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Abstract. The paper studies the polynomial convergence of so-
lutions of a scalar nonlinear Itô stochastic differential equation

dX(t) = −f(X(t)) dt + σ(t) dB(t)

where it is known, a priori, that limt→∞X(t) = 0, a.s. The in-
tensity of the stochastic perturbation σ is a deterministic, con-
tinuous and square integrable function, which tends to zero more
quickly than a polynomially decaying function. The function f

obeys limx→0 sgn(x)f(x)/|x|β = a, for some β > 1, and a > 0. We
study two asymptotic regimes: when σ tends to zero sufficiently
quickly the polynomial decay rate of solutions is the same as for the
deterministic equation (when σ ≡ 0). When σ decays more slowly,
a weaker almost sure polynomial upper bound on the decay rate
of solutions is established. Results which establish the necessity
for σ to decay polynomially in order to guarantee the almost sure
polynomial decay of solutions are also proven.

1. Introduction

Many authors have contributed to the study of nonexponential rates

of decay to equilibrium of solutions stochastic differential equations.

The polynomial stability in particular has been the subject of much

study, in Mao [7, 8], in Liu and Mao [5, 6] and in Liu [4].

In these works, the authors principally concentrate upon establishing

upper bounds on the almost sure rate of convergence of solutions. The

equations considered are, in general, nonautonomous equations which

are quasilinear in the state variable. The categories of equation studied
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include those in which there are strong time-dependence in the drift,

or in which the diffusion coefficient decays polynomially in time.

As is well known from the theory of ordinary differential equations,

slower-than-exponential rates of decay to equilibria can also arise if the

restoring force close to the equilibrium is weak (viz., there is no lead-

ing order linear term at the equilibrium). This phenomenon has been

examined in the stochastic case also, by e.g., Zhang and Tsoi [12, 13].

In their work, examples are given of stochastic differential equations

which converge to equilibrium at a polynomial rate by virtue of the

nonlinear form of the drift and diffusion coefficients close to the equilib-

rium. Other interesting papers in which almost surely globally asymp-

totically stable solutions of stochastic delay differential equations are

found are [11, 10], in which the equations studied have general (includ-

ing polynomial) nonlinearities.

In this work, we attempt to determine the exact almost sure rate of

decay for a class of scalar diffusion equations where the drift term is

purely state-dependent, and the intensity of the stochastic perturbation

is deterministic. To obtain polynomial stability in this class does not

require that the perturbation be polynomial: merely that it decays

more quickly than some polynomial function. Therefore, polynomial

asymptotic stability can arise even in the presence of, for example, a

noise perturbation which diminishes exponentially quickly. Thus, the

principal mechanism responsible for the slow convergence of solutions

is the nonlinear form of the drift term close to the equilibrium.

More precisely, we show that exact polynomial rates of decay can be

recovered in the case where the nonlinearity in the drift is responsible

for the polynomial convergence of solutions, and when the intensity of

the diffusion term decays to zero sufficiently quickly. In cases where

the noise term decays more slowly, it is still possible to establish a

polynomial rate of decay of solutions, but the bound on rate of decay

is related to the rate of decay of the stochastic perturbation only. Fi-

nally, we establish a type of converse result: roughly, we show that if

the solutions of the stochastic differential equation are polynomially

asymptotically stable almost surely, the noise perturbation must decay

more quickly than some polynomial function.

We prove these results by expressing the solution of the stochastic

differential equation as the sum of a random function independent of
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the solution, and the solution of a perturbed random differential equa-

tion whose solution is continuously differentiable. Since the rate of

decay of the perturbation can be shown to be the same for almost all

paths, the asymptotic behaviour of this random differential equation

can be determined by studying the rate of decay of a perturbed de-

terministic equation. Consequently, a significant part of the paper is

devoted to proving results on the decay rate of solutions of determinis-

tic equations. We believe these results may be of independent interest:

moreover, we are unaware of the existence elsewhere in the literature

of results of the form required here.

A physical motivation for studying this work comes from the prob-

lem of simulated annealing. Work on the almost sure stability of dif-

fusion processes modelling annealing has been done, for example, by

Chan [2], and Chan and Williams [3]. In these papers, necessary and

sufficient conditions for the global almost sure stability of a class of

scalar and multidimensional stochastic differential equations were es-

tablished. The class of equations studied in this paper is included in the

works mentioned above by these authors. Some literature concerning

the annealing problem is referred to in [2] also.

In future work, we hope to study the rates of decay of solutions of

general nonlinear stochastic equations, and also to apply these methods

to study the asymptotic decay properties of solutions stochastic func-

tional differential equations with fading external stochastic perturba-

tions. Moreover, as the annealing theory holds in the finite dimensional

case, we would expect to be able to extend our analysis to study finite

dimensional equations.

2. Preliminaries

We first establish some standard notation. As usual, let x∨y denote

the maximum of x, y ∈ IR and x∧y the minimum. The signum function

will be denoted by sgn, where sgn(x) = 1 for x > 0, sgn(x) = −1 for

x < 0 and sgn(x) = 0 for x = 0.

Denote by C(I; J) be the space of continuous functions from I to

J , and C1(I; J) be the corresponding space of all functions with con-

tinuous derivatives. Denote by L(IR+) the space of all measurable

real-valued functions which are integrable on IR+ and by L2(IR+) all

square integrable functions on IR+.
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Let f ∈ C(IR; IR) and σ ∈ C(IR+; IR) ∩ L2(IR+). Furthermore, let f

be locally Lipschitz continuous.

Let ξ ∈ IR. Let (Ω,F , (FB(t))t≥0, IP) be a complete filtered proba-

bility space, and B = {B(t);FB(t); 0 ≤ t < ∞} be a one-dimensional

standard Brownian motion on it. The filtration (FB(t))t≥0 is the nat-

ural filtration for standard Brownian motion, viz., FB(t) = σ{B(s) :

0 ≤ s ≤ t}.
Under these hypotheses, there exists a continuous adapted process

X which is a strong solution, up to an explosion time Te > 0, of the

Itô stochastic differential equation

(2.1) dX(t) = −f(X(t)) dt + σ(t) dB(t)

relative to B, with initial condition ξ, viz. X obeys

X(t) = ξ −
∫ t

0

f(X(s)) ds +

∫ t

0

σ(s) dB(s), 0 ≤ t < Te,(2.2a)

X(0) = ξ.(2.2b)

Here, as is conventional, the explosion time Te is defined by

Te = lim
n→∞

Tn

where Tn = inf{t > 0 : |X(t)| = n}.
In order to ensure that Te(ω) = ∞ for almost all sample paths ω ∈ Ω

and that almost all solutions converge to zero as t →∞ (viz.,

(2.3) lim
t→∞

X(t, ω) = 0, ω ∈ Ω0,

where IP[Ω0] = 1), the following hypotheses on f and σ were imposed

in Chan and Williams [3].

Theorem 2.1. Let f be a locally Lipschitz continuous function with

f strictly increasing on IR,(2.4a)

lim
x→∞

f(x) = ∞, lim
x→−∞

f(x) = −∞(2.4b)

f(0) = 0,(2.4c)

and suppose σ is a continuous function such that

(2.5a)

σ is decreasing on [0,∞), σ(0) is finite and σ(t) → 0 as t →∞.
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Then, there is a unique strong solution of (2.1) on [0,∞), almost

surely. If, moreover,

(2.5b) lim
t→∞

σ(t)2 log(t) = 0,

then (2.3) also holds.

In the following, we will merely assume that

There is a unique strong solution of (2.2) on [0,∞)

which obeys (2.3)
(2.6)

noting all the time that the hypotheses (2.4), (2.5) suffice to ensure

(2.6).

