
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 1

Density Preserving Sampling: Robust and Efficient
Alternative to Cross-validation for Error Estimation

Marcin Budka, Member, IEEE, and Bogdan Gabrys, Senior Member, IEEE

Abstract—Estimation of the generalization ability of a classifi-
cation or regression model is an important issue, as it indicates
expected performance on previously unseen data and is also
used for model selection. Currently used generalization error
estimation procedures like cross–validation (CV) or bootstrap
are stochastic and thus require multiple repetitions in order to
produce reliable results, which can be computationally expensive
if not prohibitive. The correntropy–inspired Density Preserving
Sampling procedure (DPS) proposed in this paper eliminates the
need for repeating the error estimation procedure by dividing
the available data into subsets, which are guaranteed to be
representative of the input dataset. This allows to produce low
variance error estimates with accuracy comparable to 10 times
repeated cross–validation at a fraction of computations required
by CV. The method can also be used for model ranking and
selection. This paper derives the Density Preserving Sampling
procedure and investigates its usability and performance using a
set of public benchmark datasets and standard classifiers.

Index Terms—Error estimation, model selection, sampling,
cross–validation, bootstrap, correntropy.

I. INTRODUCTION

ESTIMATION of the generalization ability of a classifica-
tion or regression model is an important issue in machine

learning, especially that it is independent of the actual model
used. Generalization accuracy estimates act not only as the
indicators of expected performance on previously unseen data,
but are also routinely used for model ranking and selection [1].

In contrast to the large number of various regression and
classification methods currently in use, there is only a handful
of model independent generalization error estimation tech-
niques. The most popular of them are cross–validation [2]
dating back to 1968, and bootstrap [3] developed in 1979.
These techniques, and especially cross–validation are being
used even more willingly and blindly after the publication of
a seminal paper by Kohavi in 1995, presenting a comparative
study of bootstrap and cross–validation [4], and currently
estimated to have almost 2800 citations [5].

The basic idea, shared by all generalization error estimation
methods, is to reserve a subset of available data to test the
model after it has been trained using the remainder of the
dataset1. The main difference between various techniques is
the way the generalization error is calculated, the size of the
subset reserved for testing or whether the procedure is repeated
multiple times or not. They have however also something in

M. Budka and B. Gabrys are with the Smart Technology Research Centre,
Bournemouth University, School of Design, Engineering and Computing,
Poole House, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK.
Email: mbudka@bournemouth.ac.uk / bgabrys@bournemouth.ac.uk

1There also exist methods for in-sample error estimation, which however
are not of general purpose (e.g. [6] for Support Vector Machines).

common, and that is the way in which the testing subset is
generated – random sampling. Although the stochastic nature
of bootstrap and cross–validation ensures that in the limit they
would both converge to a true value, this may also lead to large
variations in the estimate between consecutive runs, making
the results unreliable. This effect can be alleviated to a large
extent by repeating both procedures multiple times, which
however significantly increases the computational demands.

A good test set should be independent of the training data
and representative of the population from which it has been
drawn. While random sampling meets the first requirement, it
does not guarantee the representativeness. Stratified sampling
approaches [4] address this issue by trying to increase the
representativeness at the expense of independence, and are able
to achieve better results than their non–stratified counterparts.

Building upon the success of stratified sampling approaches,
we propose a Density Preserving Sampling procedure (DPS),
which goes a step further and samples the data at the level of
individual clusters to enforce representativeness of the test set.
This is achieved by optimizing a dataset similarity index in-
spired by the correntropy, a non–parametric similarity measure
of two random variables [7]. According to the experiments,
DPS produces accurate generalization estimates, requiring a
fraction of computations when compared to cross–validation.

This paper extends [8] among others by providing better
theoretical justification of the method, considerably extending
its experimental evaluation (additional datasets, comparison
with bootstrap), investigating the problem of DPS-guided
model selection and building of ensemble models. The pa-
per is organized as follows. In Section II the problem of
estimation of generalization error is introduced, together with
standard techniques and criteria of their evaluation. Section III
describes the concept of Information Theoretic Learning and
correntropy, used in the novel Density Preserving Sampling
procedure derived in Section IV. The experimental results,
including evaluation of DPS in terms of bias and variance as
well as its usability for model selection are given in Section
V. Finally, the discussion and conclusions can be found in
Sections VI and VII respectively.

II. GENERALIZATION ERROR ESTIMATION

Generalization error is the error of a predictive model on
previously unseen data, generated from the same distribution
as the data used to develop it [1]. Low generalization error
is thus a sign of a good match between the model and the
problem, and lack of overfitting.

It is impossible to obtain a closed form solution for calcula-
tion of the generalization error or even for calculation of tight

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/11306675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 2

bounds for the error, in all but the simplest cases [9]. The only
practical solution is to estimate the generalization error from
all available i.i.d. (independently and identically distributed)
data samples by splitting them into training and validation
sets [10]. For the error estimate to be meaningful both these
datasets should be representative of the true distribution, so
the way in which the data is split plays a crucial role.

A. Hold–out and random subsampling

The simplest and the least computationally expensive way to
estimate the generalization error is the hold–out method [11],
in which the data is split randomly into two parts: the training
set and the hold–out set, in a priori chosen proportions. The
model is then trained using the training dataset and its error on
the hold–out data becomes an estimate of the generalization
error. The drawback of the hold–out method is that unless both
datasets are large enough (which is a vague term in itself),
different estimates will be obtained from one run to another.
Hence in random subsampling [10], the hold–out procedure
is repeated multiple times and the results are averaged. This
however still does not guarantee that all instances will at some
point be used for training nor that none of the classes will be
over/under–represented in the hold–out set [4]. To circumvent
these issues, more advanced resampling techniques have been
developed. Yet, the hold–out method is still used when dealing
with large datasets if other techniques become untractable. It
is also sometimes assumed that more advanced resampling
techniques are simply not needed for large amounts of data.

B. Cross–validation

Cross–validation (CV) is a widely used standard statistical
technique for estimation of model generalization ability, ap-
plied with a great success to both classification and regression
problems [1]. In k–fold cross–validation the whole available
dataset is randomly divided into k approximately equal sub-
sets. Each of these subsets or folds is then in turn put aside
as validation data, a model is built using the remaining k − 1
folds and tested on the validation fold. The error estimate is
then calculated as a mean of all validation errors, while their
standard deviation can be used to approximate the confidence
intervals of the obtained estimate. The whole procedure thus
requires development of exactly k models. Since the results
obtained in this setting are also likely to vary from one run to
another, the procedure is repeated multiple times for various
random splits, and the results are averaged.

The most often used variants of cross–validation are:
• Leave–one–out cross–validation in which a single in-

stance is used as a validation set. This produces unbiased
but high–variance error estimates and can be computa-
tionally prohibitive for large datasets.

• Repeated 10–fold cross–validation, which often is a good
compromise between speed and accuracy.

