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Contemporaneous-Threshold Smooth
Transition GARCH Models∗

Michael J. Dueker, Zacharias Psaradakis, Martin Sola, and Fabio Spagnolo

Abstract

This paper proposes a contemporaneous-threshold smooth transition GARCH (or C-STGARCH)
model for dynamic conditional heteroskedasticity. The C-STGARCH model is a generalization to
second conditional moments of the contemporaneous smooth transition threshold autoregressive
model of Dueker et al. (2007) in which the regime weights depend on the ex ante probability that
a contemporaneous latent regime-specific variable exceeds a threshold value. A key feature of
the C-STGARCH model is that its transition function depends on all the parameters of the model
as well as on the data. The structural properties of the model are investigated, in addition to the
finite-sample properties of the maximum likelihood estimator of its parameters. An application to
U.S. stock returns illustrates the practical usefulness of the C-STGARCH model.

∗We would like to thank Nicolas Caramp for research assistance.



1 Introduction

A general class of nonlinear models of dynamic heteroskedasticity is the class
of generalized autoregressive conditionally heteroskedastic (GARCH) models
with regime-dependent parameters subject to smooth changes. The defining
characteristic of such so-called smooth transition GARCH (STGARCH) mod-
els is that transitions between regimes are modelled by using a continuous
function (usually logistic or exponential) of some observable transition vari-
able.

Dueker et al. (2007) introduced recently a new class of contemporaneous-
threshold smooth transition autoregressive (C-STAR) models in which the
mixing (or regime) weights depend on the ex ante probabilities that regime-
specific latent variables exceed certain threshold values. A key feature of the
C-STAR model is that its mixing (or transition) function depends on all the
parameters of the model as well as on the data, a feature which allows the
model to describe time series with a wide variety of conditional distributions.

This paper contributes to the literature on nonlinear GARCH models
by proposing a contemporaneous-threshold smooth transition GARCH (C-
STGARCH) model motivated by the approach of Dueker et al. (2007). Our
model differs from other members of the STGARCH family in two impor-
tant respects. Firstly, unlike models where the argument of the mixing func-
tion used in the definition of the conditional variance is either the lagged
(squared) innovation (e.g., Hagerud, 1996; González-Rivera, 1998; Lundbergh
and Teräsvirta, 1998; Anderson et al., 1999; Lubrano, 2001; Medeiros and
Veiga, 2009) or the lagged conditional variance (e.g., Lanne and Saikkonen,
2005), the mixing weights for C-STGARCH models are a function of both.
Secondly, the mixing weights of a C-STGARCH model depend on all the pa-
rameters of the model. This implies that, unlike other STGARCH models,
there is no need to choose an appropriate transition variable using a selec-
tion criterion since, by construction, all the variables that enter the model’s
information set also enter the transition function.

The paper is organized as follows. Section 2 introduces the model dis-
cusses its properties. Section 3 considers maximum likelihood (ML) estimation
of the parameters of the model. Section 4 presents an illustrative empirical
application to U.S. stock returns. Section 5 summarizes and concludes.
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2 The C-STGARCH Model

The C-STGARCHmodel in this paper is a member of the family of STGARCH
models. We say that a real-valued time series {yt} follows a STGARCH(1, 1)
model if it satisfies the following equations:

yt − μ = σtut, t = 1, 2, . . . , (1)

σ2t = G(zt−1)σ
2
0t + {1−G(zt−1)}σ21t, (2)

σ2it = ωi + αiε
2
t−1 + βiσ

2
t−1, i = 0, 1. (3)

In (1)—(3), {ut} are independent and identically distributed (i.i.d.) random
variables such that ut is independent of yt−j for j ≥ 1 and E(ut) = E(u2t −
1) = 0, G(zt−1) is a continuous function of a vector of exogenous and/or
predetermined variables zt−1 such that 0 ≤ G(zt−1) ≤ 1, εt := yt − μ, and
ωi > 0, αi ≥ 0, βi ≥ 0 (i = 0, 1) and μ are constants.

A popular choice for the mixing (or transition) function G in (2) is the
logistic formulation

G(st−1) = [1 + exp(−γ{st−1 − k})]−1 , γ > 0, (4)

where st−1 is a so-called transition variable. The location parameter k in (4)
may be interpreted as the threshold between the two regimes associated with
the limiting values of G(st−1) (as st−1 diverges to positive and negative infin-
ity), while the slope parameter γ determines the smoothness of the transitions
between the two regimes. Existing STGARCH models set st−1 equal to εt−1,
ε2t−1 or σ

2
t−1.