Our interest here is to establish necessary and sufficient conditions

for all solutions of (2.1) to converge to zero at a polynomial rate. This

notion of almost sure polynomial stability was introduced by Mao in [7]

for solutions of nonautonomous nonlinear stochastic differential equa-

tions.

Definition 2.2. The process X is almost surely polynomially stable, if

there exists a deterministic α > 0, such that

lim sup
t→∞

log |X(t)|
log t

≤ −α, a.s.

To establish this polynomial stability we will need to impose a decay

condition on the fading intensity of the stochastic perturbation σ, as

well as a condition on the behaviour of f close to zero. Before we do

this, we establish the first main result of this paper, which does not

rely on assumptions of this type.

3. Structure of Solutions of (2.2)

In this section we prove that each realisation of the process X can be

decomposed into the solution of a perturbed random differential equa-

tion (which has its solutions in C1(IR+; IR)) and a random function

which is independent of the process X. Determining the asymptotic

behaviour of almost all realisations of X (in other words, the almost

sure asymptotic behaviour of X) then reduces to studying the asymp-

totic behaviour of (a) a perturbed ordinary differential equation, and

(b) a process whose asymptotic behaviour can be understood by using

the law of the iterated logarithm for continuous time martingales.
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3.1. Representation of solutions of (2.1).

Theorem 3.1. Suppose f is a locally Lipschitz continuous function

which obeys (2.4c) and

(3.1a) f ∈ C1(−δ, δ) for some δ > 0.

Let σ be a continuous function with

(3.1b) σ ∈ L2(IR+),

and suppose that X, the solution of (2.1), obeys (2.6). Then, there

exists an almost sure set Ω∗ ⊆ Ω such that, for all ω ∈ Ω∗,

(3.2) X(t, ω) = x(t, ω) + U(t, ω), t ≥ 0,

where

(3.3) U(t, ω) = −
(∫ ∞

0

σ(s) dB(s)−
∫ t

0

σ(s) dB(s)

)
(ω)

=

(
−

∫ ∞

t

σ(s) dB(s)

)
(ω),

and x(·, ω) is the solution of

(3.4) x′(t, ω) = −f(x(t, ω)) + g(t, ω), t ≥ 0

which obeys x(t, ω) → 0 as t →∞, and g(·, ω) is a continuous function

which satisfies

(3.5) |g(t, ω)| = |f ′(η(t, ω))| |U(t, ω)|

for all t > T (ω), with η obeying

(3.6) |η(t, ω)− x(t, ω)| ≤ |U(t, ω)|.

In advance of proving this result, we make some comments.

Firstly, the asymptotic behaviour in the case when

(3.7) f ′(0) = 0

is false is not considered in this work. Results in this direction for the

linear equation are well-known and have been studied by many authors.

An account of these results on linear equations in the narrow sense is

available in e.g., Mao [9].

Secondly, the reformulation of the solution of (2.1) in Theorem 3.1

has certain advantages; if an almost sure estimate on the rate of decay

of U can be obtained, the problem reduces to studying the asymptotic

behaviour of the function x in (3.4), a problem which, owing to the fact
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that it is defined pathwise, can essentially be studied using the methods

of the theory of deterministic ordinary differential equations. However,

the study of the asymptotic behaviour of X through x and U must be

achieved by studying the asymptotic behaviour of the random functions

x(·, ω), U(·, ω) for each ω in an almost sure set. This is because x(t),

U(t) are not FB(t)-measurable random variables as x(t, ω), U(t, ω)

depend on the values of the Brownian motion B on [t,∞). Hence, x,

U are not stochastic processes which are adapted to the filtration FB,

and so the realisations t 7→ X(t, ω) must be studied through the one-

parameter families of functions t 7→ x(t, ω), t 7→ U(t, ω) rather than

through “realisations” of x and U .

Proof of Theorem 3.1. Introduce the process

Y (t) =

∫ t

0

σ(s) dB(s).

By (3.1b) and the martingale convergence theorem, there exists an

almost sure set Ω1, and a FB(∞)-measurable random variable Y ∗,

such that

lim
t→∞

Y (t, ω) = Y ∗(ω)

for all ω ∈ Ω1. Define
∫∞

0
σ(s) dB(s) := Y ∗ on Ω. Therefore, for each

ω ∈ Ω1, the function t 7→ U(t, ω) introduced in (3.3) is well-defined.

Next, consider the process Z given by Z(t) = X(t)−Y (t) which is well

defined for all ω ∈ Ω0, the almost sure set in (2.6). Therefore

Z(t) = ξ −
∫ t

0

f(X(s)) ds, t ≥ 0.

Since f and X are continuous functions, t 7→ Z(t) is in C1((0,∞); IR)

and obeys

Z ′(t) = −f(Z(t) + Y (t)), t ≥ 0.

Next, let

Ω2 = {ω ∈ Ω0 : lim
t→∞

X(t, ω) = 0, lim
t→∞

Y (t, ω) exists }.

By (2.6), (3.1b), this is an almost sure subset of Ω1. Hence, for each

ω ∈ Ω2 the random function t 7→ x(t, ω) given by

x(t, ω) = Z(t, ω) + Y ∗(ω) = X(t, ω) + U(t, ω)

is well-defined. By (3.3), limt→∞ U(t, ω) = 0 for all ω ∈ Ω1 and thus

x(t, ω) → 0 as t →∞ for all ω ∈ Ω2. Since each path t 7→ Z(t, ω) is in
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C1((0,∞); IR), the function t 7→ x(t, ω) is in C1((0,∞); IR) for ω ∈ Ω2,

and

(3.8) x′(t, ω) = −f(x(t, ω) + U(t, ω)), t ≥ 0.

Define

g(t, ω) = f(x(t, ω))− f(x(t, ω) + U(t, ω)), t ≥ 0.

Then, as t 7→ U(t, ω) is continuous for all ω ∈ Ω2, t 7→ g(t, ω) is

continuous, and so t 7→ x(t, ω) obeys (3.4).

By (3.1a), for each ω ∈ Ω2, there exists T (ω) > 0 such that, for all

t > T (ω)

|x(t, ω)| < δ, |x(t, ω) + U(t, ω)| < δ,

because x(t, ω) → 0, U(t, ω) → 0 as t →∞ for all ω ∈ Ω2.

Now, suppose that U(t, ω) ≥ 0. Then, by the mean value theorem,

for each t > T (ω), there exists η(t, ω) ∈ [x(t, ω), x(t, ω) + U(t, ω)] such

that

−g(t, ω) = f (x(t, ω) + U(t, ω))− f(x(t, ω)) = f ′(η(t, ω)) U(t, ω)

so |g(t, ω)| = |f ′(η(t, ω))| |U(t, ω)|. If, on the other hand, U(t, ω) < 0,

the mean value theorem again implies that for each t > T (ω), there

exists η(t, ω) ∈ [x(t, ω) + U(t, ω), x(t, ω)] such that

g(t, ω) = f(x(t, ω))− f(x(t, ω) + U(t, ω)) = −f ′(η(t, ω)) U(t, ω).

Thus |g(t, ω)| = |f ′(η(t, ω))| |U(t, ω)|. In each case, we have |x(t, ω)−
η(t, ω)| ≤ |U(t, ω)| as well. Hence (3.5), (3.6) are true, and thus all the

claims posited in the statement of the theorem hold. �

In the theorem above, it follows that η(t, ω) → 0 as t → ∞ for

all ω in an almost sure set. Therefore, as (3.7) holds throughout, it

follows that g(t, ω) tends to zero more quickly than the X-independent

random function t 7→ U(t, ω). Therefore, the size of the perturbation

in (3.4) is bounded by the size of U . Thus, if a deterministic function

ρ : IR+ → IR+ can be found so that

(3.9) lim sup
t→∞

|U(t, ω)|
ρ(t)

= 1

for all ω in an almost sure set, it follows that

(3.10) lim
t→∞

g(t, ω)

ρ(t)
= 0.
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The effect of this is to reduce dramatically the complexity in studying

the equation (3.4). In fact, the parameterisation of solutions of (3.4)

by ω becomes redundant when considering asymptotic behaviour, so it

is now sufficient to study the asymptotic behaviour of the deterministic

ordinary differential equation

(3.11) x′(t) = −f(x(t)) + g(t), t ≥ 0,

where it is known that x(t) → 0 as t →∞, and the continuous function

g decays more quickly to zero than some given function ρ. We will

turn to the study of such perturbed deterministic ordinary differential

equations in the next section.

