and content information additional to

facial recognition for enhancing the clustering process is analysed. It is proposed

to exploit event information and user information. Also, additional information

about the appearance of the person is used: the colour and texture of clothes the

person is wearing.
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Chapter 6

Information fusion

6.1 Introduction

The features for clustering, extracted from objects, do not necessarily need to be of

the same kind, or come from the same source of information. Sources other than

face recognition, can be used for enhancing the clustering presented in Chapter

5. In the case of a photo collection, in addition to face analysis, information can

be extracted from body patch analysis, event context (a higher level information

based on location and time) and the person who (or camera which) captured the

photograph. This chapter presents major existing techniques for information fusion

and also describes two new techniques: one based on Belief Theory (BeT) and

another one, a novel approach proposed by the author, based on event information

used for restricting the search space and then using user information for merging

clusters.

The fusion can be done in two ways: the fusion of features (early fusion) and

the fusion of decisions (late fusion). Most techniques perform the fusion at the

feature level, combining distances between points based on several measures or

sources and then making a decision based on the combined measure. The others,

which do the fusion at decision level, firstly quantise each of the sources (make

decisions) and then analyse decisions made on each source. Schemes of both

methods are presented in Figure 6.1.

6.2 Existing techniques

6.2.1 Simple probabilistic techniques

The simple probabilistic methods are based on a probability model of classification.

There are several methods that can be described:

• average sum
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Figure 6.1: Two fusion models: (a) fusion of features, (b) fusion of decisions.

• generalised product

• maximum (equivalent to minimum inverted)

• voting

Average sum

The average sum is a method of feature fusion. The weighted average of proba-

bilities given by different sources is obtained as:

P(H) =
I

∑
i=1

wiPi(H) (6.1)

where Pi(H) is the probability given by the ith source supporting hypothesis H

and wi denotes weights assigned to each source, which represent the reliability

ascribed to the particular source. This can be generalised in a form similar to the

Lp norm:

Pr(H) =
I

∑
i=1

wiP
r
i (H) (6.2)

where r is a power factor. For r = 2, one would obtain the fusion in terms similar

to Euclidean distance. For r = ∞, this rule becomes the maximum rule.

The average sum works well in most scenarios. However, in some situations

this rule might average and compromise results, especially when one of sources

is very reliable and others are not. Then, using just the most reliable source gives

better results than combining all sources by the average sum [108].
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Generalised product

The product rule is very similar to the average sum rule, simply with a product

used instead of the sum:

P(H) =
I

∏
i=1

Pwi
i (H). (6.3)

The product rule can be easily converted to a sum using the logarithm function:

P(H) ∝
I

∑
i=1

wilog(Pi(H)). (6.4)

The product rule shares the same disadvantage as the average sum method, i.e.

it might compromise results. It produces different results to the average sum,

because the logarithm (Equation 6.4) reduces the influence of infrequent but very

high peaks and puts more weight on the lower, more frequent values of Pi(H).

In the case of just two hypotheses, true Ht and false H f , one can compute a

ratio
P(H0|I)
P(Ha|I)

=
∏ pi

∏(1− pi)
∝ ∑(logpi − log(1− pi)). (6.5)

This can be further simplified, and normalised by the number of sources:

∑(logpi − log(1− pi)) ∝ lim
r→∞∑(p1/r

i − (1− pi)
1/r) (6.6)

P(H0|I)
P(Ha|I)

∝ ∑(p1/r
i − (1− pi)

1/r)

n
(6.7)

Normalisation by the number of sources is useful for comparing systems with

different number of sources. For example, in image segmentation each pixel can

be viewed as a realisation of a probabilistic process. When the probabilities

of regions consisting of variable number of pixels are analysed it is essential to

normalise these probabilities in a way that they do not depend on the number of

pixels in the region [109].

When the sources of information are independent, the product rule with the

wi’s, i = 1, . . . , I can be seen as the multivariate probability distribution. For exam-

ple, the multivariate Gaussian distribution presented in Equation 3.13 in Section

3.2.4 can be seen as an example of the use of the product rule for combining dif-

ferent sources of information. Because it is assumed that luminance, chrominances

and coordinates are mutually independent, their joint probability P(x1, . . . ,xk) is a

product of probabilities of each source P(xi), i = 1, . . . ,k:

P(x1, . . . ,xk) =
k

∏
i=1

P(xi) (6.8)

The probabilities are modelled with a Gaussian distribution, therefore, the prob-
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ability becomes:

P(x1, . . . ,xk) =
k

∏
i=1

1√
2πσi

exp

(

−1
2

(xi −mi)
2

σ2
i

)

(6.9)

=
1

(2π)k/2∏k
i=1 σi

exp

(

−1
2

k

∑
i=1

(xi −mi)
2

σ2
i

)

. (6.10)

If the xi are independent we can write:

θ1 =









m1
...

mk









, x =









x1
...

xk









, θ2 =









σ2
1 · · · 0
...

. . .
...

0 · · · σ2
k









and use them in Equation 6.10 to obtain:

P(x1, . . . ,xk) =
1

(2π)k/2|θ2|1/2
exp

(

−1
2
(x−θ1)

T θ−1
2 (x−θ1)

)

, (6.11)

which is the same as Equation 3.13.

Maximum

The maximum rule takes into account the maximum value of probabilities given

among the I sources:

P(H) = max(wiPi(H)), for i = 1, . . . , I. (6.12)

This method favours sources giving the highest values of probabilities. Its main

drawback appears in situations when one of the sources is very reliable and gives

values of 0 or 1. Then the outcome of the fusion depends solely on this source,

which results in discarding all other information and in poor performance. This

rule is also a special case of the generalised average sum given by Equation 6.2

for r = ∞.

The minimum rule can be also used. It takes into account the minimum value

presented by sources. This rule works similarly to the maximum rule. However, it

makes weighting non-intuitive, favouring sources with lower weight applied. It can

be easily changed into the maximum rule by transforming values by an inverting

function such as p′i = (1− pi)/∑k(1− pk).

Voting

Voting is a method of decision fusion. First the decision of the supported hypothesis

is made by each of sources, then the hypothesis which is supported by most of

the sources is chosen. Decisions are usually based on thresholding, with arbitrary
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thresholds defined for each source independently.

p(H) ∝
|Pi(H) > ti|

n
(6.13)

where n is the number of sources, | · | denotes the cardinality of the set, and ti is

an arbitrarily chosen threshold on the ith source.

In the case of (hard) clustering, a point is assigned to the cluster that has

received the largest number of votes among all sources. To avoid ambiguities it

is important that the number of sources is sufficient, e.g. using just two sources

might produce a lot of ambiguities if a large number of clusters is considered and

sources point to different clusters instead of a strong support for one cluster.

6.2.2 Transferable Belief Model

Simple probabilistic methods presented in the previous section might be not suf-

ficient for combining different sources of information and, as is mentioned above,

they might average the results. Therefore, in this section the Transferable Be-

lief Model (TBM) is presented and its implementation for organising a photograph

collection carried out by the author is described in Section 6.4.

The Transferable Belief Model is based on Belief Theory (BeT), also known

as Dempster-Shafer theory. This system is based on a system of beliefs, which is

build upon a belief function and a basic belief assignment (BBA). It is defined on

the power set 2Ω (or the set of all subsets of the set Ω of events).

Belief function

The belief function is a mathematical representation of uncertainty, ignorance and

any other form of partial or total knowledge. According to the Dempster-Shafer

theory [110] the belief function bel is a function from some power set onto the [0,1]

interval.

Let Ω be a finite set and 2Ω be its power set. Then bel : 2Ω → [0,1] defines the

belief function with the following properties [110]:

bel( /0) = 0

∀n ≥ 1,∀A1,A2, . . . ,An ⊆ Ω

bel(A1∪A2 . . .An)≥∑
i

bel(Ai) . . .−∑
i< j

bel(Ai∩A j) . . .−(−1)nbel(A1∩A2 . . .An) (6.14)

Basic belief assignment

The basic belief assignment (BBA) is a function based on the belief function rep-

resenting a mass (or weight) of the given belief that a certain hypothesis H is true
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[110]. The BBA assigns a value between zero and one to each subset of the power

set 2Ω. The sum of all BBAs on the given power set must equal 1, i.e.:

∑
A⊆Ω

m(A) = 1 (6.15)

where m(A) is the BBA supporting a hypothesis A. The relation between the

belief function and the BBA is analogous to the relation between the cumulative

distribution function and the probability mass function (the probability density

function in the case of continuous probabilities) in probability theory. The belief

function can be expressed with the BBA as a sum of all BBAs of these subsets that

support the hypothesis A:

bel(A) = ∑
/06=B⊆A

m(B), ∀A ⊆ Ω. (6.16)

The BBA provides a one-to-one correspondence with the belief function bel, there-

fore, it maintains all the information represented by the belief function without any

loss of information [110].

The distinction between probabilities and beliefs is in the interpretation of the

value zero. The probability P(H) = 0 given to the hypothesis H means that this

hypothesis is false. But bel(H) = 0 expresses total ignorance about the hypothesis

H , in other words we do not know whether this hypothesis is true or false. How-

ever, both P(H) = 1 and bel(H) = 1 denote total certainty that the hypothesis H is

true (P(H̄) = 1 and bel(H̄) = 1 express total certainty that H is false).

Other functions based on BeT

Three other functions are defined in the belief framework which combine the belief

function and the BBA: plausibility, commonality and implicability [110]. However,

those functions are not employed in the clustering model presented in Section 6.4,

thus there is no need to discuss them further here.

Dempster’s rule of combination

Two belief functions can be combined using the Dempster rule of combination

[110, 111], which lays the base for combining two and more sources of information:

m1∩2(A) = ∑
B∩C=A

m1(B)m2(C) ∀A ⊆ Ω (6.17)

where m1 and m2 are two BBAs on Ω. The operator of Dempster’s rule of combi-

nation is very often denoted as ⊕ and is symmetric, associative and commutative.

As a result of its characteristics it is easy to extend the rule to more than two
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sources, as

m1∩2∩3∩...∩N = (((m1⊕m2)⊕m3)⊕ . . .)⊕mN. (6.18)

The Dempster rule of combination as defined in Equation 6.17 is called a con-

junctive rule of combination and can be used when all sources of information are

reliable. In the case when some sources are not reliable and one does not know

which source is reliable, the disjunctive rule of combination defined in Equation

6.19 should be used [110]:

m1∪2(A) = ∑
B∪C=A

m1(B)m2(C) ∀A ⊆ Ω (6.19)

Normalisation

One of the basic assumptions of the Dempster-Shafer theory, outlined by Shafer

[111] is the assumption that m( /0) = 0 and bel(Ω) = 1. For these conditions to be

met one needs to normalise the result of Dempster’s rule of combination. The

normalisation can be obtained by rescaling the resulting BBA:

m′
12(A) =

1
1−m12( /0)

m12(A) (6.20)

Normalisation is intended to conform to the assumption of zero value of the

BBA of the empty set. Therefore, it is compulsory only when the m( /0) = 0 is

required, i.e. in a closed world1. Normalisation may be questioned and in some

cases might give wrong results or a wrong conclusion can be obtained as argued

in [111]. However, the weight m( /0) might have some meaning, which can be

exploited. Let us assume that the BBA m(A) is the mass of belief that the current

data point belongs to the set of clusters A. In such a case the BBA m( /0) suggests

that the current data point does not belong to any of existing clusters, thus this

point might be an outlier or belongs to a new cluster that needs to be created.

Decision making

The decision in the belief theory is made using the function defined in Equation

6.21 and called the pignistic function, which is used for transforming the belief

function into a probabilistic function [110, 111]. The pignistic function is of the

1The term “closed world” denotes the situation when the set Ω contains all possible elements
and cannot be expanded. In an “open world” scenario, it is possible that some elements are not
initially included in the set Ω and thus the set Ω can be expanded by adding new elements. In
terms of human identities in a photograph collection, in the closed world scenario only the certain
number of identities is available. If there is a new image showing a new person, this person can
be assigned only the identity that exists in the set of identities. If this is an identity that is not in the
set, this person can be labelled as “Unknown”, if the “Unknown” class exists. In the open world
scenario, this new identity can be added to the set Ω.
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form:

BetP(A) = ∑
X⊆Ω

|A∩X |
|X |

m(X)

1−m( /0)
(6.21)

where |A| is the cardinality of the set A and m(X)/(1−m( /0)) is a normalised BBA.

This probability function can be used for calculating expectations and provides

the base for decision making.

