DL-Lite with Attributes and Sub-Roles (Extended Abstract)

A. Artale, ${ }^{1}$ A. Ibáñez García, ${ }^{1}$ R. Kontchakov, ${ }^{2}$ and V. Ryzhikov ${ }^{1}$
${ }^{1}$ KRDB Research Centre $\quad{ }^{2}$ Dept. of Comp. Science and Inf. Sys.
Free University of Bozen-Bolzano, Italy
\{lastname $\}$ @inf.unibz.it Birkbeck College, London, UK
roman@dcs.bbk.ac.uk

1 Introduction

The DL-Lite family of description logics has recently been proposed and investigated in $[5-7]$ and later extended in $[1,8,3]$. The relevance of the DL-Lite family is witnessed by the fact that it forms the basis of OWL 2 QL , one of the three profiles of OWL 2 (http://www.w3.org/TR/owl2-profiles/). According to the official W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for applications that use very large amounts of data.

This paper extends the $D L$-Lite languages of [3] by relaxing the restriction on the interaction between cardinality constraints (\mathcal{N}) and role inclusions (or hierarchies, $\mathcal{H})$. We also introduce a new family of languages, $D L$-Lite ${ }_{\alpha}^{\mathcal{H} \mathcal{N A} \mathcal{A}}$, $\alpha \in\{$ core, krom, horn, bool\}, extending DL-Lite with attributes (\mathcal{A}).

The notion of attributes, borrowed from conceptual modeling formalisms, introduces a distinction between (abstract) objects and application domain values, and consequently, between concepts (sets of objects) and datatypes (sets of values), and between roles (relating objects to objects) and attributes (relating objects to values). The advantage of the presented languages over $D L$-Lite $\mathcal{A}_{\mathcal{A}}[8]$ is that the range restrictions for attributes can be local (and not only global as in $D L-$ Lite $_{\mathcal{A}}$). Indeed, $D L$-Lite $e_{\alpha}^{\mathcal{H} \mathcal{N} \mathcal{A}}$ has a possibility to express concept inclusion axioms of the form $C \sqsubseteq \forall U . T$, for an attribute U and its datatype T. In this way, we allow re-use of the very same attribute associated to different concepts with different range restrictions. For example, we can say that employees' salary is of type Integer, researchers' salary is in the range 35,000-70,000 (enumeration type) and professors' salary in the range $55,000-100,000$ - while both researchers and professors are employees. Note that local attributes are strictly more expressive than global ones. For example, concept disjointness (or unsatisfiability) can be inferred just from datatype disjointness for the same (existentially qualified) attribute. Since $D L$-Lite languages have been proved useful in capturing conceptual data models [8, 4, 2], the extension with attributes, as presented here, will generalize their use even further.

We aim at establishing computational complexity of knowledge base satisfiability in these new DLs. In particular we prove the following results:

1. We can relax the restrictions presented in [3] limiting the interaction between sub-roles and number restrictions without increasing the complexity of reasoning as far as the problem is limited to TBox satisfiability checking. As
for KB satisfiability, the presence of the ABox should be taken into account if we want to preserve the complexity results.
2. The introduction of local range restrictions for attributes is for free for the languages $D L$-Lite ${ }_{\text {bool }}^{\mathcal{N} \mathcal{A}}, D L$-Lite $e_{\text {horn }}^{\mathcal{N} \mathcal{A}}$ and DL-Lite ${ }_{\text {core }}^{\mathcal{N} \mathcal{A}}$.

2 The Description Logic DL-Lite ${ }_{\text {bool }}^{\mathcal{H N} \mathcal{A}}$

The language of $D L$-Lite ${ }_{\text {bool }}^{\mathcal{H N} \mathcal{A}}$ contains object names a_{0}, a_{1}, \ldots, value names v_{1}, v_{2}, \ldots, concept names A_{0}, A_{1}, \ldots, role names P_{0}, P_{1}, \ldots, attribute names U_{0}, U_{1}, \ldots, and datatype names T_{0}, T_{1}, \ldots Complex roles R and concepts C are defined below:

$$
\begin{aligned}
& R::=P_{i} \mid P_{i}^{-}, \\
& B::=\top|\perp| A_{i}|\geq q R| \geq q U_{i} \\
& C::=B|\neg C| C_{1} \sqcap C_{2},
\end{aligned}
$$

where q is a positive integer. The concepts of the form B are called basic concepts.
A $D L-L i t e{ }_{\text {bool }}^{\mathcal{H N} \mathcal{A}}$ TBox, \mathcal{T}, is a finite set of concept, role, attribute and datatype inclusion axioms of the form:

$$
C_{1} \sqsubseteq C_{2}, \quad C \sqsubseteq \forall U . T, \quad R_{1} \sqsubseteq R_{2}, \quad U \sqsubseteq U^{\prime}, \quad T \sqsubseteq T^{\prime}, \quad T \sqcap T^{\prime} \sqsubseteq \perp,
$$

and an $A B o x, \mathcal{A}$, is a finite set of assertions of the form:

$$
A_{k}\left(a_{i}\right), \quad \neg A_{k}\left(a_{i}\right), \quad P_{k}\left(a_{i}, a_{j}\right), \quad \neg P_{k}\left(a_{i}, a_{j}\right), \quad U_{k}\left(a_{i}, v_{j}\right) \quad \text { and } \quad T_{k}\left(v_{j}\right)
$$

We standardly abbreviate $\geq 1 R$ and $\geq 1 U$ by $\exists R$ and $\exists U$, respectively. Absence of an attribute (i.e., $C \sqsubseteq \forall U . \perp$) can be expressed as $C \sqcap \exists U \sqsubseteq \perp$.

Together, a TBox \mathcal{T} and an ABox \mathcal{A} constitute the $D L-L i t e e_{\text {bool }}^{\mathcal{H} \mathcal{N} \mathcal{A}}$ knowledge base $(\mathrm{KB}) \mathcal{K}=(\mathcal{T}, \mathcal{A})$. In the following, we denote by $\operatorname{role}(\mathcal{K})$ and $\operatorname{att}(\mathcal{K})$ the sets of role and attribute names occurring in \mathcal{K}, respectively; $\operatorname{role}^{ \pm}(\mathcal{K})$ denotes the set $\left\{P_{k}, P_{k}^{-} \mid P_{k} \in \operatorname{role}(\mathcal{K})\right\}$.