• Repeated 2–fold cross–validation, which is an approxi-
mation of the bootstrap method [11].

In order to improve the accuracy of the estimates obtained,
a stratified CV approach is used in practice, which samples
the data in a way that approximates the percentage of each

class in every fold [4]. For regression problems, stratified CV
produces folds with equal means of the target variable [10].

C. Bootstrap

Bootstrap is a second commonly used generalization er-
ror estimation procedure [1], especially useful when dealing
with small datasets [11]. Given an input dataset of size m,
the method performs uniform sampling with replacement to
produce a training set of the same size. The instances not
selected during the sampling procedure become the test set.
The probability of each instance ending up in the test set
is
(
1 − 1

m

)m
≈ e−1 ≈ 0.368, while the probability of

ending up in the training set is 1 − 0.368 = 0.632. Hence
the method is also often called the ‘0.632 bootstrap’ [11].
Since the error estimate obtained using test data only would
be overly pessimistic (only 63.2% of instances are used for
training), to compensate for this effect it is calculated as
error = 0.632 × e0 + 0.368 × ebs, where e0 is the error rate
obtained from bootstrap sets not containing the point being
predicted (test set error) and ebs is the error obtained on the
bootstrap sets themselves, both averaged over all instances
and bootstrap samples. The more times the whole process is
repeated, the more accurate the estimate. A detailed treatment
of the bootstrap methods can be found in [12].

Techniques like bootstrap and CV have been developed
primarily to address the situations when data is scarce and
one cannot afford a separate hold-out set. In the case when
data is abundant and its distribution does not undergo changes
over time, a single stratified random split is usually able to
provide the required level of representativeness.

A comparative study of CV and bootstrap for a set of
standard benchmark datasets can be found in [4]. A number
of follow-up studies for microarray data [13], synthetic data
[14] and regression problems [15] also exist.

D. Bias and variance of error estimation methods

The bias of an error estimation method is the difference
between the expected value of the error and the estimated
value [4]. For an unbiased estimator, this difference is equal
to zero. Bias can also be either positive or negative. In the
former case, the estimate is said to be overly optimistic, as the
estimated error is lower than the expected error. Negative bias
on the other hand leads to overly pessimistic error estimates.

Low bias on its own does not guarantee good performance
of the model. There is another important parameter – the
variance, which measures the variability of the error estimate
from one run to another. In the case of subsampling methods
discussed in this paper, the variability is usually approximated
by the expected standard deviation of a single accuracy esti-
mation run [4]. A good generalization error estimator should
thus have low bias and low variance. Unfortunately in practice
it is usually difficult to achieve both at the same time, leading
to so called bias–variance trade–off [1].

III. REPRESENTATIVE SAMPLING

Both cross–validation and bootstrap, described in Sections
II-B and II-C are stochastic methods. The immediate conse-
quence is that the results can vary a lot from one repetition

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 3

to another and there is no guarantee that the datasets obtained
by splitting the original data are representative, which is a
necessary condition for obtaining accurate error estimates.
Thus in order to obtain reliable results, averaging over multiple
iterations is required. In general, the more times the procedure
is repeated the better, as in the limit both methods would
converge to the true error values. For k−fold CV using
m−element dataset this could mean averaging over all

(
m

m/k

)

ways of choosing m/k instances out of m (complete cross–
validation [4]), which quickly becomes untractable. There is
however another, often overlooked possibility – intelligent
sampling aiming at producing only representative splits.

From statistics, a random sample is considered representa-
tive if its characteristics reflect those of the population from
which it is drawn [16]. Since these characteristics are naturally
reflected by the probability density function (PDF), the more
similar the distribution of the sample to the distribution of the
population, the more representative this sample is. Hence a
sampling procedure aiming at maximization of some similarity
measure between PDFs of the two samples should intuitively
ensure their mutual representativeness.

There are many PDF divergence measures in the literature
[17]. Perhaps the best known of them is the Kullback–Leibler
divergence [18] and its two modifications i.e. Jeffrey’s and
Jensen–Shannon divergences [19]. Although most of these
measures have strong theoretical foundations, there are usually
no closed–form solutions to calculate them, they are difficult to
estimate from samples smaller than thousands of instances, and
their direct optimization is even more challenging [20], [21].
However, a recently developed Information Theoretic Learning
framework [22] can provide another solution.

A. Information Theoretic Learning (ITL)

Information Theoretic Learning is a procedure of parameter
adapting using an information theoretic criterion [22]. Appli-
cation of the information theory to learning problems is how-
ever not straightforward. The main issue is the omnipresent
‘learning from exemplars’ paradigm, while the information
theory in its traditional form is only able to deal with PDFs
given in analytic forms [23]. The cornerstone of ITL is thus an
alternative, easily calculable definition of entropy – the Renyi’s
quadratic entropy: HR2 = − log

∫
p(y)2 dy. An important

property of Renyi’s entropy is that its extrema overlap with
the extrema of Shannon’s entropy [22], so both definitions are
equivalent for the purpose of optimization.

Denoting by G(y, σ2I) a spherical Gaussian kernel cen-
tered at y with a diagonal covariance matrix σ2I , the PDF
can be estimated using the Parzen window method [1] as
p(y) = 1

N

∑N
i=1 G(y − yi, σ2I). Using the convolution

property of the Gaussian kernels, the Renyi’s entropy becomes:

HR2(y) = − log
∫

p(y)2 dy = − log V (y) (1)

V (y) =
1

N2

N∑

i=1

N∑

j=1

G(yi − yj , 2σ2I) (2)

where V (y) is an averaged sum of all pairs of interactions
between all pairs of instances called the Information Potential.

B. Auto– and cross–correntropy

A Generalized Correlation Function (GCF) for a stochastic
process xt has been defined in [24] as:

VX(t1, t2) = E[< φ(xt1), φ(xt2) >] = E[k(xt1 , xt2)] (3)

where E stands for the expected value, φ denotes some kernel
induced transformation and k is a kernel function, assumed
to be Gaussian from now on. The GCF estimator not only
conveys information about autocorrelation but also about the
structure of the dataset, as its mean value for non–zero lags
converges asymptotically to the estimate of the Information
Potential calculated using Renyi’s quadratic entropy [25]. For
this reason the function has been named auto–correntropy.

The idea of auto–correntropy has been further developed
in [7] for a general case of two arbitrary random variables.
The new measure, named cross–correntropy (or correntropy)
is defined for variables X and Y as:

VXY (X,Y) = E[< φ(X), φ(Y) >] = E[k(X,Y)] (4)

The correntropy can be used as a measure of similarity
between X and Y but only in the neighbourhood of the joint
space. This results from the restriction of Gaussian kernels,
which have high values only along the x ≈ y line with expo-
nential fall off otherwise. The size of this neighbourhood is
therefore controlled by the kernel width parameter σ. Corren-
tropy can thus also be defined as the integral of the joint PDF
along the x = y line, i.e. VXY (X,Y) ≈

∫
p(x, y) |x=y=u du.