Transferable Belief Model

The Transferable Belief Model (TBM) is a model based on Belief Theory and

provides a convenient way for applications of Belief Theory [110]. It is assumed in

this model that the set Ω consists of a set of worlds. The belief function expresses

the belief of a source (called an agent) that the actual world (described in some

way by the agent) belongs to one of the subsets of worlds.

The TBM is not based on probabilities, it just quantifies the belief of an agent

about the present world. Therefore, it is more general then probability based

approaches [110]. In the TBM, beliefs of several agents are combined using Demp-

ster’s rule of combination.

For the clustering problem, the set of worlds is defined as a set of clusters, and

for each data point the BBA expresses the amount of a classifier’s support for the

hypothesis that this data point belongs to the certain cluster. More details on TBM

for clustering is presented in Section 6.4.

6.2.3 Bayesian inference

In previous section, Belief Theory (BeT) is presented. In this section, Bayesian

inference is presented as an alternative to BeT in order to give the reader an

indication of the range of possible methods. The Bayesian Inference is broadly

used for solving common fusion problems. It’s principles are different from those

of BeT. However, in some situations (e.g.) both methods lead to the same results.

Bayesian inference methods are based on the Bayesian rule, which is used to

obtain a posterior probability P(H|E) that a hypothesis H is true given evidence

E [112]

P(H|E) =
P(E|H)P(H)

P(E)
, (6.22)

where P(E|H) is a conditional probability that the evidence E occurs when the

hypothesis H is true and P(H) is a prior probability that the hypothesis H is true.

Two pieces of evidence E1 and E2 received from two sources can be combined

using Bayes rule in the form of equation:

P(H|E1,E2) =
P(E1|H,E2)P(H|E2)

P(E1|E2)
. (6.23)
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cold stomach flu

P(sf)

stomachachecoughing high temperature

P(c)

P(cg) P(ht) P(sa)

P(ht|c) P(sa|sf)
P(cg|c) P(ht|sf)

Figure 6.2: A sample Bayesian network for medical diagnosis.

giving the posterior probability of the hypothesis H : P(H|E1,E2). If E1 and E2 are

independent then

P(H|E1,E2) =
P(E1|H)P(E2|H)P(H)

P(E1)P(E2)
. (6.24)

The combination of different sources using Bayesian inference can be obtained

(if sources are independent) in an iterative way. This is done by substituting a

prior probability in a next step with a posterior probability from the previous step:

Pj+1(H) = Pj(H|E)

Let us consider two pieces of evidence discussed above and calculate the posterior

probability in two steps. In the first step let us consider evidence E1:

P1(H|E1) =
P(E1|H)P(H)

P(E1)
. (6.25)

Bayesian inference is the basis of probabilistic networks, also called Bayesian

networks. A Bayesian network is a graphical representation of probabilistic re-

lationships between sources of information [113]. It is best suited for combining

prior knowledge with data. However, it can also be created from the data itself.

A Bayesian network takes a form of an acyclic directed graph, with the pieces of

evidence (sources) in the graph’s nodes and conditional probabilities represented

by links (edges). Such a representation helps to reveal relationships between the

various pieces of evidence.

A sample Bayesian network is presented in Figure 6.2. This is a probabilistic

sample network for medical diagnosis of a cold or a stomach flu based on obser-

vations whether a patient has stomachache, high temperature and/or coughing. A

probability that diagnosed patient has a cold P(c|cg,ht) is:

P(c|cg,ht) =
P(cg|c)P(ht|c)P(c)

P(cg)P(ht)
, (6.26)

where P(c) denotes a prior probability that a patient has a cold (which might be
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obtained through statistical analysis of the history of the patient’s health or might

depend on the season of the year, i.e. it might be higher in autumn and lower the

during summer). P(cg) and P(ht) are probabilities that the patient shows symptoms

such as coughing or high temperature respectively — these observations can be

obtained by interviewing and examining a patient. The conditional probability

P(cg|c) is the probability that a patient has a symptom of coughing giving that

she/he has a cold. Similarly P(ht|c) is a probability that a patient having a cold

suffers from high temperature. These two pieces of evidence might be found in a

medical textbook for example.

Conclusion

In this section, some techniques for combining different sources of information are

presented. These are simple probabilistic approaches such as average sum or

average product, the more sophisticated approach based on Belief Theory and

its alternative Bayesian approach. In the next sections, an implementation of the

Transferable Belief Model proposed by the author to the problem of clustering

human identities in a photograph collection is described, and the application of

simple probabilistic methods to the combination of facial and body features is

presented. Before that, however, available sources of information are described,

since they are used by the author in implementations discussed in later sections.

6.3 Available sources

In Chapter 5, only the face recognition features are used to provide information

on similarity between persons for clustering. The previous section describe tech-

niques for combining more than one sources of information, without suggesting

what the sources might be. In this section the sources of information about images

and persons shown in those images are presented. These sources are used by the

author for improvement of the organisation of a photograph collection . Sources

of information are based on both the context and content of a photograph. The

contextual sources include location, time, owner of a photograph, automatically

detected events and face locations. Events are features of higher level than time

and location, but based on these two. In the next sections, events, instead of time

and location, are used for improving matching of similar faces. There are thus two

sources of context information used by the author: events and ownership (collec-

tions of each user). A source of content information, apart from face recognition,

is a person’s body (torso) captured in photographs.
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6.3.1 Events

Events are detected in this work using the technique described in [16]. It is based

on differences in time between photographs, and the GPS coordinates of the place

where photographs were captured. The GPS location is used for finding the name

of the place and this name is used for event detection too.

Usually just a small subset of all identities in the collection is captured at a

given event. Therefore, events can be used for enhancing the grouping of occur-

rences of the same persons. It is more likely that a given person appears in other

photograph from the same event than in photographs captured at another event.

This information is a useful source of prior probabilities.

There are possibly some identities that are more likely to appear in photographs

regardless of event. It could be for example the partner of the user, or her/his child.

It is expected, that using event information would increase precision. However,

recall values can be lower due to some possible scatter of the images of the same

person across different events. When clustering is restricted to using only images

captured at the same event, the instances of the given identity appearing in other

event are prevented from inclusion in the current clusters. This is what leads to

the low recall.

6.3.2 User collection

The testing collection consists of photograph collections from several users. Each

photograph in a user collection is annotated (automatically) with the user name.

Therefore, the information about ownership is available, as it is assumed that the

user is the owner of the photographs in her/his collection.

The identities of people captured in photographs of different users might over-

lap (users can be co-workers and take photographs at a work event) but the

majority of identities would be unique for each user. Therefore, by restricting the

collection to a user collection, one reduces the search space of identities, limiting

the number of outliers and noise. At the same time, the loss in terms of finding all

instances of a given identity is not high as only a few identities will be found in

several user collections.

6.3.3 Body patch

The body patch technique for finding re-occurrences of identities in a photo-

graph collection was proposed in [21]. It is based on the MPEG-7 Structure Colour

descriptor (SC). In [21], the MPEG-7 SC is extracted from the region below the

bounding box of a located face. It is based on the assumption that people in the

photograph are captured in an up-right position. Thus the torso should be placed
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below the face. The MPEG-7 SC extracts both colour and texture of the region, in

this case these are the colour and texture of the person’s clothes [21].

The use of the body patch technique by the author is based on the observation

that people usually do not change their clothes during a particular event. There-

fore, this technique can be successfully used for searching for re-occurrences of

identities within events [21]. Some errors can be expected, as it can easily happen

that clothes are either occluded by a table, bar or other obstacles, or are not vis-

ible due to dim lighting. Confusion can also easily occur if people wear similar

clothes, for instance, in group photographs of co-workers wearing uniforms. Thus

it is expected that this feature should give better results when combined with face

recognition features, than when used on its own.

6.4 Transferable Belief Model I

6.4.1 TBM for clustering

Let us consider a set Ω of Nc clusters, each cluster representing an identity of each

person captured in the collection of photographs. This gives 2Nc subsets A of Ω,

A ⊆ Ω.

Let us denote by m j(Ci) a belief of the jth source (with m1 being the facial

analysis, m2 assigned to events and m3 denoting belief received from ownership

information) expressed on membership of a given data point to the ith cluster.

Clusters in this case are hypotheses, and sources express their belief on each

hypothesis given at the current data point, i.e. they express their belief on the ith

hypothesis, that the given data point belongs to ith cluster.

The combined belief from all sources is obtained using Dempster’s rule of

combination

m(Ci) = m1(Ci)⊕m2(Ci)⊕m3(Ci). (6.27)

Once the initial partition is available (e.g. as a result of facial clustering), the

number of occurrences of elements of each cluster in any event can be calculated.

This number is a base for calculating the BBA for each event and cluster. Let

us assume that there are nei faces in the ith cluster in the current event, and

photographs from this event contain in total netot faces. Then the BBA that the face

from this event belongs to the ith cluster is:

m2(Ci) =
nei

netot
. (6.28)

Similarly one can obtain the BBA of the belief that the faces in the cluster Ci

appear in a given user’s collection. Denoting by nci the number of occurrences of

faces from the ith cluster in a user collection containing nctot faces, the value of
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Table 6.1: Sample table of masses associated with evidences and clusters; assuming
three clusters in a set.

D1 D2 D3

eye analysis event owner

/0 m1( /0) m2( /0) m3( /0)
Cluster 1 m1(C1) m2(C2) m3(C3)
Cluster 2 m1(C2) m2(C2) m3(C3)
Cluster 3 m1(C3) m2(C3) m3(C3)

Clusters 1 or 2 m1(C1,C2) m2(C1,C2) m3(C1,C2)
Clusters 1 or 3 m1(C1,C3) m2(C1,C3) m3(C1,C3)
Clusters 2 or 3 m1(C2,C3) m2(C2,C3) m3(C2,C3)
Clusters 1 or 2 or 3 m1(C1,C2,C3) m2(C1,C2,C3) m3(C1,C2,C3)

the BBA m3(Ci) can be obtained as:

m3(Ci) =
nci

nctot
. (6.29)

The two equations 6.28 and 6.29 can be modified for the inclusion of more

then one cluster. The beliefs m(A) = m(C1,C2) express the belief based on the

evidence that the given person belongs either to cluster C1 or cluster C2. The

BBA m(C1,C2,C3) expresses the belief that the given person belongs to any of the

available clusters, which, in the scenario presented in Table 6.1, represents total

ignorance of the source.

Table 6.1 presents a sample TBM consisting of 3 clusters Ω = {C1,C2,C3}. There

are 23 = 8 BBAs that can be constructed, which are shown in the table. Given a

soft clustering of faces, one can obtain three BBAs for every face: m1(C1), m1(C2)

and m1(C3). These are just values of the membership function. Other values of

m1 are zero.

In the case of event BBAs and user BBAs, all values can be calculated. For a

given subset A of clusters, the BBA can be obtained similarly to Equations 6.28

and 6.29:

m(A) =
∑Ci∈A ni

ntot
. (6.30)

This must be normalised in order to meet the condition 6.15. It can be easily

shown that the normalisation factor is 2Nc−1.

6.4.2 Implementation

Implementation of the model presented in Section 6.4.1 is difficult and challenging

as the number of clusters is very large, reaching hundreds or thousands. The

number of subsets of the set of clusters is 2Nc where Nc denotes the number of

clusters. For example in case of just 10 clusters the number of all subsets is 1024,

which would require 4 kB of computer memory for storage of single precision
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floating point representation, but for 40 clusters it reaches already 240 which would

require 4TB of storage. The values of BBAs can be computed on the fly when

they are needed. This reduces the memory cost, but it increases the computation

time dramatically.

As outlined in section 6.4.1, belief functions based on facial analysis are non-

zero for only these subsets of the power set that contain just one cluster. Just

non-zero BBAs need to be stored. Therefore, the storage required for facial BBAs

depends linearly on the number of clusters.

The event BBAs and ownership BBAs require more storage, since all subsets

of the powerset can be calculated. For a large number of clusters, the storage

requirements become very difficult to meet. Therefore, some modifications must

be made in order to cope with such huge data.

Reduction of clusters

One possibility for complexity reduction is limiting the number of clusters that

are taken into account. Large values of BBA can be usually assigned only to a

few of the closest clusters. For other clusters, the values of BBA are close to

zero. Therefore, just those clusters that are closest to the considered face are

analysed. These are chosen by restricting the number of considered clusters to

the K nearest clusters. The value of K = 10 has been arbitrarily chosen as a

good trade-off between processing speed and the accuracy. Actually this could be

reduced further, as usually two or three of the closest clusters obtain large enough

values of BBA, that there exists a little possibility that the given person belongs to

a cluster with very small BBA. The number of subsets that are analysed is reduced

from 2Nc to 2K (K ≪ Nc) for every person in the collection of photographs.