To define the contemporaneous-threshold STGARCH model, let F be
the cumulative distribution function of u2t (which is assumed to be non degen-
erate). The C-STGARCH(1, 1) model is formulated by specifying the mixing
function G in (2) as

G(zt−1) =

F (
k

ω0 + α0ε2t−1 + β0σ
2
t−1
)

F (
k

ω0 + α0ε2t−1 + β0σ
2
t−1
) + 1− F (

k

ω1 + α1ε2t−1 + β1σ
2
t−1
)
, (5)

where zt−1 = (ε2t−1, σ
2
t−1)

| and k is a non-negative threshold parameter. It can
be easily seen that

G(zt−1) =
P(ε20t < k|zt−1)

P(ε20t < k|zt−1) + P(ε21t ≥ k|zt−1)
, (6)
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where ε2it = σ2itu
2
t (i = 0, 1). Hence, under the C-STGARCH specification, (1)

may be re-written as

ε2t =

½
P(ε20t < k|zt−1)σ20t + P(ε21t ≥ k|zt−1)σ21t
P(ε20t < k|zt−1) + P(ε21t ≥ k|zt−1)

¾
u2t .

Since the mixing weights are determined by the probability that the contem-
poraneous latent variable ε20t (ε

2
1t) is below (above) the threshold level k, we

call this a contemporaneous-threshold STGARCH model.
The first-order C-STGARCH model can be straightforwardly general-

ized to allow for higher order dynamics by replacing the specification in (3)
with

σ2it = ωi +

qX
j=1

αijε
2
t−j +

pX
r=1

βirσ
2
t−r, i = 0, 1,

for some p ≥ 1 and q ≥ 1. The mixing function of the resulting C −
STGARCH(p, q) model is defined in a way analogous to (5)—(6) with zt−1 =
(ε2t−1, ., ε

2
t−q, σ

2
t−1, ., σ

2
t−p)

|. For the sake of simplicity and clarity of exposi-
tion, and since the GARCH(1, 1) specification is by far the most popular in
applications, we shall focus hereafter on the C-STGARCH(1, 1) model.

The C-STGARCH model differs from other models that belong to the
STGARCH family in two notable respects. First, unlike models where the
argument of the mixing function used in the definition of the conditional vari-
ance is εt−1, ε2t−1 or σ

2
t−1, the mixing weight in (5) is a function of both ε2t−1

and σ2t−1. Second, the mixing weights depend on all of the model parameters.
This means that for a C-STGARCH there is no need to use any selection cri-
teria to choose the appropriate threshold variables since, by construction, all
the variables that enter the information set of the model are also present in
the mixing function.

3 Properties of the C-STGARCH Model

In this section, we investigate some of the key characteristics of the C-STARCH
model. In particular, we consider: (i) the stability of the model; (ii) the
response of the mixing function to changes in the parameters of the model;
(iii) the empirical distribution of data generated by the model; (iv) the news
impact curve implied by the model; (v) implications of the model regarding
persistence. In the discussion that follows, it is assumed that the parameters
of the C-STGARCH(1, 1) model satisfy the identification condition ω0/(1 −
α0−β0) < ω1/(1−α1−β1), which is sufficient (but not necessary) for ensuring
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that F (k/{ω0 + α0ε
2
t−1 + β0σ

2
t−1}) and 1 − F (k/{ω1 + α1ε

2
t−1 + β1σ

2
t−1}) do

not both tend to zero simultaneously. It is also assumed that F is strictly
monotone and differentiable.

3.1 Stability of the Skeleton

As discussed in Tong (1990), the stability properties of a nonlinear model may
be analyzed by considering the noiseless part, or skeleton, of the model. The
skeleton of the C-STGARCH(1, 1) model is defined as

ε̄2t = S(ε̄2t−1,θ),

where

S(ε̄2t−1,θ) = Ḡ(ε̄2t−1){ω0+(α0+β0)ε̄
2
t−1}+ {1− Ḡ(ε̄2t−1)}{ω1+(α1+β1)ε̄

2
t−1},

Ḡ(ε̄2t−1) =

F (
k

ω0 + (α0 + β0)ε̄
2
t−1
)

F (
k

ω0 + (α0 + β0)ε̄
2
t−1
) + 1− F (

k

ω1 + (α1 + β1)ε̄
2
t−1
)
,

and θ denotes the vector of all the parameters of the model. A fixed point of
the skeleton is any value ε̄2e which satisfies the equation

S(ε̄2e,θ) = ε̄2e, (7)

and ε̄2e is said to be an equilibrium point of the model. Since the C-STGARCH
model is nonlinear, there may be one, several or no equilibrium points satis-
fying (7).

An examination of the local stability of each equilibrium point may
be carried out by considering the following first-order Taylor expansion of
S(ε̄2t−1,θ) about ε̄

2
e:

ε̄2t − ε̄2e = S(ε̄2t−1,θ)− S(ε̄2e,θ)

≈

Ã
∂S(ε̄2t−1,θ)

∂ε̄2t−1

¯̄̄̄
ε̄2t−1=ε̄

2
e

!
(ε̄2t−1 − ε̄2e). (8)

If the absolute value of the partial derivative in (8) is less than unity, then the
equilibrium is locally stable and ε̄2t is a contraction in the neighborhood of ε̄

2
e.
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It is straightforward to verify that

∂S(ε̄2t−1,θ)

∂ε̄2t−1
= (α1 + β1) + {(α0 + β0)− (α1 + β1)}Ḡ(ε̄2t−1)

+{(ω0 − ω1) + [(α0 + β0)− (α1 + β1)]ε̄
2
t−1}

∂Ḡ(ε̄2t−1)

∂ε̄2t−1
(9)

and

∂Ḡ(ε̄2t−1)

∂ε̄2t−1
= −{1− F (τ 1)}F 0(τ 0)(α0 + β0)τ

2
0 + F (τ 0)F

0(τ 1)(α1 + β1)τ
2
1

k{F (τ 0) + 1− F (τ 1)}2
,

(10)
where τ 0 = k/{ω0 + (α0 + β0)ε̄

2
t−1} and τ 1 = k/{ω1 + (α1 + β1)ε̄

2
t−1}.

