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Abstract 

Background: The Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene leads to lower 

enzymatic activity and higher dopamine availability in Met carriers. The Met allele is associated with better 

performance and reduced prefrontal cortex (PFC) activation during working memory (WM) tasks in adults. 

Dopaminergic system changes during adolescence may lead to a reduction of basal dopamine levels, 

potentially affecting Met allele benefits during development.  

Methods: We investigated the association of COMT genotype with behavioral (N=322) and magnetic 

resonance imaging (MRI) data (N=81-84) collected during performance of a visuospatial WM task and 

potential changes in these effects during development (reflected in age x genotype interactions). Data were 

collected from a cross-sectional and longitudinal typically developing sample of 6 to 20 year-olds.  

Results: Visuospatial WM capacity exhibited an age x genotype interaction, with a benefit of the Met allele 

emerging after 10 years of age. There was a parallel age x genotype interaction on WM-related activation in 

the right inferior frontal gyrus and intraparietal sulcus (IPS), with increases in activation with age in the 

Val/Val group only. Main effects of COMT genotype were also observed in the IPS, with greater gray matter 

volumes bilaterally and greater right IPS activation in the Val/Val group compared to the Met carriers.  

Conclusion: These results suggest that COMT genotype effects on WM brain activity and behavior are not 

static during development. The full developmental picture should be considered when trying to understand 

the impact of genetic polymorphisms on the mature cognition of healthy adult or psychiatric populations.  
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Introduction 

The gene coding for the catechol-O-methyltransferase (COMT) enzyme, which mediates the degradation of 

catecholamines, in particular dopamine, has attracted considerable attention as a promising candidate 

gene for studying variance in cognitive function and mental illness (1,2). Developmental studies of this gene 

could inform us on the typical development of the dopamine system and provide a reference for the study 

of developmental disorders which have been linked to dopamine system dysfunction, such as schizophrenia 

(3), for which COMT function may be relevant (2, 4,5), although the evidence is inconsistent (e.g. 1).  

 

The common rs4680 Val158Met single nucleotide polymorphism (SNP) leads to a reduction of COMT 

enzymatic activity in Met carriers (6-8). The effect of rs4680 on cognition has been extensively studied in 

adults, both in typical and neuropsychiatric populations. Better working memory (WM) performance (e.g. 

in N-back tasks), fewer perseverative errors, and higher IQ tend to be associated with the Met allele in 

healthy individuals (9-11), although some studies have failed to replicate these effects (see 10). In 

functional magnetic resonance imaging (fMRI) studies Val/Val adults tend to exhibit greater prefrontal 

cortex (PFC) activation during WM tasks than Met/Met individuals (12,13). Structural imaging studies 

report less consistent results (14-16).  

 

In children and adolescents effects of COMT genotype in specific age groups have been reported on brain 

structure (17-19), resting brain perfusion (20) and brain activation in response to emotional stimuli (17). 

Behavioral findings are mixed (21-23). This lack of consistency may arise from age differences in the effect 

of COMT genotype on cognition.  

 

Dopamine effects on behavior follow an inverted U-shaped dose-response curve, with both deficient and 

excessive amounts of dopamine activity predicting poor cognitive tasks performance (24,25). Met/Met 

adults are thought to be near the apex of this curve, while Val carriers lay towards the lower end because 

of the increased dopamine metabolism rate associated with the Val allele (2,26,27).  
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There is some evidence that the dopamine system undergoes changes during childhood and adolescence. 

In the rhesus monkey, dopamine concentration in the PFC and dopamine synthesis in the PFC and parietal 

cortex peak around puberty (2-3 years), while dopamine concentration in the parietal cortex remains stable 

from 5 months of age (28,29). Dopaminergic input in the PFC also peaks around puberty, both in terms of 

length of the axons and density of varicosities (30-32). In humans, postmortem studies of the PFC have 

shown that dopamine concentration is highest during early postnatal development (33), while D1 receptor 

density peaks in adolescents (age 14-18) and young adults compared to neonates, infants, adults and aged 

adults (33). In the living brain, a decrease in D1 receptor binding was observed in the PFC and parietal 

cortex over an age span of 10 to 30 years (34). These results overall suggests a decrease in dopamine levels 

from puberty to adulthood (23). Little information is available regarding potential sex differences. 