Semantics. As usual in description logic, an interpretation, $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot \mathcal{I}\right)$, consists of a nonempty domain $\Delta^{\mathcal{I}}$ and an interpretation function. ${ }^{\mathcal{I}}$. The interpretation domain $\Delta^{\mathcal{I}}$ is the union of two non-empty disjoint sets: the domain of objects $\Delta_{O}^{\mathcal{I}}$ and the domain of values $\Delta_{V}^{\mathcal{I}}$. We assume that all interpretations agree on the semantics assigned to each datatype T_{i}, as well as on each constant v_{i}. In particular, $T_{i}^{\mathcal{I}}=\operatorname{val}\left(T_{i}\right) \subseteq \Delta_{V}^{\mathcal{I}}$ is the set of values of datatype T_{i}, and each v_{i} is interpreted as one specific value, denoted $\operatorname{val}\left(v_{i}\right)$, i.e., $v_{i}^{\mathcal{I}}=\operatorname{val}\left(v_{i}\right) \in \operatorname{val}\left(T_{i}\right)$. Furthermore, ${ }^{\mathcal{I}}$ assigns to each object name a_{i} an element $a_{i}^{\mathcal{I}} \in \Delta_{O}^{\mathcal{I}}$, to each concept name A_{k} a subset $A_{k}^{\mathcal{I}} \subseteq \Delta_{O}^{\mathcal{I}}$ of the domain of objects, to each role name P_{k} a binary relation $P_{k}^{\mathcal{I}} \subseteq \Delta_{O}^{\mathcal{I}} \times \Delta_{O}^{\mathcal{I}}$ over the domain of objects, and to each attribute name U_{k} a binary relation $U_{k}^{\mathcal{I}} \subseteq \Delta_{O}^{\mathcal{I}} \times \Delta_{V}^{\mathcal{I}}$. We adopt here the unique name assumption (UNA): $a_{i}^{\mathcal{I}} \neq a_{j}^{\mathcal{I}}$, for all $i \neq j$. The role and concept
constructs are interpreted in \mathcal{I} in the standard way:

$$
\begin{aligned}
\left(P_{k}^{-}\right)^{\mathcal{I}} & =\left\{(y, x) \in \Delta_{O}^{\mathcal{I}} \times \Delta_{O}^{\mathcal{I}} \mid(x, y) \in P_{k}^{\mathcal{I}}\right\}, & & \text { (inverse role) } \\
\top^{\mathcal{I}} & =\Delta_{O}^{\mathcal{I}}, & & \text { (domain of objects) } \\
\perp^{\mathcal{I}} & =\emptyset, & & \text { (the empty set) } \\
(\geq q R)^{\mathcal{I}} & =\left\{x \in \Delta_{O}^{\mathcal{I}} \mid \sharp\left\{y \mid(x, y) \in R^{\mathcal{I}}\right\} \geq q\right\}, & & \text { (at least } q R \text {-successors) } \\
(\geq q U)^{\mathcal{I}} & =\left\{x \in \Delta_{O}^{\mathcal{I}} \mid \sharp\left\{v \mid(x, v) \in U^{\mathcal{I}}\right\} \geq q\right\}, & & \text { (at least } q U \text {-attributes) } \\
(\forall U . T)^{\mathcal{I}} & =\left\{x \in \Delta_{O}^{\mathcal{I}} \mid \forall v .(x, v) \in U^{\mathcal{I}} \rightarrow v \in T^{\mathcal{I}}\right\}, & & \text { (attribute value restriction) } \\
(\neg C)^{\mathcal{I}} & =\Delta_{O}^{\mathcal{I}} \backslash C^{\mathcal{I}}, & & \text { (not in } C \text {) } \\
\left(C_{1} \sqcap C_{2}\right)^{\mathcal{I}} & =C_{1}^{\mathcal{I}} \cap C_{2}^{\mathcal{I}}, & & \text { (both in } \left.C_{1} \text { and in } C_{2}\right)
\end{aligned}
$$

where $\sharp X$ is the cardinality of X. The satisfaction relation \models is also standard:

$$
\begin{array}{rllrll}
\mathcal{I} \models C_{1} \sqsubseteq C_{2} & \text { iff } & C_{1}^{\mathcal{I}} \subseteq C_{2}^{\mathcal{I}}, & \mathcal{I} \models R_{1} \sqsubseteq R_{2} & \text { iff } & R_{1}^{\mathcal{I}} \subseteq R_{2}^{\mathcal{I}}, \\
\mathcal{I} \models T_{1} \sqsubseteq T_{2} & \text { iff } & T_{1}^{\mathcal{I}} \subseteq T_{2}^{\mathcal{I}}, & \mathcal{I} \models U_{1} \sqsubseteq U_{2} & \text { iff } & U_{1}^{\mathcal{I}} \subseteq U_{2}^{\mathcal{I}}, \\
\mathcal{I} \models T_{1} \sqcap T_{2} \sqsubseteq \perp & \text { iff } & T_{1}^{\mathcal{I}} \cap T_{2}^{\mathcal{I}}=\emptyset, & \mathcal{I} \models P_{k}\left(a_{i}, a_{j}\right) & \text { iff } & \left(a_{i}^{\mathcal{I}}, a_{j}^{\mathcal{I}}\right) \in P_{k}^{\mathcal{I}}, \\
\mathcal{I} \models A_{k}\left(a_{i}\right) & \text { iff } & a_{i}^{\mathcal{I}} \in A_{k}^{\mathcal{I}}, & \mathcal{I} \models \neg P_{k}\left(a_{i}, a_{j}\right) & \text { iff } & \left(a_{i}^{\mathcal{I}}, a_{j}^{\mathcal{I}}\right) \notin P_{k}^{\mathcal{I}} \\
\mathcal{I} \models \neg A_{k}\left(a_{i}\right) & \text { iff } & a_{i}^{\mathcal{I}} \notin A_{k}^{\mathcal{I}}, & \mathcal{I} \models U_{k}\left(a_{i}, v_{j}\right) & \text { iff } & \left(a_{i}^{\mathcal{I}}, v_{j}^{\mathcal{I}}\right) \in U_{k}^{\mathcal{I}}, \\
& & & \mathcal{I} \models T_{k}\left(v_{j}\right) & \text { iff } & v_{j}^{\mathcal{I}} \in T_{k}^{\mathcal{I}} .
\end{array}
$$

A KB $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ is said to be satisfiable (or consistent) if there is an interpretation, \mathcal{I}, satisfying all the members of \mathcal{T} and \mathcal{A}. In this case we write $\mathcal{I} \models \mathcal{K}$ (as well as $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$) and say that \mathcal{I} is a model of \mathcal{K} (of \mathcal{T} and \mathcal{A}).