As a numerical illustration, consider an C-STGARCH(1, 1) model with
ut ∼ N(0, 1) and the following parameter configuration:

μ = 0.3, (ω0, ω1) = (0.01, 0.02), (α0, α1) = (0.51, 0.1), (11)

(β0, β1) = (0.40, 0.75), k ∈ {0.3, 1}. (12)

We use a grid of starting values to solve equation (7) numerically and find the
number of equilibrium points; the local stability of each equilibrium point is
then assessed by considering the expansion in (8)—(10). A single equilibrium
point ε̄2e = 0.118 and ε̄2e = 0.111 is found for k = 0.3 and k = 1, respectively;
the associated partial derivative in (8) is respectively equal to 0.897 and 0.952,
suggesting that the model is locally for both values of k. More generally, an
examination of (9) and (10) reveals that the partial derivative in (8) increases
(decreases) with the value of the threshold k when regime 0 is more (less)
persistent than regime 1 in the sense that α0 + β0 is larger (smaller) than
α1 + β1.

3.2 Properties of the Mixing Function

As mentioned before, a key feature of the C-STGARCH model is that its
mixing function G depends on all the parameters of the model as well as on
both ε2t−1 and σ2t−1. The signs of ∂G/∂α0 and ∂G/∂β0 are both negative. An
increase in α0 and/or β0 raises ω0+α0ε

2
t−1+β0σ

2
t−1 and reduces the probability

P(ε20t < k|zt−1) and thus G(zt−1). A similar argument applies for a change in
α1 and/or β1, with the signs of both ∂G/∂α1 and ∂G/∂β1 being negative. A
change in α1 and/or β1 raises ω1 + α1ε

2
t−1 + β1σ

2
t−1, increases the probability

P(ε21t > k|zt−1), thus reducing G(zt−1).
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The sign of ∂G/∂k is always positive since the higher the threshold
is the bigger is the area of the conditional density of ε20t which is below the
threshold and the smaller is the area of the conditional density of ε21t which is
above the threshold. In other words, an increase in k results in an increase in
F (k/{ω0+α0ε2t−1+β0σ2t−1}) and a decrease in 1−F (k/{ω1+α1ε2t−1+β1σ2t−1}).
The sign of ∂G/∂ω1 is always negative since 1−F (k/{ω1+α1ε

2
t−1+ β1σ

2
t−1})

is higher the larger ω1 is. Analogously, the sign of ∂G/∂ω0 is always negative.
Note also that the signs of ∂G/∂ε2t−1 and ∂G/∂σ2t−1 are negative.

3.3 Empirical Distribution of the Data

There is a large variety of empirical distributions and time series that can be
generated by the C-STGARCH model. In Figures 1 and 2, we show the condi-
tional state-dependent distributions (for two different conditioning values), the
threshold, the histogram of ε2t , and the time series of ε

2
t and G(zt−1) generated

by a C-STGARCH(1, 1) model. We used 400 realizations for the time-series
evolution of εt and G(zt−1), with the parameter values given in (11)—(12) and
ut having Student’s t-distribution with 3 degrees of freedom (rescaled to have
unit variance).
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We present results for k = 0.3 and k = 1. The results are qualitatively
similar for the two threshold values. However, the separation of the regimes
and the time spent in each regime are quite different in the two cases. When
the threshold is high (k = 1) most of the observations are below the threshold
and are mostly associated with regime 0, with a few occasional shifts to regime
1. For relatively small values of the threshold (k = 0.3) the mixing weights
are such that the process remains in each regime for a considerable amount of
time.

The upper left panel of Figure 1 shows the probability density functions
of the latent regime-specific random variables ε21t and ε

2
2t conditional on zt−1 =

(0.316, 0.163)| (observation 80 of the simulated data) when k = 0.3. For this
value of zt−1, the value of the mixing function is 0.67. It can be seen in the lower
right panel that it coincides with relatively moderate values of the conditional
variance and therefore it assigns two thirds of the weight to the regime which
is associated with values smaller than the threshold. The upper right panel
of Figure 1 shows the regime-dependent probability density functions of ε21t
and ε22t conditional on zt−1 = (1.134, 2.513)

| (observation 125 of the simulated
data). For this value of zt−1, the mixing function takes the value 0.28. It can
be seen in the lower right panel that it coincides with relatively high values of
the conditional variance and therefore it assigns a high weight to the regime
which is associated with values smaller than the threshold.

