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The Force Density Method without the agonizing pain

Richard Southern

Wednesday 18th May, 2011

1 Introduction

The method of force density was developed in re-
sponse to the need for computational modelling of
structures for the Munich Olympic complex[Lewis,
2003]. The method relies on the assumption that
the ratio of tension force to length of each cable can
be constant, transforming a system of non-linear
equations to a set of linear equations which can be
solved directly.

The Force Density Method (FDM), first intro-
duced by [Schek, 1974], is commonly used in engi-
neering to find the equilibrium shape of a struc-
ture consisting of a network of cables with dif-
ferent elasticity properties when stress is applied.
While shape analysis of tensile structures is a geo-
metrically non–linear problem, the FDM linearises
the form–fitting equations analytically by using the
force density ratio for each cable element, q = F/L,
where F and L are the force and length of a cable
element respectively.

2 The Force Density Method

Given the positions of nodes (vertices) which con-
nect the cables (edges) of our network V , the topol-
ogy of this network is encoded in the branch–node

matrix C (see Figure 1. Given a load vector R and
the diagonal matrix of force densities Q, the equi-
librium location can be deduced by solving for X
in

(CT QC)X = R. (1)

The FDM has certain properties which makes it
of interest in computer graphics:

• it represents a minimum energy surface, and
therefore

• it approximates a C2 continuous surface,

• it depends only on the force density of the
edges and the topology of the network, and

• the system is sparse, symmetric and positive
definite, quickly solved using the conjugate
gradient method.

Cf C

1 2 3 4 5 6 7 8

a 1 . . -1 . . . .
b . 1 -1 . . . . .
c . . 1 -1 . . . .
d 1 . . -1 . . . .
e 1 . . . -1 . . .
f . 1 . . . -1 . .
g . . 1 . . . -1 .
h . . . 1 . . . -1
i . . . . 1 -1 . .
j . . . . . 1 -1 .
k . . . . . . 1 -1
l . . . . 1 . . -1

Figure 1: Deriving the branch–node matrix. Each
row corresponds to an edge, while columns corre-
spond to nodes. Note that the order in which the
nodes are specified on the edge will not affect the
system.

3 Embedding

In order to use the FDM for 2D embedding, we
must be able to constrain nodes on the bound-
ary. For this, the matrix C is separated into two
sub–matrices: Cf contains constrained nodes with
corresponding position Xf , while C contains those
that are free to move. The problem in Equation 1
is reformulated as

(CT QC)X = R − (CT QCf )Xf . (2)
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Note that for the purposes of embedding, R is typ-
ically set to zero.

The FDM is fold–over free. This is explained
with reference to Figure 2. As the natural rest in-
ternal force load of each node is 0, any foldover will
result in external forces applied to the nodes which
have folded over. As a result it will not be in a
state of equilibrium, and this configuration cannot
occur.

Figure 2: Foldover with FDM cannot occur, as it
will not be in a state of equilibrium.

4 Stability under motion

The FDM cannot guarantee any of the commonly
advocated properties of embeddings in computer
graphics, such as isometry (length preserving) or
conformality (angle preserving). In our applica-
tion, it is desirable that the path of a vertex or
a group of vertices moving across the surface of
the shape is mirrored in the embedding. We evalu-
ate this phenomenon by measuring the distortion of
these displacement vectors in the embedded space.
We call this property stability under motion.

In Figure 3, we compare two popular fixed
boundary conformal techniques, Harmonic map-
pings [Eck et al., 1995] and Mean Value Coordi-
nates [Floater, 2003] with the FDM with unit edge
forces. The stability under motion of these em-
bedding methods is highly non–linear, and so we
evaluate each embedding technique experimentally
as follows:

1. Compute the embedding U0 = embed(M0).

2. Rotate a set of points on the sphere (in this
case, one triangle) in a straight path around
the surface of the sphere.

3. For each state of the rotation Mi compute
Ui = embed(Mi).

Harmonic Mean Value FDM
[Eck et al., 1995] [Floater, 2003] [Schek, 1974]

Figure 3: A comparison of the stability under mo-
tion of three embedding techniques.

4. Compute the n displacement vectors in the
embedded space. So for each u0,i ∈ U0 and
ud,i ∈ Ud define di as the vector between u0,i

and ud,i, and

D = [d1, . . . ,dn]
T

.

5. We use the angle of the normal
cone of these displacement vectors
α = maxi,j (acos(di · dj)) as the distor-
tion error. For this experiment, we evaluate
the distortion of only the points moving on
the surface.

Figure 3 demonstrates that under all rotations
the FDM embedding is stable, even when faces of
Md overlap. In addition, there is considerably less
displacement of surrounding nodes after rotations.

5 Conclusion

I have presented the force density method as a tech-
nique to perform mesh embedding using this tech-
nique. It is computationally efficient, as it only
involves the solution to a sparse linear system, eas-
ily solved with the Conjugate Gradient Method or
using Cholesky Factorization. In Figure 3 I demon-
strate that embedding with FDM is very stable,
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preventing foldover and discontinuities when pa-
rameterizing an unstable triangulation. This is par-
ticularly useful when, for example, you need to flat-
ten geometry in a stable fashion (for example, see
Zhang et al. [2007]).
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