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Abstract

This note explores the link between anticipated information and a

preference for liquidity in investment choices. Given a subjective or-

dering of investment portfolios by their liquidity, we identify a suffi-

cient condition under which the prospect of finer resolution of uncer-

tainty creates a preference for more liquid positions. We then show

how this condition might arise naturally in some standard classes of

sequential decision problems.
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The conception of what contributes to “liquidity” is a partly vague
one, changing from time to time and depending on social practices
and institutions. The order of preference in the minds of owners of
wealth . . . however is quite definite and is all we require for our anal-
ysis of the behaviour of the economic system.

Keynes (1936)

1 Introduction

The recent financial crisis has, once again, drawn attention to the issue of
liquidity. Illiquidity reflects frictions in markets, which tend to be glossed
over in periods of ostensible prosperity, but less so in times of economic
distress. In asset markets illiquidity can emerge for a variety of reasons.
It might reflect the difficulty of locating buyers in environments that in-
volve costly search for counter-parties. In thick markets it can arise due
to informational asymmetries that make it hard for a seller to convince
prospective buyers of the true value of assets offered for sale. At the onset
of the current crisis, as interbank lending dried up, many financial insti-
tutions were said to be suffering from a liquidity crisis. In hindsight, in
many cases the problem turned out to be that of insolvency rather than
illiquidity.

The idea of liquidity and the notion of liquidity preference were major
element in Keynes’ analysis of the economic crisis of the 1930s. Indeed,
Hicks (1982) thought that liquidity was a ‘Keynesian word’, in that it was
Keynes who introduced the term into academic discourse. In his Treatise
on Money, Keynes (1930) even attempted to define liquidity: he described
one asset as more liquid than another ‘if it is more certainly realisable at
short notice without loss’. As the opening quote suggests, by the time it
came to the General Theory, Keynes (1936) was less insistent on the need
for precise characterization.
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Hicks himself continued his quest for a suitable definition of liquidity
for a long time: he thought that Keynes’ original definition encompassed
too many attributes of assets to generate an operational understanding of
liquidity. Further, if liquidity depended on multiple attributes, any order-
ing of assets by their liquidity could only be a partial ordering. For Hicks
the operative bit of the Keynesian definition was that the value of liquid
assets is ‘more certainly realisable’. Assets whose market price is time-
varying, say, due to some exogenous uncertainty are less reliable stores of
value than assets whose price is steady. The price trajectory may not be
extraneous to the factors that prompt sale of the asset. Some assets are
illiquid because the states of the world in which an owner would want
to sell them are precisely the states in which others are reluctant to buy
them. Residential property is illiquid in part because it is costly to locate
buyers in a hurry but also because prices are likely to be depressed, due to
correlated cyclical shocks in income, precisely at times when individuals
may need to sell their house. The latter friction is particularly relevant for
derivative assets such as mortgage-backed securities, where the problem
is not so much one of locating potential buyers, but of realising the value
of assets that have turned toxic.

Of course, there have been numerous attempts to construct objective
measures of liquidity, at least in particular settings. Lippman and Mc-
Call (1986) considered a search-theoretic model in which the illiquidity of
an asset relates to the costly wait for a buyer with sufficiently high will-
ingness to pay. If buyers arrive by a random process there is a tradeoff
between early sale at a possibly low price and the costly wait for a better
offer. Lippman and McCall proposed an ‘operational measure of liquidity’
to capture this tradeoff in a single index: namely, the expected time taken
to sell the asset under an optimal selling policy (one that maximizes the
expected discounted value of the proceeds from sale). For them one asset
is less liquid than another if it takes longer to sell under an optimal selling
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policy. While appealing at first glance, their measure can generate coun-
terintuitive measures of liquidity. For instance, they end up concluding
that an increase in search costs can increase the liquidity of assets, because
higher search costs lower the expected time to sale by lowering the reser-
vation price. By design, their construct ignores the fact that the quicker
sale involves a lower realised price.

