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a b s t r a c t

It is often the case that an outcome of interest is observed for a restricted non-randomly
selected sample of the population. In such a situation, standard statistical analysis yields
biased results. This issue can be addressed using sample selection models which are based
on the estimation of two regressions: a binary selection equation determining whether a
particular statistical unitwill be available in the outcome equation. Classic sample selection
models assume a priori that continuous regressors have a pre-specified linear or non-
linear relationship to the outcome, which can lead to erroneous conclusions. In the case of
continuous response, methods in which covariate effects are modeled flexibly have been
previously proposed, themost recent being based on a BayesianMarkov chainMonte Carlo
approach. A frequentist counterpart which has the advantage of being computationally
fast is introduced. The proposed algorithm is based on the penalized likelihood estimation
framework. The construction of confidence intervals is also discussed. The empirical
properties of the existing and proposed methods are studied through a simulation study.
The approaches are finally illustrated by analyzing data from the RAND Health Insurance
Experiment on annual health expenditures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Sample selection models are used when the observations available for statistical analysis are not from a random sample
of the population. Instead, individuals may have selected themselves into (or out of) the sample based on a combination
of observed and unobserved characteristics. The use of statistical models ignoring such a non-random selection can have
severe detrimental effects on parameter estimation.

As amotivating example, consider the RANDHealth Insurance Experiment (RHIE), a study conducted in the United States
between 1974 and 1982 (Newhouse, 1999). The aim was to quantify the relationship between various demographic and
socio-economic characteristics (see Table 6 in Section 4) and annual health expenditures in the population as a whole.
Non-random selection arises if the sample consisting of individuals who used health care services differ in important
characteristics from the sample of individuals who did not use them. When the relationship between the decision to use
the services and health expenditure is through observables, selection bias can be avoided by accounting for these variables.
However, if some individuals are part of the selected subsample because of some observables as well as unobservables, then
regardless of whether such variables are correlated in the population they will be in the selected sample (e.g., Dubin and
Rivers, 1990). Hence, the neglect of this potential correlation can lead to inconsistent estimates of the covariate effects in
the equation for annual expenditure.

Statistical methods correcting for the bias induced by non-random sample selection involve the estimation of two
regressionmodels: the selection equation (e.g., decision to use health services), and outcome equation (e.g., amount of health
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care expenditure). The latter is used to examine the substantive question of interest, whereas the former is used to detect
selection bias and obtain consistent estimates of the covariate effects in the outcome equation. Since their introduction by
Heckman (1979), sample selectionmodels have been used in various fields (e.g., Bärnighausen et al., 2011; Cuddeback et al.,
2004; Montmarquette et al., 2001; Sigelman and Zeng, 1999; Winship and Mare, 1992). Most of the case studies consider
parametric sample selection models where continuous predictors have a pre-specified linear or non-linear relationship to
the response variable. The need for techniques modeling flexibly regressor effects, without making a priori assumptions,
arises from the observation that all parameter estimates are inconsistent when the relationship between covariates and
outcome is mismodeled (e.g., Chib et al., 2009; Marra and Radice, 2011). This may prevent the researcher from recognizing,
for instance, strong covariate effects or revealing interesting relationships. Going back to the health expenditure example,
covariates such as age and education are likely to have a non-linear relationship to both decision to use health services and
amount to spend on them. Imposing a priori a linear relationship (or non-linear by simply using quadratic polynomials, for
example) could mean failing to capture possibly important complex relationships.

In a parametric context, sample selection models are typically estimated using the two-step framework first introduced
by Heckman (1979): using the parameter estimates of the selection equation, a component (called inverse Mills ratio) is
calculated and then included in the outcome equation to correct for non-random sample selection. Such an approach was
proposed to deal with violations of the assumption of normality. However, it has been found to be sensitive to correlation
among covariates in the outcome and selection equations, which can be really problematic in applications (Puhani, 2000).
This problem can be alleviated by imposing an exclusion restriction, which requires at least one extra covariate to be a
valid predictor in the selection equation but the outcome equation. A number of estimation methods which do not impose
parametric forms on the error distribution have been introduced. These are termed ‘semiparametric’ since only part of
the model of interest (the linear predictor) is parametrically pre-specified (e.g., Ahn and Powell, 1993; Lee, 1994; Martins,
2001; Newey et al., 1990; Powell, 1994; Vella, 1998). In this direction, recent developments include Marchenko and Genton
(2012) and van Hasselt (2011). The sample selection literature has also been focusing onmodels with non-normal responses
(e.g., Boyes et al., 1989; Terza, 1998; Smith, 2003; Greene, 2012). There are other variants of the sample selection model;
these include Li (2011) who considered the case in which there is more than one selection mechanism, and Omori and
Miyawaki (2010) who extended selection models to allow threshold values to depend on individuals’ characteristics. These
models have also been compared to principal stratification in the context of causal inferencewith nonignorablemissingness
(Mealli and Pacini, 2008).

We are interested in modeling flexibly covariate effects when the response is Gaussian. Das et al. (2003) considered
the estimation of non-linear effects by extending the Heckman (1979) two-step estimation procedure. Recently, Chib et al.
(2009) andWiesenfarth and Kneib (2010) have introduced twomore general estimationmethods. Specifically, the approach
of the former authors is based on Markov chain Monte Carlo simulation techniques and uses a simultaneous equation
system that incorporates Bayesian versions of penalized smoothing splines. The latter further extended this approach by
introducing a Bayesian algorithm based on low rank penalized B-splines for non-linear effects, varying-coefficient terms
and Markov random-field priors for spatial effects. Using a model specification that is very similar to that of Wiesenfarth
and Kneib (2010), we introduce a frequentist counterpart which has the advantage of being computationally fast. Our
proposal can especially appeal to practitioners already familiar with traditional frequentist techniques. The proposed
algorithm is based on the penalized maximum likelihood (ML) estimation framework, and is implemented in the R package
SemiParSampleSel (Marra and Radice, 2012). As in a Bayesian framework, the proposal supports the choice of any
class of smoothers albeit without requiring extra computational effort, an advantage which is not shared by a Bayesian
implementation. The construction of confidence intervals is also discussed. The performance of the proposed and available
methods are examined through a simulation study. Finally, themethods are illustrated analyzing data from the RANDHealth
Insurance Experiment on annual health expenditures.

2. Regression spline sample selection model

2.1. Model structure

The model consists of a system of two equations. Using the latent variable representation, the selection equation is

y∗

1i = uT
1iθ1 +

K1
k1=1

s1k1(z1k1i) + ε1i, i = 1, . . . , n, (1)

where n is the sample size, and y∗

1i is a latent continuous variable which determines its observable counterpart y1i through
the rule 1(y∗

1i > 0). The outcome equation determining the response variable of interest is

y2i =

uT
2iθ2 +

K2
k2=1

s2k2(z2k2 i) + ε2i if y∗

1i > 0

not observed if y∗

1i ≤ 0.

(2)
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Vector uT
1i =


1, u12i, . . . , u1P1 i


is the ith row of U1 =


uT
11, . . . ,u

T
1n

T, the n × P1 model matrix containing P1 parametric
model components (such as the intercept, dummy and categorical variables), with corresponding parameter vector θ1, and
the s1k1 are unknown smooth functions of the K1 continuous covariates z1k1i. In line with Wiesenfarth and Kneib (2010),
our implementation also supports varying coefficients models, obtained by multiplying one or more smooth terms by
some predictor(s) (Hastie and Tibshirani, 1993), and smooth functions of two or more (e.g., spatial) covariates as described
in Wood (2006, pp. 154–167). Similarly, uT

2i =

1, u22i, . . . , u2P2 i


is the ith row vector of the ns × P2 model matrix

U2 =

uT
21, . . . ,u

T
2ns

T, with coefficient vector θ2, and the s2k2 are unknown smooth terms of the K2 continuous regressors
z2k2i. ns denotes the size of the selected sample. For identification purposes, the smooth functions are subject to the centering
constraint


i sk(zki) = 0 (Wood, 2006). As in Chib et al. (2009) andWiesenfarth and Kneib (2010), wemake the assumption

that unobserved confounders have a linear impact on the responses. That is, the errors (ε1i, ε2i) are assumed to follow the
bivariate distribution

ε1i
ε2i


i.i.d.
∼ N


0
0


,


1 ρσ2

ρσ2 σ 2
2


, (3)

where ρ is the correlation coefficient, σ2 the standard deviation of ε2i and σ1, the standard deviation of ε1i, is set to 1 because
the parameters in the selection equation can only be identified up to a scale coefficient (e.g., Greene, 2012, p. 686). The
assumption of normality may be, perhaps, too restrictive for applied work; however it is typically made to obtain more
tractable expressions.