By plugging the Parzen window estimate of the joint PDF
p(x, y) ≈ 1

N

∑N
i=1 G(x − xi, σ

2I)G(y − yi, σ
2I), integrating

along the x = y line and using the convolution property of
Gaussians again, the estimate of correntropy finally becomes:

VXY (X,Y) ≈
1
N

N∑

i=1

G(xi − yi, 2σ2I) (5)

Correntropy can be regarded as the PDF of equality of two
variables in the neighbourhood of the joint space, of the size
determined by the kernel width parameter σ [7], [26]. The
measure has many interesting properties and one of them is
that for independent X and Y it can be approximated by the
Information Potential formula similar to (1) and named Cross
Information Potential [26]. Correntropy has been successfully
used as a localized, outlier–resistant similarity measure for
many supervised learning applications [27], [26].

IV. DENSITY PRESERVING SAMPLING (DPS)

Since the correntropy can be used to measure similarity
between two random variables, it can also be used to measure
the ‘representativeness’ of a sample. It should thus be possible
to use correntropy as an optimization criterion, guiding the
sampling process in order to split a given dataset into two or
more maximally representative subsets. Moreover due to the
properties of (5) discussed in more detail in Section IV-B, it
is possible to devise an optimization procedure independent
of the Gaussian kernel width σ. This fact, together with
the conclusions drawn from a comprehensive evaluation of
various divergence measures in the context of representative
sampling presented in [20], is the main reason for considering
correntropy–based objective function.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 4

A. Correntropy-inspired Similarity Index (CiSI)

Equation (5) defines the estimator of correntropy between
two random variables or datasets X and Y as the value
of a Gaussian kernel centered at (xi − yi) averaged over
all N instance pairs. There are thus three requirements for
calculation of the correntropy to be possible: the datasets must
(1) be ordered, (2) have the same dimensionality and (3) have
the same cardinality. Put another way, for equation (5) to
be a meaningful estimator of correntropy, a random process
generating samples according to the joint PDF of X and Y
needs to be defined, which in our case is not straightforward.

While the second requirement is irrelevant for sampling,
as each subset of objects necessarily needs to have the same
dimensionality as the set from which it has been selected, the
remaining two requirements remain valid. For some applica-
tions like e.g. supervised learning, all the above requirements
are met automatically – if A denotes the output of a mapper
and B denotes the target value, |A| = |B| and ai is the
prediction of bi. In sampling however in general one cannot
expect the instances to be ordered, which means that it is
not obvious on the difference of which instances to center the
Gaussians (the joint PDF is not defined). The datasets may also
have different cardinalities e.g. when one wants to calculate
the objective between the original dataset and its subset.

To address the ordering issue, we make sure that every
Gaussian in (5) is centred at (xi − yj), which maximize its
value. This is achieved by selecting both xi and yj so that
they are as close to each other as possible. The generalized,
instance ordering insensitive version of (5), now called the
Correntropy-inspired Similarity Index (CiSI) is thus given by:

CiSI(X,Y) ≈
1
N

∑

i∈(1..N)

G(xi − yj , 2σ2I)

i, j = argmin
i,j

‖ xi − yj ‖, j ∈ Javail (6)

where ‖ ∙ ‖ denotes the Euclidean norm and the set Javail

contains indices of y which haven’t yet been used, to ensure
that each yk is used only once.

When the datasets have different cardinalities, i.e. without
loss of generality if NX > NY , the above approach will
terminate after NY instances are processed. To avoid this, a
new dataset YN is created by duplicating the original Y dataset
dNX/NY e times. CiSI is then calculated between X and YN

and the calculation will terminate after exactly NX steps.
The values of CiSI reported in this paper have been normal-

ized to the [0, 1] range. However, these values are not compara-
ble between different datasets as their absolute difference can
be made almost arbitrarily large by manipulating the Parzen
window width σ. For this reason the CiSI values given should
rather be perceived as ranks on an ordinal scale.

B. CiSI based sampling procedure

In this section we propose a CiSI–based, hierarchical,
density preserving splitting procedure. Since the generalized
function of (6) is not differentiable with respect to i and j
(the only variables that can be manipulated within the splitting
process), gradient driven optimization is not straightforward.

We have thus reverted to a greedy, locally optimal approach,
which in many cases prove to work surprisingly well [28].

As CiSI is being estimated by a normalized sum of Gaus-
sians, it reaches a maximum when all its components reach
their maximal values. Since a Gaussian function peaks at 0
regardless of the value of σ, and it is piecewise monotonic
and symmetric2, the closer xi and yj are in (6), the higher
CiSI(X,Y) will be. This suggests a σ–independent, iterative,
binary splitting procedure of dataset Z into subsets X and Y ,
which at each step selects instances zi and zj so that:

i, j = argmin
i,j

‖ zi − zj ‖ (7)

and then adds them to the sets X and Y , so that X = X ∪ zi

and Y = Y ∪ zj or the other way round, removing them
from dataset Z at the same time. The above procedure aims
at directly maximizing CiSI(X,Y), that is the similarity
index between the two new datasets. Due to the way CiSI
is calculated for sets with various cardinalities however, it
also indirectly maximizes CiSI(X,Z) and CiSI(Y,Z). As a
result, newly obtained datasets are splits with PDFs maximally
similar to each other and to the PDF of the original dataset. To
obtain more splits, the procedure can be repeated by splitting
datasets X and Y again, which will produce 4 splits and so
on. The total number of splits is thus always a power of 2.

The instances zi and zj can be added to the sets X and
Y arbitrarily or not. In our approach we have devised a
procedure in which the two objects are distributed in a way
that maximizes the average coverage of the input space by
both splits. Denoting by dkV the average Euclidean distance
between instance zk and all instances in set V , the rules are:

diX + djY ≥ djX + diY ⇒ X = X ∪ zi, Y = Y ∪ zj (8)

diX + djY < djX + diY ⇒ X = X ∪ zj , Y = Y ∪ zi (9)

For classification problems, the splitting procedure can be
executed in a supervised or unsupervised mode. In the former
case, the algorithm takes advantage of the class labels supplied
with the data by considering each class in separation from the
rest. We refer to this approach as DPS–S. In the unsupervised
mode, the class labels are ignored, so the procedure is purely
density–driven and has been called DPS–U.

In current implementation, if the classes are too small to
be divided into a given number of subsets, DPS–S falls–back
to DPS–U. Since the splitting procedure is hierarchical, most
datasets can be divided using the supervised approach up to
some point, before the unsupervised procedure takes over.

When using a k-d tree [29] to perform the nearest neighbour
search the computational complexity of DPS-U is of the order
O(N log N) on average and O(N2) in the worst-case scenario.
The memory complexity is of the order O(N). For DPS-S,
these become O(

∑
i Ni log Ni), O(

∑
i N2

i) and O(
∑

i Ni)
respectively, where Ni is the cardinality of the ith class. Note,
that even in the worst-case scenario these are still negligible
when compared to the complexity of most learning algorithms.