Our approach to liquidity follows that articulated by Hicks (1974). For
Hicks, a preference for liquidity arises in contexts that involve sequential
adjustments of choices in light of new information. Sequentiality matters
when choices in one period constrain choices in later periods (say, if some
initial choices are irreversible) or affect the cost of making subsequent
choices (say, due to transaction costs incurred in adjusting portfolios). If
choices across time were independent, an agent could react optimally to
all currently-available information each period, with no particular reason
to value liquidity. The sequential arrival of information matters because
it provides the impetus to adjust choices. In this analysis investment in
liquid assets like ‘barren’ money is valuable purely because it enables in-
vestors to respond more easily to new information. This approach had
precursors in the earlier works of Marschak (1949) and Hirschleifer (1972),
among others. Mukherji and Sanyal (1988) explored how uncertainty and
irreversibility can generate positive demand for liquid assets with low or
negligible rates of return.

Our enquiry goes beyond explaining why a preference for liquid as-
sets might arise. Rather, we focus on how the intensity of this preference
varies with the degree of uncertainty (or, more accurately, with the antic-
ipated resolution of the uncertainty). It is often suggested that the great
uncertainty that accompanies economic crises reinforces a preference for
liquidity. In the spirit of this exercise, Jones and Ostroy (1984)explored
the link between flexibility and what they called the variability of beliefs.
Hahn (1990) explored this idea further in a model where the adjustment of
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financial portfolios is impeded by transactions costs. He proposed an in-
dex that measures the illiquidity of a portfolio in terms of what we would
be willing to pay, ex ante, to escape future transactions costs. Clearly, this
subjective measure of illiquidity will be larger for agents who believe that
new information is more likely to prompt significant adjustments to their
portfolios, and especially so for agents who face high transactions costs.
This, he reasoned, would allow him to establish a link between prefer-
ence for liquidity and the prospect of future information. However, as
constructed, Hahn’s illiquidity index turns out to a proxy of the value of
anticipated information itself, rather than a means of discovering the re-
lationship between information and liquidity. As Arrow (1995) noted in a
closely related context, ‘it is intuitively reasonable that greater the antici-
pated information the greater the flexibility desired’, but ‘it is rather hard,
as it turns out, to define the concepts rigorously and get definite results’.
Our paper offers a modest step in this direction.

2 A General Result

We explore the contention that the prospect of finer resolution of uncer-
tainty creates a preference for more liquid portfolios. While this conjec-
ture seems intuitively plausible, its specification requires some care. First,
we need to pick the criterion for ranking different portfolios according to
their liquidity. We could do this by specifying the transactions technology
or describing how choices in one period constrain choices in later periods.
We then need to show how liquidity interacts with the resolution of un-
certainty. A fully-developed model along these lines would allow us to
demonstrate the link between the information structure and a preference
for liquidity.

We begin, however, with an approach that allows the ordering of choices
by their liquidity to be a primitive relation. In doing so, we allow for the
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possibility, implicit in Keynes’ remark, that such orderings may be purely
subjective. Consider an agent who must choose a position x from set X of
available choices. For x′, x′′ ∈ X, we define a binary relation �`, where
x′ �` x′′ is to be understood as the agent considers x′ to be at least as liq-
uid as x′′. We do not require that this ordering be complete; that is, we
allow the possibility that an individual may not be able to rank all pairs
of choices in X according to their liquidity. The pair (X,�`) is a partially-
ordered set if�` is reflexive, transitive and anti-symmetric on X.1 Further,
given a weak order (‘as liquid as’) as the primitive binary relation, we can
construct a strict ordering (‘more liquid than’) in the usual way: we denote
the strict relation as �`.