 

A decrease in basal dopamine level between childhood and adulthood could affect the position of the 

Val158Met genotypes on the inverted U-shaped curve and lead to a differential effect of rs4680 during 

development. We tested the hypothesis of a change in the effect of COMT genotype with age on behavioral 

and neuroimaging data associated with visuospatial WM, a cognitive ability which develops during 

childhood and adolescence (35).  
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Methods and Materials 

Participants and genetic data 

Participants in nine different age groups (6, 8, 10, 12, 14, 16, 18, 20 and 25 years) were recruited using 

random sampling from the population registry in Nynäshamn in Sweden (‘Brainchild’ study, (36)). Informed 

consent was obtained from the participants and from the parents of children under 18. The study was 

approved by the local ethics committee of the Karolinska University Hospital, Stockholm. See Table 1 and 

Figure 1 for a description of included participants. Deoxyribonucleic acid (DNA) was extracted either from 

blood or saliva. COMT is located on chromosome 22q11.2 and SNP rs4680 is in exon 4 of the gene (see 

Supplemental Information for details of the genetic analyses and excluded participants). 

 

Assessment of working memory 

Participants completed a large neuropsychological battery administered individually and in a quiet room. 

Visuospatial working memory (WM) was assessed using a grid task (Dot Matrix) from the AWMA battery 

(37). This computerised task involves remembering the location and order of dots displayed sequentially in 

a four-by-four grid, for 1000 ms each, with a 500 ms interval between dots. After training with one, two and 

three dots, the test started with one dot. Each level consisted of six trials. Four correct answers were 

required for moving to the next level, where one more dot needed to be remembered. The test terminated 

when three errors were committed on one level. The score used was the total number of correct trials.  

 

Dot Matrix statistical analyses 

Linear mixed model analyses, which allow the inclusion of data from participants who have not attended all 

testing waves and adjust for inter-correlation between testing waves (38-40), were performed using the 

PASW 18.0 statistical package (41). A compound symmetry covariance structure was used and Dot Matrix 

score was treated as a repeated measure (rounds 1 and 2). We first identified how to best model changes 

in WM capacity with age, including the leveling of performance during mid-adolescence. We compared 

entering the age variable as age without transformation (linear effect), the inverse of age (age-1) and the 

natural logarithm of age (ln(age)) (42,43). In all cases, age was transformed into Z scores to evaluate effects 
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of interest at the mean age of our sample and reduce collinearity between main effects and interactions 

(44). Sex and sex x age were entered as covariates. The best model was identified using Akaike’s (AIC) and 

Schwartz’s information criteria (SBC or BIC) (45,46).  

We then tested whether including COMT genotype and age x COMT genotype as additional fixed effects 

improved the model. Genotype x sex and genotype x age x sex interactions were also included to test for 

potential sex differences in the effect of COMT genotype (47). Although the effect of rs4680 on dopamine 

degradation is additive, the effect on cognition is suggested to follow a non-linear, inverted U-curve. In 

order to allow the detection of such effects, we evaluated both additive (0=Met/Met, 1=Val/Met, 

2=Val/Val) and dominance models (Val dominance: 0=Met/Met, 1=Val carriers; Met dominance: 0=Met 

carriers, 1=Val/Val) (similarly to (9,48)).  

 

Brain imaging (fMRI) 

MRI data was collected on a 1.5 T Siemens scanner (see Supplementary Information). Participants 

performed two 5 min sessions each including 16 WM and 16 Control trials in a pseudo-randomized order. 

Dots were presented sequentially in a four-by-four grid. To reduce potential age or genotype differences in 

behavior, the task included load 2 (two dots) and 4 (four dots) trials only. After the last dot was shown a 

number was presented in the grid. Participants were asked to indicate whether the number and its position 

in the grid matched.  For example “2?” would prompt the participant to indicate whether the second circle 

had appeared in the grid position filled by the number. In the Control condition, the dots were presented in 

the corners of the grid and the cue (“8?”) always required a “no” response.  