The lower left panel shows the histogram of the generated data, which
reveals that many of the observations which come from regime 0 with high
probability have values smaller than 0.3, while those observations which come
from regime 1 with high probability have values greater than 0.3. It can be
seen from the histogram that approximately two thirds of the observations in
the sample are associated with high probability with regime 1.

Finally in the lower right panel we can see that G(zt−1) changes con-
siderably over the sample, taking low values for periods of very high volatility.
The skeleton of the model converges extremely fast to the equilibrium point
ε̄2e = 0.118. We found that the value of the partial derivative in (8) is 0.9055,
suggesting that this equilibrium is locally stable.

The corresponding results when k = 1 are shown in Figure 2, and are
qualitatively similar to those obtained with k = 0.3.
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The skeleton of the model converges again very rapidly to the equilib-
rium point ε̄2e = 0.111, which is locally stable since the partial derivative in
(8) is 0.9524. The most significant difference between the k = 1 and k = 0.3
cases is that when k = 1 the mixing function G(zt−1) takes values close to
unity most of the time, with values close to zero reached only occasionally
in periods of very high volatility. Given that these plots are constructed us-
ing the same random numbers, it is reasonable to conclude that the higher
the threshold is the smaller is the number of observations which are likely to
exceed the threshold.

3.4 News Impact Curve

A useful way of comparing GARCH-type models is by using the so-called
‘news impact curve’ (cf. Pagan and Schwert, 1990; Engle and Ng, 1993),
which represents the relationship between the current shock and next period’s
conditional volatility, assuming that all other past and current information
is held constant. Although the news impact curve is typically computed by
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evaluating all past conditional variances at the unconditional variance implied
by the model, given the complex structure of our model, we will evaluate it at
the fixed point of the skeleton.

The news impact curve for C-STGARCH(1, 1) model is thus defined as

NIC(εt|σ2t = ε̄2e) = G(ε2t |σ2t = ε̄2e)σ̃
2
0,t+1 + {1−G(ε2t |σ2t = ε̄2e)}σ̃21,t+1,

where
σ̃2i,t+1 = δi + αiε

2
t , δi = ωi + βiε̄

2
e, i = 0, 1,

and

G(ε2t |σ2t = ε̄2e) =

F (
k

δ0 + α0ε2t
)

F (
k

δ0 + α0ε2t
) + 1− F (

k

δ1 + α1ε2t
)
.

The news impact curve will typically separate large and small shocks rather
than positive and negative shocks, as is the case with some alternative models.
In our model, NIC(εt|σ2t = ε̄2e) is always a weighted average of δ0 + α0ε

2
t and

δ1 + α1ε
2
t . For extreme shocks, we have

NIC(εt|σ2t = ε̄2e) ≈ δ0 + α0ε
2
t , as G(ε2t |σ2t = ε̄2e)→ 1,

NIC(εt|σ2t = ε̄2e) ≈ δ1 + α1ε
2
t , as G(ε2t |σ2t = ε̄2e)→ 0.

The top panel of Figure 3 shows plots of the news impact curve for
different values of the threshold parameter k. We also plot the news impact
curve of the regime-specific GARCH models given by

NIC(εit|σ2it = ε̄2e) = δi + αiε
2
it, i = 0, 1.

The C-STGARCH news impact curves lie between the two regime-specific
curves. The bottom panel plots the mixing functions evaluated at the fixed
point of the skeleton. It is clear that the higher the threshold is the more
likely it is that the data would come from regime 0, which is associated with a
lower unconditional variance but with higher persistence than regime 1. This
in turn implies that the corresponding news impact curve is steeper.

These observations highlight the fact that models of the C-STGARCH
type have rather complicated dynamics and that the evaluation of the news
impact curve at skeleton values is not a trivial issue because it has significant
implications for the probability of the process being in a specific regime and
thus for the steepness of the news impact curve.
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3.5 Persistence

Since Diebold (1986) and Lamourex and Lastrapes (1990), it has been recog-
nized that strong persistence in the conditional variance of economic and fi-
nancial time series may be a spurious feature due to unaccounted structural
breaks and regime shifts. It is, therefore, reasonable to expect a linear GARCH
specification to exhibit strong persistence in the presence of neglected nonlin-
ear dynamics of the C-STGARCH type. Perhaps unsurprisingly, in simulation
experiments based on different parameter configurations and sample sizes, we
found that a Wald test almost never rejected the hypothesis of integrated
GARCH(1, 1) volatility when the data came from a C-STGARCH(1, 1) model.

An insight into this result may be gained by observing that the C-
STGARCH(1, 1) model may be written as

ε2t = G
¡
ε2t−1, vt−1

¢
{ω0 + (α0 + β0) ε

2
t−1 − β0vt−1 + vt}

+{1−G
¡
ε2t−1, vt−1

¢
}{ω1 + (α1 + β1) ε

2
t−1 − β1vt−1 + vt},

10 Studies in Nonlinear Dynamics & Econometrics Vol. 15 [2011], No. 2, Article 1
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where vt := ε2t − σ2t and

G(ε2t−1, vt−1) =
F ( k

ω0+(α0+β0)ε
2
t−1−β0vt−1

)

F ( k
ω0+(α0+β0)ε

2
t−1−β0vt−1

) + 1− F ( k
ω1+(α1+β1)ε

2
t−1−β1vt−1

)
.