2.1 Fragments of DL-Lite bool $_{\mathcal{H N} \mathcal{A}}$

We consider various syntactical restrictions on the language of $D L$-Lite ${ }_{\text {bool }}^{\mathcal{H} \mathcal{N}} \mathcal{A}$ along two axes: (i) the Boolean operators (bool) on concepts, (ii) the role and attribute inclusions (\mathcal{H}). Similarly to classical logic, we adopt the following definitions. A TBox \mathcal{T} will be called a Krom $T B o x^{1}$ if its concept inclusions are restricted to:

$$
\begin{equation*}
B_{1} \sqsubseteq B_{2}, \quad B_{1} \sqsubseteq \neg B_{2} \quad \text { and } \quad \neg B_{1} \sqsubseteq B_{2}, \tag{Krom}
\end{equation*}
$$

(here and below all the B_{i} and B are basic concepts). \mathcal{T} will be called a Horn TBox if its concept inclusions are restricted to:

$$
\begin{equation*}
\bigcap_{k} B_{k} \sqsubseteq B . \tag{Horn}
\end{equation*}
$$

Finally, we call \mathcal{T} a core TBox if its concept inclusions are restricted to:

$$
\begin{equation*}
B_{1} \sqsubseteq B_{2} \quad \text { and } \quad B_{1} \sqcap B_{2} \sqsubseteq \perp . \tag{core}
\end{equation*}
$$

[^0]As $B_{1} \sqsubseteq \neg B_{2}$ is equivalent to $B_{1} \sqcap B_{2} \sqsubseteq \perp$, core TBoxes can be regarded as sitting in the intersection of Krom and Horn TBoxes. In this paper we study the following logics, for $\alpha \in\{$ core, krom, horn, bool $\}$:
 with Krom, Horn, and core TBoxes, respectively;
DL-Lite $\boldsymbol{\alpha}_{\boldsymbol{\alpha}}^{\mathcal{H} \mathcal{N}}$ is the fragment of $D L$-Lite ${ }_{\alpha}^{\mathcal{H} \mathcal{N} \mathcal{A}}$ without attributes and datatypes; $\boldsymbol{D L}$-Lite $\boldsymbol{\alpha}_{\boldsymbol{\alpha}}^{\mathcal{N} \mathcal{A}}$ is the fragment of $D L-L i t e_{\alpha}^{\mathcal{H} \mathcal{N A}}$ without role and attribute inclusions.

As shown in [3], reasoning in $D L-L i t e e_{\alpha}^{\mathcal{H} \mathcal{N}}$ is already rather costly (ExpTimecomplete) due to the interaction between role inclusions and number restrictions. However, both of these constructs turn out to be useful for the purposes of conceptual modeling. By limiting their interplay one can get languages with a better computational properties [8,3]. Before presenting such limitations we need to introduce some notation. For a role R, let $\operatorname{inv}(R)=P_{k}^{-}$if $R=P_{k}$ and $\operatorname{inv}(R)=P_{k}$ if $R=P_{k}^{-}$. Given a TBox \mathcal{T} we denote by $\sqsubseteq_{\mathcal{T}}^{*}$ the reflexive and transitive closure of the relation $\left\{\left(R, R^{\prime}\right),\left(\operatorname{inv}(R), \operatorname{inv}\left(R^{\prime}\right)\right) \mid R \sqsubseteq R^{\prime} \in \mathcal{T}\right\}$. We say that $R \equiv_{\mathcal{T}}^{*} R^{\prime}$ iff $R \sqsubseteq_{\mathcal{T}}^{*} R^{\prime}$ and $R^{\prime} \sqsubseteq_{\mathcal{T}}^{*} R$. Say that R^{\prime} is a proper sub-role of R in \mathcal{T} if $R^{\prime} \sqsubseteq_{\mathcal{T}}^{*} R$ and $R \not \unrhd_{\mathcal{T}}^{*} R^{\prime}$. A proper sub-role R^{\prime} of R is said to be a direct sub-role of R if there is no other proper sub-role $R^{\prime \prime}$ of R such that R^{\prime} is a proper sub-role of $R^{\prime \prime}$; the set of direct sub-roles of R is denoted as $d s u b_{\mathcal{T}}(R)$.

The language $D L$-Lite ${ }_{\alpha}^{(\mathcal{H} \mathcal{N})}$ [3] is the result of imposing the following syntactic restriction on $D L$-Lite ${ }_{\alpha}^{\mathcal{H} \mathcal{N}}$ TBoxes \mathcal{T} :
(inter) if R has a proper sub-role in \mathcal{T} then \mathcal{T} contains no negative occurrences of number restrictions $\geq q R$ or $\geq q \operatorname{inv}(R)$ with $q \geq 2$
(an occurrence of a concept on the right-hand (left-hand) side of a concept inclusion is called negative if it is in the scope of an odd (even) number of negations \neg; otherwise it is called positive). We will formulate two alternative versions of restriction (inter).

Definition 1. Given a TBox \mathcal{T} and a role $R \in \operatorname{role}^{ \pm}(\mathcal{T})$, we define the following parameters:

```
ubound \((R, \mathcal{T})=\min (\{\infty\} \cup\{q-1 \mid q \geq 2\) and \(\geq q R\) occurs negatively in \(\mathcal{T}\})\),
lbound \((R, \mathcal{T})=\max (\{0\} \cup\{q \mid \geq q R\) occurs positively in \(\mathcal{T}\})\),
    \(\operatorname{rank}(R, \mathcal{T})=\max \left(\operatorname{lbound}(R, \mathcal{T}), \sum_{R^{\prime} \in \operatorname{dsub}_{\mathcal{T}}(R)} \operatorname{rank}\left(R^{\prime}, \mathcal{T}\right)\right)\),
    \(\operatorname{rank}(R, \mathcal{A})=\max \left(\{0\} \cup\left\{n \mid R_{i}\left(a, a_{i}\right) \in \mathcal{A}, R_{i} \sqsubseteq_{\mathcal{T}}^{*} R\right.\right.\), for distinct \(\left.\left.a_{1}, \ldots, a_{n}\right\}\right)\).
```

Consider the languages obtained from $\operatorname{DL-Lite} \mathcal{A}^{\mathcal{H N}}$ by imposing one of the following two restrictions:
(inter1) for every $R \in \operatorname{role}^{ \pm}(\mathcal{T})$, if R has a proper sub-role in \mathcal{T} then ubound $(R, \mathcal{T}) \geq \operatorname{rank}(R, \mathcal{T})$;
(inter2) for every $R \in \operatorname{role}^{ \pm}(\mathcal{T})$, if R has a proper sub-role in \mathcal{T} then $\operatorname{ubound}(R, \mathcal{T}) \geq \operatorname{rank}(R, \mathcal{T})+\max \{1, \operatorname{rank}(R, \mathcal{A})\}$.

language	(inter) [3]	(inter1)	(inter2)	non-restrict.
	$\begin{aligned} & \text { NLoGSpace [3] } \\ & \text { PTime [3] } \\ & \text { NLogSpace [3] } \\ & \text { NP [3] } \end{aligned}$	$\geq \mathrm{NP}$ [Th.2]	$\begin{gathered} \text { NLOGSpace [Th.1] } \\ \text { PTime [Th.1] } \\ \text { NLogSpace [Th.1] } \\ \text { NP [Th.1] } \end{gathered}$	ExpTime [3]
	$\begin{gathered} \text { NLOGSPACE [Th.3] } \\ \text { PTime [Th.3] } \\ \text { NP [Th.4] } \\ \text { NP [Th.3] } \\ \hline \end{gathered}$	$\geq \mathrm{NP}$ [Th.2]	NLogSpace [Th.3] PTime [Th.3] NP [Th.4] NP [Th.3]	ExpTime
	NA	NA	NA	NLoGSpace [Th.3] PTime [Th.3] NP [Th. 4] NP [Th.3]

Table 1: Complexity of DL-Lite logics (NA = Non-Applicable).