Addressing subsets

Another issue that needs to be solved for implementing the TBM presented in

Section 6.4.1 is generating all possible subsets. In our implementation it is resolved

by creating an array of integers, each bit of elements of this array representing a

cluster. As the TBM is implemented in the Java programming language, an integer

contains 32 bits. Therefore the size of the array is:

array size = Nc/32+1, (6.31)

where Nc is the number of clusters. Each bit in the array denotes the presence or

the absence of the cluster with the same index in the subset. For example, if the

third bit in the array is 1, then the cluster C3 is present in the subset. All subsets

of the powerset can be easily generated by regarding the array as a Nc-bit counter

and increasing value of this counter by 1 for generating each subsequent subset.
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Table 6.2: Example of generating subsets of a power set 23.

bit array subset

000 /0
001 {C1}
010 {C2}
011 {C2,C1}
100 {C3}
101 {C3,C1}
110 {C3,C2}
111 {C3,C2,C1}

Table 6.2 presents an example of generating all subsets of a powerset for Nc = 3.

In the case of a restricted number of clusters, when K <= 32 the array of

integers can be simplified to just a single integer.

6.4.3 Experiments

Some initial experiments were carried out with the proposed TBM for clustering

similar faces in a photograph collection. These experiments showed that the model

gives little improvement over the clustering with facial features only. A reason for

this might be a dependency between sources, as TBM is built using the results of

an initial segmentation based on face recognition features. Also, these experiments

were time consuming due to the complexity of the model. The reduction method

proposed in Section 6.4.2 reduces processing time significantly — from two days

for 40 clusters to several minutes for any number of clusters, when the reduction

to the 10 highest BBAs for each instance of a person was applied (experiments

were carried out on a PC with Pentium III 450MHz processor and 256MB RAM).

6.4.4 Conclusions on Transferable Belief Model

In this section, the implementation of the Transferable Belief Model to the problem

of unsupervised clustering of people in photographs is proposed by the author.

In this approach, the TBM is used for combining face recognition features with

event and user information. This method, however, has several disadvantages.

It is a very complex, computationally expensive model. Thus it requires a lot of

computational power and long processing time. Unless TBM analysis is carried

out as a background process, this model is not suitable for use by a home user.

The event BBAs and user BBAs are computed using the results of initial clus-

tering based on facial similarities. Therefore, the BBAs are correlated with facial

information. As they are not independent from facial BBAs, the use of Dempster’s

rule of combination can be questioned.
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Since the TBM described in this section is very complex and requires a lot of

computational power, a novel simpler and faster approach based on restricting the

number of images analysed by the clustering algorithm is proposed by the author

in the next section. Event and user information is used for creating subsets for

clustering and subsequent merging of clusters.

6.5 Three level clustering

Looking at the results of clustering presented in Chapter 5, one can easily observe

that accuracy decreases with the increase in the size of a data set. This might be

a result of an increased level of noise in a larger data set caused by outliers or

just by inaccurate feature extraction. Based on this observation (that the better

clustering results are obtained for a lower number of faces) a novel approach

for combining event, user and facial information is proposed by the author in this

section. The proposed method consists of splitting the data set into smaller subsets,

conducting the clustering within these subsets and then merging similar clusters

between subsets.

6.5.1 Data set levels

As information about the owners of photographs and the events at which the

images were captured is available, it is used for creating meaningful and useful

subsets of the data set. The collection of photographs consists of collections of sev-

eral users. Thus one of the levels could be the “user” level, at which photographs

captured by the same user are grouped in the same subset.

Photographs can be further divided into events, which are defined and de-

tected within each user collection. These events are detected using the technique

proposed in [16] (see Section 6.3). Therefore, there are three levels at which a

collection of photographs can be split: the most detailed level is the “event” level

at which a small number of images is assigned to a given event; next is the “user”

level gathering photographs from all events captured by a given user. This level

is more coarse and provides fewer larger groups of photographs. The most coarse

level is a “collection” level containing all photographs in the dataset. These levels

are graphically presented in Figure 6.3.

6.5.2 Event level

In the approach proposed here by the author, the unsupervised clustering is car-

ried out at the event level as many times as there are events. Each time only

those photographs are used that were captured at the given event. The technique

described in Section 5.3.3 is employed by the author for those clustering processes.
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This produces a large number of small clusters, containing only images captured

at the same event. Therefore, the resulting clusters consist mainly of appearances

of the same identity. However, this identity may appear in many clusters. Thus

finding all images containing a given person would require retrieving many of the

clusters. This problem can be overcome by merging (e.g. at user level) similar

clusters created at the event level.

The restriction for merging faces only from the same event can be seen as a

special case of the fusion using the product rule. Let us consider that the nearest

neighbour is defined as a point with the highest value of similarity measure. Let us

define the facial similarity measure s f as a function of a distance in face recognition

features space d( fi, f j) between two points fi and f j:

s f ( fi, f j) = exp(−λd( fi, f j)), (6.32)

or, if 0≤ d( fi, f j) ≤ 1

s f ( fi, f j) = 1−d( fi, f j). (6.33)

Also let us define a similarity se in regard to events:

se( fi, f j) =

{

1 if fi and f j were captured at the same event

0 if fi and f j were captured at different events
(6.34)

Then the similarity between two points is expressed as a product of similarity in

the face recognition feature space and similarity in regard to events:

s( fi, f j) = s f ( fi, f j)se( fi, f j). (6.35)

Then the nearest neighbour clustering can be based on this similarity measure

defining the nearest point as a point of highest value of the similarity s( fi, f j).

6.5.3 Merging clusters

In the technique proposed by the author, the clusters at the user and collection

levels are merged only if the similarity, measured in terms of their location in

the subspace and their structure, is above a given threshold. The author uses the

normalised distance, the same as used for experiments in section 5.3.1 as a distance

measure between two clusters. This measure takes into account the locations of

cluster centres and the spread of points around the centre of each cluster. Any

distance measure such as Euclidean or cosine distance can be used for calculating

distances between points and centres of clusters. In our case, as the MPEG-7

FR descriptor is used, the distance proposed for this descriptor [24] is used (see

Appendix B).
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The two distances calculated between two clusters Ci and C j are:

d(Ci,C j) =
dp(mi,m j)

σ j
, d(C j,Ci) =

dp(m j,mi)

σi
, (6.36)

where dp is a distance measure for a given feature space, mi is a centre of gravity

of the Ci cluster, σi is the standard deviation of the distances between points and

the centre of the cluster. The clusters are merged if both distances are below a

certain threshold, the same for each distance value d(Ci,C j) and d(C j,Ci). This

ensures that both centres of merged clusters are located within the same multiple

of the standard deviations from each other.

6.5.4 Evaluation

Single levels

Event level The experiments for testing the improvement given by restricting

clustering only to events, were carried out first. Facial images were grouped firstly

into groups containing images captured at the same event. Then the clustering

process based on the nearest neighbour technique (see Section 5.3.3) was carried

out on every (event) group. Figure 6.5 presents the flow chart of the system for

clustering within events.

The results of clustering within events are presented in Table 6.3. The same

table also shows, for comparison, the results of clustering across events and user

collections. It can be easily seen that splitting the dataset into groups at each

event and carrying out clustering within such groups increases both precision and

recall. The number of created clusters is higher, due to the initial pre-grouping

into events.

User level Clustering within events forces images of the same identity to be

classified to different clusters in situations where a given identity was captured at

more than one event. It is, therefore, interesting to see how restricting clustering

to user collections improves (or does not improve) the clustering performance.

The experiments were carried out by clustering facial images only within user

collections. Figure 6.6 presents the diagram of the system used and Table 6.3

shows the results of the experiments.

As can be seen in the results table, clustering within user collections improves

precision over clustering across the whole collection. However, the increase is not

as large as in the case of the event level clustering. This is not surprising as the

number of images in each group is not as strongly restricted as it is in clustering

within events. However, the numbers of valid clusters are comparable in both

cases. The number of all created clusters is much higher in the case of clustering
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Figure 6.5: Diagram of the system for clustering similar faces within events.

within events. This might indicate that a strong restriction put on the number

of images (so that only photographs from the same event are analysed together)

might help in separating outliers.

Two levels - event and user

Experiments were also carried out on two-level clustering, consisting of event and

user level. The nearest neighbour method was used for clustering at event level.

At the user level similar clusters were merged as described in section 6.5.3. Several

values of threshold were investigated. Results are presented in Figures 6.8 and 6.9

in two scenarios: with manually located eyes and with automatically located eyes.

As one could expect, values of mean precision decrease with the increase of

the threshold, while values of recall increase in general. Also the number of

created clusters is lower where the threshold is higher, which is not surprising.

The increase in values of recall is not large in comparison to clustering within

events. The use of a possibly inappropriate merging technique could explain this

effect. However, it is also possible that events affect the appearance so much that
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Figure 6.6: Diagram of the system for clustering similar faces within users collec-
tions.

the appearance of a human face is event specific, which makes merging between

events difficult.

The value of threshold that gives a close to optimal number of clusters, is 0.08

for manual eye locations and 0.06 for automated eye locations. In the former case

it gives 53 valid clusters with average precision 0.696 and average recall 0.224.

When eye locations are extracted automatically this method gives, at the threshold

0.06, 51 valid clusters, with average precision 0.633 and recall 0.236.

Small values of the threshold indicate that cluster centres are placed very close

to each other and clusters probably overlap (as the threshold is a fraction of the

value of the spread).

If these results are compared to clustering within user collections (Table 6.3)

one can easily see an improvement in both precision and recall. However, the

improvement in recall values over experiments of clustering within events is not

large.
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Table 6.3: Results of clustering at single levels.

level features no of all no of valid precision recall
clusters clusters

event eyes manual 402 89 0.791 0.207
event eyes auto 386 74 0.750 0.211
user eyes manual 229 87 0.640 0.206
user eyes auto 230 78 0.581 0.195
collection eyes manual 201 79 0.548 0.152
collection eyes auto 187 59 0.516 0.178

Two levels - event and whole collection

Experiments were also conducted in a scenario where clusters created within

events were merged within the whole collection, across all user collections. Results

are presented in Figures 6.11 and 6.12.

In this case there is a large increase in precision at threshold levels of 0.09 for

scenarios with both manually and automatically located eyes. However, at these

points the number of valid clusters is unacceptably low. The optimal number of

valid clusters is obtained for values of threshold at 0.06 and 0.04 for features ob-

tained with manually and automatically located eyes respectively. Precision values

are 0.853 and 0.823, recall values are 0.203 and 0.189 respectively. Interestingly,

the values of recall at the lower values of threshold decrease with the increase in

threshold values, which is unexpected.

Three level - events, users, collection

The experiments on three level clustering were carried out at event, user and

collection level. Results are presented in Figures 6.14 and 6.15. Figure 6.13 shows

the diagram of the system used for experiments.

Firstly clustering based on a nearest neighbour classifier was carried out within

events. Then merging of similar clusters was carried out within each user collec-

tion, which was followed by merging between user collections. Because clusters

were merged in two stages, two values for threshold were needed.

Let us denote by te the threshold that is used for merging clusters across events

within user collections. Let tu denote the threshold used for merging clusters

(obtained with merging within user collections) across user collections. Charts

presented in Figures 6.14 and 6.15 show the results of clustering and merging

with several values of thresholds. When the facial features were extracted using

manually located eyes, the optimal or nearly optimal number of valid clusters was

obtained for a few different thresholds. Best results were obtained for te = 0.5 and

tu = 0.4, when 54 valid clusters were obtained giving a precision of 0.904 and a

recall of 0.210. This is great improvement in precision. There is no improvement
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Figure 6.7: Diagram of the system for two-level clustering of similar faces within
events and users collections.

in recall, however. This means that these valid clusters contain just a fraction of all

images containing known identities and roughly just 1/5 of interesting photographs

can be retrieved (with quite high average precision, though).

When the facial features obtained with automated eye locations were used, the

values of threshold at which the optimal number of valid clusters was reached,

were lower. For te = 0.03 and tu = 0.02 the precision is 0.852and recall 0.180. But

if te = 0.01 and tu = 0.04 were used, the number of valid clusters remained the

same, giving, however, precision becomes 0.831 and recall becomes 0.195.