The question now arises: can such a function ρ be found in (3.9)?

This is not only important in helping to determine the asymptotic

behaviour of X directly (through the representation of X in formula

(3.2)), but also indirectly (through the asymptotic behaviour of the

solution of (3.4)). The function ρ required is

(3.12) ρ(t) =
√

2Σ(t) log log Σ(t)−1,

where

(3.13) Σ(t) =

∫ ∞

t

σ(s)2 ds.

Lemma 3.2. Suppose σ is a continuous function obeying

Σ(t) > 0 for all t ≥ 0,(3.14a)

σ(t) > 0 for all t ≥ 0.(3.14b)

Then, with ρ, Σ defined in (3.12), (3.13), U defined in (3.3) obeys

(3.9).

A more general version of Lemma 3.2, together with a proof, is to

be found in [1], also submitted to these Proceedings.

The hypotheses (3.14a) is natural: in the case where (3.14a) does not

hold (i.e. σ(t) ≡ 0 for all t > T0) the stochastic differential equation

(2.1) reduces to the trivial separable differential equation

X ′(t) = −f(X(t)), t > T0

where only the initial condition X(T0) is random. On the other hand,

the condition (3.14b) (which evidently implies (3.14a)) is a purely tech-

nical restriction, which we hope to remove in later work.
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3.2. Hypotheses on f and σ; Statement of the Main Results.

Finally, we mention the hypotheses on f, σ used in this paper which

deal specifically with the polynomial asymptotic behaviour of solutions

of (2.1). We always require f to obey

There exist β > 1, a > 0 such that

lim
x→0

f(x) sgn(x)

|x|β
= a

(3.15)

and σ to satisfy the following condition

There exists γ > 0 such that

γ = inf{α > 0 :

∫ ∞

0

s2α σ(s)2 ds = ∞}.
(3.16)

In (3.16), in the case the set is empty, we define γ = ∞. This case

arises, for example, if σ(t) = e−t. We prefer to impose the hypothesis

(3.16) rather than a stronger pointwise polynomial bound on σ, as it

is sufficient to establish the a.s. polynomial asymptotic stability of

solutions of (2.1). Moreover, as we later prove, the integral condition

(3.16) is also necessary if the solution is to be almost surely polynomi-

ally stable.

On occasion, we will request that f obeys a stronger restriction than

(3.15), namely

There exists β > 1, a > 0 such that

lim
x→0

f ′(x)

|x|β−1
= βa.

(3.17)

Once xf(x) > 0 for x ∈ (−δ, δ), (3.17) implies (3.15).

The condition (3.15) ensures that f(x) behaves like xβ as x ↓ 0.

However, when β is not a rational number, xβ is not well defined for

x < 0. Therefore, in order to maintain symmetry, we extend f to

behave like −|x|β as x ↑ 0.

The preservation of symmetry is a crucial hypothesis in the existence

of a well-defined decay rate. If the exponent β in (3.15) had different

values for x < 0 and x > 0, the decay rate observed would depend on

whether the solution approached zero from above or below. However,

in the presence of a stochastic perturbation, it is not clear whether

the solution would necessarily be non-oscillatory (that is, whether it

ultimately approaches the equilibrium from one side).

We will require a consequence of (3.16) in the next section.
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Lemma 3.3. Let β > 1 and γ > 0 be given by (3.15) and (3.16). If

(3.18) γ >
β

β − 1
> 1

then, for all ω ∈ Ω∗, an almost sure set, we have

lim
t→∞

t
β

β−1 U(t, ω) = 0,(3.19a)

lim
t→∞

t
β

β−1 g(t, ω) = 0,(3.19b)

where U , g are defined by (3.3) and (3.5).

Proof. Since f ∈ C1(−δ, δ) and (3.15) holds, f ′(0) = 0. By (3.5) and

the fact that η(t, ω) → 0 as t → ∞, (3.19a) implies (3.19b). As to

(3.19a), note that Lemma 3.2 implies that

(3.20) lim
t→∞

t
2β

β−1 ρ(t)2 = 0

assures the result. To prove (3.20), first observe that for any ν ∈
(β/(β − 1), γ)

(3.21) Σ(t) ≤ I

(1 + t)2ν
, t ≥ 0

where I =
∫∞

0
(1 + s)2νσ(s)2 ds < ∞, and I is finite on account of

(3.16). Now let ε > 0 be any number such that

(3.22)
β

β − 1

1

ν
< 1− ε,

where the existence of such an ε is guaranteed by (3.18). Since Σ(t) ↓ 0

as t →∞, we have Σ(t) < e−e for all t > T1. Hence there is

Cε = inf
y∈[ee,∞)

log log y

yε
> 0

such that, for all t ≥ T1,

(3.23)
ρ(t)2

2
= Σ(t) log log(Σ(t))−1 ≤ CεΣ(t)1−ε.

Now, (3.21) and (3.23) give

1

2
t

2β
β−1 ρ(t)2 ≤ CεI

1−ε 1

(1 + t)2ν(1−ε)−2β(β−1)
,

so (3.22) yields (3.20). �

We now state the first main result on asymptotic stability in the

paper.
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Theorem 3.4. Suppose that f is a locally Lipschitz continuous func-

tion which obeys (2.4c), (3.1a), (3.15), and let σ be a positive and

continuous function which obeys (3.1b) and (3.16).

If X, the strong solution of (2.1) obeys (2.6), and β and γ, the

exponents in (3.15) and (3.16), respectively, are related by (3.18), and

a is the constant defined in (3.15), then there is a random variable L

which assumes either the values 0 or [a(β − 1)]−1/(β−1), such that

(3.24) lim
t→∞

t
1

β−1 |X(t)| = L, a.s.

By Theorem 3.1, Lemma 3.3 and the preceding discussion, we see

that Theorem 3.4 is a direct consequence of the following result.

Theorem 3.5. Suppose that f is a locally Lipschitz continuous func-

tion which obeys (2.4c), (3.1a), (3.15) and g is a continuous function

which obeys

(3.25) lim
t→∞

t
β

β−1 g(t) = 0,

where β > 1 is the exponent in (3.15). Let x be the unique continuous

solution of (3.11) on [0,∞). If

(3.26) x(t) → 0 as t →∞

and a is the constant defined in (3.15), then there is a constant L which

assumes either the values 0 or [a(β − 1)]−1/(β−1), such that

(3.27) lim
t→∞

t
1

β−1 |x(t)| = L.

The proof of Theorem 3.5 is the subject of the next section. Before

we turn to that proof, let us reflect on the hypotheses of Theorem 3.5

and then Theorem 3.4.

The hypothesis (3.26), which ensures the existence of asymptotically

stable solutions of (3.11) when g(t) → 0 as t → ∞, is one which can

be verified in many cases. To take a concrete example, consider the

problem

x′(t) = −asgn(x(t))|x(t)|β + g(t), t > 0,

where g(t) → 0 as t → ∞; we now show that x(t) → 0 as t →
∞. Perusal of the explanation below reveals that a nearly identical

argument suffices for the problem x′(t) = −f(x(t)) + g(t), when f is a

continuous, odd, and increasing function, with f(0) = 0.