These new restrictions are in some way weaker than (inter) and, for example, allow for the specialization of functional roles: $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$ with $\mathcal{T}=\left\{\geq 2 R \sqsubseteq \perp, R_{1} \sqsubseteq R_{2}, R_{2} \sqsubseteq R\right\}$, and $\mathcal{A}=\left\{R(a, b), R_{1}\left(a_{1}, b_{1}\right), R_{2}\left(a_{2}, b_{2}\right)\right\}$ does not satisfy (inter), but it satisfies both (inter1) and (inter2). Finally, the above restrictions can also be applied to sub-attributes in the languages $D L-L i t e_{\alpha}^{\mathcal{H} \mathcal{N} \mathcal{A}}$. Table 1 summarizes the obtained complexity results (with numerical parameters q coded in binary).

3 Reasoning in DL-Lite ${ }_{\alpha}^{\mathcal{H N}}$

In this section, we investigate the complexity of deciding KB satisfiability in languages $D L-L i t e_{\alpha}^{\mathcal{H} \mathcal{N}}$ under the restrictions (inter1) and (inter2), respectively.

We adapt the proof presented in [3], where a $D L$-Lite ${ }_{\text {bool }}^{\mathcal{H} \mathcal{N}} \mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$ is encoded into a sentence \mathcal{K}^{\ddagger} e in the one-variable first-order logic $\mathcal{Q} \mathcal{L}^{1}$. We use a slightly longer but simpler encoding. Every $a_{i} \in o b(\mathcal{A})$ is associated to the individual constant a_{i} of $\mathcal{Q} \mathcal{L}^{1}$, and every concept name A_{i} to the unary predicate $A_{i}(x)$. For each concept $\geq q R$ in \mathcal{K} we introduce a fresh unary predicate $E_{q} R(x)$. For each role name $P_{k} \in$ role ${ }^{ \pm}(\mathcal{K})$, two individual constants $d p_{k}$ and $d p_{k}^{-}$are introduced, as representatives of the objects in the domain and range of P_{k}, respectively. The encoding C^{*} of a concept C is defined inductively:

$$
\begin{aligned}
& \perp^{*}=\perp, \quad\left(A_{i}\right)^{*}=A_{i}(x), \quad(\geq q R)^{*}=E_{q} R(x), \\
& \mathrm{\top}^{*}=\mathrm{\top}, \quad(\neg C)^{*}=\neg C^{*}(x), \quad\left(C_{1} \sqcap C_{2}\right)^{*}=C_{1}^{*}(x) \wedge C_{2}^{*}(x) .
\end{aligned}
$$

The $\mathcal{Q} \mathcal{L}^{1}$ sentence encoding the knowledge base \mathcal{K} is defined as follows:

$$
\mathcal{K}^{\ddagger \mathrm{e}}=\forall x\left[\mathcal{T}^{*}(x) \wedge \mathcal{T}^{\mathcal{R}}(x) \wedge \bigwedge_{R \in \operatorname{role}^{ \pm}(\mathcal{K})}\left(\epsilon_{R}(x) \wedge \delta_{R}(x)\right)\right] \wedge \mathcal{A}^{\ddagger \mathrm{e}} .
$$

Formulas $\mathcal{T}^{*}(x)$, the $\delta_{R}(x)$, for $R \in \operatorname{role}{ }^{ \pm}(\mathcal{K})$, and $T^{\mathcal{R}}(x)$ encode the TBox \mathcal{T} :

$$
\begin{aligned}
\mathcal{T}^{*}(x) & =\bigwedge_{C_{1} \sqsubseteq C_{2} \in \mathcal{T}}\left(C_{1}^{*}(x) \rightarrow C_{2}^{*}(x)\right), \quad \delta_{R}(x)=\bigwedge_{q, q^{\prime} \in Q_{\mathcal{T}}^{R},}\left(E_{q^{\prime}} R(x) \rightarrow E_{q} R(x)\right), \\
\mathcal{T}^{\mathcal{R}}(x) & =\bigwedge_{R \sqsubseteq \complement_{\mathcal{T}}^{*} R^{\prime}} \bigwedge_{q \in Q_{\mathcal{T}}^{R}}\left(E_{q} R(x) \rightarrow E_{q} R^{\prime}(x)\right),
\end{aligned}
$$

where $Q_{\mathcal{T}}^{R}$ contains 1 , all q such that $\geq q R$ occurs in \mathcal{T} and all $Q_{\mathcal{T}}^{R^{\prime}}$, for $R^{\prime} \sqsubseteq_{\mathcal{T}}^{*} R$. Sentence \mathcal{A}^{\ddagger} e encodes the ABox \mathcal{A} :

$$
\mathcal{A}^{\ddagger \mathbf{e}}=\bigwedge_{A_{k}\left(a_{i}\right) \in \mathcal{A}} A_{k}\left(a_{i}\right) \wedge \bigwedge_{\neg A_{k}\left(a_{i}\right) \in \mathcal{A}} \neg A_{k}\left(a_{i}\right) \wedge \bigwedge_{\substack{a, a^{\prime} \in o b(\mathcal{A}) \\ R^{\prime} \sqsubseteq \stackrel{T}{\mathcal{T}} R, R^{\prime}\left(a, a^{\prime}\right) \in \mathcal{A}}} E_{q^{e}, a} R(a) \wedge \bigwedge_{\substack{\neg P_{k}\left(a_{i}, a_{j}\right) \in \mathcal{A} \\ R\left(a_{i}, a_{j}\right) \in \mathcal{A}, R \sqsubseteq \sqsubseteq_{\mathcal{T}}^{*} P_{k}}} \perp,
$$

where $q_{R, a}^{\mathrm{e}}$ is the maximum number in $Q_{\mathcal{T}}^{R}$ such that there are $q_{R, a}^{\mathrm{e}}$ many distinct a_{i} with $R_{i}\left(a, a_{i}\right) \in \mathcal{A}$ and $R_{i} \sqsubseteq_{\mathcal{T}}^{*} R$. For each $R \in \operatorname{role}^{ \pm}(\mathcal{K})$, we also need the following formula expressing the fact that the range of R is not empty whenever its domain is non-empty:

$$
\epsilon_{R}(x)=E_{1} R(x) \rightarrow \operatorname{inv}\left(E_{1} R(d r)\right)
$$

where $\operatorname{inv}\left(E_{1} R(d r)\right)$ is $E_{1} P_{k}^{-}\left(d p_{k}^{-}\right)$if $R=P_{k}$ and $E_{1} P_{k}\left(d p_{k}\right)$ if $R=P_{k}^{-}$.
Lemma 1. A DL-Lite $\mathrm{b}_{\text {bool }}^{\mathcal{H N}}$ knowledge base under restriction (inter2) is satisfiable iff the $\mathcal{Q} \mathcal{L}^{1}$-sentence $\mathcal{K}^{\ddagger}{ }^{\ddagger}$ is satisfiable.
Proof. (Sketch) The only challenging direction is (\Leftarrow). To prove it, we adapt the proofs of Theorem 5.2 and Lemma 5.14 in [3]. The idea of the proof is to construct a $D L$-Lite $\log _{\text {bool }}^{\mathcal{H}}$ interpretation \mathcal{I}, from \mathfrak{M}, the minimal Herbrand model of \mathcal{K}^{\ddagger}. We denote the interpretations of unary predicates P and constants a of $\mathcal{Q} \mathcal{L}^{1}$ in \mathfrak{M} by $P^{\mathfrak{M}}$ and $a^{\mathfrak{M}}$, respectively. Let $D=o b(\mathcal{A}) \cup\left\{d p_{k}, d p_{k}^{-} \mid P_{k} \in \operatorname{role}(\mathcal{K})\right\}$ be the domain of \mathfrak{M}. Then $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right)$ is defined inductively: $\Delta^{\mathcal{I}}=\bigcup_{m=0}^{\infty} W_{m}$, such that W_{0} is the set $D_{0}=o b(\mathcal{A})$, and for every $a_{i} \in o b(\mathcal{A}), a_{i}^{\mathcal{I}}=a_{i}^{\mathcal{M}}$. Each set $W_{m+1}, m \geq 0$, is constructed by adding to W_{m} fresh copies of certain elements from $D \backslash o b(\mathcal{A})$. The extensions $A_{k}^{\mathcal{I}}$ of concept names A_{k} are defined by taking

$$
\begin{equation*}
A_{k}^{\mathcal{I}}=\left\{w \in \Delta^{\mathcal{I}} \mid \mathfrak{M} \equiv A_{k}^{*}[c p(w)]\right\} \tag{1}
\end{equation*}
$$

where $c p(w)$ is the element $d \in D$ of which w is a copy.
The interpretation for each role P_{k}, is defined inductively as $P_{k}^{\mathcal{I}}=\bigcup_{m=0}^{\infty} P_{k}^{m}$, where $P_{k}^{m} \subseteq W_{m} \times W_{m}$, along with the construction of $\Delta^{\mathcal{I}}$. The initial interpretation for each role name P_{k} is defined as follows:

$$
\begin{equation*}
P_{k}^{0}=\left\{\left(a_{i}^{\mathfrak{M}}, a_{j}^{\mathfrak{M}}\right) \in W_{0} \times W_{0} \mid R\left(a_{i}, a_{j}\right) \in \mathcal{A} \text { and } R \sqsubseteq_{\mathcal{T}}^{*} P_{k}\right\} \tag{2}
\end{equation*}
$$

For every $R \in \operatorname{role}^{ \pm}(\mathcal{K})$, the required $R-\operatorname{rank} r(R, d)$ of $d \in D$ is defined by taking $r(R, d)=\max \left(\{0\} \cup\left\{q \in Q_{\mathcal{T}}^{R} \mid \mathfrak{M} \models E_{q} R[d]\right\}\right)$. The actual R-rank $r_{m}(R, w)$ of a point $w \in \Delta^{\mathcal{I}}$ at step m is

$$
r_{m}(R, w)= \begin{cases}\sharp\left\{w^{\prime} \in W_{m+1} \mid\left(w, w^{\prime}\right) \in P_{k}^{m+1}\right\}, & \text { if } R=P_{k}, \\ \sharp\left\{w^{\prime} \in W_{m+1} \mid\left(w^{\prime}, w\right) \in P_{k}^{m+1}\right\}, & \text { if } R=P_{k}^{-} .\end{cases}
$$

Assume that W_{m} and $P_{k}^{m}, m \geq 0$, have been already defined. Let $W_{m+1}=\emptyset$ and $P_{k}^{m+1}=\emptyset$, for each role name P_{k}. If we had $r_{m}(R, w)=r(R, c p(w))$, for each role R and $w \in W_{m}$, then the interpretation we need would be constructed. However, the actual rank of some points could still be smaller than the required rank. We cure these defects by adding R-successors for them. Note that the 'curing' process for a given w and R, not only increases the actual R-rank of w, but also all its R^{\prime}-ranks, for all $R \sqsubseteq_{\mathcal{T}}^{*} R^{\prime}$. At this point we adapt the construction in [3] to obtain the interpretation \mathcal{I} we are intending. For each $P_{k} \in \operatorname{role}(\mathcal{K})$, we consider two sets of defects in $P_{k}^{m}: \Lambda_{k}^{m}=\left\{w \in W_{m} \backslash W_{m-1} \mid r_{m}\left(P_{k}, w\right)<r\left(P_{k}, c p(w)\right)\right\}$ and $\Lambda_{k}^{m-}=\left\{w \in W_{m} \backslash W_{m-1} \mid r_{m}\left(P_{k}^{-}, w\right)<r\left(P_{k}^{-}, c p(w)\right)\right\}$.

In each equivalence class $[R]=\left\{S \mid S \equiv_{\mathcal{T}}^{*} R\right\}$ we select a single role, a representative. Let $G=\left(R e p_{\mathcal{T}}^{*}, E\right)$ be a directed graph such that $R e p_{\mathcal{T}}^{*}$ is the set of representatives and $\left(R, R^{\prime}\right) \in E$ iff R is a proper sub-role of R^{\prime}. Clearly, G is a directed acyclic graph and so, by a topological sort, one can assign to each representative a unique number smaller than the number of all its descendants in G. We use the ascending total order induced on G when choosing an element P_{k} in $R e p_{\mathcal{T}}^{*}$, and extend in that way W_{m} and P_{k}^{m} to W_{m+1} and P_{k}^{m+1}, respectively.
$\left(\Lambda_{k}^{m}\right)$ Let $w \in \Lambda_{k}^{m}, q=r\left(P_{k}, c p(w)\right)-r_{m}\left(P_{k}, w\right), d=c p(w)$. There is $q^{\prime} \geq q>0$ with $\mathfrak{M} \vDash E_{q^{\prime}} P_{k}[d]$. Then, $\mathfrak{M} \models E_{1} P_{k}[d]$ and $\mathfrak{M} \models E_{1} P_{k}^{-}\left[d p_{k}^{-}\right]$. In this case we take q fresh copies $w_{1}^{\prime}, \ldots, w_{q}^{\prime}$ of $d p_{k}^{-}$, add them to W_{m+1} and for each $1 \leq i \leq q$, set $c p\left(w_{i}^{\prime}\right)=d p_{k}^{-}$, add the pairs $\left(w, w_{i}^{\prime}\right)$ to each P_{j}^{m+1} with $P_{k} \sqsubseteq_{\mathcal{T}}^{*} P_{j}$ and the pairs $\left(w_{i}^{\prime}, w\right)$ to each P_{j}^{m+1} with $P_{k}^{-} \sqsubseteq_{\mathcal{T}}^{*} P_{j}$ (note that by adding pairs to P_{j}^{m+1} we change its the actual rank);
$\left(\Lambda_{k}^{m-}\right)$ This rule is the mirror image of $\left(\Lambda_{k}^{m}\right): P_{k}$ and $d p_{k}^{-}$are replaced with P_{k}^{-} and $d p_{k}$, respectively.