The temporal resolution of uncertainty is modeled as an information
structure. The underlying uncertainty is described by a set of states of na-
ture. Information arrives in the form of signals that, over time, rule out
some of these states. An information structure is given by the set of states,
the set of signals, and a ‘theory’ that relates the signals to the possibility of
various states. Information structures differ in their precision or informa-
tiveness in a sense to be elaborated below. Let Y be the set of all available
information structures, with typical element y. Assume that there exists
an ordering �i on set Y, where y′ �i y′′ is to be understood as y′ is at least
as informative as y′′. Given a weak order (‘as informative as’) we can con-
struct a strict ordering (‘more informative than’), to be denoted as �i. As
for the liquidity ordering, the informativeness order is partial.

Consider a sequential decision problem in which the agent makes an
initial choice x ∈ X and then reacts optimally to information structure
y ∈ Y. We assume that the individual’s choice can be represented as max-
imizing the value of some function V : X × Y → R. For instance, V(x, y)
could be interpreted as the expected utility of a sequence of actions that

1Reflexivity and transitivity do not require elaboration; a binary relation � on a set Z
is said to be anti-symmetric if z′ � z′′ and z′′ � z′ imply z′ = z′′.
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involve initial action x and then reacting optimally to signals generated
by information structure y.

Any reasonable specification of the decision problem would place some
restrictions on this value function. For instance, it is reasonable to posit
that information is valuable in a weak sense, so that V(x, y′) ≥ V(x, y′′)
for y′ �i y′′.2 That greater informativeness is valuable does not by itself
lead us to conclude that greater informativeness will induce the selection
of more liquid positions. To see what is involved, consider the family of
optimization problems parameterized by information structure y:

max
x∈X

V(x, y), y ∈ Y. (1)

Let M(y) be the set of maximizers to problem (1) for any given y. That is,

M(y) ≡ arg max
x∈X

V(x, y). (2)

Our question then is, if y′ is more informative that y′′, can we rank choices
in M(y′) and M(y′′) in terms of their liquidity? As we show below, what
we require is that the relative advantage of greater liquidity be increas-
ing in the precision of information, in effect, a complementarity between
liquidity and informativeness.3 We introduce the following restriction.

Definition 1 (Increasing differences) Let (X,�`) and (Y,�i) be partially-
ordered sets. A function V : X× Y → R is said to have increasing differences in

2We ignore here the possibility that finer information may be costlier to process or
may impose psychic decision-making costs.

3In contexts where the objective function V(x, y) is differentiable, and interior optima
characterized by first-order conditions, comparative static exercises of this sort rely on
the implicit function theorem. Specifically, if x and y were real-valued, and V(x, y) was
twice-differentiable, complementarity could be reduced to the restriction that the cross-
partial Vxy be positive. Our treatment here does not require differentiability and so allows
for greater generality.
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its two arguments x and y if for all x′ �` x′′ and y′ �i y′′, we have

V(x′, y′)−V(x′′, y′) ≥ V(x′, y′′)−V(x′′, y′′).

We have strictly increasing differences when each of the relations above is strict.

Proposition 1 follows directly from Topkis (1998).

Proposition 1 Let (X,�`) and (Y,�i) be partially-ordered sets, and V : X ×
Y → R be a real-valued function. Consider x′ ∈ M(y′) and x′′ ∈ M(y′′) for
y′ �i y′′. If V(x, y) has strictly increasing differences in x and y, then it cannot
be that x′′ �` x′.

Proof: Suppose, contrary to the claim, we have x′′ �` x′. Consider the
following string of inequalities:

0 ≥ V(x′′, y′)−V(x′, y′) > V(x′′, y′′)−V(x′, y′′) ≥ 0.

The first inequality follows from the assumed optimality of x′ for infor-
mation structure y′ (namely that x′ ∈ M(y′)), the second strict inequality
follows from strictly increasing differences (given y′ �i y′′ and our sup-
position that x′′ �` x′) and the last inequality follows from the assumed
optimality of x′′ for y′′. As one of the inequalities is strict, we have a con-
tradiction. �

In words, given strictly increasing differences in the value function, the
prospect of less precise information cannot induce the choice of a more
liquid position. The crucial restriction – increasing differences – is a suffi-
cient condition to generate a weak ordering of optimal choices according
to their liquidity. In the next section we show how such complementarity
between liquidity and information might arise naturally in the context of
sequential decision problems.

