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Abstract: Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a

severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B
bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC),

making work with recombinant toxin difficult. To reduce the hazard posed by work with

recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A),
previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of

H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the

putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in
domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants

Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that

correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface
exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of

Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to

ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell
surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan

(b-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding

site. These findings have important implications for developing strategies designed to neutralise
toxin activity.
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Introduction

Epsilon toxin (Etx) is a pore-forming toxin and is

produced by Clostridium perfringens strains belong-

ing to toxinotypes B and D.1 These strains are

responsible for enterotoxemia, which affects mainly

sheep but also occurs in goats and cattle, and results

in heavy economic losses.2,3 The disease is also

known as overeating disease as it is often triggered

by feeding on carbohydrate-rich food, leading to dis-

ruption of the microbial balance in the intestine and

consequent proliferation of C. perfringens and over-

production of Etx.4

By an unknown mechanism, Etx crosses the gut

wall, enters into the bloodstream and is dissemi-

nated to several organs, in particular to the kidneys
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and the brain, where intoxication results in fluid

accumulation due to increased permeability of blood

vessels.4 There is also evidence that Etx acts directly

on the brain,5–7 targeting glutamatergic neurons8

and stimulating glutamate release. This may explain

some of the neurological symptoms often associated

with the disease in sheep, such as loss of coordina-

tion and seizures.3,9,10

Etx is secreted by C. perfringens as a prototoxin

(P-Etx), which consists of 296 amino acids with a

molecular weight of 32,981 Da.11 The prototoxin is

activated, with carboxy-terminal and amino-terminal

peptides removed, by proteolytic cleavage in the gut,

either by digestive proteases of the host, such as

trypsin and chymotrypsin,12 or by k-protease pro-

duced by C. perfringens.13,14

The crystal structure of P-Etx has been deter-

mined15 and reveals mainly b-sheets, which are

organized into three functional domains. Domain I

at the N-terminus contains the suggested receptor

interaction region,15,16 domain II contains an amphi-

pathic b-hairpin, which is predicted to play a role in

membrane insertion, and domain III at the C-termi-

nus contains the C-terminal peptide, which has to

be removed for activation.

The mechanism of pore formation by Etx is not

well understood and the current pore formation

model is based on studies of other b-pore-forming

toxins (b-PFTs), such as aerolysin from Aeromonas

hydrophila.17 Like aerolysin, Etx binds to detergent-

resistant microdomains (DRMs) of lipid rafts.18–20

Both P-Etx and Etx can accumulate within DRMs

but only activated toxin can oligomerize and form a

heptameric complex. Heptameric complexes of Etx

have been identified in rat synaptosomal, MDCK

and mpkCCDcl4 cell membranes.21–23 The final step

of pore formation might involve unfolding of the am-

phipathic b-hairpin in domain II and subsequent

insertion of the toxin into the membrane, usually

leading to rapid cell death.

Etx is unique among b-PFTs as it shows high

cell specificity and potency. Relatively few cell lines

are susceptible to the toxin and most in vitro studies

on Etx have been carried out using the highly sus-

ceptible Madin–Darby Canine Kidney (MDCK) cell

line.24,25 Other toxin-sensitive cell lines include the

mouse kidney cell line mpkCCDcl4
23 and the recently

identified human renal adenocarcinoma cell line

ACHN.26 Because of its high potency, and the poten-

tial to use Etx as a bioterrorist weapon, the toxin is

classified as a category B bioterrorism agent by the

U.S. Government Centres for Disease Control and

Prevention.27

In view of the high potency of Etx, the aim of

this study was to identify a platform that provided a

reduction in the hazard associated with the genetic

manipulation of recombinant C. perfringens epsilon

toxin in Escherichia coli whilst allowing receptor

binding studies. For this platform we selected the

H149A variant of Etx (numbering corresponds to

prototoxin without the 13 amino acids N-terminal

peptide), which reduces toxicity sixfold in MDCK

cells and 67-fold in mice.28 This study has confirmed

the role of tyrosine residues in domain I of Etx in

binding to MDCK cells and has also revealed that

additional receptor binding regions appear to play a

role in toxicity of Etx.