A general tendency can be observed that higher precision values are obtained

for higher values of te and lower tu, while higher recall values are achieved for

lower values of te and higher tu. This means that in the collection used for exper-

iments, several users might had made photographs of the same events or at least

the same group of people. Then some identities occur in several user collections

and probably were captured at the same events. Therefore, their appearance is

very similar in spite of being in another user’s collection. In such situation more

flexible merging (with higher threshold) across user collections captures more oc-
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Figure 6.8: Precision and recall (a) and number of clusters (b) for different values
of threshold for merging clusters and collection level; manual eye locations.
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Figure 6.9: Precision and recall (a) and number of clusters (b) for different values
of threshold for merging clusters and collection level; automated eye locations.
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Figure 6.10: Diagram of the system for two-level clustering of similar faces within
events and the whole collection.

currences of a given identity in the collection, resulting in higher recall. However,

this decreases precision because more outliers can be captured.

6.6 Combination of body patch with facial analy-

sis

6.6.1 Body patch

The body area of the person in an image can be used for finding a re-occurrence

of the person in the collection [21]. It is based on an observation that people

rarely change their clothes during an event. Therefore, the analysis of the colour

and pattern of a body region in an image can give a good hint to match the

re-occurrences of the corresponding person in images. Colour and pattern are

very simple, and robust features. Thus they are very efficient for matching a

person across images. One must remember, however, that accurate results can be

expected only among the images which were taken in situations when the person
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Figure 6.11: Precision and recall and numbers of clusters produced at two level
clustering on event and collection level, as a function of the merging threshold (for
manually located eyes).
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Figure 6.12: Precision and recall and numbers of clusters produced at two level
clustering on event and collection level, as a function of the merging threshold (for
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Figure 6.13: Diagram of the system for three-level clustering of similar faces: within
events and at user and collection levels.

was wearing the same clothes e.g. taken at the same event.

Additional difficulties can be encountered when the body area is not available.

This can happen due to occlusions, torso outside the frame of a photograph, or

torso placed in an image region other than predicted. Therefore, using only body

information seems to be not sufficient for indexing the whole collection.

6.6.2 Combination

As the body patch technique is efficient in clustering within events, it is reasonable

to combine this feature with facial analysis features. This should increase accuracy

of clustering within events, leaving indexing across events to facial analysis only.

Three techniques for combining body information with eye analysis were used:

• weighted sum

p = α p f +(1−α)pb (6.37)

• weighted product

p = pα
f p1/α

b (6.38)
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Figure 6.14: Results of three level clustering for different values of thresholds
(manual eye locations): (a) mean precision, (b) mean recall, (c) number of created
clusters, (d) number of valid clusters.

• weighted maximum

p = max(α p f ,(1−α)pb) (6.39)

where p f is a similarity measure of eye features and pb is a similarity measure for

body features, and both these values can be seen as probabilities. A weight α indi-

cates importance of each of the information sources. In the case of a weighted sum

and weighted maximum, α = 0 results in only the body analysis being used. For

α = 1 only facial analysis is employed. These are simple probabilistic approaches

to information fusion. However, they are usually sufficient.

A more sophisticated approach would be a Transferable Belief Model. Let us

assume that a belief that a person given in an image belongs to the cluster Ci (N

clusters in total, i = 1,2, . . . ,N) given by eye analysis is m f (Ci), and that a similar

belief given by body analysis is mb(Ci). Then using the normalised version of

Dempster’s rule of combination [110] we obtain:

m f b(Ci) = m f (Ci)⊕mb(Ci) (6.40)

=
∑Ck∩Cl=Ci

m f (Ck)mb(Cl)

1−∑Ck∩Cl= /0
,k = 1, . . . ,N, l = 1, . . . ,N (6.41)
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Figure 6.15: Results of three level clustering for different values of thresholds (au-
tomated eye locations): (a) mean precision, (b) mean recall, (c) number of created
clusters, (d) number of valid clusters.

=
m f (Ci)mb(Ci)

∑ j m f (C j)mb(C j)
(6.42)

bearing in mind that if we obtain masses of belief m f and mb as functions of

similarity measures, these masses are determined for one element subsets of a

set of clusters (i.e. we can obtain m f (Ci) and mb(Ci), but not m f (Ci,C j, . . .) or

mb(Ci,C j, . . .). In the case of clustering, where we compare beliefs, the value of

the denominator in Equation 6.42 is the same for each cluster and can be ignored.

Thus the resulting combination is the same as the weighted product with α = 1,

and no improvement over the weighted product method can be expected.

6.6.3 Experiments

Data set

A detailed description of the data set used for the experiments can be found in

Appendix C.2. The set that was used in the experiments is the set containing

1127 instances of a human. The MPEG-7 FR features were extracted using manual

locations of eyes. The body patch features (MPEG-7 SC) were obtained using the
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technique described in [21]. The dataset is also pre-organised into events with the

method presented in [16].

Combining within events

The experiments were carried out in two scenarios. In the first one, facial features

are combined with body features within events. In the second scenario, features

are combined within user collections. The first scenario follows the observation

that people rarely change their clothes during an event. Figure 6.16 presents a

flow chart of the system used for experiments in scenario 1.

Figures 6.18, 6.19, 6.20 present precision and recall values obtained for cluster-

ing with different combination methods for various values of α in the first scenario.

Lower values of α indicate that more importance is put on body features, higher

α makes the clustering depend more on facial information. In the cases of the

average sum and maximum rule, extremes are reached for α = 0 and α = 1. In

the former case clustering depends only on body features, in the later one just on

facial features.

When the average sum is used, results of clustering using combined features

are lower in both precision and recall than for body features alone (Figure 6.18).

Additionally, the generated number of clusters increases, which is not good, as

the number of clusters is already too high for single features. There is no gain in

using this method of fusion.

The results of combining features using the product rule are shown in Figure

6.19. There is a small improvement in precision at α = 0.7. However, at the same

point recall decreases. Another point of improvement is for α = 3 and in this point

both precision and recall are increased. This is not a large increase, however.

Combination of facial and body features using the maximum rule gives the

results presented in Figure 6.20. There is a peak in values of precision for α = 0.41,

but this do not correspond with a peak in recall values. Therefore, the peak in

precision might have been obtained accidentally.

Combining within users’ collections

The flow chart of the system used for experiments within users collections is shown

in Figure 6.17. Figures 6.21, 6.22, 6.23 present precision and recall values obtained

in these experiments. As expected, results are not as good as when clustering

was carried out within events. However, characteristics are surprisingly similar

to ones discussed in the previous section. The body patch features work much

better across events within a user collection than face recognition features, in spite

of an expected change in clothing. It looks like the variety of clothes is so high,

that different people rarely wear clothes similar enough to significantly deteriorate

the results of clustering based only on body patch analysis. This simple feature
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Figure 6.16: Diagram of the system for combining body patch with facial features
and events.

captures the structure of events well even when information about the event is not

available, i.e. the clusters created consist mostly of images from the same event.

Results obtained with the average sum rule are not different from the ones

obtained in scenario one, just that the changes in values are larger. There is a

minor difference — a peak in recall values which corresponds to a local peak in

precision.

For the product rule, results are different from scenario 1. There is large

decrease in precision value when both facial and body features are combined.

There is, however, a high peak in recall at α = 1.5. For this value of α , the facial

features influence the clustering a little bit more than the body features. The peak

in recall can be an effect of a high proximity between the body features of the

same identity in events and the facial features outside events.

Very interesting results were obtained using the maximum rule. Both precision

and recall have got peaks for α = 0.41. This corresponds with a peak in precision

for the same value of α as in scenario 1, and a local peak in recall for α = 0.40

in scenario 1. Therefore, the maximum rule is most suitable (among these three
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Figure 6.17: Diagram of the system for combining body patch with facial features
and user information.

probabilistic rules investigated) for combining facial features with body features,

as it gives the highest gain in the precision of clustering, and it corresponds with

an increase of recall values.
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Figure 6.18: Results for combining facial and body features within events using
average distance value p = α p f +(1−α)pb.
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Figure 6.19: Results for combining facial and body features within events using

product of probabilities p = pα
f · p1/α
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Figure 6.20: Results for combining facial and body features within events using
maximum p = max(α p f ,(1−α)pb).
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Figure 6.21: Results for combining using average distance value p = α p f +(1−
α)pb.
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Figure 6.22: Results for combining using product of probabilities p = pα
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Figure 6.23: Results for combining using maximum p = max(α p f ,(1−α)pb).
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6.7 Conclusion

In this chapter, methods for improving clustering of similar persons are presented

and discussed. The improvement is achieved by using not only face recogni-

tion features but also other sources of information. The sources considered are

context-based (events, owners of photographs) and content-based (body patch).

A Transferable Belief Model is proposed for fusing face recognition with events

and owner information. However, the implementation of such a model is very

complex and execution is time consuming. A method for reducing the processing

time by analysing a certain number of clusters with the highest values of belief

is proposed. The full potential of Transferable Belief Model is not fully exploited,

as beliefs associated with events and users are not independent from beliefs as-

sociated with face recognition. To use in full the potential of Transferable Belief

Model the beliefs of each source should be independent.

Another method, which is proposed in this chapter, combines event and user

information with face recognition by analysing a photograph collection at three

levels: event level, user level and collection level. At the event level, the photo-

graph collection is divided into subcollections containing only images captured at

the same events. Then, nearest neighbour-based clustering is carried out in each

subcollection. At the user level, similar clusters created in event subcollections

are merged within the user collections. Eventually at the collection level all clus-

ters are analysed and similar clusters merged. The three level clustering provides

visible improvements to the clustering across the whole collection at once (see

Chapter 5). This is obtained by restricting the initial clustering to images within

events only. It reduces the influence of outliers on the clustering and can be seen

as clustering in small collections which is more efficient as outlined in Section 6.5.

The observation that during an event, people are likely to wear the same

clothes is exploited in Section 6.6, where the analysis of combining the person’s

body features with face recognition features is presented. Three probabilistic

methods for fusion are analysed and experiments carried out, both within events

and within user collections. Experiments show an improvement when using the

maximum combination method, while the sum method compromises efficiency of

both sources.

In the next chapter methods for choosing key images from each of created

clusters are analysed. These key images are used for presenting results on a

screen with limited space (so that more clusters can be presented).
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Chapter 7

Presentation of clusters

7.1 Introduction

In the previous chapter, methods for combining face recognition features with con-

text and content information are presented. This combination is used for enhanc-

ing the results of unsupervised clustering of people’s identities in a photograph

collection. Events, ownership and body patch are the sources of the additional

information.

In the previous chapters, the techniques for analysing the appearance of a

human face and the methods for grouping facial images into clusters containing

images of the same person are described and analysed. This is done in order to

aid the user to organise her/his photograph collection for browsing or searching

through the organised collection is easier than browsing or searching the unor-

ganised set of photographs. While browsing, the user might not be interested in

looking at all the images given in a group. She/he might be more interested in

seeing only the most representative photographs. For example, if the user wants to

see images from holidays that she/he attended with her/his partner and children,

she/he might prefer to see a photograph with the full family accompanied with

the photographs of each member of the family separately rather than seeing a

hundred photographs captured during the holidays.

In this chapter, methods for presenting the organised collection are discussed

with the emphasis put on the choice of the most representative images (called key

images). Different methods are described for browsing and different for searching.

7.2 Presentation of clusters

The presentation of created clusters to an end user is as crucial as clustering itself.

Let us consider a user browsing her/his collection of photographs. The user would

like to see who is present in her/his photographs. In such a situation it would be

better to show only a single image of each person in the collection rather than
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throwing on the screen all images with people. The vital part of the presentation

of photographs is the choice of most representative images from each group of

photographs. The most representative images are called here key images, key

photographs or key-frames.

In the scenario presented above, the user browses photographs without any

specific query to the system (or rather the query specifies only that images con-

taining people are to be shown, which if the collection contains only images of

people, is a very general query). In this case the response of the system is not

query-based (non-query-based). When the user picks up one or more of the im-

ages and tries to find more photographs of the given person, the response of the

system is based on the user’s query (query-based). The query based presenta-

tion of photographs takes place usually when the user searches the collection for

some particular images. The non-query-based presentation can be viewed as a

special case of the query-based one with a very wide and unspecified query (as it

is the case in the scenario presented above). However, those two approaches are

presented separately in the following sections.

The goal of key image extraction is the effective and efficient representation and

presentation of personal clusters. In the literature many articles can be found on

extracting key-frames from video [114, 115, 116, 117, 118, 119, 120]. They usually

concentrate on video shot cut detection to find out when scenes start and end.