By a first-order Taylor expansion of ε2t about (ε
2
t−1 = ε̄2e, vt−1 = 0, vt =

0), we deduce after some straightforward algebra that

ε2t ≈ ζ0 + ζ1(ε
2
t−1 − ε̄2e) + ζ2vt−1 + vt, (13)

where

ζ0 = G(ε̄2e, 0){ω0 + (α0 + β0) ε̄
2
e}+ {1−G

¡
ε̄2e, 0

¢
}{ω1 + (α1 + β1) ε̄

2
e},

ζ1 = G0
1

¡
ε̄2e, 0

¢
{ω0 + (α0 + β0) ε̄

2
e}+G

¡
ε̄2e, 0

¢
(α0 + β0)

−G0
1

¡
ε̄2e, 0

¢
{ω1 + (α1 + β1) ε̄

2
e}+ {1−G

¡
ε̄2e, 0

¢
} (α1 + β1) ,

ζ2 = G0
2

¡
ε̄2e, 0

¢
{ω0 + (α0 + β0) ε̄

2
e}−G

¡
ε̄2e, 0

¢
β0

−G0
2

¡
ε̄2e, 0

¢
{ω1 + (α1 + β1) ε̄

2
e}− {1−G

¡
ε̄2e, 0

¢
}β1.

Here, G0
1(ε

2
t−1, vt−1) =

∂G(ε2t−1, vt−1)

∂ε2t−1
and G0

2(ε
2
t−1, vt−1) =

∂G(ε2t−1, vt−1)

∂vt−1
,

with

G0
1

¡
ε̄2e, 0

¢
= −{1− F (w1)}F 0(w0)(α0 + β0)w

2
0 + F (w0)F

0(w1)(α1 + β1)w
2
1

k{F (w0) + 1− F (w1)}2
,

G0
2

¡
ε̄2e, 0

¢
=
{1− F (w1)}F 0(w0)β0w

2
0 + F (w0)F

0(w1)β1w
2
1

k{F (w0) + 1− F (w1)}2
,

w0 = k/{ω0 + (α0 + β0)ε̄
2
e} and w1 = k/{ω1 + (α1 + β1)ε̄

2
e}.

Rearranging terms, the approximation in (13) may be written as

ε2t ≈ ω + ϕε2t−1 − ϑvt−1 + vt, (14)

where

ω = G
¡
ε̄2e, 0

¢
ω0 + {1−G

¡
ε̄2e, 0

¢
}ω1

−G0
1

¡
ε̄2e, 0

¢
{ω0 − ω1 + (α0 + β0 − α1 − β1) ε̄

2
e}ε̄2e,
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ϕ = G0
1

¡
ε̄2e, 0

¢
{ω0 − ω1 + (α0 + β0 − α1 − β1) ε̄

2
e}

+G
¡
ε̄2e, 0

¢
(α0 + β0 − α1 − β1) + α1 + β1,

ϑ = −G0
2

¡
ε̄2e, 0

¢
{ω0 − ω1 + (α0 + β0 − α1 − β1) ε̄

2
e}

+G
¡
ε̄2e, 0

¢
(β0 − β1) + β1.

It can be seen that persistence, as measured by the coefficient on ε2t−1 in (14),
is a complicated function of all the parameters of the model rather than a
simple weighted average of the regime-specific persistence measures α0 + β0
and α1 + β1.

For the baseline parameter configuration (11)—(12) with k = 0.3, we
have ϕ = 0.9055. When ω1 is increased to ω1 = 0.025 we have ϕ = 0.9124,
and when ω1 = 0.03 we have ϕ = 0.9145. The corresponding values of ϕ
when k = 1 are 0.9524, 1.028 and 1.099, respectively. These numerical results
demonstrate that, for some parameter configurations, the persistence parame-
ter ϕ can be close to unity, or even larger than unity, even though α0+β0 < 1
and α1 + β1 < 1.

4 Parameter Estimation

Once the probability distribution of ut in (1) is specified, the parameters of a
C-STGARCH model can be estimated by the ML method. Letting fu denote
the probability density function of ut, the log-likelihood function for a sample
(y1, . . . , yT ) from the C-STGARCH(1, 1) model (ignoring initial conditions) is

L(θ) =
TX
t=1

{− lnσt + ln fu(εt/σt)} ,

where

σ2t = G(zt−1)(ω0 + α0ε
2
t−1 + β0σ

2
t−1) + {1−G(zt−1)}(ω1 + α1ε

2
t−1 + β1σ

2
t−1),

G(zt−1) is given by (5), θ = (μ, ω0, α0, β0, ω1, α1, β1, k,λ
|)|, and λ is a vector

of (unknown) shape parameters specifying fu.
In the simulations and empirical application that follow, fu is speci-

fied to be the probability density function of Student’s t-distribution with m
degrees of freedom (rescaled to have unit variance), so that

fu(x) =
Γ ({m+ 1}/2)