We need to show that, for all $w \in \Delta^{\mathcal{I}}$ and all $\geq q R$ in \mathcal{T},
(\mathbf{a}_{1}) if $\geq q R$ occurs positively in \mathcal{T} then $\mathfrak{M} \models E_{q} R[c p(w)]$ implies $w \in(\geq q R)^{\mathcal{I}}$;
(\mathbf{a}_{2}) if $\geq q R$ occurs negatively in \mathcal{T} then $w \in(\geq q R)^{\mathcal{I}}$ implies $\mathfrak{M} \models E_{q} R[c p(w)]$.
Consider first $w \in W_{0}$. It should be clear that actual R-rank of w

$$
r_{0}(R, w) \leq \operatorname{rank}(R, \mathcal{A})+\sum_{R^{\prime} \in \operatorname{dsub}_{\mathcal{T}}(R)} \operatorname{rank}\left(R^{\prime}, \mathcal{T}\right)
$$

and so, by (inter2), the total number of R-successors before we cure the defects does not exceed ubound (R, \mathcal{T}). If ubound $(R, \mathcal{T})=\infty$ then there are no negative occurrences of $\geq q R$ with $q \geq 2$ and, although may have $r_{m}(R, w) \geq$ $r(R, c p(w))$ after curing the defects of R, both $\left(\mathbf{a}_{1}\right)$ and $\left(\mathbf{a}_{2}\right)$ hold. Otherwise, we have ubound $(R, \mathcal{T})+1 \in Q_{\mathcal{T}}^{R}$ and so, by (inter2), $\max Q_{\mathcal{T}}^{R}>\operatorname{rank}(R, \mathcal{T})+$ $\operatorname{rank}(R, \mathcal{A})$, whence $r_{0}(R, w)<\max Q_{\mathcal{T}}^{R}$. So, as $r(R, c p(w)) \leq \operatorname{lbound}(R, \mathcal{T})$ and lbound $(R, \mathcal{T})<\operatorname{ubound}(R, \mathcal{T})<\max Q_{\mathcal{T}}^{R}$, after curing the defect, we will have $r_{m}(R, w)=r(R, c p(w))$, for all $m>0$, and both (\mathbf{a}_{1}) and (\mathbf{a}_{2}) hold. The case with $w \in W_{m_{0}} \backslash W_{m_{0}-1}$, for $m_{0}>0$ is similar, only now

$$
r_{m_{0}}(R, w) \leq 1+\sum_{R^{\prime} \in \operatorname{dsub}_{\mathcal{T}}(R)} \operatorname{rank}\left(R^{\prime}, \mathcal{T}\right)
$$

Finally, we show that $\mathcal{I} \models \varphi$ for each $\varphi \in \mathcal{K}$. For $\varphi=A_{k}\left(a_{i}\right), \varphi=\neg A_{k}\left(a_{i}\right)$ the claim is by the definition of $A_{k}^{\mathcal{I}}$. For $\varphi=\neg P_{k}\left(a_{i}, a_{j}\right)$, we have $\left(a_{i}, a_{j}\right) \in P_{k}^{\mathcal{I}}$ iff $\left(a_{i}, a_{j}\right) \in P_{k}^{0}$ iff $R\left(a_{i}, a_{j}\right) \in \mathcal{A}$ and $R \sqsubseteq_{\mathcal{T}}^{*} P_{k}$. By induction on the structure of concepts and (a_{1}) and (a_{2}), one can show that $\mathcal{I} \models C_{1} \sqsubseteq C_{2}$ whenever $\mathfrak{M} \vDash \forall x\left(C_{1}^{*}(x) \rightarrow C_{2}^{*}(x)\right)$, for each $\varphi=C_{1} \sqsubseteq C_{2}$. Finally, $\mathcal{I} \models \varphi$ holds by definition in case $\varphi=R_{1} \sqsubseteq R_{2} \in \mathcal{T}$.

Theorem 1. Under restriction (inter2), checking KB satisfiability is NPcomplete in DL-Lite bool $_{\mathcal{H N}}$, PTIME-complete in DL-Lite $\mathcal{H o r n}_{\text {horn }}^{\mathcal{H} \mathcal{N}}$ and NLOGSpacecomplete in both DL-Lite ${ }_{\text {krom }}^{\mathcal{H N}}$ and DL-Lite ${ }_{\text {core }}^{\mathcal{H N}}$.

We now consider the case where the restriction (inter1) is imposed on the interaction between sub-roles and number restrictions. In presence of an ABox, (inter2) restricts the number of R-successors in the ABox, which appears to be a strong constraint on the instances of the ABox. On the other hand, the less restrictive condition (inter1), which does not impose any bound on R-successors in the ABox, does not come for free, as shown by the following theorem:

Theorem 2. Under restriction (inter1), checking KB satisfiability is NP-hard even in DL-Lite core ${ }^{\mathcal{H} \mathcal{N}}$.

Proof. We show that graph 3-colorability can be reduced to KB satisfiability. Let $G=(V, E)$ be a graph with vertices V and edges E and $\{r, g, b\}$ be three colors. Consider the following $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$ with role names v_{i} and w and object names o, r, g, b and the x_{i}, for each vertex $v_{i} \in V$:

$$
\begin{aligned}
\mathcal{T}= & \{\geq(|V|+4) w \sqsubseteq \perp\} \cup\left\{v_{i} \sqsubseteq w, B_{1} \sqsubseteq \exists v_{i}, B_{2} \sqcap \exists v_{i}^{-} \sqsubseteq \perp \mid v_{i} \in V\right\} \cup \\
& \left\{\exists v_{i}^{-} \sqcap \exists v_{j}^{-} \sqsubseteq \perp \mid\left(v_{i}, v_{j}\right) \in E\right\}, \\
\mathcal{A}= & \left\{B_{1}(o), w(o, r), w(o, g), w(o, b)\right\} \cup\left\{w\left(o, x_{i}\right), B_{2}\left(x_{i}\right) \mid v_{i} \in V\right\} .
\end{aligned}
$$

It can be shown that \mathcal{K} is satisfiable iff G is 3 -colorable.