7



3 Liquidity and Information

We consider the simplest setting in which an agent must make choices
in two periods, t = 1, 2. His choice a ∈ A in period 1 is followed by
b ∈ B(a) in period 2. The assumption that the initial choice a affects the
set of subsequent choices, B(a), allows us to capture the idea that some
initial positions are more liquid – or afford more flexibility – than others.
In particular, we say that one initial choice is more liquid than another if it
permits a larger set of subsequent choices. Formally,

a �` a′ if and only if B(a′) ⊆ B(a).

Note that any ordering based on the criterion of set inclusion will, in gen-
eral, be incomplete so that not all pairs of initial choices can be ranked in
terms of their liquidity. Special cases may permit complete orderings: for
instance, if investment in all assets other than cash is irreversible, then the
liquidity ordering of portfolios depends unambiguously on the cash held
in them.

In our sequential decision problem the payoff to future choices is un-
certain but the uncertainty is gradually resolved over time. We model
uncertainty in the usual way, as possible realizations of a state of nature.
For simplicity, we take the set of states, Ω, to be finite, with typical element
ωk. We focus on settings in which the payoff to any profile of choices (a, b)
is separable across time:4

u(a, b, ω) = u1(a) + u2(b, ω). (3)

After making the initial choice but prior to making the period 2 choice,
some of the uncertainty is resolved. We model the arrival of information

4Note that we also rule out any uncertainty in period 1 payoff: that can be incorpo-
rated without affecting our results.

8



as follows: there exists a signal function σ : Ω → R that assigns a real
number s ∈ S to every state in Ω. Formally, the information structure
is given by a partition P of Ω. The typical element p(s) of this partition
comprises all states that generate the signal s. That is,

p(s) = {ω ∈ Ω : σ(ω) = s}.

Put simply, a signal identifies some element of the partition in which the
true state lies, ruling out other states. Beliefs over the set of states are up-
dated in a Bayesian fashion. Let πk denote the prior probability associated
with state ωk. The ex-ante likelihood of signal s is

q(s) =

{
∑
k

πk : σ(ωk) = s

}
.

The posterior probability of state ωk conditional on signal s is :

πk|s =


πk

q(s) if σ(ωk) = s

0 otherwise.

An information structure is fully specified by the set Ω, the associated pri-
ors {πk}k, the signal function σ, and the set S of signals. Where it causes
no ambiguity, we will refer to an information structure by its associated
signal function σ.

Given a signal s, in period 2 the agent chooses b ∈ B(a) to maximize
expected utility given updated beliefs. Define this optimized value, con-
ditional on initial choice a and signal s, as

v2(a, s) = max
b∈B(a)

∑
k

πk|su2(b, ωk). (4)
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If so, the decision problem in the initial period is to choose a to maximize

V(a, σ) = u1(a) + ∑
s∈S

q(s)v2(a, s). (5)

The value V(a, σ) is sensitive to the precision of anticipated informa-
tion. As formalized by Blackwell (1951), one information structure σ′ is
said to be more informative than another σ if it induces a finer partition of
the set of states. Formally, we say σ′ �i σ if the partition P′ induced by σ′

refines partition P induced by σ.5

Our aim is to compare an agent’s initial choices under alternative in-
formation structures. Consider σ′ �i σ. Let sj denote a typical signal
generated by the (coarse) information structure σ, and let s′i be a typical
signal generated by the (finer) information structure σ′. Consider the typ-
ical element of the coarse partition P:

p(sj) = {ω ∈ Ω : σ(ω) = sj}.

If information partition P′ refines P, there exists a set of signals s′i gener-
ated by σ′ such that

I(sj) = {s′i : p(sj) = ∪p′(s′i)}.