Results

Mutation H149A does not affect P-Etx structure

To determine the effect of the H149A mutation on

the tertiary structure of P-Etx, we crystallized

recombinant P-Etx-H149A. Initial trials resulted in

crystals, which grew in the presence of 0.85 to 1.0 M

ammonium dihydrogen phosphate and diffracted to

�3 Å. However, the crystals were twinned with

>45% twin fractions. In an attempt to reduce the

degree of twinning, various additives were included

in the crystallization conditions. One of the addi-

tives, b-octyl-glucoside (b-OG), resulted in crystals

with lower twin fractions, and which diffracted to

2.4 Å. They belonged to the P3 spacegroup with unit

cell dimensions of a 5 123.70 Å, b 5 123.70 Å,

c 5 127.31 Å, and a 5 b 5 90�, g 5 120�. The asym-

metric unit (ASU) contained four P-Etx-H149A mole-

cules, four b-OG molecules and four ordered

phosphates. Due to the higher resolution of the

P-Etx-H149A data compared with the original wild-

type structure (PDB ID: 1UYJ, 2.6 Å) we detected a

11 residue register error in the wild-type structure

from Ser3 to Gly14 (corresponds to Ser16 to Gly27

in PDB ID: 1UYJ).

Each b-OG molecule is accommodated in a cleft

formed between two b-sheets in domain III of P-Etx-

H149A and interacts through hydrogen bonds to Etx

[Fig. 1(A), lower inset]. Specifically, the glucose moiety

of b-OG forms hydrogen bonds via O5 to Thr93 main

chain N and through O2 to Val72 mainchain O. In

addition, in chains A and B, the O3 of b-OG forms a

hydrogen bond to OE1 of Glu61 in the neighboring

asymmetric unit. The alkyl chain of b-OG is in close

proximity to Phe92 in all four Etx molecules. The four

phosphate molecules also form hydrogen bonds to Etx

through OD1 and OD2 of Asp48, OG of Ser188, and

NE2 of Gln85 from the neighboring ASU. Moreover,

strong positive density (>3 r) in the Fo-Fc map could

be seen near Y29 in all four chains in the ASU, and

although the size of this density suggests additional

bound b-OG molecules we could not place b-OG with

certainty (data not shown).

The P-Etx-H149A structure closely resembles

the wild-type structure with a Ca-Ca root mean

square deviation (RMSD) of 0.95 Å [Fig. 1(B)]. Small

main chain deviations occur in domains I, II and III

compared to the wild-type structure. In domain I, at
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the end of the first a-helix near Y29, the Ca posi-

tions are shifted by 2.20 Å in respect to the wild-

type structure. This may be due to the influence by

putative b-OG molecules in this region as mentioned

above. In addition, a loop between Ser195 and P200

is shifted by up to 2.58 Å away from the core of the

molecule. In domain II, the membrane-inserting b-

hairpin is shifted by up to 2.84 Å near Phe135.

Finally, in domain III, the b-strand from V70 to N79

is displaced outwards by up to 2.05 Å in order to

accommodate the b-OG molecule [Fig. 1(A), lower

inset]. Overall, the H149A mutation does not have

an effect on the prototoxin tertiary structure and

does not induce any significant conformational

changes in the suggested receptor binding loops in

domain I. Collection and refinement statistics for

the crystals are listed in Table I, and coordinates

and structure factors have been deposited with the

Protein Data Bank (PDB ID: 3ZJX).

Tyrosine mutants in H149A background mimic
the binding of tyrosine mutants in wild-type

background

Surface exposed tyrosine residues in domain I of Etx

have recently been reported to play a role in binding

to MDCK cells.16 To evaluate the suitability of P-

Figure 1. Structure of C. perfringens epsilon prototoxin P-Etx-H149A. (A) Cartoon representation of the prototoxin colored

according to domain. The likely membrane-inserting b-hairpin is colored red. The C-terminal peptide is colored in yellow and

situated near the pink oligomerization domain. Top inset shows the receptor binding region and the positions of the mutated

tyrosines. The lower inset shows the location of A149 (blue spheres), the bound b-OG ligand and interacting residues. Amino

acid numbering corresponds to prototoxin without the 13 amino acids N-terminal peptide sequence. (B) Superposition of wild-

type prototoxin (PDB ID: 1UYJ, grey) with P-Etx-H149A (blue). Asterisks indicate the areas of highest RMS Ca-Ca deviation.