Γ(m/2)
p
π(m− 2)

µ
1 +

x2

m− 2

¶−(1+m)/2
, −∞ < x <∞, m > 2,

(15)
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where Γ(·) stands for the gamma function. ML estimation based on the t-
distribution is arguably more appropriate than estimation based on a Gaussian
likelihood since many financial time series exhibit substantial leptokurtosis
which may not be adequately accounted for by conditional heteroskedasticity
alone (see, e.g., Bollerslev, 1987). Note that, under the maintained assumption
in (15), the values of F in (5) can be computed as

F (x) = H

µ
mx

m− 2

¶
, x > 0,

where H is the cumulative distribution function of the central F -distribution
with 1 and m degrees of freedom, i.e.,

H(x) =
Γ ({m+ 1}/2)
Γ(m/2)

√
πm

Z x

0

1√
z

³
1 +

z

m

´−(1+m)/2
dz, x > 0.

The asymptotic properties of the ML estimator have not been formally
established for our model. However, if a C-STGARCH model satisfies suitable
stationarity, ergodicity and identifiability conditions, it is reasonable to expect
that standard asymptotic results for statistical inference (e.g., Crowder, 1976)
apply.

To throw some light on the sampling properties of the maximum like-
lihood estimator of the parameters of a C-STGARCH(1, 1), we now discuss
the results of a simulation study. The data-generating process in the sampling
experiments is the model defined by (1)—(5), with {ut} being i.i.d. random
variables having the probability density function (15) with m = 3. The exper-
iments are a factorial design of:

μ = 0.3, (ω0, ω1) = (0.01, 0.02), (α0, α1) = (0.51, 0.1),

(β0, β1) = (0.40, 0.75),

k ∈ {0.3, 0.4, 0.6, 1}, T ∈ {400, 800, 1600, 3200}.

In each Monte Carlo replication, 50 + T data points for yt are gen-
erated with y20 = σ20 = k, but only the last T of these are used in or-
der to attenuate the effect of the starting values. The ML estimate bθ =
(bμ, bω0, bα0, bβ0, bω1, bα1, bβ1,bk, bm)| is obtained by means of a quasi-Newton al-
gorithm that approximates the Hessian according to the Broyden—Fletcher—
Goldfarb—Shanno (BFGS) update computed from numerical derivatives. For
each design point, a grid of 7 values for each parameter (including the true
value) are used as starting values for the BFGS iterations; the starting val-
ues that result in the largest likelihood are then selected. Finally, since the
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computation of ML estimates is particularly time consuming (given the large
number of design points and the grid for initial values), the number of Monte
Carlo replications per experiment is 2000.

Table 1 records the finite-sample bias of the ML estimator of θ. The
results show that the bias of the ML estimator is a decreasing function of the
sample size. As a measure of the accuracy of estimated asymptotic standard
errors as approximations to the sampling standard deviation of the ML es-
timator, Table 2 shows the ratio of the exact standard deviation of the ML
estimates to the estimated standard errors averaged across replications for each
design point. The standard errors are calculated in the familiar manner from
the inverse of the Hessian of the log-likelihood function evaluated at the ML
estimates. For the vast majority of cases, the estimated asymptotic standard
errors are downward biased. These biases are not, however, substantial and
should not have significant adverse effects on inference.

Table 1. Finite-Sample Bias of the ML Estimator

k T  0 1
0

1

0


1


k m

0.3 400 0.102 0.117 0.440 0.127 0.114 0.109 0.099 0.023 0.126
800 0.085 0.093 0.354 0.176 0.044 0.098 0.068 0.014 0.077
1600 0.045 0.020 0.234 0.034 0.012 0.045 0.056 0.011 0.056
3200 0.011 0.008 0.047 0.019 0.002 0.020 0.013 0.005 0.012

0.4 400 0.124 0.120 0.012 0.021 0.076 0.090 0.087 0.045 0.084
800 0.073 0.078 0.033 0.097 0.058 0.087 0.090 0.020 0.027
1600 0.015 0.054 0.015 0.003 0.014 0.015 0.033 0.012 0.007
3200 0.008 0.020 0.004 0.003 0.009 0.002 0.015 0.004 0.000

0.6 400 0.002 0.124 0.109 0.339 0.082 0.288 0.082 0.094 0.088
800 0.025 0.091 0.099 0.253 0.087 0.139 0.087 0.062 0.073
1600 0.012 0.039 0.031 0.109 0.036 0.096 0.020 0.014 0.018
3200 0.007 0.010 0.011 0.023 0.010 0.021 0.009 0.005 0.006

1.0 400 0.055 0.430 0.117 0.523 0.048 0.111 0.045 0.012 0.160
800 0.020 0.328 0.086 0.325 0.024 0.097 0.018 0.004 0.097
1600 0.007 0.218 0.022 0.209 0.001 0.023 0.016 0.001 0.001
3200 0.001 0.055 0.003 0.053 0.000 0.009 0.003 0.000 0.000
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Table 2. Ratio of Sampling Standard Devia tion to Estimated Standard E rror

k T   0  1
 0

 1

 0


 1


k m

0.3 400 1.103 1.167 1.235 1.118 1.099 1.224 1.213 1.096 1.063
800 1.009 0.895 1.220 1.120 0.974 1.187 1.123 1.054 1.076