4 Reasoning with Attributes

In this section we study the effect of extending $D L$-Lite with attributes. In particular, we show that for the Bool, Horn and core cases the addition of attributes does not change the complexity of KB satisfiability.
Theorem 3. $K B$ satisfiability is NP-complete in DL-Lite $e_{\text {bool }}^{\mathcal{N} \mathcal{A}}$, PTime-complete in DL-Lite ${ }_{\text {horn }}^{\mathcal{N} \mathcal{A}}$ and NLOGSPACE-complete in DL-Lite ${ }_{\text {core }}^{\mathcal{N} \mathcal{A}}$.

Under restriction (inter2), checking KB satisfiability is NP-complete in
 DL-Lite core ${ }^{\text {ARN }}$.

Proof. (Sketch) We encode a $D L$-Lite ${ }_{\alpha}^{\mathcal{H} \mathcal{N A}} \operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$ in a $\mathcal{Q} \mathcal{L}^{1}$ sentence $\mathcal{K}^{\ddagger a}$ in a way similar to the translation used in Lemma 1 . Denote by $\operatorname{val}(\mathcal{A})$ the set of all value names that occur in \mathcal{A}. Similarly to roles, we define the sets $Q_{\mathcal{T}}^{U}$
of natural numbers for all occurrences of $\geq q U$ (including sub-attributes). We need a unary predicate $E_{q} U(x)$, for each attribute name U and $q \in Q_{\mathcal{T}}^{U}$, denoting the set of objects with at least q values of attribute U. We also need, for each attribute name U and each datatype T, a unary predicates $U T(x)$, denoting all objects that may have attribute U values only of datatype T. Following this intuition, we extend $\cdot *$ by the following two statements:

$$
(\geq q U)^{*}=E_{q} U(x) \quad \text { and } \quad(\forall U . T)^{*}=U T(x) .
$$

The $\mathcal{Q} \mathcal{L}^{1}$ sentence encoding the $\mathrm{KB} \mathcal{K}$ is defined as follows:

$$
\mathcal{K}^{\ddagger a}=\mathcal{K}^{\ddagger \mathrm{e}} \wedge \forall x\left[\mathcal{T}^{\mathcal{U}}(x) \wedge \bigwedge_{U \in \operatorname{att}(\mathcal{K})}\left(\delta_{U}(x) \wedge \alpha_{U}^{1}(x) \wedge \alpha_{U}^{2}(x)\right)\right] \wedge \mathcal{A}^{\ddagger \mathrm{a}} \wedge \mathcal{A}^{\ddagger^{2}},
$$

where $\mathcal{K}^{\ddagger \text { e }}$ is as before, $\mathcal{T}^{\mathcal{U}}(x), \delta_{U}(x)$ and $\mathcal{A}^{\ddagger \text { a }}$ are similar to $\mathcal{T}^{\mathcal{R}}(x), \delta_{R}(x)$ and \mathcal{A}^{\ddagger} e, but rephrased for attributes and their inclusions. The new types of ABox assertions require the following formula:

$$
\mathcal{A}^{\ddagger^{2}}=\bigwedge_{U_{k}\left(a_{i}, v_{j}\right) \in \mathcal{A}} \bigwedge_{\text {datatype } T}\left(U T\left(a_{i}\right) \rightarrow T v_{j}\right) \quad \wedge \bigwedge_{T\left(v_{j}\right) \in \mathcal{A}} T v_{j},
$$

where $T v_{j}$ is a propositional variable for each datatype T and each $v_{j} \in \operatorname{val}(\mathcal{A})$. The two additional formulas, $\alpha_{U}^{1}(x)$ and $\alpha_{U}^{2}(x)$, capturing datatype inclusions and disjointness constraints are:
$\alpha_{U}^{1}(x)=\bigwedge_{T \subseteq T^{\prime} \in \mathcal{T}}\left(U T(x) \rightarrow U T^{\prime}(x)\right)$,
$\alpha_{U}^{2}(x)=\bigwedge_{T \sqcap T^{\prime} \subseteq \perp \in \mathcal{T}}\left[\left(U T(x) \wedge U T^{\prime}(x) \wedge E_{1} U(x) \rightarrow \perp\right) \wedge \bigwedge_{v \in \operatorname{val}(\mathcal{A})}\left(T v \wedge T^{\prime} v \rightarrow \perp\right)\right]$.
We would like to note here that the formula $\alpha_{U}^{2}(x)$ for disjoint datatypes demonstrates a subtle interaction between attribute range constraints $\forall U . T$ and minimal cardinality constraints $\exists U$.

We show that \mathcal{K} is satisfiable iff the $\mathcal{Q} \mathcal{L}^{1}$-sentence $\mathcal{K}^{\ddagger}{ }^{\ddagger}$ is satisfiable. For (\Leftarrow), let $\mathfrak{M} \models \mathcal{K}^{\ddagger \mathrm{a}}$. We construct a model $\mathcal{I}=\left(\Delta_{O}^{\mathcal{I}} \cup \Delta_{V}^{\mathcal{I}},{ }^{\mathcal{I}}\right)$ of \mathcal{K} similarly to the way we proved Lemma 1 but this time datatypes will have to be taken into account: let $\Delta_{O}^{\mathcal{I}}$ be defined inductively as before and $\Delta_{O}^{\mathcal{I}}=\operatorname{val}(\mathcal{A}) \cup V$. The set V will be constructed starting from $\operatorname{val}(\mathcal{A})$ in order to 'cure' the attribute successors as follows. For each datatype T and each attribute U, let

$$
T^{0}=\{v \in \operatorname{val}(\mathcal{A}) \mid \mathfrak{M} \models T v\} \quad \text { and } \quad U^{0}=\{(a, v) \mid U(a, v) \in \mathcal{A}\} .
$$

For every attribute $U \in \operatorname{att}(\mathcal{K})$, we can define the required U-rank $r(U, d)$ of $d \in D$ and the actual U-rank $r_{0}(R, w)$ of $w \in \Delta_{O}^{\mathcal{I}}$ as before, treating U as a role name (the only difference is that there will be only one step, and so, the actual rank is needed only for step 0). We can also consider the equivalence relation induced by the sub-attribute relation in \mathcal{T}, then we can choose representatives
and a linear order on them respecting the sub-attribute relation of \mathcal{T}. We can start from the smaller attributes and 'cure' their defects. Let $w \in \Delta_{O}^{\mathcal{I}}$ and $q=r(U, c p(w))-r_{0}(U, w)>0$. Take q fresh elements v_{1}, \ldots, v_{q}, add those fresh values to V, add pairs $\left(w, v_{1}\right), \ldots,\left(w, v_{q}\right)$ to U^{0} and add v_{1}, \ldots, v_{q} to T^{0} for each datatype T with $\mathfrak{M} \models U T[c p(w)]$. Let $U^{\mathcal{I}}$ and $T^{\mathcal{I}}$ be the resulting relations. Now, it can be shown that if $\mathfrak{M} \vDash \mathcal{K}^{\ddagger \mathbf{a}}$ then $\mathcal{I} \models \varphi$ for every $\varphi \in \mathcal{K}$. We only note here that fresh values v_{j} cannot be added to two disjoint datatypes T and T^{\prime} because of formula $\alpha_{U}^{2}(x)$.