As can be seen in the proof of Lemma 4.1 below, x obeys

D+|x(t)| ≤ −a|x(t)|β + |g(t)|, t > 0.
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Next, for every ε > 0 there is a T (ε) > 0 such that |g(t)| < ε for

t > T (ε). Hence

D+|x(t)| ≤ −a|x(t)|β + ε, t > T (ε).

If x′(t) = −ax(t)β + ε, t > T (ε), and x(T (ε)) = 1 + |x(T (ε))|, then

|x(t)| ≤ x(t) for t ≥ T (ε). Thus

lim sup
t→∞

|x(t)| ≤ lim
t→∞

x(t) =
(ε

a

)1/β

,

so letting ε ↓ 0 proves that x(t) → 0 as t →∞.

We now return to discuss Theorem 3.4. When f is a continuous

function satisfying (2.4c), (3.15) for some β > 1, all nontrivial asymp-

totically stable solutions of the deterministic version of equation (2.1)

(or, equivalently, the unperturbed version of (3.11)) obey (3.27) with

L = [a(β − 1)]−1/(β−1). Therefore, according to (3.18), when the decay

rate of the noise intensity σ is sufficiently fast (and so the size of the

stochastic perturbation vanishes sufficiently quickly), the asymptotic

behaviour of the deterministic and stochastic equations is the same.

We make two comments in relation to this here. First, the result

is unsurprising in one respect: if the perturbation vanishes quickly

enough we should expect to recover the asymptotic behaviour of the

unperturbed problem. However, given that almost all realisations of

X are almost everywhere nondifferentiable, it is perhaps surprising

that we should recover a C∞(1,∞) decay rate (t−1/(β−1)) for almost

all paths. Second, Theorem 3.4 states that the deterministic decay

rate is recovered when (3.18) holds i.e., β > γ/(γ − 1). Later in this

paper, under the hypothesis (3.17), we show that there appears to

be a transition from the deterministic asymptotic regime to a new

asymptotic regime when β = 1/(γ − 1).

4. Proof of Theorem 3.5

We divide the proof of Theorem 3.5 into three steps. Each of these

steps will be given in a lemma below. The steps are:

Step 1: We show that

(4.1) lim sup
t→∞

t
1

β−1 |x(t)| ≤
[

1

a(β − 1)

] 1
β−1

.
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Step 2: Given Step 1, we establish that either

(4.2) lim
t→∞

t
1

β−1 |x(t)| = 0 or lim sup
t→∞

t
1

β−1 |x(t)| =
[

1

a(β − 1)

] 1
β−1

.

Step 3: In the case that

lim sup
t→∞

t
1

β−1 |x(t)| =
[

1

a(β − 1)

] 1
β−1

we show that

(4.3) lim
t→∞

t
1

β−1 |x(t)| =
[

1

a(β − 1)

] 1
β−1

.

Lemma 4.1. (Step 1) Condition (4.1) holds.

Proof. Introduce the function a : IR+ → IR,

(4.4) a(t) =


f(x(t))
|x(t)|β , x(t) > 0,

a, x(t) = 0,

−f(x(t))
|x(t)|β , x(t) < 0.

Then a is a continuous function which obeys limt→∞ a(t) = a, since f

obeys (3.15) and x obeys (3.26). Thus, (3.11) can be written as

(4.5) x′(t) = −a(t) sgn(x(t)) |x(t)|β + g(t).

Indeed, we note that there exists t∗1 > 0 such that a(t) > 0 for all

t > t∗1. Next, note that Theorem 3.5 is trivially true for the case where

x(t) = 0 for all t sufficiently large, so we assume, to the contrary, that

x(t) 6≡ 0 on some interval [T,∞). In this case, we can choose t∗ > t∗1
such that |x(t∗)| > 0.

Next, we seek a comparison equation for x. Fix t > t∗ and suppose

x(t) > 0. Then, as x is in C1(IR+; IR), x(s) > 0 for all s ∈ [t, t +h), for

h sufficiently small. Hence, by (4.5)

|x(t + h)| − |x(t)| =
∫ t+h

t

−a(s)|x(s)|β ds +

∫ t+h

t

g(s) ds

≤
∫ t+h

t

−a(s)|x(s)|β ds +

∫ t+h

t

|g(s)| ds.

Since t 7→ |g(t)|, t 7→ a(t), t 7→ |x(t)|β are continuous, letting h ↓ 0

(4.6) D+|x(t)| ≤ −a(t)|x(t)|β + |g(t)|, t ≥ t∗
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wherever x(t) > 0. In the same manner, for a fixed t > t∗ where

x(t) < 0, (4.5) yields

|x(t + h)| − |x(t)| =
∫ t+h

t

−a(s)|x(s)|β ds−
∫ t+h

t

g(s) ds

≤
∫ t+h

t

−a(s)|x(s)|β ds +

∫ t+h

t

|g(s)| ds

so (4.6) holds in the case x(t) < 0. Finally, if x(t) = 0, we have

D+|x(t)| = lim sup
h→0+

|x(t + h)| − |x(t)|
h

≤ lim sup
h→0+

∣∣∣∣x(t + h)− x(t)

h

∣∣∣∣ .

The continuity of the modulus gives

|x′(t)| = lim
h→0+

∣∣∣∣x(t + h)− x(t)

h

∣∣∣∣ = lim sup
h→0+

∣∣∣∣x(t + h)− x(t)

h

∣∣∣∣ .

Thus as f(x(t)) = 0,

D+|x(t)| ≤ |x′(t)| = | − f(x(t)) + g(t)| = |g(t)| = −a(t)|x(t)|β + |g(t)|

and so (4.6) holds when x(t) = 0, t > t∗. Therefore (4.6) holds for all

t ≥ t∗.

Next, consider the initial value problem

x′(t) = −a(t)x(t)β + |g(t)|, t > t∗,

x(t∗) = |x(t∗)|+ 1.
(4.7)

(4.7) has a unique continuous solution on (t∗,∞) and, by the com-

parison principle, |x(t)| ≤ x(t), t ≥ t∗. We now obtain a bound on

the solution of (4.7) by considering the unperturbed version of (4.7),

namely

φ′(t) = −a(t)φ(t)β, t ≥ t∗,

φ(t∗) = |x(t∗)|+ 1.
(4.8)

Then x(t) ≥ φ(t), t ≥ t∗. The asymptotic behaviour of the solution of

(4.8) is easily obtained by quadrature, noting that a(t) → a as t →∞.

Indeed

(4.9) lim
t→∞

t
1

β−1 φ(t) =

[
1

a(β − 1)

] 1
β−1

.

Therefore, as x(t) ≥ φ(t), (4.9) and (3.25) imply

0 ≤ lim sup
t→∞

|g(t)|
x(t)β

≤ lim sup
t→∞

|g(t)|
φ(t)β

= lim sup
t→∞

t
β

β−1 |g(t)|(
t

1
β−1 φ(t)

)β
= 0
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so limt→∞ g(t)/|x(t)|β = 0. Hence, (4.7) implies

lim
t→∞

x′(t)

x(t)β
= −a,

as a(t) → a as t →∞. Integration now gives

lim
t→∞

t
1

β−1 x(t) =

[
1

a(β − 1)

] 1
β−1

.

Since |x(t)| ≤ x(t), we have established (4.1). �

Lemma 4.2. (Step 2) (4.2) holds.

Proof. Let L = (a(β − 1))−1/(β−1). According to (4.1), there exists

0 ≤ L0 ≤ L such that

(4.10) lim sup
t→∞

t
1

β−1 |x(t)| = L0.