Table I. X-Ray Data Collection and Refinement
Statistics

P-Etx-H149A

Data collection
Space group P3
Cell dimensions

a, b, c (Å) 123.70, 123.70, 127.31
a,b,g (�) 90, 90, 120

Resolution (Å) 21.56–2.40 (2.49–2.40)a

Rmerge 0.061 (0.435)
I/rI 12.3 (1.2)
Completeness (%) 100.0 (99.9)
Redundancy 3.70 (2.25)

Refinement
Resolution (Å) 21.56–2.4
No. reflections 85,072
Rwork/Rfree (%) 24.6–27.5
No. atoms

Protein 8448
Ligand/ion 100
Water 459

B-factors (Å2)
Protein 54.5
Ligand 48.2
Water 47.0

RMS deviations
Bond lengths (Å) 0.01
Bond angles (�) 1.33

a Values in parentheses are for highest-resolution shell.
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Etx-H149A for receptor binding studies, we selected

six surface exposed tyrosine residues (Y16, Y20,

Y29, Y30, Y36, and Y196) in domain I for site-

directed mutagenesis and replaced each one with al-

anine [Fig. 1(A), top inset] to delete the side chain

completely, and thus to allow a definitive determina-

tion of whether the side chain contributed to binding

in any way.

Recombinant P-Etx-H149A (Fig. 2) and its

derivatives were expressed and purified as described

in Materials and Methods. All tyrosine mutants

showed similar purification [Fig. 3(A)] and trypsin

digestion [Fig. 3(B)] profiles to Etx-H149A, indicat-

ing that tyrosine mutations do not affect the folding

of the toxin. Purified recombinant P-Etx-H149A and

its derivatives have an apparent molecular weight of

�37 kDa as detected by SDS-PAGE [Fig. 3(A)]. Ther-

mal stability assay29 revealed that the melting tem-

perature (Tm) of the tyrosine mutants was similar to

that of P-Etx-H149A [Fig. 3(C)], providing further

evidence that the tyrosine mutants are folded

correctly.

On-Cell Western assays were used to evaluate

the effect of the tyrosine mutations on the binding of

P-Etx-H149A to MDCK.2 cells. The binding activity

of each tyrosine mutant was expressed as the fold-

change in fluorescence intensity relative to P-Etx-

H149A (Fig. 4). Mutants Y30A and Y196A showed

significant reduction in binding activity relative to

P-Etx-H149A (20-fold and 6-fold decrease in fluores-

cent intensity, respectively).

Reduced binding of tyrosine mutants to
MDCK.2 cells correlates with their reduced

cytotoxicity

Next, we evaluated the effect of the tyrosine muta-

tions on the cytotoxic activity of trypsin-activated

Etx-H149A towards MDCK.2 cells by measuring the

amount of lactate dehydrogenase (LDH) released

from the cytosol of lysed cells into the cell culture

medium. All tyrosine mutations resulted in reduced

cytotoxic activity of Etx-H149A towards MDCK.2

cells [Fig. 5(A)], indicated by a right shift of the dose

response curves relative to Etx-H149A. The dose of

each toxin that killed 50% of the cells (CT50) was

determined by nonlinear regression analysis and the

cytotoxic activity of each tyrosine mutant was

expressed as the fold-change in CT50 relative to Etx-

H149A. Mutants Y30A and Y196A showed signifi-

cant reduction in cytotoxic activity toward MDCK.2

cells relative to Etx-H149A (27-fold and 10-fold

increase in CT50, respectively) [Fig. 5(B)].

Surface exposed tyrosine residues in domain I
do not play a role in binding of P-Etx-H149A to

ACHN cells

To determine whether surface exposed tyrosine resi-

dues in Domain I also play a role in binding of Etx

to ACHN cells, we tested binding of the tyrosine

mutants in H149A background to ACHN cells using

the On-Cell Western assay. The binding activity of

each tyrosine mutant was expressed as the fold-

change in fluorescence intensity relative to P-Etx-

H149A. ACHN cells treated with all of the tyrosine

mutants showed fluorescence similar to that of cells

treated with P-Etx-H149A (Fig. 6), indicating that

surface exposed tyrosine residues in Domain I do

not mediate binding of Etx to ACHN cells.