The smooth functions are represented using the regression spline approach. To fix ideas and in the one-dimensional case,
a generic sk(zki) is approximated by a linear combination of known spline basis functions, bkj(zki), and regression parameters,
βkj,

sk(zki) =

Jk
j=1

βkjbkj(zki) = Bk(zki)Tβk,

where Jk is the number of spline bases (hence regression coefficients) used to represent sk, Bk(zki)T is the ith vector of
dimension Jk containing the basis functions evaluated at the observation zki, i.e. Bk(zki) =


bk1(zki), bk2(zki), . . . , bkJk(zki)

T,
and βk the corresponding parameter vector. Calculating Bk(zki) for each i yields Jk curves (encompassing different degrees of
complexity) which multiplied by some real valued parameter vector βk and then summed will give a (linear or non-linear)
estimate for sk(zk). The number of basis functions, Jk, determines the flexibility allowed for sk(zk); Jk = 10 will lead to a
‘‘wigglier’’ curve estimate thanwhen such a parameter is set to 5, for instance. Because, in practice, it is not easy to determine
the optimal number of basis functions for the sk(zki), a reasonably large number for the Jk is typically chosen (to allow enough
flexibility in themodel) and then the corresponding βk penalized in order to suppress that part of non-linearity which is not
supported from the data. As it will be shown in the next section, this can be achieved using a penalized estimation approach
which is the mainstream in the regression spline literature (see Ruppert et al., 2003 and Wood, 2006 for more details).
Basis functions should be chosen to have convenient mathematical properties and good numerical stability. Many choices
are possible and supported in our implementation including B-splines, cubic regression and low rank thin plate regression
splines (e.g., Ruppert et al., 2003). The case of smooths of more than one variable follows a similar construction. Based on
the result above, Eqs. (1) and (2) can be written as

y∗

1i = uT
1iθ1 + BT

1iβ1 + ε1i, i = 1, . . . , n, (4)

and

y2i = uT
2iθ2 + BT

2iβ2 + ε2i, i = 1, . . . , ns, (5)

where BT
vi =


Bv1(zv1i)T, . . . , BvKv (zvKv i)

T

and βT

v = (βT
v1, . . . ,β

T
vKv

), for v = 1, 2.
In principle, the parameters of the sample selection model are identified even if


uT
1i, B

T
1i


=

uT
2i, B

T
2i


(Wiesenfarth and

Kneib, 2010). In practice, however, the absence of equation-specific regressors may lead to a likelihood function which does
not vary significantly over a wide region around the mode (e.g., Marra and Radice, 2011). Moreover, in applications, both
functional form and model errors are likely to be misspecified to some degree. This suggests that empirical identification
is better achieved if an exclusion restriction (ER) on the covariates in the two equations holds (e.g., Chib et al., 2009; Vella,
1998). That is, the regressors in the selection equation should contain at least one or more regressors not included in the
outcome equation. See the simulation results in Section 3 for more discussion of this issue.

2.2. A penalized maximum likelihood estimation approach

Recall that the error terms (ε1i, ε2i) are assumed to follow a bivariate normal distribution and define the linear predictors
ηvi = uT

viθv +BT
viβv, v = 1, 2. The observations can be divided into two groups according to the type of data observed. Each
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group of observations has a different form for the likelihood. When y2i is observed, the likelihood function is the probability
of the joint event y2i and y∗

1i > 0, i.e.

P(y2i, y∗

1i > 0) = f (y2i) P

y∗

1i > 0|y2i


= f (ε2i) P (ε1i > −η1i|ε2i)

=
1
σ2

φ


y2i − η2i

σ2


∞

−η1i

f (ε1i|ε2i) dε1i

=
1
σ2

φ


y2i − η2i

σ2


∞

−η1i

1
1 − ρ2

φ


ε1i −

ρ

σ2
(y2i − η2i)

1 − ρ2


dε1i

=
1
σ2

φ


y2i − η2i

σ2


Φ


η1i +

ρ

σ2
(y2i − η2i)

1 − ρ2


.

When y2i is not observed, the likelihood function just corresponds to the marginal probability that y∗

1i ≤ 0, i.e.

P

y∗

1i ≤ 0


= P (ε1i ≤ −η1i) = Φ (−η1i) = 1 − Φ (η1i) .

Therefore, the log-likelihood function for the complete sample of observations is

ℓ(δ) =

n
i=1

(1 − y1i) log {1 − Φ (η1i)} + y1i


− log σ2 + logφ


y2i − η2i

σ2


+ logΦ


η1i +

ρ

σ2
(y2i − η2i)

1 − ρ2


,

where δT = (δT1, δ
T
2, σ2, ρ) and δTv = (θT

v, β
T
v), for v = 1, 2.

As explained in the previous section, because of the flexible linear predictor structure considered in this article,
unpenalized ML estimation is likely to result in smooth term estimates which are too rough to produce practically
useful results. This issue can be dealt with by augmenting the objective function with a penalty term, such as2

v=1
Kv

kv=1 λvkv


s′′k (zvkv )

2dzvkv , measuring the (second-order, in this case) roughness of the smooth terms in the model.
The λvkv are smoothing parameters controlling the trade-off between fit and smoothness. Since regression splines are
linear in their model parameters, such a penalty can be expressed as a quadratic form in βT

= (βT
1, β

T
2), i.e. β

TSλβ where
Sλ =

2
v=1

Kv
kv=1 λvkvSvkv and the Svkv are positive semi-definite known square matrices. The penalized log-likelihood is

therefore given as

ℓp(δ) = ℓ(δ) −
1
2
βTSλβ. (6)

Because ρ is bounded in [−1, 1] and σ2 can only take positive real values, we use ρ∗
= tanh−1(ρ) =

(1/2) log {(1 + ρ) / (1 − ρ)} and σ ∗

2 = log(σ2) in optimization. Given values for the λvkv , we seek to maximize (6). In
practice, this can be achieved by Newton–Raphson’s methods iterating

δ̂
[a+1]

= δ̂
[a]

+ (H [a]
− S∗

λ)
−1(S∗

λδ̂
[a]

− g[a]) (7)

until convergence, where a is an iteration index and S∗

λ an overall block-diagonal penalty matrix, i.e.

S∗

λ = diag(011, . . . , 01P1 , λ1k1S1k1 , . . . , λ1K1S1K1 , 021, . . . , 02P2 , λ2k2S2k2 , . . . , λ2K2S2K2 , 0, 0).

The score vector g is defined by two subvectors g1 = ∂ℓ(δ)/∂δ1 and g2 = ∂ℓ(δ)/∂δ2 and two scalars g3 = ∂ℓ(δ)/∂σ ∗

2
and g4 = ∂ℓ(δ)/∂ρ∗, while the Hessian matrix has a 4 × 4 matrix block structure with (r, h)th element H r,h =

∂2ℓ(δ)/∂δr∂δTh, r, h = 1, . . . , 4, where δ3 = σ ∗

2 and δ4 = ρ∗. The derivations of g and H are tedious; these are given
in Appendix A.

The main issues with the maximization problem (6) are that ℓ(δ) is not globally concave (e.g., Toomet and Henningsen,
2008), and that the Hessian may become non-positive definite on some occasions. Preliminary work confirmed these
concerns as well as that the use of classic optimization schemes, implemented using R functions nlm() and optim(),
do not perform satisfactorily on this problem. To tackle such issues, (7) is implemented using a trust region algorithm with
eigen-decomposition of H at each iteration (e.g., Nocedal and Wright, 1999, Section 4.2), and initial values are supplied
using an adaptation of the Heckman procedure (1979) which is detailed in Appendix B. This approach proved to be fast and
reliable in most cases, with occasional convergence failure for small values of n and ns.