If L0 = 0, we have the first part of (4.2). Suppose now that L0 ∈ (0, L).

Then for every ε ∈ (0, L− L0) there is T1(ε) > 0 such that

t
1

β−1 |x(t)| ≤ L0 + ε, t ≥ T1(ε).

By (3.25), it follows that
∫∞

t
|g(s)| ds is well defined for all t ≥ 0, and

moreover, as t
β

β−1 |x(t)|β ≤ (L0 + ε)β, we have that
∫∞

t
a(s)|x(s)|β ds is

well defined for every t ≥ 0. By (3.26), (4.5), we have

−x(t) =

∫ ∞

t

−a(s)sgn(x(s))|x(s)|β ds +

∫ ∞

t

g(s) ds,

so

(4.11) t
1

β−1 |x(t)| ≤ t
1

β−1

∫ ∞

t

|a(s)||x(s)|β ds + t
1

β−1

∫ ∞

t

|g(s)| ds.

Next, for every ε ∈ (0, a), there is T2(ε) > 0 such that |a(t)| < a+ ε for

all t > T2(ε). Now, let ε ∈ (0, a ∧ (L− L0)) and T (ε) = T1(ε) ∨ T2(ε).

Then for t > T (ε), by (4.11), we have

t
1

β−1 |x(t)| ≤ t
1

β−1

∫ ∞

t

1

s
β

β−1

s
β

β−1 |x(s)|β ds (a + ε) + t
1

β−1

∫ ∞

t

|g(s)| ds

≤ (a + ε)(L0 + ε)β(β − 1) + t
1

β−1

∫ ∞

t

g(s) ds.

Therefore,

L0 = lim sup
t→∞

t
1

β−1 |x(t)| ≤ (a + ε)(L0 + ε)β(β − 1).

Letting ε ↓ 0 yields L0 ≤ aLβ
0 (β − 1), so L0 ≥ L. But this contradicts

L0 < L. Thus in (4.10), either L0 = 0 or L0 = L, as needed in (4.2) �
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Lemma 4.3. (Step 3) Condition (4.3) holds.

Proof. Fix C ∈ (0, L) and choose ε > 0 sufficiently small, so that

0 < ε <

C
β−1

− aCβ

Cβ + 2
β

β−1

∨ 1.

This implies

(4.12) − C

β − 1
+ aCβ + ε

(
Cβ + 2

β
β−1

)
< 0.

Since limt→∞ a(t) = a and limt→∞ tβ/(β−1)|g(t)| = 0, it follows that

there exists T0(ε) > 0 such that a(t) < a + ε and tβ/(β−1)|g(t)| < ε

for all t > T0(ε). Also, since lim supt→∞ t1/(β−1)|x(t)| = L, there exists

T2(ε) > 0 and a sequence (tn)n≥1 with limn→∞ tn = ∞ such that

t
1

β−1
n |x(tn)| > C(1 + ε)−

1
β−1

for all tn > T2(ε). This made possible by the fact that L > C(1+ε)−
1

β−1 .

Now, choose T (ε) to be the smallest member of this sequence which

is greater than T0(ε) so T (ε) > T0(ε) and

(4.13) T (ε)
1

β−1 |x(T (ε))| > C(1 + ε)−
1

β−1 .

Let T1(ε) = εT (ε) and define

(4.14) xL(t) = C (t + T1(ε))
− 1

β−1

for all t ≥ T (ε).

Note that |x(T (ε))| > 0. Consider first the case when x(T (ε)) > 0.

In this case (4.14) and (4.13) imply that x(T (ε)) > xL(T (ε)).

Then, as T (ε) > T0(ε), for t > T (ε) we have

x′L(t) + a(t) sgn(xL(t))xL(t)β + |g(t)|

= (t + T1(ε))
− β

β−1

[
− C

β − 1
+ a(t)Cβ + (t + T1(ε))

β
β−1 |g(t)|

]
< (t + T1(ε))

− β
β−1

[
− C

β − 1
+ (a + ε)Cβ + ε

(
T (ε) + T1(ε)

T (ε)

) β
β−1

]

< (t + T1(ε))
− β

β−1

[
− C

β − 1
+ (a + ε)Cβ + ε (1 + ε)

β
β−1

]
< (t + T1(ε))

− β
β−1

[
− C

β − 1
+ (a + ε)Cβ + ε 2

β
β−1

]
< 0,
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since ε ∈ (0, 1) and ε obeys (4.12). Therefore, if x(T (ε)) > 0, |x(t)| =

x(t) > xL(t) for all t > T (ε).

Now suppose that x(T (ε)) < 0. Then, letting z(t) = −x(t), we get

z′(t) = −a(t)sgn(z(t))|z(t)|β − g(t), t > T (ε).

Note by (4.13) that we have

T (ε)
1

β−1 z(T (ε)) > C(1 + ε)−
1

β−1 .

Defining zL(t) = xL(t) for t ≥ T (ε), we see that z(T (ε)) > zL(T (ε))

and

z′L(t) < −a(t)sgn(zL(t))zL(t)β − |g(t)|,
for all t > T (ε). Therefore, we have

0 < zL(t) < z(t) = −x(t) = |x(t)|.

Hence |x(t)| > xL(t), t ≥ T (ε).

Therefore, in both cases we have |x(t)| > xL(t) for all t ≥ T (ε) and

it follows easily that

lim inf
t→∞

t
1

β−1 |x(t)| ≥ C.

Letting C ↑ L yields lim inft→∞ t
1

β−1 |x(t)| ≥ L and hence

lim
t→∞

t
1

β−1 |x(t)| = L,

by the second part of (4.2). �

Remark 4.4. In the theorem above, both the cases where L = 0 and L =

(a(β − 1))−1/(β−1) can be realised, even when the order of magnitude

of the perturbation remains the same as t → ∞. Indeed, the initial

value problem

x′1(t) = −sgn(x1(t)) x1(t)
2 −

t + 1√
2
− 1

4(
t + 1√

2

)4 , t > 0,

x1(0) = 1

obeys all the hypotheses of the theorem and has the unique solution

x1(t) =
1

2

(
t +

1√
2

)−2

,

for all t ≥ 0. Clearly, this solution satisfies

lim
t→∞

tx1(t) = 0,

so, for this problem, L = 0.
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On the other hand, the unique solution of the initial value problem

y′(t) = −y(t)2 − 1

(1 + t)3
, t > 0,

y(0) = 1

can be expressed in terms of Bessel functions and can easily be shown

to satisfy

lim
t→∞

ty(t) = 1.

Moreover, it can be shown that y(t) > 0 for all t > 0. Hence this

solution also satisfies the initial value problem

x′2(t) = −x2(t)
2 sgn(x2(t))−

1

(1 + t)3
, t > 0,

x2(0) = 1.

We have thus obtained an example where L = (a(β − 1))−1/(β−1), as

for this problem a = 1 and β = 2. Note that in both examples the

initial condition is the same and the perturbation has the same decay

rate, i.e.

lim
t→∞

t3g(t) = −1.

Remark 4.5. It is always possible to get an arbitrarily fast rate of decay

for the solution of

x′(t) = −f(x(t)) + g(t), t > 0

x(0) = x0,

provided that the perturbation has the appropriate form and rate of de-

cay. Indeed, a rate of decay d(t) can be obtained, where d ∈ C1([0,∞))

and obeys d(0) = 1 and d(t)
d′(t)

→ 0 as t → ∞. The last condition im-

plies that d decays to zero faster than any exponential function. If the

perturbation is

g(t) = x0d
′(t) + f(x0d(t))

then limt→∞
g(t)
−d′(t)

= x0 and the solution of the initial value problem is

x(t) = x0d(t).