Next, we measured LDH release from ACHN

cells exposed to mutants Y30A and Y196A, mutants

Table II. The Reduced Binding Ability of the Tyrosine
Mutants Correlates with Their Reduced Ability to Bind
to MDCK.2 Cells

Etx-H149A
mutant

Mean fold-change
in CT50 relative to

Etx-H149A

Mean fold-change
in fluorescence

intensity relative
to P-Etx-H149A

Y30A 27.8 6 7.3*** 220.7 6 4.5***
Y196A 9.1 6 2.1** 26.0 6 2.6**
Y36A 5.7 6 2.6 23.7 6 1.5
Y29A 4.1 6 2.2 23.3 6 0.6
Y16A 3.5 6 2.9 21.7 6 0.6
Y20A 2.5 6 1.3 21.3 6 0.6

The binding activity of each Tyr mutant was expressed as
the fold-change in fluorescence intensity relative to P-Etx-
H149A as determined in Figure 4. The cytotoxic activity of
tyrosine mutants was expressed as the fold-change in CT50

relative to Etx-H149A as determined in Figure 5(B). Statis-
tically significant differences are indicated by asterisks.

Figure 2. Schematic representation of recombinant C. perfringens epsilon prototoxin P-Etx-H149A. The amino acid sequences

around the processing sites are shown. Amino acid numbering for H149A corresponds to prototoxin without the 13 amino acids

N-terminal peptide sequence.
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that showed significantly reduced binding and cyto-

toxic activities toward MDCK.2 cells. The results of

our cytotoxicity assay revealed that Etx-H149A and

its derivatives are unable to cause cell lysis in

ACHN cells, while wild-type Etx was able to cause

approximately 45% cell lysis at the maximum dose

of 10mM tested (Fig. 7).

Discussion

Epsilon toxin is a potent toxin and is classified as a

category B bioterrorism agent,30 making genetic

modification of the toxin hazardous. In this study,

we showed that the H149A mutation does not affect

the overall organisation of the putative receptor

binding loops in domain I. Residue H149 is located

in Domain III of Etx in close proximity to the tip of

the b-hairpin in Domain II. Therefore, the H149A

mutation is likely to interfere with the conformation

changes associated with insertion of the b-hairpin

into the membrane and thus with membrane inser-

tion of the toxin. It has previously been shown that

creating disulphide bonds between pairs of intro-

duced cysteines (one in the b-hairpin and one in an

adjacent strand) prevented pore formation but not

receptor binding or oligomerization of the toxin,31

providing further support that interfering with pore

formation of Etx does not affect its receptor binding.

Our cytotoxicity and binding data show that res-

idues Y30 and Y196 play an important role in cell

binding and thus, cytotoxicity of Etx toward

MDCK.2 cells. All of the tyrosine mutants that we

have cloned, expressed and purified in H149A back-

ground were soluble and stable, and our thermal

stability analysis indicated that these proteins are

correctly folded, ruling out the possibility that the

reduced binding and cytotoxic activities of the tyro-

sine mutants towards MDCK.2 cells was due to their

change in structure. The average CT50 for Etx-

H149A towards MDCK.2 cells was 400 ng/mL (12

nM), in agreement with the reported CT50 of 20 to

300 ng/mL for the more active wild-type

Etx.22,23,25,32 We also showed that tyrosine mutants

in H149A background mimic the behavior of tyrosine

mutants in wild-type background,16 confirming the

role of domain I in binding of Etx to MDCK cells,

and thus the suitability of the H149A mutant for

further receptor binding studies.

The human kidney carcinoma cell line, ACHN,

has recently been identified to be susceptible to

Etx26 but the role of surface exposed tyrosine resi-

dues in binding of Etx to this cell line has not been

determined. Using the H149A mutant as a platform

to study binding of tyrosine mutants to ACHN cells

we showed that surface exposed tyrosine residues in

domain I of Etx do not mediate binding of Etx to

ACHN cells, suggesting that alternative amino acids

within the toxin contribute to binding of Etx to these

cells. The crystal structure of P-Etx-H149A also

identified a glycan (b-octyl-glucoside) binding site in

domain III of Etx-H149A, suggesting the presence of

a secondary binding site in Etx in this region.