2In fact, any kernel function which has these properties could be used
instead, leading to exactly the same results (e.g. Triangular, Epanechnikov).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 5

V. EXPERIMENTS

The experiments have been conducted on 27 publicly
available datasets using a total of 16 different classifiers.
The datasets used come from [30], [31] and [32] and their
details are given in Table I. The star symbol in the ‘#obj/attr’
column denotes the number of instances actually used in the
experiment, sampled randomly from the whole, much bigger
dataset in order to keep the experiments computationally
tractable. The classifiers used are implemented within the
PRTools toolbox and their list is given in Table II. It is worth to
mention that starting from version 4.1.10, the DPS procedure
proposed in this paper has been included into the PRTools
toolbox as an alternative to the stratified CV.

The experiments were designed to (a) compare the error
estimation accuracy of stratified CV, bootstrap and DPS, (b)
test the stability of both error estimators, (c) test applicability
of DPS to the classifier selection process, (d) investigate
the possibility to reliably estimate the generalization error
using a single DPS fold only, thus reducing the computational
requirements by another order of magnitude, and (e) examine
the behavior of DPS in the context of ensemble models.

We have followed a similar approach to that outlined in [4].
For each dataset a stratified random subsampling procedure
has been repeated 100 times, resulting in 100 random divisions
of the dataset into a training part (2/3) and independent test
data (1/3). The training part was then used to estimate the
generalization error using CV and DPS for each classifier,
while the independent test part has been used to calculate the
‘true’ generalization error, once again for each classifier in
turn. The true generalization error then served to calculate the
bias of each estimate, while the generalization error estimates
of a single estimation run have been used to calculate the
variance. Finally, the results have been averaged over all 100
runs of the random subsampling procedure.

The CV estimate was calculated within a 10 times repeated
8–fold scheme. We provide the average results for all 10
iterations as well as the result of the best and worst single run
in terms of bias/variance to emphasize how unstable the CV
error estimates can be. Three 8–fold DPS estimates are also
given – DPS–S (using class labels), DPS–U (ignoring class
labels) and DPS–SU (averaged over the errors of classifiers
trained on DPS–S and DPS–U folds). For the comparison
with DPS to be fair from the computational point of view, the
bootstrap estimate was also calculated on 8 bootstrap samples.

A. Toy problems

The analysis starts with two synthetic datasets first used in
[33] and [34]. The datasets were chosen because they are two–
dimensional, allowing for easy visualisation, and were used in
our previous studies due to their well known properties.

1) Cone–torus dataset: Cone–torus is a synthetic 2 di-
mensional dataset consisting of 3 classes, with data points
generated from 3 differently shaped distributions: a cone, half
a torus, and a Gaussian. A scatter plot of the dataset is given
in Figure 1(a). Figure 2 depicts scatter plots of 8 DPS–S folds,
while in Figure 3, 8 CV folds generated during a single random
run are given. Note, that in case of DPS, the classes tend to
preserve their shapes – the half torus for example is clearly

TABLE I
DATASET DETAILS

abbr name source #obj/attr #class
azi Azizah dataset PRTools 291/8 20
bio Biomedical diagnosis PRTools 194/5 2
can Breast cancer Wisconsin UCI 569/30 2
cba Chromosome bands PRTools 1000*/30 24
chr Chromosome PRTools 1143/8 24
clo Clouds ELENA 1000*/2 2
cnc Concentric ELENA 1000*/2 2
cnt Cone–torus [33] 800/3 2
dia Pima Indians diabetes UCI 768/8 2
ga2 Gaussians 2d ELENA 1000*/2 2
ga4 Gaussians 4d ELENA 1000*/4 2
ga8 Gaussians 8d ELENA 1000*/8 2
gla Glass identification data UCI 214/10 6
ion Ionosphere radar data UCI 351/34 2
iri Iris dataset UCI 150/4 3
let Letter images UCI 1000*/16 26
liv Liver disorder UCI 345/6 2
pho Phoneme speech ELENA 1000*/5 2
sat Satellite images UCI 1000*/36 6
seg Image segmentation UCI 1000*/19 7
shu Shuttle UCI 1000*/9 7
son Sonar signal database UCI 208/60 2
syn Synth–mat [34] 1250/2 2
tex Texture ELENA 1000*/40 11
thy Thyroid gland data UCI 215/5 3
veh Vehicle silhouettes UCI 846/18 4
win Wine recognition data UCI 178/13 3

TABLE II
CLASSIFIER LIST

name description
fisherc Fisher’s Linear Classifier

ldc Linear Bayes Normal Classifier
loglc Logistic Linear Classifier
nmc Nearest Mean Classifier
nmsc Nearest Mean Scaled Classifier

quadrc Quadratic Discriminant Classifier
qdc Quadratic Bayes Normal Classifier
udc Uncorrelated Quadratic Bayes Normal Classifier

klldc Linear Classifier using KL expansion
pcldc Linear Classifier using PC expansion
knnc K–Nearest Neighbor Classifier

parzenc Parzen Density Based Classifier
treec Decision Tree Classifier

naivebc Naive Bayes Classifier
nusvc Support Vector Classifier with linear kernels
rbnc Radial Basis Function Neural Network Classifier

(a) Cone–torus (b) Synth–mat

Fig. 1. Scatter plots of the synthetic datasets used in the experiments

visible in 7 out of 8 folds, while for CV only in 4 or 5. This
is also well reflected by the mean value of CiSI between all 8
folds and the original dataset, which is 0.81 for DPS and 0.71
for CV averaged over 10 runs (σ = 0.12).

The decision boundaries for the qdc classifier trained on
each of 8 folds in turn, superimposed on the original dataset
have been given in Figure 4. The black solid line represents the
boundaries of a classifier trained using the DPS–S folds, while

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 6

Fig. 2. Cone–torus – scatter plots of 8 DPS–S folds

Fig. 3. Cone–torus – scatter plots of 8 CV folds

Fig. 4. Cone–torus – decision boundaries for qdc trained on DPS–S (solid
line) and CV (dotted line) folds

the blue dotted line shows the boundaries for a single CV run.
Notice, that for DPS the decision boundaries generally do not
change their shape from one fold to another, as opposed to CV,
where the boundaries are very unstable and change radically.

2) Synth–mat dataset: The Synth–mat dataset is a 2 dimen-
sional mixture of 4 normal distributions and has been pre-
sented in Figure 1(b). Both classes have bimodal distribution
– there are two Gaussians in each of them. The mean value
of CiSI between all 8 folds and the original dataset is 0.75
for DPS and 0.66 for CV averaged over 10 runs (σ = 0.12).
Since the scatter plots of all DPS and CV folds were already
presented for the Cone–torus dataset and not much changes
here, only the decision boundaries of a classifier trained as
previously have been given in Figure 5. The boundaries appear
stable for DPS and differ a lot from one CV fold to another.