5. Asymptotic Behaviour of (2.1) with slowly decaying

Noise

We now consider the asymptotic behaviour of (2.1) when the inten-

sity of the stochastic perturbation fades more slowly. First, we note

that the perturbation U decays at a polynomial rate of at least −γ.
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Lemma 5.1. Let β > 1 and γ > 0 be given by (3.16). If

(5.1) γ ≤ β

β − 1
,

then U defined by (3.3) obeys

(5.2) lim sup
t→∞

log |U(t, ω)|
log t

≤ −γ,

for all ω ∈ Ω∗, an almost sure set.

Proof. Let 0 < ν < γ, and note that the estimates (3.21), (3.23) still

hold. Let T1, Cε > 0 be as defined in Lemma 3.3, where ε > 0 is

sufficiently small. Hence for t > T1,

ρ(t)2 ≤ 2CεΣ(t)1−ε ≤ 2Cε
I1−ε

(1 + t)2ν(1−ε)

Therefore

lim sup
t→∞

log ρ(t)

log t
≤ −ν(1− ε).

Letting ε ↓ 0, and then ν ↑ γ gives

lim sup
t→∞

log ρ(t)

log t
≤ −γ.

Finally, as (3.9) holds for a.a. ω in an almost sure set,

lim sup
t→∞

log |U(t, ω)|
log t

= lim sup
t→∞

log ρ(t)

log t
≤ −γ,

thus proving (5.2). �

The next result establishes the rate of decay of equation (3.11) when

the perturbation g is bounded by a slowly decaying polynomial.

Lemma 5.2. Suppose f is a locally Lipschitz continuous function which

obeys (2.4c), (3.15). Let α ≤ β/(β − 1), where β > 1 is the exponent

in (3.15), and let g be a continuous function which obeys

(5.3) lim sup
t→∞

log |g(t)|
log t

≤ −α.

Let x be the unique continuous solution of (3.11) on [0,∞). If x obeys

(3.26), then

(5.4) lim sup
t→∞

log |x(t)|
log t

≤ −α

β
.
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Proof. Equation (3.11) can be written as

x′(t) = −a(t)sgn(x(t))|x(t)|β + g(t), t ≥ 0

where a is continuous and limt→∞ a(t) = a. Thus a(t) > a/2 for t > T ′′
1 .

Next, for all ε ∈ (0, α) there is T ′
1(ε) > 0 such that t > T ′

1(ε) implies

|g(t)| < t−α+ ε
2 . Now, let T ′

2(ε) = inf{t > T1(ε) ∨ T ′′
1 ∨ 1 : x(t) 6= 0}.

If the set is empty, the result is proven, as the result is trivially true

in the case x(t) = 0 for all t > T1 ∨ T ′′
1 ∨ 1. Suppose the set is not

empty. Then there exists T2(ε) > T ′
2(ε) such that |x(T2(ε))| > 0. Let

xε = x(T2(ε)). If x(T2(ε)) = xε and

x′(t) = −a(t)|x(t)|β + |g(t)|, t ≥ T2(ε),

then |x(t)| ≤ x(t) for t ≥ T2(ε), where, of course, the function x is

uniquely determined.

Since α ≤ β/(β − 1), for every ε > 0, we have α− ε < β/(β − 1), so

0 > α− ε− α−ε
β
− 1. Since β > 1, there exists M > 1 such that

(5.5)
a

2
Mβxβ

ε T2(ε)
α−ε − α− ε

β
MxεT2(ε)

α−ε
β
−1 > 1.

Finally, we define

xu(t) = Mxε

(
t

T2(ε)

)−α−ε
β

, t ≥ T2(ε),

so that xu(T2(ε)) = Mxε. Since M > 1, xu(T2(ε)) > x(T2(ε)). For

t > T2(ε) > 1, (5.5) implies

tε/2

[
a

2
Mβxβ

ε T2(ε)
α−ε − α− ε

β
MxεT2(ε)

α−ε
β tα−ε−α−ε

β
−1

]
> 1.

Thus, for t > T2(ε),

a

2
Mβxβ

ε T2(ε)
α−εt−α+ε − α− ε

β
MxεT2(ε)

α−ε
β t−

α−ε
β
−1 > t−α+ ε

2 ,
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so giving the estimate

x′u(t) + a(t)sgn(xu(t))|xu(t)|β = MxεT2(ε)
α−ε

β t−
α−ε

β
−1 · −(α− ε)

β

+ a(t)Mβxβ
ε

(
t

T2(ε)

)−(α−ε)

>
a

2
Mβxβ

ε T2(ε)
α−εt−α+ε

− α− ε

β
MxεT2(ε)

α−ε
β t−

α−ε
β
−1

> t−α+ ε
2 > |g(t)|.

Therefore, xu obeys the differential inequality

x′u(t) > −a(t)sgn(xu(t))|xu(t)|β + |g(t)|, t ≥ T2(ε),

xu(T2(ε)) > x(T2(ε)) > 0.
(5.6)

Since xu(T2(ε)) > x(T2(ε)) > 0, either xu(t) > x(t) for all t ≥ T2(ε), or

as x and xu are C1, there exists T ∗ > T2(ε) such that xu(t) > x(t) for

T2(ε) ≤ t < T ∗, 0 < xu(T
∗) = x(T ∗). Suppose such a finite T ∗ exists.

Then x′(T ∗) ≥ x′u(T
∗), so we have

x′(T ∗) = −a(T ∗)sgn(x(T ∗))|x(T ∗)|β + |g(T ∗)|

= −a(T ∗)sgn(xu(T
∗))|xu(T

∗)|β + |g(T ∗)|.

Therefore

x′u(T
∗) ≤ x′(T ∗) = −a(T ∗)sgn(xu(T

∗))|xu(T
∗)|β + |g(T ∗)| < x′u(T

∗),

which is a contradiction. Therefore xu(t) > x(t) for all t > T2(ε).

Hence

|x(t)| ≤ xu(t) = Mxε

(
t

T2(ε)

)− (α−ε)
β

, t ≥ T2(ε).

Hence

lim sup
t→∞

log |x(t)|
log t

≤ −α− ε

β
.

Letting ε ↓ 0 now gives the result. �

Lemmas 5.1 and 5.2 enable us to prove first a result on the decay

rate of solutions of (2.1).

Theorem 5.3. Suppose that f is a locally Lipschitz continuous func-

tion which obeys (2.4c), (3.1a) and (3.15). Let σ be a positive and

continuous function which obeys (3.1b) and (3.16).
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If X, the strong solution of (2.1) obeys (2.6) and γ and β, the expo-

nents in (3.15) and (3.16), respectively, are related by (5.1), then

(5.7) lim sup
t→∞

log |X(t)|
log t

≤ −γ

β
, a.s.

Proof. According to Lemma 5.1, U(·, ω) obeys (5.2). By (3.5), and

(5.2) the function g(·, ω) obeys

(5.8) lim sup
t→∞

log |g(t, ω)|
log t

≤ −γ.

By Lemma 5.2 and Theorem 3.1, the function x(·, ω) defined by (3.2),

and which obeys (3.4), obeys

(5.9) lim sup
t→∞

log |x(t, ω)|
log t

≤ −γ

β
.

Hence, by (5.8) and (5.9), (3.2) implies

lim sup
t→∞

log |X(t, ω)|
log t

≤ −γ

β
,

since β > 1. In all the above ω is in an almost sure set, so (5.7)

holds. �

Taking the results of Theorems 3.1 and 5.3 together suggests that the

solution of (2.1) decays at a polynomial rate of at least −1/(β− 1) for

γ ∈ ( β
β−1

,∞) and at a rate of at least −γ/β for γ ∈ (0, β
β−1

]. However,

with a slightly stronger hypothesis on f , it is possible to show that the

decay rate of −1/(β − 1) can be extended to the interval γ ∈ ( 1
β−1

,∞)

and the rate on the interval γ ∈ (0, 1
β−1

] can be improved from −γ/β

to −γ.