Recent evidence also indicates the presence of a

Figure 3. Recombinant tyrosine mutants in H149A background are folded correctly. Inactive prototoxins (A) and trypsin

activated toxins (B) were separated by SDS-PAGE and visualized by Coomassie staining. Arrows indicate the positions of

monomeric epsilon prototoxins and trypsin-activated toxins, respectively. (C) Thermo-stability of P-Etx-H149A and its

derivatives were determined by the Boltzmann method using the Protein Thermal Shift software (Applied Biosystems).

Figure 4. Effect of tyrosine substitutions on the binding of P-

Etx-H149A to MDCK.2 cells. The binding of tyrosine mutants

to MDCK.2 cells was determined by the On-Cell Western

assay. Statistically significant differences between P-Etx-

H149A and tyrosine mutant proteins are indicated by

asterisks.

654 PROTEINSCIENCE.ORG C. perfringens Epsilon Toxin H149A Mutant



secondary binding site for lysenin, a sphingomyelin-

specific pore-forming protein,33 in a location similar

to the b-OG binding site in Etx.

The results of our cytotoxicity assay also revealed

that ACHN cells are more resistant to Etx induced cell

lysis than MDCK.2 cells. Wild-type Etx in ACHN cells

was only able to cause up to 45% cell lysis, even at the

maximum dose of 10 mM tested, while a dose of wild-

type Etx approximately 10,000-fold less is able to cause

50% cell lysis in MDCK.2 cells,22,23,25,32 suggesting that

the mechanism of Etx-induced intoxication in ACHN

and MDCK cells is different. Several lines of evidence

suggest that Etx-induced cytotoxicity differs in different

cell lines. In particular, Chassin et al.23 reported that

Etx-induced intracellular Ca21 rise and ATP depletion-

mediated rapid cell death in mpkCCDcl14 cells occurred

even under conditions that prevented toxin oligomeriza-

tion and pore formation, providing evidence that pore

formation is not the only way Etx manifests its cytotoxic-

ity. The differences in the relative sensitivity of MDCK.2

and ACHN cells to Etx are likely to be due to the differ-

ences in the mode of action of Etx on these two cell

lines, probably due to the ability of Etx to recognise dif-

ferent targets on the cell surface of different cells.

There is no evidence for a single receptor for ep-

silon toxin. Studies using MDCK cells suggest that

binding of Etx is mediated by O-linked oligosaccha-

rides as removal of O-glycans by b-elimination

reduced binding of Etx to these cells.34 Other studies

implicated that interaction of Etx with target cells is

mediated by the O-linked glycans of the extracellu-

lar domain of the human hepatitis A virus cellular

receptor (HAVCR1).16,26 Although disrupting expres-

sion of HAVCR1 in MDCK and ACHN cells led to

increased resistance to Etx-induced cytotoxicity,26

providing good evidence that both of these cell lines

express HAVCR1, no direct evidence exists that the

toxin binds to HAVCR1 on these cells. Furthermore,

studies using synaptosomal fractions isolated from

rat brain indicate that the receptor for Etx in the

brain is a sialoglycoprotein.35 In this study, we pro-

vide further indirect evidence that Etx binds to gly-

cans by identifying a b-OG binding site in-between

two b-sheets in domain III. In addition, a second un-

identified ligand, likely to be b-OG, was found in the

proximity of Y29 in domain I, providing further

circumstantial evidence for the role of domain I in

glycan binding.

Figure 5. Effect of the tyrosine mutations on the cytotoxic

activity of Etx-H149A toward MDCK.2 cells. (A) The cytotoxic

activity of trypsin-activated toxins toward MDCK.2 cells was

determined by measuring the release of lactate dehydrogen-

ase (LDH) from lysed cells. (B) The dose of each toxin that

killed 50% of the cells (CT50) was determined and cytotoxic

activity of tyrosine mutants was expressed as the fold-

change in CT50 relative to Etx-H149A. Statistically significant

differences between Etx-H149A and tyrosine mutant

proteins are indicated by asterisks.

Figure 6. Effect of the tyrosine mutations on the binding of

P-Etx-H149A to ACHN cells. The binding of tyrosine mutants

to ACHN cells was determined by the On-Cell Western

assay.