Joint estimation of δ andλ (containing the λvkv ) viamaximization of (6)would result in overfitting since the highest value
for ℓp(δ) would be obtained when λ = 0. This is why in (7) the λvkv are fixed at some values. The next section illustrates
how λ can be estimated.
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2.2.1. Smoothness selection
Smoothing parameter selection is important for practical modeling. In principle, it can be achieved by direct grid search

optimization of, for instance, the Akaike information criterion (AIC; Akaike, 1973). However, if the model has more than
two or three smooth terms, this typically becomes computationally burdensome, hence making the model building process
difficult inmost applied contexts. There are a number of techniques for automaticmultiple smoothing parameter estimation
for univariate regression spline models. Without claim of exhaustiveness, we briefly describe some of them. Gu (1992)
introduced the performance-oriented iteration method which applies generalized cross validation (GCV) or the unbiased
risk estimator (UBRE; Craven and Wahba, 1979) to each working linear model of the penalized iteratively re-weighted
least squares (P-IRLS) scheme used to fit the model. Wood (2004) extended this approach by providing an optimally
stable computational procedure. Smoothing parameter selection can also be achieved by exploiting the mixed model
representation of penalized regression spline models. Here, smoothing parameters become variance components and, as
such, can be estimated by either ML or restricted maximum likelihood (REML) for the Gaussian case, and by penalized
quasi-likelihood for the generalized case (e.g., Breslow and Clayton, 1993; Ruppert et al., 2003). Wahba (1985) showed that
asymptotically prediction error criteria are better in a mean square error sense, even though Härdle et al. (1988) pointed
out that these criteria give very slow convergence to the optimal smoothing parameters. Recent work by Reiss and Ogden
(2009) shows that at finite sample sizes both GCV and AIC are more prone to undersmoothing and more likely to develop
multiple minima than REML. However, as pointed out by Ruppert et al. (2003, p. 177), automatic smoothing parameter
selectors might be somewhat erratic; they provide an empirical example where REML leads to severe oversmoothing. We
adapt Gu’s approach to the current context which, in our experience, proved to be very efficient and stable in most cases.

Given values for the λvkv , noting that Newton–Raphson’s iterative Eq. (7) can be written in the P-IRLS form, δ̂
[a+1]

is the
solution to the problem

minimize ∥
√
W

[a]
(z[a]

− Xδ)∥2
+ δTS∗

λδ w.r.t. δ, (8)

where
√
W is any iterative weight non-diagonal matrix square root such that

√
W

T√
W = W, and zi is a 4-dimensional

pseudodata vector given as zi = Xiδ
[a]

+W−1
i di, where di = {∂ℓ(δ)i/∂η1i, ∂ℓ(δ)i/∂η2i, ∂ℓ(δ)i/∂η3i, ∂ℓ(δ)i/∂η4i}

T , η3i = σ ∗

2 ,
and η4i = ρ∗. Wi is a 4 × 4 matrix with (r, h)th element (Wi)rh = −∂2ℓ(δ)i/∂ηri∂ηhi, r, h = 1, . . . , 4, and, assuming
without loss of generality that the spline basis dimensions for the smooth terms in the model are all equal to J,Xi is a
4 × {(P1 + K1 × J) + (P2 + K2 × J) + 2} block diagonal matrix, i.e. Xi = diag


uT
1i, B

T
1i


,

uT
2i, B

T
2i


, 1, 1


. The superscript

[a] has been suppressed from di, zi andWi, and is omitted from the quantities shown in the next paragraph, to avoid clutter.
Smoothing parameter vector λ should be selected so that the estimated smooth terms are as close as possible to the true

functions. In the current context, this is achieved using the approximate UBRE. Specifically, λ̂ is the solution to the problem

minimize Vw
u (λ) =

1
n∗

∥
√
W(z − Xδ)∥2

− 1 +
2
n∗

tr(Aλ) w.r.t. λ, (9)

where theworking linearmodel quantities are constructed for a given estimate of δ, obtained inNewton–Raphson’s equation
(7) or (8), n∗ = 4n,Aλ = X(XTWX + S∗

λ)
−1XTW is the hat matrix and tr(Aλ) the estimated degrees of freedom of the

penalized model. For each working linear model of the P-IRLS iteration, Vw
u (λ) is minimized by employing the approach by

Wood (2004), which is based on Newton–Raphson’s method and can evaluate the approximate UBRE and its derivatives in
a way that is both computationally efficient and stable. Note that becauseW is a non-diagonal matrix of dimension n∗ × n∗,
computation can be prohibitive, even for small sample sizes. To this end, W−1d,

√
Wz and

√
WX are calculated exploiting

the sparse structure ofW. Hence, the working linear model in (9) can be formed in O(n∗(m + 2)) rather than O(n2
∗
(m + 2))

operations, wherem is the number of columns of X.
The issuewith evaluating the approximate UBRE is that theWi are not guaranteed to be positive-definite, mainly because

of σ ∗

2 and ρ∗ (e.g., Marra and Radice, 2011; Yee, 2010). This is problematic in that
√
W and W−1 are needed in (9). As a

solution, the working linear model is constructed so that its key quantities depend on all model parameters but σ ∗

2 and ρ∗

since these are not penalized. In this way, it is possible to construct the working linear model quantities needed in (9) as
well as reduce substantially the computational load and storage demand of the algorithm since in this case n∗ = 2.

The structure of the algorithm used for estimating parameter vector δ is given in Appendix C.

2.3. Inference

Inferential theory for penalized estimators is not standard. This is because of the presence of smoothing penalties
which undermines the usefulness of classic frequentist results for practical modeling. Solutions to this problem have been
introduced in the literature (see, e.g., Gu, 2002 andWood, 2006 for an overview). Here, we show how to construct pointwise
confidence intervals for the terms of a regression spline sample selection model by adapting to the current context the
well known Bayesian ‘confidence’ intervals, originally proposed by Wahba (1983) and Silverman (1985). An appealing
characteristic of these intervals is that they have close to nominal ‘across-the-function’ frequentist coverage probabilities
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for the components of a generalized additive model (Marra and Wood, 2012). To see this point, consider a generic sk(zki).
Intervals can be constructed seeking some constants Cki and A, such that

ACP =
1
n

E


i

I(|ŝk(zki) − sk(zki)| ≤ qα/2A/

Cki)


= 1 − α, (10)

where ACP denotes average coverage probability, I is an indicator function, α is a constant between 0 and 1, and qα/2 is the
α/2 critical point from a standard normal distribution. Defining bk(zk) = E{ŝk(zk)} − sk(zk) and vk(zk) = ŝk(zk) − E{ŝk(zk)},
so that ŝk − sk = bk + vk, and I to be a random variable uniformly distributed on {1, 2, . . . , n}, we have that ACP =

Pr

|Bk + Vk| ≤ qα/2A


, where Bk =

√
CkIb(zkI) and Vk =

√
CkIv(zkI). It is then necessary to find the distribution of Bk+Vk and

values for Cki and A so that the requirement (10) is met. As shown inMarra andWood (2012), in the context of non-Gaussian
responsemodels involving several smooth components, such a requirement is approximatelymetwhen confidence intervals
for the ŝk(zki) are constructed using

δ|yv̇N (δ̂,Vδ), (11)

where, in the current context, y refers to the response vectors, δ̂ is an estimate of δ and Vδ = (−H + S∗

λ)
−1. The structure

of this variance–covariance matrix is such that it includes both a bias and a variance component in a frequentist sense
(Marra andWood, 2012). Given result (11), confidence intervals for linear and non-linear functions of themodel parameters
can be easily obtained. For any parametric model components, using (11) is equivalent to using classic likelihood results
because such terms are not penalized. Note that there is no contradiction in fitting the sample selectionmodel via penalized
ML and then constructing intervals using a Bayesian result, and such an approach has been adopted many times in the
literature (e.g., Gu, 2002; Marra and Radice, 2011; Wood, 2006). Moreover, the quantities needed to construct the intervals
are obtained as a byproduct of the estimation process; hence no extra computation is really required for inferential purposes.

Frequentist approaches treat λ as known. It is, therefore, reasonable to expect the neglect of the variability due to
smoothing parameter estimation to lead to undercoverage of the intervals. This problem should become more relevant
as the number of smoothing parameters increases, which is especially the case for sample selection models as compared to
single equation models. In this respect, Bayesian approach would be advantageous as a smoothing parameter uncertainty
can be naturally taken into account. As shown byMarra andWood (2012), provided that smoothing parameters are selected
so that the estimation bias is not too large a proportion of the sampling variability, the empirical performance of the intervals
should have little or no sensitivity to the neglect of smoothing parameter uncertainty. This suggests that a fully Bayesian
approach like that of Wiesenfarth and Kneib (2010) may lead to overcoverage. The simulation study in the next section will
also shed light on this issue.

3. Simulation study

In this section, we conduct a Monte Carlo simulation study to compare the proposed method with classic
univariate regression and the approach of Wiesenfarth and Kneib (2010). Computations were performed in the R
environment (R Development Core Team, 2012) using the package SemiParSampleSel (Marra and Radice, 2012), which
implements the ideas discussed in the previous sections, and bayesSampleSelection (available at http://www.uni-
goettingen.de/en/96061.html) written by Wiesenfarth. The approach by Chib et al. (2009) was not used in the comparison
because of lack of R code. However, this should not be problematic as their method is closely related to that of Wiesenfarth
and Kneib (2010).