B. Benchmark datasets

1) CiSI: Figure 6 presents the values of averaged CiSI
between the original dataset and 8 folds generated using DPS

Fig. 5. Synth–mat – decision boundaries for qdc trained on DPS–S (solid
line) and CV (dotted line) folds

and CV, for all 27 datasets used. Note, that although the
index has been normalized to the [0, 1] range, according to our
earlier argument the values represent an ordinal scale. Also,
for illustrative purposes, the Gaussian kernel width used for
each dataset has been chosen to optimize correlation between
bias and CiSI, as described in Section V-B5.

The CiSI between the DPS folds and the original dataset
is always higher than in the case of the CV folds, regardless
of the number of folds (8 or 16). This is not surprising since
the DPS splits have been obtained by maximization of CiSI.
The picture is very similar for the between–fold CiSI given in
Figure 7, where DPS is again an unquestionable leader.

2) Bias: The mean absolute bias for both DPS and CV can
be seen in Figures 8 and 9. Due to off the chart bias values,
the bootstrap estimator has not been shown here. The DPS
approach has a bias comparable to the mean CV result, with
slight advantage of the latter for roughly half of the datasets.
Note however, that the DPS estimates are never as biased as
the worst–case CV scenario, yet the result has been achieved
with 10 times less computations.

A summary of the results, including the bootstrap esti-
mator, can be found in Table III, where a mean value and
standard deviation of bias (and variance) across all datasets
and classifiers for each error estimation method has been
given. Both DPS–U and DPS–S have on average the same
bias with a tiny difference in its standard deviation. DPS–SU
on the other hand comes very close to the repeated cross–
validation, which is a result of combining both supervised and
unsupervised methods. Note, that this combination does not
require additional computations in order to obtain the splits,
as all pairwise within–class distances form a subset of all
pairwise distances for the whole dataset, which are calculated
anyway by the unsupervised DPS. All DPS approaches also
have mean bias and standard deviation lower than the worst–
case CV scenario. The relatively high bias and variance values
of the bootstrap estimator are the result of using just 8
bootstrap samples rather than recommended hundreds [11].

The performance advantage of DPS-SU over the remaining
methods stems from a stabilizing and compensating effects
similar to those of repeating CV. Figure 10 presents signed
bias values for two classifiers chosen on the basis of their
complexity (linear classifier and non-parametric classifier). As
it can be seen in case of many datasets the signs of the DPS-U
and DPS-S biases are opposite. It’s also worth to note, that the
behavior of both estimators is very consistent across all tested

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

DPS-U 8-fold
DPS-S 8-fold
CV 8-fold

DPS-U 16-fold
DPS-S 16-fold
CV 16-fold

Fig. 6. Mean CiSI between each fold and the original dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

DPS-U 8-fold
DPS-S 8-fold
CV 8-fold

DPS-U 16-fold
DPS-S 16-fold
CV 16-fold

Fig. 7. Mean between–fold CiSI

TABLE III
BIAS AND VARIANCE SUMMARY FOR ALL DATASETS AND CLASSIFIERS

DPS DPS DPS CV CV CV Boot-
U S SU besta mean worst strap

BIAS-mean 0.028 0.028 0.028 0.024 0.027 0.033 0.150
BIAS-stdev 0.020 0.020 0.020 0.016 0.019 0.024 0.236
VAR-mean 0.060 0.050 0.039 0.052 0.063 0.074 0.026
VAR-stdev 0.033 0.033 0.023 0.030 0.035 0.040 0.015

a‘CV best’ denotes the best cross–validation run out of 10 for each
dataset/classifier pair in terms of lowest bias/variance. For CV the division of
data which produced the lowest bias did not in general produce the lowest
variance. Similar remarks apply to ‘CV worst’.

classifiers in a sense, that the bias of one of them is almost
always higher than the bias of the other for a given dataset.

3) Variance: The variance of error estimates can be seen
in Figures 11 and Figure 12. Out of all three DPS approaches,
once again DPS–SU demonstrates the best performance with
average variance lower by 0.0130 than the best–case CV
scenario (Table III), while DPS–S performs at the level of
the best–case CV and DPS–U still outperforms 10 times
repeated stratified cross–validation. Note, that both in terms of
variance, DPS–S outperforms DPS–U and is additionally com-
putationally cheaper (see Section IV-B). As a result good error
estimation can be achieved with roughly 10% of computations
required by 10 times repeated CV. For best results however one
should resort to DPS–SU, which seems to stabilize the error
estimates but requires more computational time.

4) Classifier selection: Selection of a single best model
from a set is an important problem in machine learning. A
typical selection criterion is the generalization error estimated
using CV. The ranking of top 3 classifiers according to both
DPS and 10x repeated CV for all datasets was given in Table

IV. Note, that the overall ranking for all datasets is exactly the
same for both error estimators, and reflects the ranks based on
the true generalization error. Some differences are apparent
when the results for each dataset are examined separately.

The last three rows in the table denote the number of
datasets out of 27, for which the true top classifier was
included in top 1, top 2 and top 3 classifiers according to
each error estimation method. For CV, the best classifier has
been correctly identified 19 times and has been included in the
top 2 and top 3 classifiers 25 times. For the best DPS approach
(DPS–SU) the numbers are similar – 20, 23 and 25, yet have
been obtained at 20% of the computations required by CV.

The correlation coefficients for different error estimates and
the true generalization error have been given in Table V. As
shown, all tested error estimators are strongly correlated with
the true error, and although there are some small differences,
the correlation coefficient is never lower than 0.959.

5) Correlation between CiSI and bias: The ability to
estimate the generalization error using a single DPS fold
only would allow to reduce the computational cost of the
estimation procedure by another order of magnitude, when
compared to 10 times repeated CV. Figure 13 depicts the bias
of the estimate calculated using a single DPS fold, which has
been chosen on the basis of the lowest bias itself (‘DPS–
best’). Although in practice this kind of selection procedure is
unfeasible, it shows that the method has some potential as for
most datasets the bias is comparable with the one obtained
using 10 times repeated cross–validation or even the best–
case CV scenario. The problem however is how to choose
the appropriate DPS fold. The value of CiSI seems to be an
obvious choice. Note however, that there is no principled way
of selecting the width σ of the Gaussian kernel for estimation

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

 DPS-U
DPS-S
DPS-SU

CV-best
CV-mean
CV-worst

Fig. 8. Mean absolute bias (averaged over all classifiers)

0

0.01

0.02

0.03

0.04

0.05

0.06

fis
herc ldc

loglc
nmc

nmsc

quadrc qdc
udc

kll
dc

pcld
c

kn
nc

parze
nc

tre
ec

naive
bc

nusv
c

rbnc

 DPS-U
DPS-S
DPS-SU

CV-best
CV-mean
CV-worst

Fig. 9. Mean absolute bias (averaged over all datasets)