1600 1.012 1.085 1.263 1.091 1.003 0.989 1.165 1.037 1.022
3200 1.005 1.044 1.097 1.025 1.002 1.000 1.032 1.012 0.999

0.4 400 1.092 1.113 1.103 1.244 0.860 1.209 1.154 1.096 1.068
800 1.016 1.090 0.901 1.109 1.095 1.149 0.872 1.008 1.013

1600 1.009 1.002 0.995 1.147 0.998 1.160 1.035 1.002 1.002
3200 1.000 1.000 1.002 1.031 1.000 1.037 1.016 1.000 1.000

0.6 400 1.093 1.371 1.194 1.184 1.129 1.186 1.172 1.043 1.156
800 1.076 1.225 1.093 1.067 1.174 1.109 1.176 1.054 1.092

1600 1.008 1.187 1.087 1.015 1.140 1.076 1.099 1.023 1.011
3200 1.002 1.014 1.006 0.998 1.031 1.002 1.008 1.000 1.000

1.0 400 1.100 1.406 0.983 0.912 0.874 1.295 1.106 1.094 1.143
800 1.090 1.216 1.093 0.946 1.030 0.956 1.097 1.039 1.054

1600 1.083 1.101 1.007 1.022 0.992 0.988 0.999 1.015 1.026
3200 1.005 1.012 1.001 1.000 1.000 1.003 1.000 1.002 1.005

5 Empirical Application

In this section, we illustrate the practical use of the proposed C-STGARCH
model using a time series of U.S. daily stock returns. Our data set consists of
continuously compounded daily returns of the S&P 500 index over the period
January 1, 1964 to March 12, 2007. The returns are pre-filtered by means of a
first-order autoregressive model to remove serial correlation. Several financial
crises took place during our sample period, which are associated with periods
of very high volatility. We are interested, therefore, in models which are ca-
pable of discriminating between periods of high and low volatility rather than
between periods associated with positive and negative volatility shocks (as, for
example, Medeiros and Veiga (2009)).

The C-STGARCH(1, 1) model defined by (1), (2), (3), and (5) is com-
pared with the linear GARCH and some alternative models that are intended
to capture the same type of nonlinear volatility dynamics. The models con-
sidered are:
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(i) GARCH:
σ2t = ω + α0ε

2
t−1 + β0σ

2
t−1,

(ii) STGARCH(a):

σ2t = ω + [α0G(σ
2
t−1) + α1{1−G(σ2t−1)}]ε2t−1 + β0σ

2
t−1,

(iii) STGARCH(b):

σ2t = ω + α0ε
2
t−1 + [β0G(σ

2
t−1) + β1{1−G(σ2t−1)}]σ2t−1,

(iv) STGARCH(c):

σ2t = ω + (α0ε
2
t−1 + β0σ

2
t−1)G(σ

2
t−1) + (α1ε

2
t−1 + β1σ

2
t−1){1−G(σ2t−1)},

where

G(σ2t−1) =
£
1 + exp(−γ{σ2t−1 − k})

¤−1
, γ > 0.

Note that, in all nonlinear models, the constant term in the volatility
equation (which determines the level of the conditional variance) is assumed to
be time-invariant. This restriction is imposed in order to avoid associating one
of the regimes with the outlier observations that are present in our sample1.

The ML estimates of the parameters of the five volatility models (as-
suming t-distributed innovations) are shown in Table 3, together with corre-
sponding asymptotic standard errors. We also report the value of the Ljung
and Box (1978) portmanteau statistic (Qb) based on the first b = 35 and b = 45
sample autocorrelations of the squared standardized residuals, the value of the
maximized log-likelihood (Lmax), and the value of the Akaike information cri-
terion (AIC).

1We also considered specifications in which the constant term in the volatility equation
was regime-dependent. Such models were found to identify a few outliers as one regime
(with no significant GARCH effects). Since this is not the type of dynamics that STGARCH
models are intended to capture, we restricted the constant term to be constant. Needless
to say, such a restriction would be unnecessary for samples with no extreme events.
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Table 3. ML Estimates

GARCH STGARCH(a) STGARCH(b) STGARCH(c) C-STGARCH


0.0057
0.0152

0.0062
0.0157

0.0013
0.0157

0.0062
0.0153

0.0079
0.0153


0.0008
0.0044

0.0011
0.0020

0.0001
0.0021

0.0013
0.0026

0.0007
0.0006

0
0.0046
0.0571

0.0074
0.0180

0.0009
0.0593

0.0379
0.1078

0.0111
0.0254

1 −
0.0722
0.0095 −

0.0537
0.0417

0.0414
0.1762

0
0.0049
0.9365

0.0044
0.9398

0.0009
0.9329

0.0338
0.8918

0.0106
0.9630

1 − −
0.0012

0.9404
0.0569
0.9579

0.0485
0.8131

k −
0.4513
1.8726

0.0290
1.3344

0.6329
1.4625

1.3162
2.3793

 −
3.7244
4.0400

0.7498
6.6149

0.5540
1.2935 −

m
0.3988
6.9663

0.3889
6.6507

0.0643
6.5706

0.4019
6.8889

0.5300
6.7463

Q35 22.2401 23.1115 116.4828 33.8614) 25.0754
[0.9536] [0.9384] [0.0000] [0.5230] [0.8925]