The sampling experiments were based on the model

y∗

1i = θ11 + θ12ui + s11(z1i) + s12(z2i) + ε1i

y2i = θ21 + θ22ui + s21(z1i) + ε2i,

where y1i and y2i were determined as described in Section 2.1. The test functions used were s11(z1i) = −0.7

4z1i +

2.5z21i + 0.7 sin(5z1i)+ cos(7.5z1i)

, s12(z2i) = −0.4 {−0.3 − 1.6z2i + sin(5z2i)}, and s21(z1i) = 0.6 {exp(z1i) + sin(2.9z1i)}

(see Fig. 1). (θ12, θ21, θ22) andσ2 were set to (2.5, −0.68, −1.5) and 1. To generate binary values for y1i so that approximately
25%, 50% and 75% of the total number of observations were selected to fit the outcome equation, θ11 was set to −0.65, 0.58
and 1.66, respectively. Regressors ui, z1i and z2i were generated as three uniform covariates on (0, 1) with correlation
approximately equal to 0.5. This was achieved using rmvnorm() in the package mvtnorm, generating standardized
multivariate random draws with correlation 0.5 and then applying pnorm() (e.g., Marra and Radice, 2011). Regressor ui
was dichotomized using round(). Standardized bivariate normal errors with correlations ρ = (±0.1, ±0.5, ±0.9) were
considered, and sample sizes were set to 500, 1500 and 3000. For each combination of parameter settings, the number
of simulated datasets was 250. Models were fitted with and without exclusion restriction (ER and non-ER, respectively).
Specifically, in the latter case z2i was not included in the selection equation.

For the approach ofWiesenfarth and Kneib (2010), we used the following settings. The number of iterations for the burn-
in period, number of samples used for estimation, and degree of thinningwere 2000, 22000 and 20, respectively, and smooth
terms were represented using P-spline bases with 20 inner knots and penalty matrices containing second order differences.

http://www.uni-goettingen.de/en/96061.html
http://www.uni-goettingen.de/en/96061.html
http://www.uni-goettingen.de/en/96061.html
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Fig. 1. The test functions used in the simulation studies.

To make a fair comparison, the smooth components of the proposed method were represented using P-splines with the
same settings. Models were also fitted neglecting the sample selection issue: using the selected sample, simply fit Eq. (5)
via penalized least squares, again with the same number of P-spline bases and penalty order. As this naive approach cannot
correct sample selection bias, badly biased parameter estimates are clearly expected in the simulation results. However,
reporting such results should be useful to highlight the negative effects that the neglect of non-random sample selection
has on parameter estimates. Following a reviewer’s suggestion, we also employed a standard Heckman approach where
non-linear effects were modeled using second-order polynomial terms.

3.1. Results

In this section, we only show a subset of results; these are representative of all empirical findings. Since the selection
equation is not affected by sample selection bias, we focus on the estimation results for the outcome equation only. Table 1
reports the percentage relative bias and the root mean squared error (RMSE) for θ22, ρ and σ , when assuming that ER
holds and approximately 50% of the total number of observations are available to fit the outcome equation. The approaches
employed are naive, standard Heckman with second-order polynomial terms, and penalized Bayesian and ML estimation
(naive, HeckP,W&K andM&R, respectively). Table 2 shows the RMSE and 95% average coverage probability (ACP) for the four
approaches when estimating s21(z1) under the same settings as described above. Tables 3 and 4 report the bias and RMSE for
θ̂22, ρ̂ and σ̂ , and RMSE and ACP for ŝ21(z1), respectively, for the non-ER case when approximately 75% of the total number
of observations are selected for the outcome equation. This scenario should be reasonably close to the empirical illustration
presented in Section 4, where there is no ER and the 77% of observations are selected. The results for the non-ER case when
approximately 50% of observations are selected are reported in Appendix D (Table 8). Table 5 reports the results obtained
under the ER scenario with 50% of selected observations when in the data generating process the simple non-linear function
s21(z1) is swapped with function s11(z1). In this case, θ11 was set to −3.05. As in Wiesenfarth and Kneib (2010), based on

the estimates for 200 fixed covariate values, RMSE(ŝ) was calculated as
200

b=1


ŝ(z1b) − s(z1b)

2. In terms of computing
mean times, M&R showed lower computational cost than W&K. Specifically, mean times for M&R were between 0.02 and
0.17 min depending on n and ρ. Compared to M&R, W&K approximately took between 25 and 100 times longer to fit a
sample selection model.

The main results can be summarized as follows.

• Table 1 shows that the neglect of non-random sample selection leads to seriously biased parameter estimates. When ρ
is small, HeckP outperforms all other methods in terms of bias. However, as ρ increases (i.e., the sample selection issue
becomesmore pronounced),M&R andW&KoutperformHeckP,withM&R being the best in terms of bias. For highρ, M&R
performs the best in terms of bias and precision. As n increases, the W&K, M&R and HeckP estimates show convergence
to their true values. Similar conclusions are reached for s21(z1) (see Table 2). The 95% ACPs for M&R are more accurate
than those for W&K and HeckP. This suggests that a fully Bayesian approach, which accounts for smoothing parameter
uncertainty, yields slightly conservative pointwise intervals. This finding supports the argument by Marra and Wood
(2012) (see Section 2.3) and is in agreement with the results of Wiesenfarth and Kneib (2010). We did not report the
ACPs for the biased naive fits because these were clearly below the nominal level.

• In the non-ER case, when 50% of observations are selected (Table 8 in Appendix D), all methods exhibit higher bias as
compared to the ER case. In addition, similar trends as those in Tables 1 and 2 are detected, withW&K andM&R being the
best and naive being the worst as ρ increases. When about three-fourth of the total number of observations are available
for the outcome equation, the same patterns can again be observed but with lower bias and RMSE (see Tables 3 and 4).
This finding complements the argument in the final paragraph of Section 2.1 by suggesting that the presence of ER is
necessary to obtain good estimation results, unless the percentage of selected observations is high.

• Following a reviewer’s suggestion, we also compared HeckP and M&R under the ER scenario with 50% of selected
observations when in the data generating process s21(z1) is swapped with s11(z1) (see Table 5). As compared to the
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Table 1
Percentage biases and RMSEs for θ̂22, ρ̂ and σ̂ obtained from the ER experiments, when employing the naive, standard Heckman (with second-order
polynomial terms), penalized Bayesian and ML estimation approaches (naive, HeckP, W&K and M&R). Number of simulated datasets and approximate
percentage of selected observations are 250% and 50%. True values of θ22 and σ are −1.5 and 1. ρ and n denote the correlation between the errors of the
selection and outcome equations, and the sample size. See Section 3 for further details.

ρ θ̂22 ρ̂ σ̂

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
n
500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000

0.1

Naive 5.2 6.2 6.2 0.184 0.135 0.115 – – – – – – – – – – – –
HeckP −0.5 1.7 0.1 0.390 0.220 0.163 −7.0 −25.4 −4.3 0.328 0.198 0.144 −1.0 −0.2 0.0 0.065 0.028 0.021
W&K 2.7 3.5 1.5 0.320 0.207 0.150 −55.8 −54.0 −25.1 0.260 0.181 0.132 −1.3 −0.6 −0.8 0.108 0.059 0.045
M&R 5.6 6.0 2.6 0.398 0.253 0.170 −102.6 −95.9 −46.1 0.365 0.239 0.157 1.2 0.3 −0.1 0.058 0.028 0.020

0.5

Naive 31.9 32.3 32.4 0.502 0.492 0.490 – – – – – – – – – – – –
HeckP 2.0 3.8 3.2 0.363 0.214 0.161 −12.3 −13.4 −11.3 0.288 0.185 0.136 −0.3 0.4 0.5 0.084 0.044 0.030
W&K 8.0 3.7 2.1 0.320 0.173 0.126 −27.5 −12.0 −6.9 0.280 0.150 0.099 −5.0 −2.1 −1.5 0.136 0.076 0.055
M&R 4.8 2.2 1.2 0.371 0.175 0.124 −17.2 −7.5 −4.3 0.332 0.151 0.096 −0.6 −0.7 −0.6 0.062 0.035 0.026

0.9

Naive 59.0 58.8 58.8 0.893 0.885 0.884 – – – – – – – – – – – –
HeckP 6.6 6.2 5.6 0.338 0.199 0.158 −14.8 −10.4 −8.9 0.225 0.144 0.117 1.7 1.8 1.7 0.103 0.063 0.048
W&K 1.6 0.5 0.3 0.171 0.099 0.072 −2.8 −0.8 −0.3 0.070 0.029 0.019 −2.1 −0.8 −0.6 0.119 0.070 0.050
M&R −0.9 −0.5 −0.3 0.164 0.094 0.067 1.2 0.5 0.3 0.048 0.023 0.016 −0.3 −0.1 −0.2 0.056 0.032 0.023

Table 2
RMSEs and 95% average coverage probabilities for ŝ21(z1) obtained from the
ER experiments, when employing naive, HeckP, W&K and M&R. Number of
simulated datasets and approximate percentage of selected observations are
250% and 50%. See the caption of Table 1 for further details.