-0.06

-0.03

0

0.03

0.06

fis
he

rc

-0.06

-0.03

0

0.03

0.06

kn
nc

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

DPS-U

DPS-S

Fig. 10. Bias compensation of DPS-SU

0

0.02

0.04

0.06

0.08

0.1

0.12

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

 DPS-U
DPS-S
DPS-SU

CV-best
CV-mean
CV-worst

Fig. 11. Standard deviation of error estimate (averaged over all classifiers)

of CiSI and the estimated value can vary greatly depending
on the choice of σ. We have therefore decided to evaluate
the correlation between bias and CiSI. The experiment was
performed for 8 and 16 DPS–S folds and the results can be

seen in Figure 14. Note, that for the sake of calculating CiSI,
σ was chosen using an exhaustive search in order to optimize
the correlation. Thus the results given in Figure 14 represent
the best–case scenario, for the optimal kernel width, which

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fis
herc ldc

loglc
nmc

nmsc

quadrc qdc
udc

kll
dc

pcld
c

kn
nc

parze
nc

tre
ec

naive
bc

nusv
c

rbnc

 DPS-U
DPS-S
DPS-SU

CV-best
CV-mean
CV-worst

Fig. 12. Standard deviation of error estimate (averaged over all datasets)

TABLE IV
RANKING OF TOP 3 CLASSIFIERS

dataset true DPS–U DPS–S DPS–SU CV mean
azi 11 14 12 11 12 2 11 12 14 11 12 2 11 12 14
bio 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8
can 12 2 9 12 2 9 15 12 2 15 12 2 12 15 2
cba 12 2 9 12 2 9 12 2 9 12 2 9 12 2 9
chr 14 8 11 14 8 11 14 8 2 14 8 11 14 8 11
clo 15 1 2 1 2 3 15 1 2 15 1 2 15 1 2
cnc 1 15 3 1 15 2 1 15 5 1 15 5 1 15 5
cnt 16 12 13 16 12 7 12 16 13 16 12 13 16 12 13
dia 1 3 2 2 9 10 1 11 2 1 2 9 1 3 2
ga2 1 2 3 15 4 2 2 3 9 2 3 9 3 1 2
ga4 1 2 3 1 4 2 15 5 2 15 1 2 15 4 3
ga8 16 3 1 16 1 5 16 5 4 16 5 1 16 15 5
gla 3 15 2 2 9 10 2 9 10 2 9 10 2 9 10
ion 14 11 7 14 7 11 14 13 7 14 13 7 14 7 11
iri 2 9 10 2 9 10 2 7 9 2 9 10 2 9 10
let 11 12 7 12 11 2 12 11 2 12 11 2 12 11 2
liv 1 3 2 1 3 2 11 1 3 1 3 11 1 3 11
pho 11 16 12 16 12 11 11 12 16 11 16 12 11 12 16
sat 11 12 2 11 12 14 11 12 2 11 12 2 11 12 7
seg 11 3 2 3 11 2 11 2 9 11 3 2 3 11 2
shu 13 1 16 13 16 1 13 1 16 13 16 1 13 1 16
son 12 11 15 12 11 14 12 11 14 12 11 14 12 11 2
syn 14 12 16 14 12 16 12 14 16 14 12 16 12 14 16
tex 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
thy 8 15 7 15 6 7 7 8 11 15 7 8 15 8 11
veh 7 6 3 6 7 2 7 6 2 7 6 2 7 6 2
win 7 6 2 6 1 4 4 6 7 6 4 7 6 7 4

overall 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
in top 1 27/27 17/27 17/27 20/27 19/27
in top 2 27/27 20/27 23/27 23/27 25/27
in top 3 27/27 21/27 24/27 25/27 25/27

TABLE V
CORRELATION BETWEEN ‘TRUE’ ERROR AND ITS ESTIMATES

correlation DPS–U DPS–S DPS–SU CV
per dataset (8 folds) 0.9594 0.9657 0.9676 0.9710

per classifier (8 folds) 0.9967 0.9975 0.9976 0.9973
per dataset (16 folds) 0.9640 0.9646 0.9671 0.9695

per classifier (16 folds) 0.9964 0.9969 0.9969 0.9969

in practice is not known a priori. The correlation varies from
about −0.1 to −0.6 depending on the dataset. The bias of an
estimate obtained using a single DPS fold chosen on the basis
of highest CiSI value is always higher even than the worst–
case CV scenario bias (‘DPS–optim’ in Figure 13). The CiSI
is only slightly to moderately correlated with the bias, even
for an optimal choice Gaussian kernel width and hence cannot
be used to select a single best fold which minimize the bias.

6) Combining classifiers: In this experiment a simple en-
semble model based on the majority voting rule was built. It
is believed, that the classifiers used in a combination should
be diverse, which enforces complementarity of the ensemble
members [35]. One way to enforce diversity is cross–training,

a technique based on cross–validation, which combines all
models obtained during a single or repeated CV run. For this
experiment the two synthetic datasets from Section V-A have
been used. Both datasets were split into 8 folds using DPS–
S and CV and then for each classifier listed in Table II an
ensemble model was built by combining 8 models trained
on all but one fold in turn, using the majority voting rule.
For CV this procedure has been repeated 10 times. Each
combination was then tested on an independent test set. In
order to monitor performance of the combinations, a single
control model trained using all 8 folds was also used.

The results have been depicted in Figures 15 and 16. In most
cases, combinations based on DPS folds do not improve on
the performance of a single control model. This was expected,
as for each classifier all ensemble members should be very
similar, since they were all trained using representative data
subsets. For the combinations based on CV, some improvement
can be observed even in the worst case scenario.

To illustrate this issue, discrete error distribution plots show-
ing the probability of various numbers of ensemble members
being in error for the same input instance, have been given in
Figures 17 and 18. The classifiers used to produce these plots
(qdc and treec) have been chosen for illustrative purposes. The
area of the shaded region in each figure represents the error of
the combined model (the ties, i.e. when there were exactly 4
votes for each of the two classes in the case of the Synth-mat
dataset, were resolved randomly). Note, that for DPS most of
the mass is concentrated in the corners of the plots, meaning
unanimous classification decisions in most cases and proving
that the classifiers are indeed very similar.

In case of CV the situation is different. In Figure 17 some
mass is scattered all over the plot, meaning that sometimes the
classifiers tend to disagree, demonstrating complementarity.
As it can be seen, in this case the stochastic nature of CV
positively affects the performance by introducing diversity to
the ensemble. This result also confirms, that if the goal is
to select a single best model, it is much safer to use DPS,
minimizing the risk of choosing a bad model due to the
discussed stability of decision boundaries. In the context of
ensemble models however, this feature of DPS becomes a
disadvantage and it’s usually better to use a stochastic method.