To obtain these refined estimates on the decay rate requires a dif-

ferent approach, and we outline this method first before proving the

results.

The main thrust of this idea is to apply Lemmas 5.1 and 5.2 suc-

cessively to the equation (3.4), each time improving the estimate on

the polynomial rate of decay of solutions of (3.4). The improvement is

possible because the perturbation g in (3.4) is of the form

|g(t)| = |f ′(η(t))| |U(t)|

and, due to (3.6), |η(t)| ≤ |x(t)|+ |U(t)|. Thus an a priori estimate on

the rate of decay of η is known. Therefore as the polynomial behaviour

of the function f ′ is known close to zero (as prescribed in (3.17)), a

bound on the decay rate of f ′(η(t)) can be estimated, and so a more
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rapid rate of decay of g can be established. Due to Lemma 5.2, this

ensures that a faster rate of decay of x can be estimated, and this in

turn, enables a faster rate of decay of g to be established. Continuing in

this manner we can determine the optimal rate of decay of the solution

of (3.4), and hence that of (2.1).

Lemma 5.4. Let f be locally Lipschitz continuous and obey (2.4c),

(3.1a), (3.15) and (3.17). Let σ be a positive and continuous function

which obeys (3.1b) and (3.16). Let ω ∈ Ω∗, an almost sure set and

x(·, ω) be the function defined by (3.2) which obeys x(t, ω) → 0 as

t → ∞. If β and γ, the exponents in (3.15) and (3.16), respectively,

satisfy the inequality

(5.10)
1

β − 1
< γ ≤ β

β − 1
,

then the following hold:

(i)

(5.11) lim sup
t→∞

log |x(t, ω)|
log t

≤ −γ

β
.

(ii) Suppose there is c0 ≥ γ/β such that

(5.12) lim sup
t→∞

log |x(t, ω)|
log t

≤ −c0.

Then one of the following holds:

(a) If c0 > 1
β−1

(
β

β−1
− γ

)
, then

(5.13) lim
t→∞

t
1

β−1 |x(t, ω)| = L(ω)

where L(ω) is either 0 or [a(β − 1)]−1/(β−1).

(b) If c0 ≤ 1
β−1

(
β

β−1
− γ

)
, then

(5.14) lim sup
t→∞

log |x(t, ω)|
log t

≤ −(β − 1)c0 + γ

β
.

Proof. Part (i) (or (5.11)) holds by (5.9) in Theorem 5.3. To prove part

(ii), suppose (5.12) holds, where c0 ≥ γ/β. Then (3.6) implies

|η(t, ω)| ≤ |η(t, ω)− x(t, ω)|+ |x(t, ω)| ≤ |U(t, ω)|+ |x(t, ω)|,

so it follows that

lim sup
t→∞

log |η(t, ω)|
log t

≤ −(c0 ∧ γ),
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by Lemma 5.1 and equation (5.12). Since η(t, ω) → 0 as t → ∞, by

(3.17), we have

lim sup
t→∞

log |f ′(η(t, ω)|
log t

= lim sup
t→∞

[
log |f ′(η(t, ω))/|η(t, ω)|β−1|

log t
+ (β − 1)

log |η(t, ω)|
log t

]
= (β − 1) lim sup

t→∞

log |η(t, ω)|
log t

≤ −(β − 1) (c0 ∧ γ).

Therefore, according to Lemma 5.1 and (3.5),

(5.15) lim sup
t→∞

log |g(t, ω)|
log t

≤ −{(β − 1) c0 ∧ γ + γ} .

If c0 ≥ γ, c0 ∧ γ = γ so (5.10) and (5.15) imply

lim sup
t→∞

log |g(t, ω)|
log t

≤ −βγ < − β

β − 1
.

Hence (3.25) holds for g(·, ω) and we may apply Theorem 3.5 to x(·, ω)

(which is the solution of (3.4)) to conclude (5.13).

If γ > c0 > 1
β−1

(
β

β−1
− γ

)
(which is possible as (5.10) is true), then

c0 ∧ γ = c0 so (5.10) and (5.15) yield

lim sup
t→∞

log |g(t, ω)|
log t

≤ − ((β − 1)c0 + γ) <
−β

β − 1
.

As in the case above, (5.13) is true. Hence we have established alter-

native (a).

If c0 ≤ 1
β−1

(
β

β−1
− γ

)
, (5.10) implies c0 < γ so c0 ∧ γ = c0 and we

have

lim sup
t→∞

log |g(t, ω)|
log t

≤ − ((β − 1)c0 + γ) =: −α.

Hence α ≤ β/(β − 1). We may now apply Lemma 5.2 to x(·, ω), the

solution of (3.4), to give (5.14). �

Lemma 5.4 deals with the case when the noise perturbation fades

reasonably quickly. The next result achieves the corresponding effect

when the decay rate of the noise perturbation is slower.

Lemma 5.5. Let f be locally Lipschitz continuous and obey (2.4c),

(3.1a), (3.15), (3.17). Let σ be a positive and continuous function which

obeys (3.1b) and (3.16). Let ω ∈ Ω∗, an almost sure set and x(·, ω)

be the function defined by (3.2) which obeys x(t, ω) → 0 as t →∞. If
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β and γ, the exponents in (3.15) and (3.16), respectively, satisfy the

inequality

(5.16) γ ≤ 1

β − 1
,

then the following hold

(i) (5.11) is true.

(ii) Suppose there is c0 ≥ γ/β such that (5.12) holds. Then one of

the following is true:

(a) If c0 ≥ γ then

(5.17) lim sup
t→∞

log |x(t, ω)|
log t

≤ −γ.

(b) If c0 < γ, then (5.14) holds.

Proof. The proof of Part (i) is the same as that of Lemma 5.4, part (i).

To prove Part (ii), note first that the estimate (5.15) still holds for g.

Let c0 ≥ γ. then c0 ∧ γ = γ, so by (5.15),

lim sup
t→∞

log |g(t, ω)|
log t

≤ −βγ =: −α.

Then (5.16) implies α ≤ β/(β − 1). We may now apply Lemma 5.2 to

x(·, ω), the solution of (3.4), to give (5.17). This establishes part (a).

As to part (b), suppose c0 < γ. Then c0 ∧ γ = c0, so (5.15) implies

lim sup
t→∞

log |g(t, ω)|
log t

≤ − ((β − 1)c0 + γ) =: −α′.

Then, as c0 < γ and (5.16) holds, α′ < βγ, so α′ < β/(β− 1). We may

now apply Lemma 5.2 to x(·, ω), the solution of (3.4), to give (5.14).

This establishes part (b) of the result. �

We now apply Lemmas 5.3, 5.4 iteratively to prove the following

result.

Lemma 5.6. Let f be locally Lipschitz continuous and obey (2.4c),

(3.1a), (3.15), (3.17). Let σ be a positive and continuous function which

obeys (3.1b) and (3.16). Let ω ∈ Ω∗, an almost sure set and x(·, ω) be

the function defined by (3.2) which obeys x(t, ω) → 0 as t →∞.

(i) If β and γ (the exponents in (3.15) and (3.16), respectively)

are related by (5.10), then (5.13) holds.

(ii) If β and γ are related by (5.16), then (5.17) holds.
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Proof. Define the sequence (cn)n≥0 as follows: let c0 = γ
β
, cn+1 =

β−1
β

cn + γ
β
, n ≥ 0. Then

γ − cn+1 =
β − 1

β
(γ − cn), n ≥ 0

so cn ↑ γ as n →∞.