ρ ŝ21(z1)
RMSE ACP
n
500 1500 3000 500 1500 3000

0.1

Naive 0.121 0.075 0.059 – – –
HeckP 0.143 0.079 0.056 0.97 0.97 0.96
W&K 0.137 0.085 0.066 0.98 0.97 0.97
M&R 0.164 0.099 0.069 0.96 0.96 0.95

0.5

Naive 0.200 0.185 0.178 – – –
HeckP 0.135 0.076 0.055 0.97 0.97 0.97
W&K 0.134 0.078 0.058 0.97 0.97 0.97
M&R 0.146 0.080 0.056 0.96 0.96 0.96

0.9

Naive 0.314 0.311 0.309 – – –
HeckP 0.124 0.073 0.056 0.98 0.97 0.98
W&K 0.099 0.065 0.049 0.98 0.98 0.97
M&R 0.101 0.062 0.043 0.96 0.96 0.95

previous case, this scenario better highlights the advantage of penalized regression splines over polynomial models.
Overall, results show that HeckP does not model adequately regressor effects. Specifically, for any value of ρ and n, the
HeckP RMSE of ŝ11(z1) is consistently higher than that of M&R. In addition, the residual confounding induced by the
mismodeled non-linear effects seems to have negative consequences on the estimation of the parametric effects, where
HeckP underperforms in terms of accuracy and precision.

• We also carried out additional simulation experiments where the model errors are generated according to a bivariate
Student-t distribution with 3 degrees of freedom; see Tables 9 and 10 in Appendix D. As expected, results are worse
than those presented in this section. However, the use of ER helps to obtain better estimates although still not as good
as those produced when the assumption (3) is met. Even worse results (available upon request) are found when using
asymmetric or bimodal bivariate model error distributions, case in which the presence of ER cannot really help. The
reason for this result is that the likelihood of the model is wrongly specified (i.e., we assume normality but the model
errors are generated from a Student-t distribution) and ML approaches are known to be sensitive to such issues.

In summary, methods which cannot control for non-random sample selection (such as naive) produce severely biased
estimates. The two penalized (Bayesian and ML) regression spline approaches to sample selection modeling are effective
and generally outperform standard Heckmanwith polynomial terms. Moreover, althoughW&K andM&R perform similarly,
the former is more time-consuming than the latter. Finally, ER is generally required to obtain good estimation results. Of
course, in the presence of severe model misspecification, ER cannot avoid obtaining considerably biased estimates.
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Table 3
Percentage biases and RMSEs for θ̂22, ρ̂ and σ̂ obtained from the non-ER experiments, when employing the naive, standard Heckman (with second-order
polynomial terms), penalized Bayesian and ML estimation approaches (naive, HeckP, W&K and M&R). Number of simulated datasets and approximate
percentage of selected observations are 250% and 75%. See the caption of Table 1 for further details.

ρ θ̂22 ρ̂ σ̂

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
n
500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000 500 1500 3000

0.1

Naive 3.1 3.3 3.4 0.136 0.088 0.072 – – – – – – – – – – – –
HeckP −0.1 0.4 −0.6 0.297 0.173 0.122 −24.8 −26.0 3.0 0.431 0.253 0.188 −1.6 −0.5 −0.2 0.065 0.029 0.019
W&K 1.8 1.9 0.6 0.200 0.145 0.099 −60.8 −59.8 −25.7 0.278 0.218 0.150 −3.9 −1.4 −1.2 0.099 0.051 0.040
M&R 2.4 2.2 0.7 0.253 0.159 0.105 −83.4 −70.4 −29.3 0.378 0.252 0.168 1.1 0.5 0.1 0.047 0.023 0.016

0.5

Naive 17.1 17.5 17.5 0.285 0.271 0.267 – – – – – – – – – – – –
HeckP 1.6 1.6 0.7 0.290 0.171 0.118 −28.0 −20.6 −15.2 0.408 0.253 0.187 −0.8 0.1 0.2 0.080 0.038 0.029
W&K 6.9 3.0 1.8 0.233 0.138 0.090 −47.1 −24.0 −15.5 0.365 0.210 0.139 −7.0 −3.2 −1.8 0.130 0.071 0.051
M&R 5.1 1.3 0.8 0.261 0.126 0.083 −36.7 −14.4 −11.1 0.415 0.190 0.119 −0.4 −0.4 −0.5 0.050 0.028 0.021

0.9

Naive 31.2 31.6 31.6 0.481 0.478 0.477 – – – – – – – – – – – –
HeckP 2.3 3.0 1.9 0.272 0.159 0.117 −25.4 −19.6 −15.7 0.367 0.249 0.199 0.8 1.5 1.2 0.096 0.056 0.045
W&K 2.3 0.5 0.4 0.159 0.078 0.055 −14.0 −8.1 −7.8 0.205 0.090 0.080 −4.8 −1.5 −1.7 0.130 0.060 0.045
M&R 0.4 −0.1 0.1 0.147 0.073 0.053 −7.6 −6.3 −6.6 0.174 0.068 0.065 −0.8 −0.4 −0.5 0.048 0.025 0.019

Table 4
RMSEs and 95% average coverage probabilities for ŝ21(z1) obtained from the
non-ER experiments, when employing naive, HeckP, W&K and M&R. Number
of simulated datasets and approximate percentage of selected observations are
250% and 75%. See the caption of Table 1 for further details.

ρ ŝ21(z1)
RMSE ACP
n
500 1500 3000 500 1500 3000

0.1

Naive 0.093 0.057 0.041 – – –
HeckP 0.112 0.065 0.046 0.97 0.96 0.96
W&K 0.105 0.070 0.050 0.98 0.97 0.96
M&R 0.114 0.071 0.047 0.96 0.95 0.95

0.5

Naive 0.126 0.104 0.097 – – –
HeckP 0.108 0.063 0.045 0.98 0.97 0.97
W&K 0.105 0.070 0.047 0.98 0.97 0.96
M&R 0.113 0.063 0.042 0.96 0.95 0.96

0.9

Naive 0.181 0.170 0.166 – – –
HeckP 0.100 0.060 0.043 0.98 0.98 0.98
W&K 0.087 0.058 0.042 0.98 0.98 0.97
M&R 0.089 0.051 0.039 0.95 0.96 0.95

Table 5
Percentage biases and RMSEs for θ̂22, ρ̂, σ̂ and ŝ11(z1) obtained from the ER experiments, when employing the standard Heckman (with second-order
polynomial terms) and ML estimation approaches (HeckP and M&R). Number of simulated datasets and approximate percentage of selected observations
are 250 and 50%. See Section 3 for further details.

θ̂22 ρ̂ σ̂ ŝ11(z1)
Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE
n
500 3000 500 3000 500 3000 500 3000 500 3000 500 3000 500 3000

0.1 HeckP 6.0 7.1 0.644 0.272 −87.7 −87.4 0.425 0.194 −2.5 −1.5 0.071 0.030 1.564 1.564
M&R −0.1 −0.3 0.662 0.256 −30.3 −5.0 0.359 0.168 −0.9 0.0 0.064 0.021 1.526 1.528

0.5 HeckP 8.6 7.8 0.584 0.257 258.7 296.4 0.444 0.335 −1.4 −0.8 0.069 0.029 1.569 1.565
M&R −0.5 −0.6 0.573 0.241 −21.7 −5.3 0.335 0.147 −0.6 0.0 0.081 0.030 1.511 1.523

0.9 HeckP 9.3 8.0 0.561 0.233 607.7 694.7 0.664 0.705 −0.3 0.0 0.091 0.034 1.572 1.566
M&R 2.4 −1.5 0.510 0.211 −18.6 −2.9 0.282 0.077 −0.2 −0.3 0.103 0.044 1.501 1.519

4. Empirical illustration

The method presented in this paper as well as naive, standard Heckman with polynomial terms andW&K are illustrated
using data from the RAND Health Insurance Experiment (RHIE) which was a comprehensive study of health care cost,
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Table 6
Description of the outcome and selection variables, and of the regressors.