VI. DISCUSSION

The presented Density Preserving Sampling procedure is an
attractive alternative for cross–validation. For the purpose of

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

azi bio ca

n
cb

a ch
r

clo cn
c cn

t
dia ga2

ga4
ga8 gla ion iri let liv pho sa

t
se

g
sh

u
so

n
sy

n tex thy
ve

h
win

DPS-U-best
DPS-S-best
DPS-U-optim
DPS-S-optim
CV-best
CV-mean
CV-worst

Fig. 13. Bias of DPS error estimate calculated using a single fold (averaged over all classifiers)

Fig. 14. Correlation between bias and CiSI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fis
herc ldc

loglc
nmc

nmsc

quadrc qdc
udc

kll
dc

pcld
c

kn
nc

parze
nc

tre
ec

naive
bc

nusv
c

rbnc

Single model
DPS-comb

CV-comb-best
CV-comb-mean
CV-comb-worst

Fig. 15. Single model v. combination errors for Cone–torus dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fis
herc ldc

loglc
nmc

nmsc

quadrc qdc
udc

kll
dc

pcld
c

kn
nc

parze
nc

tre
ec

naive
bc

nusv
c

rbnc

Single model
DPS-comb

CV-comb-best
CV-comb-mean
CV-comb-worst

Fig. 16. Single model v. combination errors for Synth–mat dataset

the generalization error estimation, k–fold CV is without a
doubt the most widely and commonly used technique, due to
its universal character, simplicity and effectiveness. Its stochas-
tic nature however requires the estimation to be repeated multi-
ple times for different random divisions of the data, in order to
circumvent the risk of obtaining the best/worst–case scenario

estimate, which as demonstrated in this paper can be highly
biased and can have a large variance. The need for running the
procedure multiple times makes it computationally expensive,
forcing the researchers to seek compromise elsewhere, e.g. by
not calculating the full gradient during optimization or taking
other shortcuts, leading to suboptimal solutions. The proposed

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 11

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(a) CV–best (0.1616)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(b) DPS (0.1715)

Fig. 17. Discrete Error Distributions for Cone–torus dataset and qdc (number
of classifiers on X-axis, probability on Y-axis, error rates given in brackets)

DPS procedure is however deterministic; it does not need to
be repeated to improve the quality of the error estimate, at the
same time producing results comparable to repeated CV when
it comes to bias, and superior to CV in terms of the variance
of obtained estimates, at 5–10x lower computational cost.

Another related application area of CV is parameter es-
timation. Since for some models the objective function is
not differentiable wrt. all its parameters, the optimization
procedure must resort to a search in the parameter space. One
example of such situation is the k–NN classifier, for which the
number of nearest neighbours k is usually being set by testing a
number of possible values using CV. In such case, as the search
itself might be very costly depending on the dimensionality
of the search space, the cross–validation is usually not being
repeated in order to save computations. As before, due to the
non–deterministic nature of CV, this can lead to suboptimal de-
cisions based on highly biased performance estimates (worst–
case scenario). Note, that it also applies to other algorithms
requiring calculation of performance estimates repeated many
times like e.g. feature selection. The benefit of using DPS
rather than CV in these scenarios can be tremendous.

In case of some machine learning methods it is a common
practice to cross–train multiple models and select the best
performing one. The cross–training procedure is analogous
to CV, with the difference that the obtained models instead
of being discarded, are considered as candidates for a final
solution. This applies especially to models like decision trees,
which cannot be retrained using the full dataset due to their
instability. The danger here is the combination of a relatively
unstable error estimator with an unstable learning method,
which may lead to selection of one of the worst models rather
than the best. On the other hand, models trained using various
DPS splits will likely be much more similar to each other,
minimizing the risk and cost of incorrect choice.

The final example of possible application of random sam-
pling procedures is early stopping, a technique widely used
in training of universal approximators to prevent overfitting.
In this approach a randomly selected subset of the data is
used for continuous monitoring of model performance during
training, in order to stop it when the validation error starts to
increase, signalling overfitting. The risk of using unrepresenta-
tive validation set is obvious. Although the behavior of DPS in
conjunction with early stopping has not been addressed in this
paper, it forms an interesting and promising research direction.

It is worth to note that a similar attempt to promote usage
of techniques alternative to standard CV had already taken
place in the past. In [36] the authors propose the Distribution–

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(a) CV–best (0.1790)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(b) DPS (0.1790)

Fig. 18. Discrete Error Distributions for Synth–mat dataset and treec (number
of classifiers on X-axis, probability on Y-axis, error rates given in brackets)

Balanced Stratified Cross–Validation method, similar in prin-
ciple to DPS-S. The weakness of this method is however
an arbitrary choice of the reference point for ordering of
instances for subsequent sampling. If the reference point is
chosen poorly, this can result in areas of the input space not
being represented in the sampled subsets, although at the same
time it allows to perform the sampling in time linear in the
size of the dataset. The experimental part of [36] includes only
9 datasets and one classifier, which is one of the reasons for
the lack of wider recognition of the method, although it has
recently been investigated more extensively in [37].

VII. CONCLUSIONS

The correntropy–inspired density–preserving data sampling
procedure developed and investigated in this paper is an alter-
native for cross–validation in many applications. Unlike CV,
DPS is deterministic, which eliminates the need for multiple
repetitions of the sampling procedure to obtain reliable results,
considerably reducing the computational burden.

The main property of the proposed method is that it aims to
produce only representative splits, which has many implica-
tions outlined in previous sections. The experiments performed
on a comprehensive set of public benchmark datasets and a
number of standard classifiers have revealed that:

• For generalization error estimation, DPS is slightly more
biased than 10x repeated cross–validation but has much
lower variance, often lower than the best–case CV sce-
nario. The DPS bias in all cases is also much lower than
in the worst–case CV scenario.

• The decision boundaries of a classifier trained on DPS
folds are much more stable than in the case of a CV folds,
which is the result of representativeness of the subsets
generated by DPS. The stability of models trained on
various DPS divisions of the dataset has been confirmed
in experiments involving ensemble models.

• For model ranking and selection, DPS is at least as good
as 10x repeated CV, at much lower computational cost.

We believe that the one of the strengths of correntropy stems
from its connection to the Information Theoretic Learning
framework. In ITL data vectors are modelled as particles,
whose local interactions determine the global behavior of the
whole system. Hence future research will focus on discovery
of other ITL-based objective functions for selection of a single
representative fold to be used for error estimation, effectively
reducing the computational requirements by another order of
magnitude. This approach appears even more valid and viable
in the light of the empirical results given in [20], which

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ??, OCTOBER 2012 12

show that one of the most intuitive choices for representative
sampling – the PDF divergence measures – is not feasible due
to difficulties with their estimation. Another interesting future
research direction is a version of DPS applicable to streaming
data in the presence of concept drift as well as an alternative,
more computationally efficient CiSI optimization scheme to
enable application of DPS to large datasets.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Union 7th Framework Programme
(FP7/2007-2013) under grant agreement 251617.

REFERENCES

[1] R. Duda, P. Hart, and D. Stork, Pattern Classification 2nd ed. New
York, USA: John Wiley & Sons, 2001.