Figure 7. Effect of tyrosine substitutions on the cytotoxicity

of Etx-H149A toward ACHN cells. The cytotoxic activity of

trypsin-activated toxins towards ACHN cells was determined

by measuring the release of LDH from lysed cells. Results

were normalized to the signal from cells treated with PBS

only (0% lysis) and cells treated with 0.9% (v/v) Triton X-100

(100% lysis).
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In conclusion, the present study confirmed the role

of surface exposed tyrosine residues in binding of Etx to

MDCK.2 cells and demonstrated the suitability of the

H149A mutant for further receptor binding studies.

However, we found no evidence that surface exposed ty-

rosine residues in domain I mediate binding of Etx to

ACHN cells, suggesting that Etx recognises different tar-

gets on the cell surface of different cells. These findings

have important implications for developing strategies

designed to neutralise the activity of this potent toxin.

Materials and Methods

Cell culture

MDCK.2 cells (ATCC-LGC Standards, Teddington,

UK) and ACHN cells (ECACC, Salisbury, UK) were

routinely cultured in Eagle’s Minimum Essential

Medium (EMEM; ATCC-LGC Standards, Teddington,

UK) supplemented with 10% Foetal Bovine Serum

Gold (PAA, Pasching, Austria) at 37�C in a humidi-

fied atmosphere of 95% air/5% CO2. The culture

medium was replaced every 2 to 3 days. Cells were

routinely detached by incubation in trypsin/EDTA

and split as appropriate (typically 1:6 dilutions).

Cloning of recombinant epsilon prototoxin

P-Etx-H149A
The etxD gene encoding epsilon prototoxin with the

H149A mutation (P-Etx-H149A) was subcloned from

plasmid pCl028 into the expression vector pET-26b(1)

(Merck, Darmstadt, Germany) using NcoI and XhoI

restriction sites. This fused the N-terminal end of P-

Etx-H149A without the 13 N-terminal residues

(KEISNTVSNEMSK) to the PelB leader peptide, while

the C-terminal end of P-Etx-H149A was fused to a pol-

yhistidine (6 3 His) affinity tag to aid purification of

recombinant P-Etx-H149A (Fig. 2). The recombinant

plasmid expressing P-Etx-H149A is termed pET26-

b(1)/P-Etx-H149A. All amino acid numbering corre-

sponds to prototoxin with the 13 amino acids N-termi-

nal peptide sequence removed, unless otherwise stated.

Site-directed mutagenesis

Mutations were introduced into the gene encoding

P-Etx-H149A using the QuickChange Lightning

Site-Directed Mutagenesis Kit (Agilent Technologies,

Inc., Santa Clara) according to the manufacturer’s

instructions. Synthetic oligonucleotide primer pairs

(Eurofins MWG Operon, Ebersberg, Germany) were

used to change each tyrosine codon to an alanine

codon. To create Tyr mutants, plasmid pET26-b(1)/

P-Etx-H149A served as template. The presence of

the intended mutations was verified by DNA

sequencing (Source BioScience, Cambridge, UK).

Expression and purification of P-Etx-H149A and
its derivatives

For expression of P-Etx-H149A and its derivatives,

recombinant plasmids were transferred into E. coli

Rosetta 2 (DE3) cells (Merck, Darmstadt, Germany)

and expression of P-Etx-H149A and its derivatives

was induced using the autoinduction system as

described by Studier.28 In brief, cells (100 mL) were

grown in ZYM-5052 autoinducing medium supple-

mented with 50 lg/mL kanamycin and 34 lg/mL

chloramphenicol and cultured at 37�C for 3 h at 300

rpm, then for a further 24 h at 20�C, 300 rpm.

For protein purification, cells were harvested by

centrifugation and 2 g of cell pellet was lysed by 10

mL BugBusterTM Protein Extraction Reagent

(Merck, Darmstadt, Germany) containing 10 mL rly-

sozymeTM (1 KU/mL) (Merck, Darmstadt, Germany)

and 10 mL BenzonaseVR Nuclease (25 U/mL) (Merck,

Darmstadt, Germany). The cell suspension was incu-

bated on a rotating mixer for 25 min at room tem-

perature and centrifuged at 16,000g for 20 min at

4�C to separate soluble and insoluble fractions. The

supernatant was loaded onto a His GraviTrap col-

umn (GE Healthcare Life Sciences, Little Chalfont,

UK) following the manufacturer’s guidelines. In

brief, His-tagged proteins were bound to the affinity

column using a buffer composed of 20 mM sodium

phosphate, 500 mM NaCl, 20 mM imidazole, pH 7.4.