Variable Definition

lnmeddol log of the medical expenses of the individual (outcome variable)
binexp binary variable indicating whether the medical expenses are positive (selection variable)
logc log of the coinsurance rate (coins) plus 1
idp binary variable for individual deductible plans
pi participation incentive payment
fmde is 0 if idp = 1, and log [max {1,maximum expenditure offer/(0.01 ∗ coins)}] otherwise
physlm physical limitations
disea number of chronic diseases
hlthg binary variable for good self-rated health (the baseline is excellent self-rated health)
hlthf binary variable for fair self-rated health
hlthp binary variable for poor self-rated health
inc family income
fam family size
educdec education of household head in years
xage age of the individual in years
female binary variable for female individuals
child binary variable for individuals younger than 18 years
fchild binary variable for female individuals younger than 18 years
black binary variable for black household heads

utilization and outcome conducted in the United States between 1974 and 1982 (Newhouse, 1999). As explained in the
introductory section, the aim was to quantify the relationship between various covariates and annual health expenditures
in the population as a whole.

In this context, non-random sample selection arises because the sample consisting of individuals who used health
care services differ in important characteristics from the sample of individuals who did not use them. Because some
characteristics cannot be observed, traditional regressionmodeling is likely to deliver biased estimates. We, therefore, need
to correct parameter estimates for sample selection bias. We use the same subsample as in Cameron and Trivedi (2005,
p. 553), and model annual health expenditures. The sample size and number of selected observations are 5574 and 4281.
The variables are defined in Table 6. Additional information can be found in Cameron and Trivedi (2005, Table 20.4) and
Newhouse (1999).

Following Cameron and Trivedi (2005) the outcome and the selection equations include the same set of regressors. In
M&R and W&K, the two equations include logc, idp, fmde, physlm, disea, hlthg, hlthf, hlthp, female, child,
fchild and black as parametric components, and smooth functions of pi, inc, fam, educdec and xage, represented
using P-spline bases with 20 inner knots and penalty matrices based on second order differences. For naive, the samemodel
specification is adopted but clearly a selection equation is not present. As for standard Heckman, wemodel the effects of pi,
inc, fam, educdec and xage using second-order polynomials. For W&K, the number of iterations for burn-in, of samples
used for estimation, and degree of thinning were the same as those employed in the simulation study.

The use of smooth functions for xage, educdec and inc is suggested by the fact that these covariates embody
productivity and life-cycle effects that are likely to influence health expenditures non-linearly. Dismuke and Egede (2011)
and Sullivan et al. (2007) consider parametric specifications where non-linear effects are modeled by categorizing these
variables into groups based on intervals. However, categorizing a continuous variable has several disadvantages since, for
example, it introduces problems of defining cut-points and assumes a priori that the relationship between response and
covariate is flat within intervals (e.g., Marra and Radice, 2010). As for fam and pi, we do not have a priori knowledge of their
effects and imposing linear or quadratic relationships may prevent us from revealing interesting non-linear relationships.
Smooth functions of other covariates such as idp and disea are not considered as their number of unique covariate values
is too small.

Table 7 and Fig. 2 report the parametric and smooth function estimates for the outcome equation (which is the one of
interest) when applying the four approaches on the RAND RHIE dataset. Computational times for M&R andW&K were 1.03
and 18.26 min, respectively.

The parametric effects obtained using HeckP, M&R and W&K are very similar (except for the effect of child) and differ
from those of naive. Specifically, the M&R and W&K results suggest that socioeconomic factors (black, female, child,
and fchild) as well as health status variables (physlm, disea, hlthg, hlthf, hlthp) have a stronger effect on annual
health expenses as compared to the naive results. The health insurance variables (logc, idp) seem not to determine the
annual medical expenses when using naive. The estimated smooths for the socioeconomic variables (inc, fam, educdec
and xage) obtained with M&R andW&K are reasonably close. This is not true for the health insurance variable pi where all
four estimated functions are different. Notice how the estimated curves produced byHeckP are consistentlyU- or invertedU-
shaped; this is an artifact of the polynomial specification. The estimates of ρ, which are important to ascertain the presence
of selection bias, are high, positive, and statistically significant. This indicates that the unobservable factors which lead
individuals to use health services also lead them to spendmore onmedical expenses. The estimates ofσ2 obtainedwith either
HeckP or M&R and W&K are significantly different, with the latter showing a larger uncertainty. This result is consistent
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Table 7
Parametric estimates of the annual medical expense equation obtained by applying the naive, standard Heckman (with second-order polynomial terms),
penalized Bayesian and ML estimation approaches (naive, HeckP, W&K and M&R, respectively) on the RAND RHIE dataset described in Section 4. Within
parentheses are 95% confidence and credible intervals. For M&R, intervals have been calculated using the result of Section 2.3.

Variable Naive HeckP W&K M&R

(Intercept) 3.75 (3.58, 3.92) 3.52 (3.35, 3.68) 3.31 (3.11, 3.52) 3.28 (3.08, 3.48)
logc −0.02 (−0.08, 0.04) −0.07 (−0.14, 0.00) −0.07 (−0.13, −0.00) −0.07 (−0.14, −0.00)
idp −0.11 (−0.23, 0.02) −0.18 (−0.32, −0.05) −0.18 (−0.31, −0.06) −0.17 (−0.30, −0.04)
fmde −0.03 (−0.06, 0.01) −0.02 (−0.06, 0.02) −0.02 (−0.05, 0.02) −0.02 (−0.06, 0.02)
physlm 0.23 (0.11, 0.38) 0.36 (0.21, 0.51) 0.31 (0.17, 0.46) 0.33 (0.18, 0.48)
disea 0.02 (0.01, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04)
hlthg 0.17 (0.07, 0.26) 0.18 (0.08, 0.28) 0.21 (0.11, 0.31) 0.20 (0.10, 0.30)
hlthf 0.39 (0.22, 0.56) 0.44 (0.25, 0.63) 0.46 (0.29, 0.65) 0.47 (0.28, 0.65)
hlthp 0.78 (0.45, 1.11) 0.96 (0.60, 1.33) 0.99 (0.62, 1.36) 0.97 (0.61, 1.34)
female 0.34 (0.23, 0.45) 0.55 (0.43, 0.68) 0.52 (0.41, 0.67) 0.54 (0.41, 0.66)
child 0.05 (−0.28, 0.39) −0.46 (−0.70, −0.23) 0.11 (−0.24, 0.49) 0.17 (−0.19, 0.54)
fchild −0.34 (−0.52, −0.17) −0.57 (−0.76, −0.38) −0.53 (−0.75, −0.35) −0.54 (−0.73, −0.35)
black −0.20 (−0.33, −0.07) −0.52 (−0.66, −0.37) −0.47 (−0.62, −0.33) −0.52 (−0.67, −0.37)

ρ – 0.73 (0.65, 0.79) 0.69 (0.57, 0.76) 0.72 (0.63, 0.78)
σ2 – 1.56 (1.51, 1.62) 2.32 (2.17, 2.54) 1.54 (1.49, 1.60)

Fig. 2. Smooth function estimates obtained by applying naive (gray lines), HeckP (gray dot-dashed lines), W&K (gray dotted lines) and M&R (black lines)
on the RAND RHIE dataset described in Section 4. The black dashed lines represent 95% pointwise confidence intervals calculated from the M&R estimates.
The ‘rug plot’, at the bottom of each graph, shows the covariate values. To avoid clutter, credible intervals for W&K have not been reported. Due to the
identifiability constraints, the estimated curves are centered around zero.

with that found in the simulated non-ER scenario with percentage of selected observations equal to 75%. Overall, the M&R
and W&K estimates are coherent with the predictions of economic theory. For example, the results of age, education and
income are consistent with the interpretation that health expenditure increases as people become older, have more years
of schooling, and are wealthier. Also, individual health expenditure decreases as family size increases.

The reliability of the results presented in this section relies on whether the assumption of normality is met. As noted
by Cameron and Trivedi (2005, p. 555), the underlying normality is suspect for these data because of the presence of large
outliers. Testing this assumption is especially important when ER is not present, as in this case. Without ER and under
violation of the assumption of normality, selection bias correction fails (e.g., Vella, 1998). It would be therefore ideal to
test for normality. Cameron and Trivedi (2005) checked this assumption by applying standard tests of heteroskedasticity,
skewness and kurtosis on the outcome variable lnmeddol. However, in a regression context, normality should be assessed
more rigorously. For example, in the current case, a possibility would be to employ a score test of bivariate normality whose
density of the errors under the alternative hypothesis is based on a type AA bivariate Grami–Charlier series with 9 additional
parameters (e.g., Chiburis, 2010, Lee, 1984). However, it is not entirely clear how this test can be extended to the penalized
likelihood framework considered in this paper. Another possibility would be to exploit the fact that a penalized regression
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spline is approximately equivalent to a pure regression spline with degrees of freedom close to that of the penalized fit (e.g.,
Wood, 2006, pp. 210–212). This topic is beyond the scope of this paper and will be addressed in future research.