Now, given a KB with a Bool or Horn TBox, \mathcal{K}^{\ddagger} a is a universal one-variable formula or a universal one-variable Horn formula, respectively, which immediately gives the NP and PTime upper complexity bounds for the Bool and Horn fragments. The NLogSpace upper bound for KBs with core TBoxes is not so straightforward because $\alpha_{U}^{2}(x)$ is not a binary clause. In this case we note that $\mathcal{K}^{\ddagger a}$ is still a universal one-variable Horn formula and therefore, $\mathcal{K}^{\ddagger a}$ is satisfiable iff it is true in the 'minimal' model. The minimal model can be constructed in the bottom-to-top fashion by using only positive clauses of \mathcal{K}^{\ddagger} (i.e., clauses of the form $\left.\forall x\left(B_{1}(x) \wedge \cdots \wedge B_{k}(x) \rightarrow H(x)\right)\right)$ and then checking whether the negative clauses of \mathcal{K}^{\ddagger} a (i.e., clauses of he form $\left.\forall x\left(B_{1}(x) \wedge \cdots \wedge B_{k}(x) \rightarrow \perp\right)\right)$ hold in the constructed model. By inspection of the structure of $\mathcal{K}^{\ddagger a}$, one can see that all its positive clauses are in fact binary, and therefore, whether an atom is true in its minimal model or not can be checked in NLogSpace.

It is of interest to note that the complexity of KB satisfiability increases in the case of Krom TBoxes:

Theorem 4. $K B$ satisfiability is NP-complete in $D L-L i t e_{k r o m}^{\mathcal{N} \mathcal{A}}$, and so, in DL-Lite ${ }_{\text {krom }}^{\mathcal{H N} \mathcal{A}}$ even under (inter) and (inter2).

Proof. (Sketch) The proof exploits the ternary disjointness formula $\alpha_{U}^{2}(x)$ in $\mathcal{K}^{\ddagger a}$. In fact, if $T \sqcap T^{\prime} \sqsubseteq \perp \in \mathcal{T}$ then the following concept inclusion, although not in the syntax of $D L-L i t e_{\text {krom }}^{\mathcal{N} \mathcal{A}}$, is a logical consequence of $\mathcal{T}\left(\right.$ cf. $\left.\alpha_{U}^{2}(x)\right)$:

$$
\forall U . T \sqcap \forall U . T^{\prime} \sqcap \exists U \sqsubseteq \perp .
$$

Using such ternary intersections one can encode 3SAT. Let $\varphi=\bigwedge_{i=1}^{m} C_{i}$ be a 3CNF, where the C_{i} are ternary clauses over variables p_{1}, \ldots, p_{n}. Now, suppose $p_{j_{i}^{1}} \vee \neg p_{j_{i}^{2}} \vee p_{j_{i}^{3}}$ is the i th clause of φ. It is equivalent to $\neg p_{j_{i}^{1}} \wedge p_{j_{i}^{2}} \wedge \neg p_{j_{i}^{3}} \rightarrow \perp$ and so, can be encoded as follows:

$$
T_{i}^{1} \sqcap T_{i}^{2} \sqsubseteq \perp, \quad \neg A_{j_{i}^{1}} \sqsubseteq \forall U_{i} \cdot T_{i}^{1}, \quad A_{j_{i}^{2}} \sqsubseteq \forall U_{i} \cdot T_{i}^{2}, \quad \neg A_{j_{i}^{3}} \sqsubseteq \exists U_{i}
$$

where the A_{1}, \ldots, A_{n} are concept names for the variables p_{1}, \ldots, p_{n}, and U_{i} is an attribute and T_{i}^{1} and T_{i}^{2} are datatypes for the i th clause (note that Krom concept inclusions of the form $\neg B \sqsubseteq B^{\prime}$ are required, which is not allowed in the core TBoxes). Let \mathcal{T} consist of all such inclusions for clauses in φ. It can be seen that φ is satisfiable iff \mathcal{T} is satisfiable.

5 Conclusions

We studied two different extensions of the DL-Lite logics. First, local attributes allow to use the same attribute associated to different concepts with different datatype range restrictions. We showed that the extension with attributes is harmless with the only notable exception of the Krom fragment, where the complexity rises from NLogSpace to NP.

Second, we consider weak syntactic restrictions on interaction between cardinality constraints and role inclusions and study their impact on the complexity of satisfiability. For example, under (inter) [3], roles with sub-roles cannot have maximum cardinality constraints. We present two alternative restrictions, which coincide without ABoxes, and show that the complexity of TBox satisfiability under them coincides with the complexity of TBox satisfiability without role inclusions. However, if we want to preserve complexity of KB reasoning, condition (inter2) imposes a bound on the number R-successors in the ABox. Indeed, under the weaker condition (inter1) complexity of KB satisfiability rises to at least NP (even for the core fragment).

As a future work, we intend to fill the gaps in Table 1 and, in particular, to see whether the NP-hardness results have a matching upper bound. We are also working on query answering in the languages with attributes.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the light of first-order logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pages 361-366, 2007.
2. A. Artale, D. Calvanese, and A. Ibáñez-García. Full satisfiability of UML class diagrams. In Proc. of the $29^{\text {th }}$ International Conference on Conceptual Modeling (ER-10), 2010.
3. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Research, 36:1-69, 2009.
4. A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Complexity of reasoning over temporal data models. In Proc. of the $29^{\text {th }}$ International Conference on Conceptual Modeling (ER-10), 2010.
5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602-607, 2005.
6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query answering in description logics. In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pages 260-270, 2006.
7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Inconsistency tolerance in P2P data integration: An epistemic logic approach. Information Systems, 33(4):360-384, 2008.
8. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking Data to Ontologies. J. on Data Semantics, X:133-173, 2008.

[^0]: ${ }^{1}$ The Krom fragment of first-order logic consists of all formulas in prenex normal form whose quantifier-free part is a conjunction of binary clauses.