Then, some features describing the scene are extracted and the mean value of

features is used for selecting the key-frame — one that is closest to the mean

features values. The features consist of any type of information (usually colour)

extracted from the mean frame calculated on all frames from the scene.

The still image/photograph management system PhotoTOC [10] selects key im-

ages on the basis of the nearest images in terms of colour histogram to the centre

of the given group/cluster. The FotoFile system [7] presents key frames extracted

from video sequences. However, for still images there is no key image selection.

Similarly, other photo management systems like MiAlbum [9], PhotoFinder [11] and

systems proposed by Cooper et al [14] and Lim et al [13] show all images resulting

from the query in a thumbnail view rather than choosing key images or do not

propose any method for presenting images at all. In this chapter, it is assumed

that the photograph collection is already organised by means of events and per-

sons (either unsupervised clustering of people as in Chapter 5, or the propagation

of labels/names). In other words there are “event” clusters that group together

images taken at the same event (an event is defined as a certain period of time in a

certain location, e.g. a trip to the zoo, a party, etc., see Section 6.3), and there are

personal (people, identity) clusters, that gather images showing the same person.

The discussion here concentrate on the best selection of key images from each

group, since the clustering algorithms are described in the previous chapters.
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Several decisions need to be made for the successful presentation of personal

clusters. It needs to be decided whether clusters are to be presented regardless of

events or if it is better to show people in events. Then, it should be decided how

many images are needed to be shown for the good representation of an event or

a cluster.

The non-query-based presentation takes into account several aspects. One can

expect that the chosen key-frames would show most salient images in an event or

a cluster for the good representation of the variety of person’s appearance in the

cluster, or showing as many identities in the event as there occur. For example,

having three identities in an event represented with five key-frames, one could

show two images of the most populated clusters and a single image of the remaining

cluster. Or one could show three separate clusters with the image that is lying

closest to the centre of the cluster as the most representative image, accompanied

with images lying most apart from the centre in order to show the variety of the

faces of the person in the cluster. The statistics of features representing clusters,

like the number of identities, the number of human faces, and the number of faces

of each identity, etc. can be used for the better representation of personal clusters.

As in the examples above, the statistics on the number of images in each cluster

would be useful for choosing the distribution of images

The choice of key-frames from a cluster or an event can be viewed as the

colour quantisation of a population of images in a cluster or an event. However,

the representation would not consist of images obtained as the mean image in a

bin, but the closest one to the centre of the bin.

7.3 Key-frames extraction

7.3.1 Non-query-based key-frames

Although they can be viewed as the special case of query based key-frames,

the non-query-based key-frames are discussed first, as usually the presentation of

clustering results to a user begins with showing the non-query-based key-frames.

In this case it is essential to show as diverse examples of the given subject as

possible. In the case of personal clusters, they can be grouped in events, showing

the variety of clusters (e.g. at least one image from every cluster within an event)

or, the clusters can be presented with key-frames chosen from as many events as

possible.

Statistics gathered on the collection can be very useful in this case. The statis-

tics might be:

• the number of images in each cluster (Nc,c = 1, . . . ,C, C is the number of all

clusters)
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Figure 7.1: An example of a single personal cluster placed in the two-dimensional
facial space. The images 1,4,6 and 9 were captured at event e1, and the images
2,3,5,7 and 8 were captured at event e2. The black dot denotes the centre of gravity
of the cluster.

• the number of clusters in an event (Ne,e = 1, . . . ,E , where E denotes the

number of events)

• the number of events that the given cluster is spread across (Nce,ce = 1, . . . ,C)

• the number of all images containing people (Ni, i = 1, . . . , I, where I is the

number of images with detected faces)

• the number of all people captured in the collection (Np, p = 1, . . . ,P, P is the

number of all detected faces).

Additionally, in the case of showing personal clusters, the preference might be

given to those photographs that contain only the person of interest. In this way

one avoids arbitrariness that occurs when shown images contain several people.

Also, the good quality images (i.e. those with faces in focus, with faces occupying

large areas, etc.) might be preferred, as they show clearly the face and the user

should not have any difficulties in recognising the person.

Proposed methods: Let us denote by K the number of key images to be selected

out of each cluster.

• Method 1: Centres of clusters
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For each cluster choose K images that are nearest to the centre of a cluster

(see the flow chart in Figure 7.2(a)). For example, if one would like to show

K = 3 key images from the cluster presented in Figure 7.1, then this method

would produce images 3,6 and 8, because they are nearest the centre of the

cluster (Figure 7.2(b)).

images from
a personal cluster

calculate mean values
of facial features in

the cluster

choose K images that
are closest to the mean

return K images
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(a) (b)

Figure 7.2: (a) the flow chart of the non-query-based Method 1; (b) sample choice
of key images from the sample cluster using Method 1.

• Method 2: Single centres

For each cluster choose the images in which only one person is shown;

among these select K that are closest to the centres of clusters. If the number

of “single” images is lower than K, then choose the ones nearest to the centre.

In the case of the cluster presented in Figure 7.1 the key images are 3,5, and

8 (Figure 7.3(b)). Figure 7.3(a) presents the flow chart of this method.

• Method 3: Events

If clusters are spread across events, the distribution of the photos in the

cluster onto events can be taken into account when considering the selection

of key images.

– If Nce is available and Nce = K then one example (using the Method 2)

from each event should be chosen.

– If Nce > K then choose a single image from each of K events with the

highest Ne, the image as in Method 2,
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Figure 7.3: (a) the flow chart of the non-query-based Method 2; (b) sample choice
of key images from the sample cluster using Method 2.
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– If Nce < K then select multiple images from the events of the highest

number of images; the number of included images can reflect the rela-

tive numbers of images in events.

This method is presented in the form of a flow chart in Figure 7.4(a).

In the example from Figure 7.1, there are two events (Nce = 2). This is less

than the number of key images K = 3, therefor the condition Nce < K is valid.

The event e2 contains more images, therefore, the method chooses two key

images from event e2 and one from e1. The image 6 is chosen from e1 as

the one nearest the centre of the cluster, and images 3 and 8 are chosen from

the event e2 (Figure 7.4(b)).

• Method 4 Quantisation

A method similar to the colour quantisation can be used for selecting the

key-frames. This method can be seen as clustering within the cluster that

results in K groups within the cluster. Then, the key images can be chosen

from the images nearest the centres of these groups. Because K is known, the

internal clustering is relatively easy, as k-means, n-cuts or the EM algorithm

can be used (these algorithms are described in Chapter 5). The flow chart

presenting this method is shown in Figure 7.5(a).

For example, in the case presented in Figure 7.5(b) the personal cluster is

reorganised into subclusters outlined in Figure 7.5(b) with ellipses. From each

of the three subclusters the image that is nearest the centre of the subcluster

is chosen. In this example these are images 4,5 and 6.

7.3.2 Query-based key-frames

For the query-based key-frame extraction, the circumstances are different, as one

would like to show those images that best match the query, rather than the largest

possible variety of examples. However, this depends on how specific the query

is. If, for example, the user specifies the identity to view, the system still can

choose the images from the given cluster that spread as widely as it is possible

across various events, or different weather conditions etc. Similarly, if the user

specifies the range of time that she/he would like to see photographs from, then

the key-frames should contain the large variety of identities photographed in the

specified time span.

Queries can become complicated. For example, let us consider a query-by-

example, where the example is a photograph containing three people. The results

of searching with such a query should ideally contain all three persons, and either

show only images containing all three of them (AND operator) or at least one of
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Figure 7.4: (a) the flow chart of the non-query-based Method 3; (b) sample choice
of key images from the sample cluster using Method 3.
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Figure 7.5: (a) the flow chart of the non-query-based Method 4; (b) sample choice
of key images from the sample cluster, large ellipses enclose subclusters.

them (OR operator). The user could also draw a rectangular bounding box around

the interesting face and use the content of this box for the query.

It should be taken into account that due to non-ideal clustering, several clusters

that are more likely to contain the queried person need to be shown, because a

single cluster might not contain all of the occurrences of the queried identity.

It is vital that the key-frames extracted using a query-based method reflect the

query as well as it is possible. Four methods for the query-based extraction of

key images are presented below:

• Method 1: When the query consists of a single identity or a cluster, the

clusters with centres nearest (in a feature space) to the query image are

chosen and the key images of these clusters are chosen as in the unsupervised

approach. The flow chart of the method with consecutive steps is presented

in Figure 7.6(a).

Let us consider the example presented in Figure 7.6(b). There is the query

image positioned in the two dimensional facial space with three nearest per-

sonal clusters shown. The user would like to see one key image (K = 1) from

three nearest clusters (N = 3). When Method 1 is applied in this scenario,

the images 5 from cluster 2, 8 from cluster 3 and 1 from cluster 1 are chosen

(and sorted in the order presented as cluster 2 is the nearest to the query

and cluster 1 is the furthest). The obtained key images are outlined in Figure

7.6(b).
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Figure 7.6: (a) the flow chart of the query-based Method 1; (b) sample choice of
key images for the query using Method 1.

• Method 2: Similarly to Method 1, the query consists of a single identity. The

key images in the selected clusters are chosen according to their distance to

the query image instead of the distance to the centre of the cluster. The flow

chart of this method is presented in Figure 7.7(a).

Let us consider again the example query given previously (with the descrip-

tion of Method 1). When Method 2 is applied the images nearest the query

image in the facial space are chosen. In this example those are images 2, 6

and 3 as presented in Figure 7.7(b).

• Method 3: When the query is for retrieving two or more identities, the

clusters closest to the query images or identities are retrieved, and based

on the cardinality of each cluster Nc, the number of extracted key images

is chosen. Let there be Ntot = ∑n
i=1 Nci images retrieved out of n clusters in

response to the n images in the query. The number Nki of key images chosen

from the ith cluster needs to conform with the ratios Nki/K = Nci/Ntot . Figure

7.8(a) presents the flow chart of this method.

Let us consider a sample query image containing two people placed in order

to obtain K = 3 key images. In the facial space the query image is placed

in two locations, accordingly to each face in the image. This is shown in

Figure 7.8(b). The clusters with the centres nearest the queried image are

chosen, in this example those are the cluster 3 for the person with stripes

146



queried identity

sort personal clusters
so that those with

centres nearest to the
queried face are first

choose N nearest clusters

from each chosen cluster
choose K images nearest

return NK images

to the queried face (identity)

2

3

6

7 9

1

e1

e1

e2

e2

e2 e2

F1

F2

query

c3

c3

c3

c1

c1

c2

c2

5
e2c2

8

e1c1
4

c3

c1

c2

e1

(a) (b)

Figure 7.7: (a) the flow chart of the query-based Method 2; (b) sample choice of
key images for the query using Method 2.
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Figure 7.8: (a) the flow chart of the query-based Method 3; (b) sample choice of
key images for the query using Method 3.
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(right hand side in the query image) and the cluster 2 for the other person

in the query image. As the cluster 3 contains more images, two key images

from this cluster are chosen and one key image is chosen from the cluster

2. The images are chosen using Method 2, thus the images 1 and 5 from

cluster 3 and the image 2 from cluster 2 are obtained (see Figure 7.8(b)). It

is possible that in this approach some images can be chosen twice or more

times. For example, the image 5 can be chosen twice as both persons from

the query image are present in this image.

• Method 4: More specific queries like e.g. a query for the particular person

in the certain range of time would require getting the clusters of this person

and choosing the images that appear in the events that took place in the

queried period of time. The flow chart of this method is presented in Figure

7.9(a).

choose the clusters
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Figure 7.9: (a) the flow chart of the query-based Method 4; (b) sample choice of
key images for the query using Method 4.

The example of such a query is presented in Figure 7.9(b). The query image

was captured at the event e1 and the user wants to obtain images of this

person captured at the same event (let us assume that K = 3 images can be

shown). Firstly the three nearest clusters are found. Then, the images in

those clusters are filtered, so that only images captured at event e1 are left

(those are images 1,4,6 and 9). Among those the images are chosen using

Method 2, that returns to the user the images 1,6 and 9.
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In this section methods for non-query-based and query-based choice of key

images are presented. Although some of those methods work in different condi-

tions than others (e.g. single identity query requires different method than multiple

identities query), their efficiency must be measured in some way in order to com-

pare them to each other or to any other method. Thus in the next section some

evaluation methodologies of the choice of key-frames are discussed.