Q45 29.2586 30.0474 127.8812 40.8075 32.8151
[0.9666] [0.9575] [0.0000] [0.6501] [0.9116]

ℒmax –13057.4 −13053.3 −13054.1 −13051.7 −13043.7
AIC 26124.8 26122.2 26124.2 26121.4 26103.4
MSE 4.6082 4.7541 5.1725 4.6096 4.6045
CR 0.3009 0.3001 0.3294 0.3037 0.2812
R2 0.0786 0.0792 0.0510 0.0794 0.0800

Figures in parentheses are asymptotic standard errors. Figures in square brackets are
p-values. MSE is the mean square error and CR is the confusion rate.

The parameter estimates of the linear GARCH model are consistent
with the literature in that the fitted model implies strong persistence in the

asymptotic

variance as measured by the estimate of α0 + β0. For the three logistic
STGARCHmodels, the estimated threshold parameter (k) varies between 1.34
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and 1.87. The STGARCH(a) model has an estimated adjustment parameter
(γ) with a large standard error and the estimated mixing weights plotted in
Figure 4 do not show marked movement. The STGARCH(b) model exhibits
signs of misspecification and has a large adjustment parameter (bγ = 6.61).
This is probably due to the fact that the smooth-transition mechanism of
the model essentially captures outliers in the squared returns, as can be seen
from the estimated mixing weights shown in Figure 5. The STGARCH(c)
model, shown in Figure 6 appears to be the most successful of the three logis-
tic STGARCH models.

The estimated parameters of the C-STGARCH model reveal remark-
ably different behaviour in the two regimes. The response to the lagged squared
shock is much more substantial in regime 1 (bα1 = 0.18) than in regime 0
(bα0 = 0.03). This in turn implies that big shocks are amplified in regime 1,
which is therefore a regime associated with periods of high conditional volatil-
ity.
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Nevertheless, the estimated regime-specific persistence parameter is
greater for regime 0 than for regime 1 (bβ0 = 0.96 and bβ1 = 0.81, respectively).
The stability of the empirical C-STGARCH model is assessed by numerical
simulation.

The skeleton of the model is found to have a single fixed point ε̄2e =
0.345. The derivative ∂S(ε̄2t−1,ϑ)/∂ε̄

2
t−1 in (9) is 0.9856 when evaluated at

ε̄2t−1 = ε̄2e, suggesting that the empirical model is locally stable.
The values of the mixing function shown in Figure 7 suggest that the

regimes are highly persistent and that the separation mostly associates periods
of high conditional volatility with regime 1. The separation of regimes is quite
similar to that implied by the STGARCH(c) model, as can be seen in Figure 6.2

The models in Table 3 are compared in terms of three additional criteria
based on the residuals bεt and the estimated conditional variance bσ2t from each
model: the mean square error lossMSE = (1/T )

PT
t=1(bε2t−bσ2t )2; the coefficient

of determination (R2) in the regression of lnbε2t on ln bσ2t and a constant (cf.
Pagan and Schwert, 1990); and the confusion rate (CR), i.e., the percentage of
times the direction of the change in the returns is incorrectly predicted. The
MSE, R2 and CR criteria all favour the C-STGARCH model, as does the AIC.

Finally, the news impact curves and mixing functions of the estimated
models, evaluated at the fixed point of their skeleton, are shown in Figure 8.
Note that the mixing functions of the logistic STGARCH models are constant
when evaluated at the skeleton. The bottom panel of Figure 8 shows that,
at the fixed point of the skeleton, the mixing weight associated with regime
0 is close to zero for the STGARCH(b) model and close to unity for the
STGARCH(c). Equal weights are assigned to each regime in the case of the
STGARCH(a) model. With respect to the news impact curve, we find that the
STGARCH(c) and the GARCH predict a much higher response of volatility
to past return shocks than the other models. The news impact curve for the
C-STGARCH is steeper for values higher than the threshold.

2Note that the labeling of regimes as 0 and 1 for the C-STGARCH model is the reverse
of that for the logistic STGARCH models.
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6 Summary

In this paper, we have proposed a contemporaneous-threshold autoregressive
conditionally heteroskedastic model which belongs to the family of STGARCH
models. A key feature of the C-STGARCH model is that its transition func-
tion depends on all the parameters of the model as well as on the data. We
have discussed the structural properties of the model, including its stability
characteristics, news impact curve, and implications about persistence, and
evaluated the finite-sample properties of the ML estimator of its parameters.
We have also presented an empirical application to the daily returns on the
S&P 500 index, which has shown that the proposed C-STGARCH model is
capable of outperforming some competing nonlinear GARCH models.
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