5. Conclusions

We introduced an algorithm to estimate a regression spline sample selection model for Gaussian data. The proposal is
based on the penalized likelihood estimation framework. The construction of confidence intervals has also been illustrated,
and the problem of identification has been discussed. The method has been tested and compared to a Bayesian counterpart
and the classic Heckman sample selection model. Finally, the proposed approach and its competitors have been illustrated
on data from the RAND Health Insurance Experiment on annual health expenditures. The R package SemiParSampleSel
(Marra and Radice, 2012) implements the ideas discussed in this article.

The results of our simulation study highlighted the detrimental effects that the neglect of non-random sample selection
has on parameter estimation. They also suggested that the two Bayesian and ML regression spline approaches considered
in this article are effective and generally outperform standard Heckman with polynomials. The Bayesian and ML methods
were found to perform similarly, with the former beingmore computationally expensive than the latter. We also found that
ER is generally required to obtain good estimation results.

Because ML estimators are sensitive to model error misspecification, methods allowing for different bivariate
distributions of the errors can be developed. For example, Marchenko and Genton (2012) introduced a sample selection
model where the errors are assumed to follow a bivariate Student-t distribution. However, in their implementation the
structure of the linear predictor is parametrically pre-specified. The proposed approach could be extended by adopting
either a copula (e.g., Nelsen, 2006) or a nonparametric distribution function estimation framework. Future research will be
conducted toward these directions.
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Appendix A. Analytical expressions for g and H

The expressions for the gradient vector and Hessian matrix that are referred to in Section 2.2 are given below. Let us
define Xvi =


uT

vi, B
T
vi


for v = 1, 2, σ2 = exp(σ ∗

2 ), ρ = tanh(ρ∗), e2i = y2i − η2i, a =

1 − ρ2, Ai = (η1i +

ρ

σ2
e2i)/a, l1i = φ(−η1i)/Φ(−η1i), l2i = φ(Ai)/Φ(Ai), ec = exp(2ρ∗), PAi = −


Φ(Ai)φ(Ai)Ai + φ(Ai)

2

/Φ(Ai)

2, PEi =

−

−Φ(−η1i)φ(−η1i)η1i + φ(−η1i)

2

/Φ(−η1i)

2, R = {4ρec(ρ − 1)} /(ec + 1),Mi = (2ece2i)/ {(ec + 1)σ2a} and C =

−1 + ρ +

ρ2(ρ − 1)


/a2. The remaining quantities are defined in Section 2.

The elements of the score vector are

g1 =

n
i=1


− (1 − y1i) l1i +

y1il2i
a


X1i,

g2 =

n
i=1

y1i


e2i
σ 2
2

−
l2iρ
σ2a


X2i,

g3 =

n
i=1

y1i


−1 +


e2i
σ2

2

−
l2iρe2i
σ2a


,

g4 =

n
i=1

y1i


l2i


Mi(1 − ρ) −

AiR
2a2


.

The elements of the Hessian are

H11 =

n
i=1


(1 − y1i) PEi +

y1iPAi

a2


XT

1iX1i,

H12 =

n
i=1


−

y1iPAiρ

σ2a2


XT

1iX2i,

H13 =

n
i=1


−

y1iPAiρe2i
σ2a2


X1i,
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H14 =

n
i=1


y1i


PAi

a


Mi


1 −

ec − 1
ec + 1


−

AiR
2a2


−

l2iR
2a3


X1i,

H22 =

n
i=1


y1i


PAi


ρ

σ2a

2

−
1
σ2


XT

2iX2i,

H23 =

n
i=1


y1i


PAie2i


ρ

σ2a

2

+
ρl2i
σ2a

−
2e2i
σ 2
2


X2i,

H24 =

n
i=1


y1i


−

PAi

(ec + 1) σ2a


(ec − 1)


Mi(1 − ρ) −

AiR
2a2


+

2l2iecC
(ec + 1) σ2a


X2i,

H33 =

n
i=1


y1i


−2


e2i
σ2

2

+
l2ie2iρ
aσ2

+ PAi


ρe2i
σ2a

2


,

H34 =

n
i=1


y1i


−

PAi

(ec + 1) σ2a


(ec − 1) e2i


Mi(1 − ρ) −

AiR
2a2


− l2iMiC


,

H44 =

n
i=1


y1i


PAi


Mi(1 − ρ) −

AiR
2a2

2

+ l2i


2Mi


1 −

2ec
ec + 1

+
2ecρ
ec + 1

− ρ


−

Mi(1 − ρ)R
a2

+
3AiR2

4a4

−
Ai

2a2
8ec

ec + 1


−

e2c
ec + 1

+
4ρec
ec + 1

− ρ −
3ρ2ec
ec + 1

+ ρ2


.

Appendix B. Starting value procedure

Sensible starting values can be provided by adapting Heckman’s approach (1979) to the regression spline context.
Regression function (5) can be written as

E(y2i|y∗

1i > 0) = uT
2iθ2 + BT

2iβ2 + E(ε2i|y∗

1i > 0). (12)

It then follows that

E(ε2i|y∗

1i > 0) = θϑϑi, (13)

where θϑ = σ2ρ, ϑi = φ(η1i)/Φ(η1i) (the inverse Mills ratio) and η1i = uT
1iθ1 + BT

1iβ1. Therefore, Eq. (12) can be written as

y2i = uT
2iθ2 + BT

2iβ2 + θϑϑi +ε2i, (14)

whereε2i is a new disturbance term which, by construction, is uncorrelated with u2i, B2i and ϑi. The coefficient estimates
in (5) that would be obtained using a non-random selected subsample are biased if ρ ≠ 0. This can be seen as an ordinary
specification errorwith the conditionalmean (13) deleted as a regressor in themodel. Includingϑi as an explanatory variable,
as in Eq. (14), would in principle rectify this situation. But ϑi is unknown; however it is possible to obtain a consistent
estimate of it using the estimated coefficients of selection Eq. (4).

The two-step procedure to fit model (14) can be summarized as follows.
step 1 Fit a probit model for Eq. (4) and obtain estimates ofη1i andϑi, for all i.
step 2 Using the selected sample only, fit model (14), where ϑi is replaced withϑi, for all i.

The correlation parameter ρ can be estimated by ρ = θϑ/σ2, where σ2 =

ns
i=1
ε2

2i/ns +θ2
ϑ

ns
i=1γi/ns,ε2i is the

residual resulting from estimation of (14) and γi = ϑi(ϑi +η1i) (e.g., Toomet and Henningsen, 2008). Note that sinceρ
can be outside of [−1, 1], this quantity is truncated to stay within this range. Moreover, although the parameters of the
models in the two steps can be estimated using an unpenalized procedure, this is not advisable in practice (see Section 2).
Therefore, the models in the two-step procedure are estimated by maximization of a penalized log-likelihood function and
by minimization of a penalized least squares criterion, respectively. Standard statistical software is available to achieve this
(Ruppert et al., 2003; Wood, 2006).

In principle, because of the non-linearity of the inverseMills ratio and the use of flexible covariate effects, the parameters
of the two-step procedure are identified even if


uT
1i, B

T
1i


=

uT
2i, B

T
2i


. However, since it is typically the case thatϑi can be

approximated well by a linear function of the covariates in the model, there will be substantial collinearity between ϑi
and the regressors in the outcome equation, which can affect parameter estimation. This will be especially the case when
the range of values of η1i is not very large. The presence of ER can alleviate this problem (see, e.g., Leung and Yu, 2000 for
other remedies). We do not elaborate on this further as the presented two-step approach just serves as a starting value
procedure.
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Appendix C. Algorithm structure

Based on the methods presented in Section 2.2, parameter vector δ is estimated using the following algorithm
structure.

step 1 For a given λ, find an estimate of δ:δ = argmax
δ

ℓp(δ).

step 2 Iterate the following steps until convergence:

step 2.1 For fixed λ[a], σ
∗[a]
2 and ρ∗[a], find an estimate of (δ1, δ2):δ[a+1]

1 ,δ[a+1]
2


= argmax

(δ1,δ2)
ℓp(δ1, δ2, σ

∗[a]
2 , ρ∗[a]).

step 2.2 Using
δ[a+1]

1 ,δ[a+1]
2


, construct the working linear model quantities needed in (9) and find an estimate of λ:λ[a+1]

= argmin
λ

Vw
u (λ).

step 2.3 For fixed λ[a+1], σ
∗[a]
2 and ρ∗[a] find an estimate of (δ1, δ2):δ[a+2]

1 ,δ[a+2]
2


= argmax

(δ1,δ2)
ℓp(δ1, δ2, σ

∗[a]
2 , ρ∗[a]).

step 2.4 For fixed λ[a+1] and

δ
[a+2]
1 , δ

[a+2]
2


, find an estimate of


σ ∗

2 , ρ∗

:σ ∗[a+1]

2 ,ρ∗[a+1]


= argmax
(σ∗

2 ,ρ∗)
ℓ(δ

[a+2]
1 , δ

[a+2]
2 , σ ∗

2 , ρ∗).

step 3 Given estimates of λ, (δ1, δ2) and

σ ∗

2 , ρ∗

, obtained at convergence of step 2, repeat step 1.