7.4 Key-frame evaluation

The evaluation of the key-frame selection is not a trivial task as the choice of

key-frames can be very subjective since different people may have different needs

for representing the same clusters. The evaluation of the key-frame choice can be

approached in two ways:

• objective — by a certain value calculated on the selected key-frames, mea-

suring the “goodness” of the key-frame selection

• subjective — based on a user study and a user satisfaction

7.4.1 Objective measurements

Objective measurements are easier to conduct than the subjective ones as they

do not require any human interaction. However, such measurements might not

necessarily accurately model the human’s perception of key-frame quality, and

such modelling might or might not be required.

The measurements that are not intended to model human perception can be

based on comparing the statistics mentioned in Section 7.3.1 with the key-frame

selection. Another possibility is analysing the statistics of the chosen key-frames

such as their spread within the collection, or the variety of features they represent.

Yet another criterion for assessing the key images selection is the ratio of how

well the key image represents the given group of data to how well it distinguishes

from all the rest of the data. Let us denote by din the similarity measure of the

selected key photograph to the group it represents and by dout the similarity of the

key image to all other photographs. One can expect that the key images with the

highest din/dout ratio are more representative then the ones with lower value of

this ratio.

7.4.2 User study

There are at least two ways of evaluating the key-frame selection using user inputs:
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• the user chooses most relevant in her/his opinion key-frames, then the key

frames selected by the system are compared with the key images chosen by

the user;

• the user is presented with the system, that uses automatically selected key

frames and fills up a questionnaire expressing her/his satisfaction of using

the system.

In the situation when the user chooses her/his key images for the representation

of personal clusters, one can build a model of user key-frames based on given

user’s selections. These key images can be compared to the key photographs

selected by the system and the measure of how well they correspond to each

other can be calculated. However, this measure would be highly biased towards

the user’s own subjective notion of which photographs should be chosen. Thus

such measure would favour key-frames following user’s model. This measure,

however, might suggest directions for improvement to the method of selecting key

photographs.

A straight forward measure in such a scenario is the average distance of auto-

matically selected key-frames to the key images selected by the user 1/K ∑K
k=1 dk(Fa,Fua),

where Fa denotes automatically selected key image, Fua is the closest key image

selected by the user, and K is the number of selected key-frames. This measure

has a drawback in being dependent on the average distance in clusters, and would

be different for clusters of different distances between points. Therefore, the dis-

tance between the key images should be normalised, preferably by the number

reflecting the average distance within each cluster d̄c = 1/N2
c ∑Nc

i=1 ∑Nc
j=1d(Fi,Fj)

The second measure, the user satisfaction measure, also is biased towards the

subjective user’s notion of key images. However, in this case it seems to be easier

to analyse inputs of several users and draw some conclusions from averaging

the users’ marks. Unless the users are asked explicitly in the questionnaire for

additional comments, it is hard to find out the directions for improvement. Users

themselves might not be able to suggest any improvement. However, they might

be able to choose one of the methods presented to them.

7.5 Conclusion

In this chapter, methods for extracting key images are presented. Two groups of

techniques are discussed: non-query-based and query-based. The query-based

methods can be used for the non-query-based extraction, since the non-query-

based extraction can be seen as the query-based one with a very general (non-

specific) query. Some methods for evaluation of extracted key images are dis-

cussed, too. The objective (user-independent) techniques are presented and the
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discussion on the possibilities of the user-dependent evaluation is included. The

evaluation criteria can be also used as the extraction criteria. Then, evaluation can

only assess how well a given criterion is fulfilled by the given extraction method.

The next chapter contains the summary of the thesis and two directions for

future work. These include another approach to the Transferable Belief Model

employed for combining various sources of information and a short discussion on

possibilities to exploit the user interaction.
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Chapter 8

Summary

8.1 A brief review

This thesis presents a full system for unsupervised grouping of digital photographs

that show people who are similar in appearance. The system is based primarily

on the human face analysis. However, it also exploits additional information, both

content (body patch) and context-based (events, user).

A large amount of effort was put into methods for facial components localisa-

tion, especially eyes, as component-based and holistic face recognition methods

require accurate locations of facial components. Acuratelly located eyes are es-

sential, not only for component-based techniques, but also for holistic methods.

The latter analyse facial images that are normalised by eye positions. A novel

method for facial components extraction and localisation is proposed by the au-

thor. This method is based on colour segmentation and the observation that facial

components such as eyes, lips and eyebrows differ in colour from the skin area

of a human face. Another technique for eye localisation, based on a PCA tem-

plate, is analysed in depth. This method is simpler and much quicker then the

one based on colour segmentation. It is based on the assumption that a bounding

box is accurately based around the facial region in an image. Both techniques

were tested on low resolution images with limited number of details and different

lighting conditions. Results, therefore, are not as good as results presented in the

works of others.

A variety of techniques for face recognition is presented in this work. Investi-

gation into which of the methods best meet the needs of unsupervised clustering

is presented. The suitability of various recognition methods for the use in unsu-

pervised clustering is analysed. It was decided to use the MPEG-7 face recognition

descriptor for further experiments. This is a convenient method that allows the

user to extract the facial features used for recognition. There is no need for any

training set of faces because the basis vectors are defined by the standard. Faces

can be easily compared by means of the distance measure between feature vectors.
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Although MPEG-7 standard does not define any pre-processing of the facial image

except normalisation (which is based on the locations of eyes) it is investigated

in this thesis how pre-processing of the normalised facial image with histogram

equalisation (for removing the influence of changes in lighting) and feathering (to

avoid the background in the image) might affect the recognition.

Next, the analysis of clustering techniques for grouping of similar persons in an

image collection is presented. Experiments with three grouping techniques were

conducted by the author:

• modified k-means

• modified single-link

• nearest neighbour-based

All the techniques were modified to work in a totally unsupervised manner, in

such a way that they estimate the number and parameters of clusters, and classify

faces into the clusters. The k-means and single-link algorithms estimate the num-

ber of clusters using the outlier detection technique based on thresholding. The

normalised distance was employed for the k-means algorithm in order to take into

account the spread of data points within clusters. The nearest neighbour-based

technique gives the best results. However, it is hard to find a model for clusters

produced by this technique. The estimation of the number of clusters is based

on thresholding. However, this is the number of neighbouring clusters that is

thresholded, not the distance between data points. A post-processing technique

for further enhancing clusters is described. This method detects faces, which are

extracted from the same photograph (two or more faces are “present” in the same

photograph) and classified to the same cluster (recognised to be different occur-

rences of the same person in a single photograph). This method also reallocates

wrongly classified data points.

In addition to face recognition, sources of information such as body patch,

events, and user information are analysed. The mechanisms behind the fusion of

information from these sources are investigated. One of the methods proposed for

fusing information about events and user with face recognition is the Transferable

Belief Model based on Belief Theory. However, the model proposed in this thesis is

very computationally complex, therefore some simplifications for implementation

are proposed.

Much better results are obtained by the author when event and user infor-

mation is used for restricting the search space on which clustering is carried out.

This greatly increases the precision value, but there is no improvement in regard

to recall. The low values of recall can be explained by the strong restriction put on

clustering within events, as people are quite often captured in photographs from

several events. However, merging clusters at the user and collection levels does
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not increase the recall values significantly. This suggests that either the appear-

ance of human face varies between events, or that the merging method should be

improved.

Simple probabilistic methods are analysed for the fusion of face recognition

features with information about the colour and texture of the body (clothes). In-

formation of events is also used, since the body patch is expected to work well

only within events. However, when face recognition is combined with body patch

within user collections, across events, the clusters created are not much different

than the ones created within events. This suggests that the combination of body

patch with face recognition is capable of suggesting which images were captured

at the same events.

A discussion on the possibilities for extracting key images for clusters concludes

this thesis. Some techniques for extracting non-query-based and query-based key

images are discussed. It is observed that the non-query-based extraction can

be viewed as a query-based one with a very general (unspecific) query. Some

methods for evaluation of the choice of key images are included. Two groups

of evaluation methods are presented: objective ones and the ones based on user

preferences. This covers the presentation of clustering results to the user on a

limited area such as the screen of a PDA device.

8.2 Future work

There are many directions in which current work can be extended. The similarity

of human faces is a field in which largest enhancements can be made, as face

recognition, in spite of the long time that researchers have spent on this topic,

it is still very error-prone when dealing with real life photographs. Other areas

that can greatly enhance the process of finding persons of similar appearance are

clustering itself and the fusion of information sources.

There is a source of information which was not exploited in this thesis — the

user. The user input, although is not necessary for unsupervised clustering, can

be used for correcting the output of the clustering process. It can also be fed into

the relevance feedback mechanism or used in fusion algorithms as another, very

reliable source of information.

In the next subsections, two directions of future work are presented: another

implementation of Transferable Belief Model and the user interaction.

8.2.1 Transferable Belief Model on similarity measure

In this approach to TBM for clustering, basic belief assignment (BBA) functions

measure the degree of belief that two points are similar. This is unlike the TBM

presented in Section 6.4, in which BBA functions measure the degree of belief that
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the given point belongs to the certain cluster. The approach proposed for the

future work has the advantage that it does not require any initial membership to

the clusters. This preserves independency between information sources.

Two hypotheses based on the distance measure between two points can be

considered: S (similar) and N (not similar). The hypothesis S tells us that two

considered points are similar, i.e. they belong to the same class (in the case of

matching similar appearances of people this is the hypothesis, that both data point

are instances of the same person). The hypothesis N is considered when two

points are not similar at all, i.e. they belong to different classes (represent two

different people).

This set of hypotheses produces the powerset { /0,S,N,SN}, where SN = Ω
represents the doubt or uncertainty whether the given distance can tell us that the

given two points are of the same person or different people.

There are three BBA functions that can be defined on the distance measure

between two data points:

• m(S,d) - BBA that points are similar

• m(N,d) - BBA that points are not similar at all

• m(SN,d) = mΩ(d) - represents doubt

These functions are defined as presented in Figure 8.1. If the distance is below

Tmin, then we are sure that the given points are similar, therefore we can assign

all weight of belief to the belief m(S). The value of Tmin is obtained by finding

the minimal distance between the two points of different classes among all points

in the collection. When the distance exceeds Tmax, we are certain that the given

points are of different classes, therefore we can assign m(N) = 1. This threshold

can be found by searching for the maximum distance between the two points of the

same class among all classes. The values of Tmean1 and Tmean2 are mean distances

measured between the points of the same class and the points of different classes,

respectively. If the distance is between Tmean1 and Tmean2, then we cannot say

whether the points are similar or not, thus the full weight of belief is assigned to

our doubt m(SN). Table 8.1 shows the values of thresholds obtained for the large

testing dataset described in Appendix C.2.

Table 8.1: Thresholds for MPEG-7 FR features (1127 faces, including Unknowns).

Tmax 1389
Tmin 216
Tmean1 767
Tmean2 814
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m(d)

m(N,d)

Tmin Tmean1 Tmean2 Tmax d

m(S,d) m(SN,d)

Figure 8.1: BBAs as functions of a distance d.

Table 8.2: Components of sums for Dempster’s rule of combination.

m f

me S SN N

S S S /0
SN S SN N
N /0 N N

Such assignment of BBAs can be carried out for each source of information, and

these BBAs can be combined using Dempster’s rule of combination. Let us denote

by m f (S),m f (SN),m f (N) the BBAs created for the face recognition features and by

me(S),me(SN),me(N) the BBAs created for events. Then the combined BBAs are:

m(S) = ∑
A∩B∈S

m f (A)me(B)

= m f (S)me(S)+m f (S)me(SN)+m f (SN)me(S) (8.1)

m(SN) = ∑
A∩B∈SN

m f (A)me(B) = m f (SN)me(SN) (8.2)

m(N) = ∑
A∩B∈N

m f (A)me(B)

= m f (N)me(N)+m f (N)me(SN)+m f (SN)me(N) (8.3)

Similarly, information about ownership and body patch can be combined.

The difficulty that one is faced with, in this approach is the definition of a dis-

tance (or similarity measure) between images or faces from the same and different

events and of the same or different user.

8.2.2 User interaction

The idea of unsupervised clustering of similar faces, which ideally would be of the

same person, is intended to reduce the amount of user interaction. However, still

some amount of user interaction is needed. For example, it is more convenient for

the user to annotate people in images with their names rather then using automated
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abstract cluster labels. However, having clustered faces, the user can annotate the

cluster rather than individual pictures with an appropriate name.