The column was washed with a buffer composed of

20 mM sodium phosphate, 500 mM NaCl, 60 mM

imidazole, pH 7.4. Recombinant prototoxin was

eluted in a buffer composed of 20 mM sodium phos-

phate, 500 mM NaCl, 500 mM imidazole, pH 7.4. All

purification steps were carried out at 4�C. For buffer

exchange and sample clean up, prototoxin contain-

ing eluate was applied to a PD-10 Desalting Column

(GE Healthcare Life Sciences, Little Chalfont, UK)

and eluted in 10 mM phosphate buffer, 2.7 mM

potassium chloride, 137 mM NaCl, pH 7.4. Protein

concentrations were determined using the BCA

assay (Fisher Scientific UK Ltd, Loughborough,

UK).

The purity of P-Etx-H149A and its derivatives

was confirmed by SDS-PAGE. Proteins were

resolved by 4 to 12% Bis-Tris NuPAGE gels (Invitro-

gen Ltd., Paisley, UK) using Surelock Xcell appara-

tus (Invitrogen Ltd., Paisley, UK) and NuPAGE

MES SDS running buffer (Invitrogen Ltd., Paisley,

UK). All samples were heated before loading at 70�C

for 10 min in NuPAGE LDS sample buffer (Invitro-

gen Ltd., Paisley, UK). Gels were run at 200 V for

45 min. After electrophoretic separation, proteins

were visualised by SimplyBlue staining (Invitrogen

Ltd., Paisley, UK). The Perfect ProteinTM Marker, 10

to 225 kDa (Merck, Darmstadt, Germany) was used

as the molecular weight standard.

Crystallization and data processing

For crystallization experiments a modified construct

of P-Etx-H149A was used with a TEV cleavable N-

terminal His-tag and a Factor Xa cleavage (IEGR)

site engineered in between amino acids K260 and
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K261, which allows potential activation of P-Etx-

H149A by Factor Xa. Purification of P-Etx-H149A

was carried out using standard metal affinity chro-

matography followed by removal of the N-terminal

His-tag by TEV protease. A final size exclusion chro-

matography step was performed using a 120 mL

Superdex S-200 column equilibrated with 20 mM

Tris pH 7.5, 150 mM NaCl, and 1 mM DTT.

Recombinant P-Etx-H149A was concentrated to 16

mg/mL using a 10 kDa cut-off Amicon concentrator

(Merck, Darmstadt, Germany). Crystals were

obtained using the hanging drop method in 0.85 M

ammonium dihydrogen phosphate and 0.5% (w/v)

b-octyl-glucoside (b-OG). Data were collected on

a Rigaku Saturn 944 CCD detector mounted onto a

Rigaku Micromax X-ray generator. Data were

indexed and integrated and scaled with D*TREK.36

Molecular replacement was carried out using Phaser

MR37 as part of the CCP4 package38 using the wild-

type structure (PDB ID: 1UYJ) as a search model.

Refinement was carried out using Refmac 5,39 and

manual building and real space refinement was per-

formed using COOT.40 Model validation was calcu-

lated using Molprobity41 and PyMOL42 was used for

visualisation and figure preparation.

Activation of P-Etx-H149A and its derivatives by

trypsin

Purified recombinant P-Etx-H149A and its deriva-

tives were activated with trypsin, TPCK treated

from bovine pancreas (Sigma-Aldrich Company Ltd.,

Gillingham, UK), which removes the C-terminal

peptide sequence, together with the His-tag (Fig. 1).

Trypsin was prepared in PBS and added to recombi-

nant prototoxin at 1:100 (w/w) ratio and incubated

at room temperature for 1 h. Protease Inhibitor

Cocktail, EDTA-Free (Fisher Scientific UK Ltd,

Loughborough, UK) was added to the digest to

inhibit trypsin in the samples. Removal of the

C-terminal peptide sequence was assessed by SDS-

PAGE.