Consider case (i), where 1
β−1

< γ ≤ β
β−1

. By Lemma 5.4(ii), we can

then see that if

lim sup
t→∞

log |x(t, ω)|
log t

≤ −cn,

then

cn >
1

β − 1

(
β

β − 1
− γ

)
implies (5.13) and

cn ≤
1

β − 1

(
β

β − 1
− γ

)
implies

lim sup
t→∞

log |x(t, ω)|
log t

≤ −cn+1.

Note however, that because cn ↑ γ as n →∞, for every ε > 0 there is

an Nε ∈ IN such that cNε > γ − ε. Now, as γ > (β − 1)−1, there exists

ε > 0 such that γ > 1
β−1

+ ε β−1
β

. Thus

cNε > γ − ε >
1

β − 1

(
β

β − 1
− γ

)
.

Hence (5.13) holds and Part (i) has been established.

Consider now Part (ii), where γ ≤ 1
β−1

. By Lemma 5.5(ii), since

cn < γ for all n ∈ IN, we see that, if

lim sup
t→∞

log |x(t, ω)|
log t

≤ −cn,

then

lim sup
t→∞

log |x(t, ω)|
log t

≤ −cn+1.

Therefore, for all n ∈ IN,

lim sup
t→∞

log |x(t, ω)|
log t

≤ −cn.

Letting n → ∞, as cn ↑ γ, we have (5.17) and Part (ii) has been

established. �

We now have all the elements to prove a result when (5.1) holds,

under the stronger assumption that f obeys (3.17).
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Theorem 5.7. Suppose that f is a locally Lipschitz continuous func-

tion and obeys (2.4c), (3.1a), (3.15), (3.17). Let σ be a positive and

continuous function which obeys (3.1b) and (3.16). Let X be the strong

solution of (2.1) which obeys (2.6).

(i) If β and γ, the exponents in (3.15) and (3.16), respectively,

are related by (5.10) then there is a random variable L, which

assumes either of the values L = 0 or L = [a(β − 1)]−1/(β−1),

such that

(5.18) lim
t→∞

t
1

β−1 |X(t)| = L, a.s.

(ii) If β and γ are related by (5.16) then

(5.19) lim sup
t→∞

log |X(t)|
log t

≤ −γ, a.s.

Proof. To prove Part (i), note by Lemma 5.6 that the function x(·, ω)

obeys (5.13) for all ω in an almost sure set, and Lemma 5.1 implies

that

lim sup
t→∞

log |U(t, ω)|
log t

≤ −γ < − 1

β − 1
,

since (5.10) holds. Therefore

(5.20) lim
t→∞

t
1

β−1 |U(t, ω)| = 0.

By (5.13), (5.20), (3.2), for all ω in an almost sure set we have

lim sup
t→∞

t
1

β−1 |X(t, ω)| ≤ lim sup
t→∞

(
t

1
β−1 |x(t, ω)|+ t

1
β−1 |U(t, ω)|

)
= L(ω),

and

lim inf
t→∞

t
1

β−1 |X(t, ω)| ≥ lim inf
t→∞

(
t

1
β−1 |x(t, ω)| − t

1
β−1 |U(t, ω)|

)
= L(ω),

where L is the random variable from Lemma 5.4. Hence, (5.18) holds.

As to the proof of Part (ii), using Lemma 5.6, we see that the function

x(·, ω) obeys (5.17) for all ω in an almost sure set. Hence (3.2) and

Lemma 5.1 imply that

lim sup
t→∞

log |X(t, ω)|
log t

≤ −γ,

for all ω in an almost sure set, which is (5.19). �

It is interesting to note that the polynomial decay rate of solutions

is − 1
β−1

∧γ; therefore the decay rates as γ approaches 1
β−1

from above,

and when γ approaches 1
β−1

from below, are equal, so the estimates on

the decay rates match as the problem passes from the “small noise”
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parameter region to the “large noise” parameter region. It appears,

moreover, that γ = 1/(β−1) is the critical case. In view of the improved

estimates available through Theorem 5.7 it is reasonable to ask whether

the decay rate in the “large noise” region could again be improved, and

whether the size of this parameter region could be further reduced.

Although we cannot prove that these results are optimal, numerical

simulations appear to confirm, for the problem with f(x) = a sgn(x)|x|β

and σ(t) = (1 + t)−( 1
2
+γ) (β > 1, a > 0, γ > 0), that we have

lim sup
t→∞

log |X(t)|
log t

≤ −γ, a.s.

for γ ∈ (0, 1
β−1

], while for γ ∈ ( 1
β−1

,∞),

lim
t→∞

t
1

β−1 |X(t)| =
[

1

a(β − 1)

] 1
β−1

, a.s.

6. Necessity of condition (3.16) for Polynomial Stability

By Theorem 3.1 and Theorem 5.3 we have shown that it is sufficient

for σ to obey condition (3.16) in order for solutions of (2.1) to be almost

surely polynomially stable. We now show that a condition of the form

(3.16) is also necessary to ensure almost sure polynomial stability.

Theorem 6.1. Suppose that f is a locally Lipschitz continuous func-

tion and obeys (2.4c), (3.1a), (3.15). Let σ be a positive and continu-

ous function which obeys (3.1b) and suppose X is the strong solution

of (2.1) which obeys (2.6).

Consider the statements:

(6.1) There is γ > 0 such that γ = inf{α > 0 :

∫ ∞

0

t2ασ(t)2 dt = ∞},

and

(6.2) There is α > 0 such that lim sup
t→∞

log |X(t)|
log t

≤ −α, a.s.

Then

(i) (6.1) implies (6.2), where α = 1
β−1

∧ γ
β
.

(ii) If α > 1
β
, (6.2) implies (6.1), with γ ≥ α ∧ (αβ − 1).

Proof. Part (i) follows directly from Theorem 3.1 and Theorem 5.3. We

concentrate on the proof of (ii). Using integration by parts on (2.1)
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and rearranging, we have∫ t

0

(1 + s)νσ(s) dB(s) = (1 + t)νX(t)−X(0)

−
∫ t

0

ν(1 + s)ν−1X(s) ds +

∫ t

0

(1 + s)νf(X(s)) ds,

(6.3)

where we choose ν ∈ (0, α ∧ (αβ − 1)). By (6.2)

lim sup
t→∞

log(1 + t)ν |X(t)|
log t

≤ ν − α < 0, a.s.,

so the first two terms on the righthand side of (6.3) have a finite limit

as t →∞, almost surely. Since (6.2) implies

lim sup
t→∞

log(1 + t)ν−1|X(t)|
log t

≤ ν − 1− α < −1, a.s.,

it follows that (1 + t)ν−1|X(t)| ∈ L1(IR+) a.s. Hence the third term on

the righthand side of (6.3) has a finite limit as t → ∞, almost surely.

By (3.15), (6.2) and ν < αβ − 1, we have

lim sup
t→∞

log(1 + t)ν |f(X(t))|
log(1 + t)

= lim sup
t→∞

[
ν +

log
[
|f(X(t))|/|X(t)|β

]
log(1 + t)

+ β
log |X(t)|
log(1 + t)

]
≤ ν − αβ < −1, a.s.

Therefore (1 + t)ν |f(X(t))| ∈ L1(IR+), a.s. Thus, the fourth term on

the righthand side of (6.3) has a finite limit as t → ∞, almost surely.

Since all the terms on the righthand side of (6.3) have finite limits as

t →∞, almost surely we have that

(6.4) lim
t→∞

∫ t

0

(1 + s)νσ(s) dB(s) exists a.s.

and the limit is a.s. finite. This in turn implies that∫ ∞

0

(1 + s)2νσ(s)2 ds < ∞.

Thus (6.1) holds with γ > ν ∈ (0, α ∧ (αβ − 1)), or γ ≥ α ∧ (αβ − 1),

as required. �
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