Adding new images

Adding new images can be analysed in two scenarios:

• new photographs are of a new event

• new photographs of an event already represented in the collection

Photographs of new events

Adding new images captured at an event or events that are not represented in the

collection yet, is quite straight forward. These new images can be easily analysed

using the three level clustering (event level, user collection level and full collection

level). Firstly the images are pre-organised in new events, then the identified faces

are clustered and matched within these new events (or this new event, if one

only). Once the clustering within the new events is finished, the created clusters

are matched to the existing clusters within the user collection. After that, broader

matching and merging is performed on all clusters in the full collection.

Photographs of existing events

When considering three level clustering, adding new images captured at the same

event or events as photographs already existing in the collection provides just

minor difficulties in comparison to the situation presented in the previous section.

The difficulty is in finding the events, which the new images were captured at,

then the clustering can be performed only within these events. Another difficulty

is then on updating the merging of clusters in user collection level, as existing

clusters are changed, which affects previous merging.

Corrections and labelling

Once the automated clustering is done and clusters are available, they can be

presented to the user, who should be allowed to make corrections to the created

clusters and also to name (label) them. Although, giving names is not that important

from the system point of view, as the names are just another label given to the

clusters, the system has to handle the user’s corrections in an efficient way and

use them for improving the clustering of new photographs or those that were not

corrected.

The user interaction can be viewed as another source of information, just like

facial analysis or body patch analysis. However, the user is the very reliable
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source with little uncertainty assigned to this source. Thus this information should

be given a priority over other sources.
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[119] Marcus J. Pickering and Stefan Rüger. Evaluation of key frame-based re-

trieval techniques for video. Computer Vision and Image Understanding,

92:217–235, 2003.

[120] Yueting Zhuangt, Yong Rui, Thomas S. Huang, and Sharad Mehrotra. Adap-

tive key frame extraction using unsupervised clustering. In Int. Conf. on

Image Processing, ICIP, pages 866 – 870, 1998.

[121] Overview of the MPEG-7 Standard, July 2002. ISO/IEC JTC1/SC29/WG11

N4980.

169



Appendix A

Derivations required for

Expectation-Maximisation

algorithm

A.1 Maximum Likelihood estimation

The representation of the object and its components proposed in Section 3.2.4 is

very elegant and convenient, however there are some issues that have to be con-

sidered for the efficient use of this representation. The main problem is how to

find the modes that would best represent the object or the components. There

are many classification techniques which can be used for searching for the proper

modes parameters such as statistical classifiers, nearest neighbour classifiers, clus-

tering techniques or artificial neural networks [59]. Since the probabilistic repre-

sentation of the object is chosen, the most convenient solution is probabilistic. A

sophisticated and convenient method is based on the estimation of the Maximum

Likelihood (ML) using Bayes theory. The iterative approach to such an estima-

tion is called the Expectation-Maximisation (EM) algorithm since it maximises the

expectation of the likelihood function.

The model of the image consisting of a mixture of PDFs was presented in

Section 3.2.4. Let us use this model of an image and assume that each PDF is a

likelihood function for each object (or region within the object), so the likelihood

function lx(θ) with the parameters θ can be denoted as [54]:

lx(θ) = pdfm(x,θ), (A.1)

where pdfm(x,θ) is the probability that the xth pixel belongs to the mth object with

the parameters θ . The logarithmic form of the likelihood function Lx(θ) = ln lx(θ),

naturally named the log-likelihood function is commonly used instead of the

likelihood function, since the logarithmic function is monotonic and the maximum

A-1



of the log-likelihood function appears at the same point as the likelihood function

and any constant value is removed [54].

The calculation of the Maximum Likelihood requires the complete set of data

to be available. However, one is very unlikely to capture the complete dataset and

calculate initial PDFs, which would give the Maximum Likelihood for the image.

Thus the Maximum Likelihood is estimated through maximising the expectation

of the likelihood function or the expectation of the log-likelihood function. The

initial set of PDFs representing the image can be adjusted iteratively to the data

of the image using the criterion of the maximum expectation of the log-likelihood

function, what is denoted as:

Q(θ |θk) = E [Lx(θ),θk] , (A.2)

where θk denotes the parameters of the PDF in the kth iteration. The calculation of

the likelihood function expectation is called the expectation step (E-step). However,

the set of parameters maximising the expectation Q(θ |θk) is to be found. Thus

the set of the parameters for the next iteration should maximise the value of the

expectation of the likelihood function [86]:

θk+1 = argmax
θ

Q(θ |θk). (A.3)

This step is called the Maximisation Step (M-step). Both steps the E-step and the

M-step are repeated while the model converges towards the Maximum Likelihood

at each iteration. It can be assumed that the convergence is met when the change

of the parameters is very small [86]:

‖θk −θk+1‖ < ε. (A.4)

In the case of image processing, the iterations may be stopped when a very small

number of pixels change their object membership.

A.2 Maximum Likelihood estimation for the mix-

ture of Gaussian distributions

Let us consider the mixture of M multimodal Gaussian PDFs

pdfm(x,θ), m = 1. . .M, (A.5)

where each of these PDFs is obtained with the Equation 3.15 as the sum of G mul-

tivariate Gaussian distributions pdfg(x,θ), g = 1. . .G. The multivariate Gaussian
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PDF is described with Equation 3.13 and depends on the parameters vector

θ = [θ1 θ2], (A.6)

where

θ1 = [m1 m2 . . . mk]
T (A.7)

is a vector of mean values of the k features, and θ2 is a covariance matrix, which

if the components are independent becomes a diagonal matrix of variances as in

Equation 3.14. The means and variances of the features are the parameters, which

are to be calculated in order to find the estimation of the maximum likelihood.

A.2.1 The likelihood maximisation of the unimodal multi-

variate Gaussian PDF

Given the initial set of data representing the modes and the object (which are not

complete due to the limited knowledge about the overall distribution) the initial

parameters maximising the likelihood function can be calculated. Let us firstly

calculate the mean values θ1. The maximum likelihood regarding the θ1 meets

the condition [86, 54]:
∂

∂θ1
Lx(θ) = 0. (A.8)

The log-likelihood function Lx(θ) for the N observations of the unimodal multi-

variate Gaussian distribution with k components is [54]:

Lx(θ) = ln(pdfg(x,θ))

= ln

(

1

(2π)
Nk
2 |θ2|

N
2

e−
1
2 ∑N

n=1(xn−θ1)θ−1
2 (xn−θ1)

)

, (A.9)

where xn = [xn1 xn2 . . . xnk]
T is a vector of k components of the nth observation,

and θ1 = [m1 m2 . . . mk]
T denotes the vector of mean values of the features. If

the components are independent the θ2 is defined with Equation 3.14 and the

log-likelihood function becomes:

Lx(θ) = ln

(

(2π)−
Nk
2

(

k

∏
l=1

σ−N
l

)

e
− 1

2 ∑k
l=1 ∑N

n=1
(xnl−ml )

2

σ2
l

)

= −Nk
2

ln(2π)−N
k

∑
l=1

ln(σl)−
1
2

k

∑
l=1

N

∑
n=1

(xnl −ml)
2

σ2
l

(A.10)
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In order to obtain the Maximum Likelihood estimation the lth component of the

vector θ1 fulfils the condition (according to A.8):

∂
∂ml

Lx(θ) = 0

−1
2

−2

∑N
n=1 σ2

l

N

∑
n=1

(xnl −ml) = 0

N

∑
n=1

xnl −Nml = 0 (A.11)

what gives eventually

ml =
1
N

N

∑
n=1

xnl . (A.12)

Assuming that the components are independent, the lth component of the covari-

ance matrix θ2 fulfils the condition:

∂
∂σl

Lx(θ) = 0. (A.13)

Using Equation A.10 in the condition given by Equation A.13, the σl is obtained:

−N
σl

+
2
2

1

σ3
l

N

∑
n=1

(xnl −ml)
2 = 0

σ2
l =

1
N

N

∑
n=1

(xnl −ml)
2 (A.14)

A.2.2 The likelihood estimation of the multimodal PDF

Once the initial parameters are obtained, the multimodal distribution is calculated

with Equation 3.15. The weighting factor πgn is considered as the prior probabil-

ity that the observation xn, n = 1,2, . . . ,N belongs to the gth class (in the case of

an image, the gth region). Since the parameters of each region’s PDF have been

changed due to the calculation of the parameters maximising the Maximum Like-

lihood, we must obtain the probability (in terms of the likelihood) that the given

observation belongs to the certain class. This probability is called the posterior

probability and is obtained using the Bayes rule [54, 59]:

τgn =
πgnpdfg(xn,θg)

∑G
g=1 πgnpdfg(xn,θg)

, (A.15)

The estimated log-likelihood function of the multimodal PDF is obtained as the

weighted sum of the log-likelihood functions of the unimodal distributions [54]:

Lx(θ) =
G

∑
g=1

N

∑
n=1

τg ln(pdfg(xn,θg)) (A.16)

A-4



where τg is the posterior probability that the nth observation xn belongs to the

class (region) g. The variable G denotes the number of modes of which the PDF

consists, and N is the number of observations belonging to the gth mode. τgn is a

probability that the nth observation belongs to the gth mode described with the

parameters θg.

A.2.3 The likelihood maximisation of the multimodal PDF

The likelihood of the multimodal PDF is maximised when the derivative of the

log-likelihood function from the Equation A.16 becomes zero:

d
dθ

Lx(θ) = 0. (A.17)

The region log-likelihood function is given by the equation:

ln(pdf(xn,θg)) =

[

−1
2

ln(2π)− 1
2

ln |θg2|−
1
2
(xn −θg1)

T θg2(xn −θg1)

]

, (A.18)

where θg1 = [mg1 mg2 . . .mgk]
T is the vector of the mean values of the components

representing the gth region and the θg2 is the covariance matrix of region g. Using

Equations A.17, A.16 and A.18, the value of the lth component of the mean vector

can be calculated (with the assumption that the components are independent):

N

∑
n=1

τgn
∂

∂mgl

[

−1
2

k

∑
j=1

(xn j −mg j)
2

σ2
g j

]

= 0

−
N

∑
n=1

τgnxnl +mgl

N

∑
n=1

τgn = 0. (A.19)

This leads to the value of the mgl :

mgl =
∑N

n=1 τgnxnl

∑N
n=1 τgn

. (A.20)

Similarly the values of the variances σ2
gl maximising the likelihood function of the

gth region can be calculated as follows (again assuming that the components are

independent):

N

∑
n=1

τgn
∂

∂σgl

[

− ln

(

k

∏
j=1

σg j

)

− 1
2

k

∑
j−1

(xn j −mg j)
2

σ2
g j

]

= 0

−σ2
gl

N

∑
n=1

τgn +
N

∑
n=1

τgn(xni −mgl)
2 = 0. (A.21)
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This gives the variance value:

σ2
gl =

∑N
n=1 τgn(xni −mgl)

2

∑N
n=1 τgn

, (A.22)
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Appendix B

MPEG-7 FaceRecognition

Descriptor

The MPEG-7 standard provides tools for the description of the multimedia content.

The Face Recognition Descriptor is a descriptor that can be used for searching for

the face images which contain a face similar to the face on the query image [121].

(a)

46 -�

56

6

?

24th row

16th 31st column

(b)

< FaceRecognition >
< Filename > hk01.jpg < /Filename >
< Descriptor >

< Features > 18 1 31 31 15 9 19 13 21 15 18

20 6 17 16 13 7 16 18 16 22 12 18 17 9

22 17 11 23 22 17 20 14 19 15 18 3 19

21 12 17 14 11 14 19 20 14 17

< /Features >
< /Descriptor >

< /FaceRecognition >

Figure B.1: (a) An example of the normalised facial image and (b) an example of
the description scheme containing an extracted descriptor represented in the XML
format.

The Face Recognition descriptor is extracted from the normalised facial image

which consists only of the luminance values. The normalised facial image has

56 rows and 46 columns with the face placed such that the eyes are located on

the 24th row and the 16th and 31th column. This image is then scanned column-

wise, what gives the one-dimensional vector of the luminance values. The one-

dimensional vector is then projected onto the space of the basic matrix defined by

the standard [121, 84]. The descriptor itself is a vector containing 48 coefficients,
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each coefficient stored as a 5 bit integer, thus the size of the descriptor is 30

bytes[84]. The representation of the descriptor can be either binary or textual

(the XML format). The example of the normalised facial image is presented in

Figure B.1. The example of the description scheme containing the Face Recognition

descriptor stored in the XML format is shown on the same figure.

The distance measure used for the matching and searching for the similar

faces is the weighted Manhattan distance (the Minkowski distance with p = 1).