[2] T. Cover, “Learning in Pattern Recognition.” Stanford University CA,
Stanford Electronics Labs, Tech. Rep., 1968.

[3] B. Efron, “Bootstrap methods: another look at the jackknife,” The Annals
of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[4] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proceedings of the 14th International
Joint Conference on Artificial Intelligence, vol. 2, no. 12. Morgan
Kaufmann, 1995, pp. 1137–1145.

[5] A. Harzing, “Publish or Perish,” www.harzing.com/pop.htm.
[6] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample and out-

of-sample model selection and error estimation for support vector
machines,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 23, no. 9, pp. 1390–1406, 2012.

[7] W. Liu, P. Pokharel, and J. Principe, “Correntropy: A Localized Sim-
ilarity Measure,” in Proceedings of the International Joint Conference
on Neural Networks, 2006, pp. 4919–4924.

[8] M. Budka and B. Gabrys, “Correntropy–based density–preserving data
sampling as an alternative to standard cross–validation,” in Proceedings
of the IEEE World Congress on Computational Intelligence. IEEE,
2010, pp. 1437–1444.

[9] A. Antos, L. Devroye, and L. Gyorfi, “Lower bounds for Bayes
error estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 7, pp. 643–645, 1999.

[10] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: A re-
view,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 1, pp. 4–37, 2000.

[11] S. Weiss and C. Kulikowski, Computer systems that learn. San
Francisco, USA: Morgan Kaufmann, 1991.

[12] B. Efron and R. Tibshirani, An introduction to the bootstrap. Chapman
& Hall/CRC, 1993, vol. 57.

[13] A. Molinaro, R. Simon, and R. Pfeiffer, “Prediction error estimation: a
comparison of resampling methods,” Bioinformatics, vol. 21, no. 15, pp.
3301–3307, 2005.

[14] J. Kim, “Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap,” Computational Statistics & Data
Analysis, vol. 53, no. 11, pp. 3735–3745, 2009.

[15] S. Borra and A. Di Ciaccio, “Measuring the prediction error. a com-
parison of cross-validation, bootstrap and covariance penalty methods,”
Computational statistics & data analysis, vol. 54, no. 12, pp. 2976–2989,
2010.

[16] Y. Dodge, D. Cox, D. Commenges, A. Davison, and P. Solomon, The
Oxford dictionary of statistical terms. Oxford, UK: Oxford University
Press, 2006.

[17] A. Cichocki and S. Amari, “Families of Alpha–Beta–and Gamma–
Divergences: Flexible and Robust Measures of Similarities,” Entropy,
vol. 12, no. 6, pp. 1532–1568, 2010.

[18] S. Kullback and R. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[19] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[20] M. Budka, B. Gabrys, and K. Musial, “On accuracy of PDF divergence
estimators and their applicability to representative data sampling,” En-
tropy, vol. 13, no. 7, pp. 1229–1266, 2011.

[21] M. Budka, “Physically inspired methods and development of datadriven
predictive systems,” Ph.D. dissertation, PhD thesis, Bournemouth Uni-
versity, UK, 2010, 2010.

[22] J. Principe, D. Xu, and J. Fisher, “Information Theoretic Learning,” in
Unsupervised Adaptive Filtering, S. Haykin, Ed. John Wiley & Sons,
2000, pp. 265–319.

[23] J. Principe, D. Xu, Q. Zhao, and J. Fisher, “Learning from Examples
with Information Theoretic Criteria,” The Journal of VLSI Signal Pro-
cessing, vol. 26, no. 1, pp. 61–77, 2000.

[24] I. Santamarı́a, P. Pokharel, and J. Principe, “Generalized correlation
function,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp.
2187–2197, 2006.

[25] ——, “Generalized correlation function: Definition, properties, and
application to blind equalization,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 6, pp. 2187–2197, 2006.

[26] W. Liu, P. Pokharel, and J. Principe, “Correntropy: properties and
applications in non–Gaussian signal processing,” IEEE Transactions on
Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007.

[27] ——, “Error Entropy, Correntropy and M–Estimation,” in Proceedings
of the 16th IEEE Signal Processing Society Workshop on Machine
Learning for Signal Processing. IEEE, 2006, pp. 179–184.

[28] M. Budka and B. Gabrys, “Ridge regression ensemble for toxicity
prediction,” Procedia Computer Science, vol. 1, no. 1, pp. 193–201,
2010.

[29] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[30] A. Asuncion and D. Newman, “UCI Ma-
chine Learning Repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[31] “Enhanced Learning for Evolutive Neural Architec-
ture (ELENA) Database,” 1995. [Online]. Available:
http://www.dice.ucl.ac.be/mlg/?page=Elena

[32] R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D. Tax,
and S. Verzakov, “PR–Tools 4.1, A MATLAB Toolbox for Pattern
Recognition,” 2007, http://prtools.org.

[33] L. Kuncheva, Fuzzy classifier design. Heidelberg, Germany: Physica
Verlag, 2000.

[34] B. Ripley, Pattern recognition and neural networks. Cambridge, UK:
Cambridge University Press, 1996.

[35] L. Kuncheva, Combining pattern classifiers: methods and algorithms.
New York, USA: John Wiley & Sons, 2004.

[36] X. Zeng and T. Martinez, “Distribution-balanced stratified cross-
validation for accuracy estimation,” Journal of Experimental & The-
oretical Artificial Intelligence, vol. 12, no. 1, pp. 1–12, 2000.

[37] J. Moreno-Torres, J. Sáez, and F. Herrera, “Study on the impact
of partition-induced dataset shift on¡ formula formulatype=,” Neural
Networks and Learning Systems, IEEE Transactions on, vol. 23, no. 8,
pp. 1304–1312, 2012.

Marcin Budka received a dual BA+MA degree in
finance and banking from the University of Eco-
nomics, Katowice, Poland, in 2003, BSc in com-
puter science from University of Silesia, Poland,
in 2005 and PhD in computational intelligence
from Bournemouth University, UK, in 2010, where
he currently holds the Lecturer in Computational
Intelligence position. His current research inter-
ests include Information Theoretic Learning, meta-
learning, adaptive systems, ensemble models and
complex networked systems with focus on evolution

and dynamics of social networks.

Bogdan Gabrys received MSc in electronics and
telecommunication from Silesian Technical Univer-
sity, Poland, in 1994, and PhD in computer science
from Nottingham Trent University, UK, in 1998.
After many years of working at different Univer-
sities, he moved to the Bournemouth University in
January 2003, where he holds a Chair in Compu-
tational Intelligence position and acts as a director
of the Smart Technology Research Centre within
the School of Design, Engineering and Computing.
His current research interests lay in a broad area

of intelligent, complex adaptive systems and include a wide range of ma-
chine learning, biologically/nature inspired learning and hybrid intelligent
techniques encompassing data and information fusion, learning and adaptation
methods, multiple classifier and prediction systems, processing and modelling
of uncertainty in pattern recognition, diagnostic analysis and decision support
systems.