In effect, I(sj) is the set of signals under the more informative signal func-
tion σ′ that are ‘garbled’ into a common signal sj under σ. The Bayesian
updating mechanism implies the following relationship:

∑
s′i∈I(sj)

q(s′i)πk|s′i = q(sj)πk|sj
. (6)

5Thus, signal function σ′ is more informative than signal function σ if σ(ω) 6= σ(ω′)
implies σ′(ω) 6= σ′(ω′) for any pair of states ω, ω′, and σ′(ω) 6= σ′(ω′) for some pair of
states ω, ω′ with σ(ω) = σ(ω′).
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How does informativeness affect the preference for liquidity? Recall
that, by Proposition 1, greater informativeness results in a choice of weakly
more liquid positions as long as the value function V(a, σ) has strictly in-
creasing differences in a and σ. We develop two examples to illustrate how
such increasing differences can emerge in familiar settings.

3.1 Irreversible choices

Consider, first, an example in which an agent must choose from a discrete
set of alternatives in each period. In period 1 the agent can invest his unit
endowment in one of N productive assets (labeled n = 1, 2, . . . N) or hold
it as liquid cash (asset m). Assume that investment made in a produc-
tive asset in period 1 is strictly irreversible in the second period (the strict
irreversibility can be relaxed somewhat without affecting our qualitative
results). In contrast, cash holdings can be transformed costlessly into any
productive asset in period 2. In terms of notation developed above, the set
of initial choices is A = {1, 2, . . . , N, m}. Given a ∈ A, the set of permissi-
ble second-period choices is

B(a) =

A if a = m,

{a} otherwise.
(7)

This structure captures, in an extreme fashion, the idea that cash holdings
are more liquid than irreversible investment in productive assets. That is,
m �` n for all n. The various productive investments n are all irreversible
so cannot be ranked against each other in terms of their liquidity.

In keeping with our general setting, the payoff to any profile of choices
(a, b) is uncertain and depends on the unknown state of nature ω:

u(a, b, ω) = u1(a) + u2(b, ω)
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Prior to making his period-2 choice the agent receives a signal s that pro-
vides information about the relative profitability of various productive as-
sets. The payoff to choosing initial action a when facing information struc-
ture σ is

V(a, σ) = u1(a) + ∑
s∈S

q(s)v2(a, s), (8)

where v2(a, s) is as defined in equation (4).

Proposition 2 Given (7) and (8), the function V(a, σ) has increasing differences
in a and σ.

A formal proof is in the Appendix but the intuition is straightforward.
It is sufficient to compare initial choice a = m with any one of the ini-
tial choices a ∈ {1, 2, . . . N}. Consider σ′ �i σ. If the agent’s choice
is irreversible, information is of no value, so that V(n, σ′) = V(n, σ) for
n = 1, 2, . . . , N. On the other hand, holding liquid cash allows the agent to
react to new information, and the agent cannot be worse off with a more
informative set of signals: V(m, σ′) ≥ V(m, σ).

Together these two imply V(m, σ′) − V(n, σ′) ≥ V(m, σ) − V(n, σ).
Of course this only amounts to weakly increasing differences. Strictly in-
creasing differences emerge whenever the finer information is more in-
formative in a decision-relevant fashion: we require that there exist some
s′i ∈ I(sj) such that optimal second-period choice under s′i differs from
optimal choice under sj.

3.2 Concavity and increasing differences

Increasing differences can be established for another broad class of se-
quential decision problems that involve a mild restriction on the utility
specification u(a, b, ω). Assume the choice set in each period is a compact
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interval of the set of real numbers. Given a ∈ A ⊆ R+, we specify

B(a) = {b ∈ R+ : b ≤ a}.

The value a may refer, for instance, to the amount of cash holdings in a
portfolio, with the proviso that second period investment is constrained
by available cash holdings.6 Here the liquidity of initial portfolios is com-
pletely ordered by the amount of cash held.