The weights are described in the part 8 of the MPEG-7 standard [84].
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Appendix C

Evaluation

C.1 Analysis of clusters

A method for analysing clusters obtained by clustering techniques described in

this thesis is presented in this section. The clusters obtained in each experiment

were analysed using the following criteria:

• the number of all clusters

• the number of valid clusters

• the average precision

• the average recall.

These criteria are best described by the example presented below and by the

detailed definitions in Appendixes C.4 and C.3.

Let us consider sample clustering results shown in Figure C.1. There are six

clusters in total. However, four of them contain only one image each. Therefore,

these clusters are seen as containing outliers and are discarded from further anal-

ysis. The remaining two clusters (C3 and C4) contain more than one face each,

therefore they are “valid” clusters. Further analysis is carried out on valid clus-

ters only, because they are able to provide valuable information. The detailed

definition of valid clusters is presented in Appendix C.4.

The average precision and recall are used for analysing the structure of clusters.

The values of precision and recall should be obtained only from clusters that do

not contain outliers, in our example these are clusters C3 and C4. Otherwise,

the outliers would affect the analysis, leading to the poor analysis. In the cluster

C4, the images of John occur at most, therefore John’s identity is regarded as the

label of this cluster. Because there are three images of John, out of four images in

total in this cluster, the precision for this cluster is 0.75. The total number of the

images of John in the collection is 5, therefore the value of recall for this cluster

is 0.6. Similarly, in the cluster C4 Mary’s identity is most frequent and the values
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C2

C3

C4

C5

C6

C1

Mary

Unknown

Mary

John John

Unknown

John

Mary

John Unknown

precision=0.75

precision=0.667
recall=0.667

recall=0.600

John

Figure C.1: Sample clusters — the example for analysing results
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Table C.1: Annotated features

user owner of a photograph
time year, month, day, hour, minute, second
GPS location longitude, latitude,
exposition aperture, shutter speed, flash on/off
name of place based on GPS location
weather based on GPS location and time
time of day down, noon, dusk, night
indoor/outdoor based on GPS location and exposition
event based on location and time (auto)
building present/not present (manual)
no of people person/group/crowd (manual)
face region a bounding box (manual)
identity associated with a face (manual)

of precision and recall are both 0.667. The average precision for this clustering

example is thus 0.709 and the average recall is 0.634. The detailed definitions of

precision and recall are presented in Appendix C.3.

C.2 Dataset

The dataset used for experiments consists of 11288 photographs captured by 16

different people, of all sort of content and taken at various locations and events,

i.e. holiday photos, party photos, landscapes, cityscapes, crowd, sport events, etc.

The subset of the photographs, which were manually annotated, containing 1127

facial images in various poses, expressions, lighting conditions and resolutions

was chosen for experiments. Usually, experiments for face recognition take into

account just one of the mentioned above factors. However, in real life photographs

all these factors are mixed, therefore the recognition can be expected to be poor,

even when using the most sophisticated techniques that give excellent results in a

controlled environment [23].

The photographs were already organised and classified into events. This was

carried out using the algorithm by O’Hare et al [16] based on the location and time

of capturing the image. Time information is stored by modern photo cameras in

the EXIF format in a digital photograph file. The GPS aware photo cameras also

save, in the EXIF format, the geographic position of the camera at the moment

of taking a picture. Therefore both sources of information might be available.

The photographs in the database where stamped with the location coordinates

obtained from external GPS devices, which were used with photo cameras not

equipped with a built-in GPS receiver.

The images used by the author for our experiments were manually annotated

with identities and manually located faces (each face was marked with a bounding
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Table C.2: Statistics on the large dataset

total no of facial images 1127
no of identities 54
total no of outliers 649
frontal images 1127
no of outliers in frontal 649
smallest face 21x20
largest face 824x852
average face size 123x122
number of users 15
number of events 434
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Figure C.2: The histogram of the occurrences of identities in the large dataset

box). The annotations were used as the ground truths for the evaluation of clus-

tering results. This collection of annotated facial images contains 649 outliers, i.e.

the faces annotated as “unknown” persons. Such outliers are not uncommon in

personal photographs and provide more of a challenge to the clustering algorithm,

as they might cause noisy and highly inaccurate results. Therefore, there is a need

to identify them and remove from clusters during the clustering process. There

are 54 identities in total including the “unknown” identity, therefore one can expect

ideally 53 valid clusters (when excluding the clusters of outliers). The statistics of

this collection and the histogram of the number of the faces of each identity are

presented in Table C.2 and Figure C.2 respectively.

Some initial experiments were carried out by the author using a private, very

small collection. These experiments lead to the observation that narrowing the

search space improves the clustering accuracy. This private collection is the small

part of the test collection. Statistics of the private collection are presented in Table

C.3 and the histogram of the number of the occurrences of each identity is shown

in Figure C.3.
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Table C.3: Statistics on a small private dataset

total no of facial images 95
no of identities 7
total no of outliers 30
frontal images 68
no of outliers in frontal 13
smallest face 35x25
largest face 442x429
average face size 118x121
number of users 1
number of events 13
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Figure C.3: Histogram of occurrences of identities in the small dataset
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C.3 Precision and recall

The measures used for evaluating the “goodness” of clustering process are preci-

sion and recall. Let us consider a cluster with N faces of K identities, K < N. Let

there be Nk,k = 1, . . . ,K occurrences of the kth identity in the cluster. Let us sort

them in such a way that N1 > N2 > ... > NK , or find an identity with the highest

number of occurrences Nh in the cluster such as Nh > Nk ∀k = 1, ...,K, k 6= h, and

h = 1. Let us also assume that there are Mk occurrences of the kth identity in the

whole collection. The precision for the cluster is defined as:

p = Nh/N (C.1)

and the recall

r = Nh/Mh. (C.2)

For the whole collection the mean values of precision p̄ and recall r̄ are calculated:

p̄ =
1
C

C

∑
c=1

pc (C.3)

r̄ =
1
C

C

∑
c=1

rc., (C.4)

where C denotes the number of valid clusters in the collection.

The precision p indicates how good a cluster is in terms of the consistency of

identities within the cluster, e.g. if the cluster consists of eight images of one person

and two images of two other people, than the precision is 0.8. The recall measure

r indicates how many instances of all instances of the given person were captured

within the cluster. In other words this is the measure of the spread of the images

of the same person across all clusters, e.g. if there are ten images of the person

within the collection and the cluster contains five of them, than the recall value is

0.5. Ideally, the clustering process should produce clusters consisting only of the

faces of one person (precision= 1) containing all images of this person available in

the collection (recall= 1).

C.4 Definition of valid clusters

All calculations of precision and recall values were carried out using only the

“valid” clusters. By definition the “valid” clusters are:

Definition: Valid cluster is a cluster that:

• consists of at least two members (faces)

• the identity of all occurrences in the cluster is not an “Unknown” identity.
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In consequence of such a definition, all clusters containing just a single member

are not considered to be valid. The clusters with only one member are considered

as outliers. Therefore, should not be taken into account for further analysis.

Similarly, if the identity of all elements in a cluster is the “Unknown” person,

than such a cluster should be removed from the analysis as many different persons,

which are not interesting for users, were annotated with this identity. The number

of persons in the cluster named as “Unknown” does not mean that just a person

of this name is classified to this cluster, it is more likely that the faces of several

different people labelled as “Unknown” were classified to this cluster. There is no

way to evaluate this, thus such clusters should be removed from the analysis and

are not viewed as the valid clusters.
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Appendix D

Detailed results — clustering

Detailed graphs for analysis of clustering methods presented in Chapter 5 are

presented in this appendix.

D.1 K-means approach

D.1.1 Classic similarity measure

Figures D.1 - D.8 present analysis of clustering results using a modified k-means

algorithm with a MPEG-7 FR similarity measure. The graphs show values of

average and maximum precision, average and maximum recall, numbers of all

created clusters and numbers of valid clusters for different scenarios and values

of thresholds.
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Figure D.1: Precision and recall for clustering with modified k-means algorithm
using data set of 1127 faces with outliers; (a) precision and recall, (b) number of
clusters.
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Figure D.2: Precision and recall for clustering with modified k-means algorithm
using small data set of 68 faces with outliers; (a) precision and recall, (b) number
of clusters.

D-3



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300  400  500  600  700  800  900

mean precision
mean recall

max precision
max recall

threshold

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 300  400  500  600  700  800  900

all clusters
valid clusters

threshold

(b)

Figure D.3: Precision and recall for clustering with modified k-means algorithm
using data set of 478 faces without outliers; (a) precision and recall, (b) number of
clusters.
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Figure D.4: Precision and recall for clustering with modified k-means algorithm
using small data set of 55 faces without outliers; (a) precision and recall, (b) number
of clusters.
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Figure D.5: Precision and recall for clustering with modified k-means algorithm and
automatically located eyes using data set of 1127 faces with outliers; (a) precision
and recall, (b) number of clusters.
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Figure D.6: Precision and recall for clustering with modified k-means algorithm
and automatically located eyes using small data set of 68 faces with outliers; (a)
precision and recall, (b) number of clusters.
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Figure D.7: Precision and recall for clustering with modified k-means algorithm
and automatically located eyes using data set of 478 faces without outliers; (a)
precision and recall, (b) number of clusters.
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Figure D.8: Precision and recall for clustering with modified k-means algorithm
and automatically located eyes using small data set of 55 faces without outliers; (a)
precision and recall, (b) number of clusters.
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D.1.2 Normalised similarity measure

Figures D.9 - D.16 present analysis of clustering results using a modified k-means

algorithm with a normalised similarity measure. The graphs show values of aver-

age and maximum precision, average and maximum recall, numbers of all created

clusters and numbers of valid clusters for different scenarios and values of thresh-

olds.
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Figure D.9: Clustering with modified k-means algorithm and normalised distance
using large data set with outliers and manual eye locations; (a) precision and recall,
(b) number of clusters.
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Figure D.10: Clustering with modified k-means algorithm and normalised distance
using small data set with outliers and manual eye locations; (a) precision and recall,
(b) number of clusters.
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Figure D.11: Clustering with modified k-means algorithm and normalised distance
using large data set without outliers and manual eye locations; (a) precision and
recall, (b) number of clusters.
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Figure D.12: Clustering with modified k-means algorithm and normalised distance
using small data set without outliers and manual eye locations; (a) precision and
recall, (b) number of clusters.
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Figure D.13: Clustering with modified k-means algorithm and normalised distance
using large data set with outliers and automated eye locations; (a) precision and
recall, (b) number of clusters.

D-15



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

mean precision
mean recall

max precision
max recall

threshold

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

all clusters
valid clusters

threshold

(b)

Figure D.14: Clustering with modified k-means algorithm and normalised distance
using small data set with outliers and automated eye locations; (a) precision and
recall, (b) number of clusters.
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Figure D.15: Clustering with modified k-means algorithm and normalised distance
using large data set without outliers and automated eye locations; (a) precision and
recall, (b) number of clusters.
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Figure D.16: Clustering with modified k-means algorithm and normalised distance
using small data set without outliers and automated eye locations; (a) precision
and recall, (b) number of clusters.
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D.2 Single-link approach

Figures D.17 - D.24 present analysis of clustering results using a modified single-link

algorithm. The graphs show values of average and maximum precision, average

and maximum recall, numbers of all created clusters and numbers of valid clusters

for different sceanrios and values of thresholds.
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Figure D.17: Clustering with modified single-link algorithm using large data set
containing outliers, manually located eyes; (a) precision and recall, (b) number of
clusters.
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Figure D.18: Clustering with modified single-link algorithm using small data set
containing outliers, manually located eyes; (a) precision and recall, (b) number of
clusters.
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Figure D.19: Clustering with modified single-link algorithm using large data set
without outliers with manually located eyes; (a) precision and recall, (b) number
of clusters.
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Figure D.20: Clustering with modified single-link algorithm using small data set
without outliers with manually located eyes; (a) precision and recall, (b) number
of clusters.
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Figure D.21: Clustering with modified single-link algorithm using large data set
containing outliers, automatically located eyes; (a) precision and recall, (b) number
of clusters.
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Figure D.22: Clustering with modified single-link algorithm using small data set
containing outliers, automatically located eyes; (a) precision and recall, (b) number
of clusters.
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Figure D.23: Clustering with modified single-link algorithm using large data set
without outliers, automatically located eyes; (a) precision and recall, (b) number
of clusters.
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Figure D.24: Clustering with modified single-link algorithm using small data set
without outliers, automatically located eyes; (a) precision and recall, (b) number
of clusters.
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