Note that steps 2.1–2.4 canbe seen as leapfrog iterations andhave good convergenceproperties despite
δ1,δ2 and σ ∗

2 ,ρ∗


are not orthogonal (Smith, 1996).

Appendix D. Additional simulation results

See Tables 8–10.

Table 8
Percentage biases and RMSEs for θ̂22, ρ̂, σ̂ and ŝ21(z1) obtained from the non-ER experiments, when employing the naive, standard Heckman (with second-
order polynomial terms), penalized Bayesian andML estimation approaches (naive, HeckP,W&K andM&R). Number of simulated datasets and approximate
percentage of selected observations are 250% and 50%. True values of θ22 and σ are −1.5 and 1. ρ and n denote the correlation between the errors of the
selection and outcome equations, and the sample size. See Section 3 for further details.

ρ θ̂22 ρ̂ σ̂ ŝ21(z1)
Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE
n
500 3000 500 3000 500 3000 500 3000 500 3000 500 3000

0.1

Naive 5.2 6.2 0.184 0.115 – – – – – – – – 0.121 0.059
HeckP 3.8 2.0 0.827 0.342 −76.7 −39.9 0.578 0.302 −6.8 −1.1 0.201 0.040 0.255 0.100
W&K 8.4 5.3 0.361 0.212 −135.9 −83.3 0.286 0.188 −2.9 −1.5 0.120 0.050 0.142 0.077
M&R 14.8 8.8 0.429 0.261 −232.7 −148.8 0.386 0.251 2.7 1.0 0.067 0.026 0.176 0.085

0.5

Naive 31.9 32.4 0.502 0.490 – – – – – – – – 0.200 0.178
HeckP 18.8 18.4 0.845 0.416 −70.7 −59.9 0.664 0.408 −3.8 1.4 0.179 0.046 0.253 0.123
W&K 24.4 11.1 0.544 0.315 −78.4 −38.7 0.505 0.308 −10.2 −4.3 0.167 0.081 0.185 0.095
M&R 20.5 10.6 0.581 0.311 −66.1 −30.8 0.583 0.305 −3.4 −1.0 0.063 0.030 0.196 0.095

0.9

Naive 59.0 58.8 0.893 0.884 – – – – – – – – 0.314 0.309
HeckP 35.2 33.5 0.862 0.577 −67.1 −56.2 0.813 0.572 3.7 7.4 0.147 0.122 0.262 0.179
W&K 14.6 2.5 0.512 0.196 −30.5 −10.0 0.491 0.201 −8.5 −1.2 0.200 0.056 0.148 0.056
M&R 13.2 2.6 0.503 0.183 −28.6 −9.2 0.472 0.191 −2.5 −0.6 0.073 0.027 0.150 0.053
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Table 9
Percentage biases and RMSEs for θ̂22, ρ̂, σ̂ and ŝ21(z1) obtained from the ER experiments, when employing the naive, standard Heckman (with second-
order polynomial terms), penalized Bayesian andML estimation approaches (naive, HeckP,W&K andM&R). Number of simulated datasets and approximate
percentage of selected observations are 250% and 50%. True values of θ22 and σ are−1.5 and 1. The errors were generated according to a bivariate Student-t
distribution with 3 degrees of freedom. See Section 3 for further details.

ρ θ̂22 ρ̂ σ̂ ŝ21(z1)
Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE
n
500 3000 500 3000 500 3000 500 3000 500 3000 500 3000 500 3000

0.1

Naive 6.4 8.2 0.359 0.169 – – – – – – – – 0.197 0.088
HeckP −2.4 −2.5 0.790 0.319 −29.0 3.8 0.398 0.186 −54.2 −48.7 1.021 0.769 0.257 0.107
W&K 2.1 1.7 0.731 0.299 −59.2 −27.6 0.353 0.169 −53.2 −48.8 1.612 0.991 0.243 0.121
M&R 4.0 2.4 0.813 0.326 −94.1 −44.2 0.361 0.186 −53.3 −48.5 0.992 0.766 0.279 0.124

0.5

Naive 41.9 43.0 0.706 0.654 – – – – – – – – 0.283 0.235
HeckP −6.5 −8.2 0.772 0.337 −15.8 −14.8 0.354 0.183 −52.5 −49.6 1.009 0.768 0.249 0.109
W&K 3.3 −7.4 0.771 0.339 −48.4 −13.8 0.366 0.168 −73.9 −61.5 1.807 1.013 0.237 0.110
M&R 1.5 −6.0 0.774 0.337 −36.0 −7.0 0.375 0.173 −50.1 −48.7 0.965 0.754 0.273 0.118

0.9

Naive 76.8 78.2 1.188 1.178 – – – – – – – – 0.423 0.405
HeckP −9.3 −14.9 0.815 0.620 −26.8 −7.9 0.476 0.224 −50.5 −51.2 0.997 0.792 0.260 0.136
W&K −2.4 −13.9 0.729 0.349 −24.5 −6.1 0.311 0.062 −53.7 −48.0 1.013 0.795 0.250 0.122
M&R −1.5 −13.4 0.710 0.337 −20.1 0.3 0.308 0.054 −43.3 −47.8 0.853 0.737 0.253 0.119

Table 10
Percentage biases and RMSEs for θ̂22, ρ̂, σ̂ and ŝ21(z1) obtained from the non-ER experiments, when employing naive, HeckP, W&K and M&R. Number of
simulated datasets and approximate percentage of selected observations are 250% and 50%. The errors were generated according to a bivariate Student-t
distribution with 3 degrees of freedom. See the caption of Table 9 for further details.

ρ θ̂22 ρ̂ σ̂ ŝ21(z1)
Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE
n
500 3000 500 3000 500 3000 500 3000 500 3000 500 3000 500 3000

0.1

Naive 6.4 8.2 0.359 0.169 – – – – – – – – −0.196 0.088
HeckP 3.6 −8.5 2.337 0.905 −88.7 39.0 0.716 0.473 −84.2 −55.8 1.658 0.884 0.621 0.269
W&K 18.3 4.1 2.139 0.844 −180.5 −59.9 0.593 0.411 −76.3 −55.9 2.173 1.431 0.533 0.267
M&R 23.1 7.4 2.277 0.867 −224.8 −101.7 0.609 0.426 −75.4 −54.5 1.522 0.861 0.553 0.269

0.5

Naive 41.9 43.0 0.706 0.654 – – – – – – – – 0.283 0.235
HeckP −24.2 −22.1 2.285 0.917 −44.6 −0.5 0.706 0.391 −82.3 −58.5 1.613 0.933 0.607 0.269
W&K −10.4 −24.4 2.022 1.033 −63.7 −19.9 0.630 0.372 −99.7 −71.5 2.343 1.447 0.511 0.296
M&R −7.0 −21.3 2.025 1.025 −58.0 −11.0 0.631 0.380 −69.3 −58.7 1.365 0.948 0.521 0.300

0.9

Naive 76.8 78.2 1.188 1.178 – – – – – – – – 0.423 0.405
HeckP −22.9 −37.3 1.791 0.929 −37.8 −8.6 0.621 0.214 −66.6 −63.7 1.316 1.024 0.471 0.267
W&K −14.7 −58.1 1.689 1.299 −40.7 −7.1 0.577 0.143 −57.8 −69.3 1.206 1.100 0.401 0.353
M&R −11.4 −57.0 1.582 1.228 −35.8 0.4 0.563 0.139 −54.0 −68.4 1.061 1.111 0.406 0.349
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