As before, ex-ante the payoff to any profile of choices (a, b) is uncertain:

u(a, b, ω) = u1(a) + u2(b, ω).

The uncertainty is resolved partially prior to making the second-period
choice so that the value of initial choice a when facing information struc-
ture σ is

V(a, σ) = u1(a) + ∑
s∈S

q(s)v2(a, s), (9)

where v2(a, s) is as defined in equation (4). For this case we have the fol-
lowing proposition.

Proposition 3 If u2(b, ω) is concave in b, the function V(a, σ) has increasing
differences in a and σ.

Once again, the proof is the Appendix but some intuition can be pro-
vided here. In this setting the second-period optimization problem in-
volves the constrained maximization of a univariate concave function. Con-
ditional on receiving a signal, either the constraint does not bind or, if it
does, the best constrained-response is independent of the received signal.
This feature, it turns out, is sufficient for the result to carry through.

6This assumes that all second period choices need to be financed outright. If cash is
required solely to finance expected ‘margin requirements’, cash holdings need only be
a fraction of second-period investment. Our arguments can easily be modified to cover
such cases.
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Concavity is a commonly-used restriction in many economic models.
Indeed, in many cases, the payoff function is linear (that is, weakly con-
cave) in the choice variable, so concavity does not appear to be too strin-
gent as a requirement. Once again, as stated, the proposition only estab-
lishes weakly increasing differences: mild additional context-specific re-
strictions can establish strictly increasing differences.

4 Conclusion

This paper examines how the precision of anticipated information affects
the preference for liquidity. It is commonly asserted that the preference for
liquid or flexible positions is stronger if new information is likely to bring
about drastic revision of current beliefs. We identify a form of comple-
mentarity between liquidity and information orderings that is sufficient to
establish such a relationship. As Proposition 1 shows, when this comple-
mentarity condition – the so-called increasing differences – holds, greater
informativeness cannot induce the choice of less liquid positions.

We then demonstrate how such complementarity might arise in partic-
ular classes of sequential decision problems. Where the choice is between
a discrete set of irreversible investments and liquid cash, greater informa-
tiveness increases the reward, other things equal, to holding liquid cash.
Alternatively, when the choice set is a compact interval constrained by the
amount of available liquid assets, mild restrictions on the payoff functions
– in particular, concavity – can generate the crucial complementarity be-
tween liquidity and informativeness. While we develop these two classes
of sequential decision problems as examples, other restrictions can gener-
ate the same complementarity in a variety of other contexts. Thus in iden-
tifying the crucial form of complementarity we provide a possible route to
analysing the relationship between information and liquidity.
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A Appendix

Proof of Proposition 2: Consider σ′ �i σ. Note first that, given the strict
irreversibility of choices n = 1, 2, . . . N, information is of no value when
a = n. It follows directly from (6) that V(n, σ′) = V(n, σ).

We claim, next, that V(m, σ′) ≥ V(m, σ). This follows from the fact that
one cannot be worse off with a more informative set of signals. Formally,
following m in the initial period, let b∗j be the optimal second period choice
in response to some coarse signal sj ∈ S and let b∗i be the optimal response
to a finer signal s′i ∈ S′. Let πkj and πki denote the associated posterior
beliefs over the set of states. By construction, if b∗i is optimal given s′i we
have

∑ πkiu2(b∗i , ωk) ≥∑ πkiu2(b∗j , ωk). (A.1)

Aggregating this over all s′i ∈ I(sj) and using (6), we have

∑
s′i∈I(sj)

q(s′i) ∑ πkiu2(b∗i , ωk) ≥ q(sj) ∑ πkju2(b∗j , ωk). (A.2)

Aggregating this over all sj ∈ S, we have V(m, σ′) ≥ V(m, σ).
Lastly, if the greater informativeness is decision-relevant – that is, for

some sj and s′i ∈ I(sj) we have b∗i 6= b∗j – then inequality (A.1) above is
strict, and consequently we have V(m, σ′) > V(m, σ). �

Proof of Proposition 3. Consider σ′ �i σ. Here the liquidity ordering is
given by the natural order on set A. We need to show that if u2(b, ω) is
concave in b, then for a′ ≥ a, we have

V(a′, σ′)−V(a, σ′) ≥ V(a′, σ)−V(a, σ). (A.3)

We have
V(a, σ) = u1(a) + ∑

s∈S
q(s)v2(a, s), (A.4)
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where
v2(a, s) = max

b≤a
Eω|su2(b, ω). (A.5)

For a given pair of initial choices a′ and a, with a′ > a, define

h(s) = v2(a′, s)− v2(a, s) (A.6)

to be the benefit, conditional on receiving signal s, of choosing the more
liquid position a′ relative to a. A larger constraint set can only improve the
outcome, so h(s) ≥ 0.

If σ′ is more informative than σ, then every signal sj ∈ S is associated
with a set I(sj) ⊂ S′ of refined signals. Given (A.4), (A.5) and (A.6), a
sufficient condition for (A.3) is that

∑
s′i∈I(sj)

q(s′i)h(s′i)− q(sj)h(sj) ≥ 0 for all sj ∈ S. (A.7)

We check that this condition holds for various cases. Define b∗j be the op-
timal unconstrained response to signal a typical coarse signal sj and simi-
larly b∗i for finer signal s′i. We consider three cases.
Case I. Let signal sj be such that b∗j ≤ a < a′, so that neither constraint
binds: if so, h(sj) = 0. Given that h(s′i) ≥ 0, condition (A.7) holds for this
case.
Case II. Suppose, next, that a < b∗j ≤ a′ so that constraint a binds under sj

but a′ does not. Given concavity of the objective function, if a binds, the
best constrained response is precisely b = a. If so,

h(sj) = ∑ πk|sj
[u2(b∗j , ωk)− u2(a, ωk)].

To save on notation, we write h(sj) = Ej[ũ2(b∗j )− ũ2(a)], where the expec-
tation is with respect to beliefs conditioned by signal sj. For Case II, we
consider three sub-cases, depending on possibilities for b∗i in response to
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typical signal s′i ∈ I(sj).

h(si) =


0 if b∗i ≤ a < a′

Ei[ũ2(b∗i )− ũ2(a)] if a < b∗i ≤ a′

Ei[ũ2(a′)− ũ2(a)] if a < a′ < b∗i .

We partition the set of signals I(sj) into I1(sj), I2(sj) and I3(sj) to corre-
spond to the three sub-cases. Then, using (6) expression (A.7) reduces to

∑
I1

qiEi[ũ2(a)− ũ2(b∗j )] + ∑
I2

qiEi[ũ2(b∗i )− ũ2(b∗j )] + ∑
I3

qiEi[ũ2(a′)− ũ2(b∗j )]

(A.8)
For sub-case 2 (that is, if s′i ∈ I2(sj)), b∗i is the optimal response to signal s′i,
so must provide an expected payoff at least as large as any other response
b∗j (and strictly larger is b∗i 6= b∗j ). If so, the second summation in the
above expression is necessarily non-negative. For sub-case 1 (that is, if
s′i ∈ I1(sj)), we have b∗i ≤ a < a′, so Eiũ2(x) is monotonically decreasing
in the interval (a, a′). As b∗j is assumed to lie in that interval, Ei[ũ2(a) −
ũ2(b∗j )] is non-negative. A similar argument proves the non-negativity of
the expression in sub-case 3.
Case III: a < a′ < b∗j . This case is handled like Case II: consider the three
sub-cases for s′i ∈ I(sj) and check that the left hand side of (A.7) is non-
negative.

While this argument establishes only weakly increasing differences, if
σ′ is strictly more informative than σ, and if this greater informativeness
is decision-relevant – that is, there exists some pair sj and s′i ∈ I(sj) where
b∗i 6= b∗j – then inequality (A.8) is strict, establishing strictly increasing
differences.
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