Protein thermal shift assay

Thermostability of P-Etx-H149A and its derivatives

was assessed by mixing purified recombinant proto-

toxin (0.25 mg/mL) with 2403 SYPRO Orange dye

(Sigma) in triplicate and fluorescence was monitored

using a StepOnePlus quantitative PCR machine

(Applied Biosystems) with a 1% thermal gradient

from 25�C to 99�C. Fluorescence data was analysed

by the Protein Thermal Shift Software (Applied Bio-

systems) to calculate the Tm using the Boltzmann

method.

Cytotoxicity assay

The cytotoxic activity of trypsin-activated Etx-

H149A and its derivatives toward MDCK.2 and

ACHN cells was determined by measuring the

amount of lactate dehydrogenase (LDH) released

from the cytosol of lysed cells into the cell culture

medium using the CytoTox 96 nonradioactive cyto-

toxicity assay kit (Promega, Southampton, UK)

according to the manufacturer’s protocol. In brief, a

twofold dilution series of each activated toxin (rang-

ing from 10 mM to 0.15 nM) was prepared in PBS

and added to cells seeded into 96-well plates (3 3 104

cells/well). Following incubation at 37�C for 3 h, cell

culture medium (50 mL) was harvested from cell

monolayers, transferred to a fresh 96-well enzymatic

assay plate and 50 lL of reconstituted substrate mix

was added to each well. The plate was incubated for

30 min at room temperature, protected from light.

Absorbance was measured at 490 nm using a Model

680 Microplate Reader (Bio-Rad Laboratories Ltd.,

Hemel Hempstead, UK). The absorbance values for

each sample were normalized by subtracting the

absorbance value obtained for the culture medium

from untreated cells. The toxin dose required to kill

50% of the cell monolayer (CT50) was determined by

nonlinear regression analysis, fitting a variable

slope log(dose) versus response curve, constraining F

to a value of 50 (logCT50 5 logCTF 2 (1/HillSlope) 3

log(F/(100 2 F)).

On-Cell Western assay

On-Cell Western assay was used to measure binding

of P-Etx-H149A and its derivatives to MDCK.2 and

ACHN cells. Black 96-well microtiter plates were

seeded with 3 3 104 cells/well in EMEM medium

containing 10% foetal bovine serum. To allow cells to

attach, plates were incubated overnight at 37�C in a

humidified atmosphere of 95% air/5% CO2. The next

day, plates were washed with PBS and cells were

incubated with purified recombinant prototoxin (10

mM) for 1 h at 37�C in a humidified atmosphere of

95% air/5% CO2. For background control, triplicate

wells were incubated with PBS only. Unbound toxin

was removed by washing cell monolayers three

times with PBS. Cells were then fixed with 4% form-

aldehyde at room temperature for 20 min. After

washing the cell monolayers with PBS three times,

cells were blocked for 1.5 h using Odyssey blocking

buffer (LI-COR Biosciences, Lincoln, NE). Bound

prototoxin was detected with mouse anti-His Tag

monoclonal antibody (Invitrogen Ltd., Paisley, UK)

and IRDye 800CW goat anti-mouse IgG (H 1 L) anti-

body (LI-COR Biosciences, Lincoln) at 1:500 dilution

each. Plates were imaged at 800 nm using the Odys-

sey CLx infrared imaging system (LI-COR Bioscien-

ces, Lincoln) to quantify the amount of fluorescent

signal. The fluorescent signal from wells treated

with prototoxin was normalized to that of wells

treated with PBS only and the binding activity of

each tyrosine mutant was expressed as the

fold-change in fluorescence intensity relative to P-

Etx-H149A.
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Statistical analysis

To compare the means of protein thermal shift,

On-Cell Western and cytotoxicity data, one-way

ANOVA analysis followed by Dunnett’s post test

(***P<0.001, **P< 0.01) was carried out using the

GraphPad Prism software 5.01 (GraphPad Software,

La Jolla). In all analyses, a P value of less than 0.01

was considered significant. All data represent the

means and standard deviations of three independent

experiments performed in triplicate.

Accession numbers
The structure coordinates of P-Etx-H149A have been

deposited at the Protein Data Bank (http://www.

pdb.org), PDB ID: 3ZJX. Amino acid numbering cor-

responds to prototoxin with the 13 amino acids N-

terminal peptide sequence.
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