 

Preprocessing and statistical analysis (see (36)) were carried out with SPM5 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5). Contrast images comparing WM and Control 

conditions, irrespective of load, for each participant, were used in flexible factorial design second-level 

analyses which modelled whether the contrasts were from the same or different participants by including 
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subject and testing round as factors. This permitted the inclusion in a single analysis of participants with 

and without longitudinal data. Age in months was transformed into Z score (ageZ).  

 

First ageZ and sex were entered as covariates and the main WM-Control contrast was performed correcting 

for multiple comparison across all voxels within the brain, with a false discovery rate (FDR) threshold of p < 

0.05, to identify regions recruited during the task. Then, genotype and genotype x ageZ were entered as 

additional covariates. Genotype was entered with an additive, Met dominant or Val dominant effect. In 

each model a single F-test was performed to test whether any main effect of genotype or age x genotype 

interaction could be observed (FDR, p < .05). Contrasts were inclusively masked by the WM-Control main 

effect previously defined. Results were plotted on a surface-based human atlas (PALS)(49,50) using the 

Caret software (51; http://www.nitrc.org/projects/caret/). Mean parameter estimates from the first level 

contrasts were obtained in the significant clusters using MarsBar (52) and further analysed using linear 

mixed models with PASW 18.0. 

 

Brain imaging (Voxel-based morphometry) 

Structural T1-weighted spin echo images were acquired with a 3D MPRAGE sequence (FOV = 256 x 256 mm, 

256 x 256 grid, 1 mm3 voxel size). Voxel-based morphometry (VBM) was performed using SPM5. Following 

segmentation of the T1-weighted images, high-dimensional normalization was performed using the 

Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) toolbox in SPM (53). The 

modulated warped gray matter (GM) images were then smoothed with an 8 mm Gaussian kernel. The same 

flexible factorial analyses and statistical thresholds as those used for the fMRI data were used for the VBM 

GM data, with the addition of total GM volume as a covariate. 
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Results 

Analyses combined data from all participants and both testing rounds using linear mixed models. The 

complicated non-independent design did not allow the calculation of standardised effect statistics (54). 

Effect sizes from analyses performed on the round 1 data only are reported in the Supplementary 

Information. 

Behavioral analysis 

WM capacity development 

Behavioural data were available for 322 participants, including 260 with longitudinal data. We first 

compared the information criteria of three different models (with the age variable as ageZ, age-1
Z or 

ln(age)Z) to identify the best model of WM capacity development. Linear mixed model analyses included 

Dot Matrix score as the dependent variable, sex, age, and their interaction were entered as fixed effects. 

The best model was where WM capacity was explained by age-1
Z, with a steeper change in WM capacity 

over younger ages and then flattening to an asymptote.  

 

Influence of COMT genotype on WM capacity development 

We then tested whether including the main effect of COMT genotype and the genotype x age interaction 

improved this model. Genotype x sex and genotype x age x sex interactions were also included. Genotype 

was modelled with an additive effect, Val dominance, or Met dominance. 

 

Only the Val dominance model led to a significantly improved fit of the data compared with the age and sex 

only model (likelihood-ratio test, D = 9.77, 4 degrees of freedom, p = .045). The only significant effects 

observed in this full model were a main effect of age-1
Z (F(1,502.7) = 171.01, p < .001) and an interaction 

between genotype (Met/Met vs. Val carriers) and age-1
Z (F(1,500.1) = 4.40, p = .036). Met/Met individuals 

switched from being poorer performer during childhood to being the better performers from mid-

adolescence onwards (Figure 2). According to the model estimates, the cross-over occurred at 10.2 years of 

age. Neither sex, nor interactions between sex and other variables had a significant effect on behavior. 
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FMRI analysis 

In-scanner performance 

FMRI data were available for 81 participants, including 44 with longitudinal data. Accuracy was high overall. 

Participants were less accurate in the WM condition (WM: mean 90.6 % ± SD 10.6; Control: 98.4 % ± 3.5) 

(t(124) = 9.52, p < .001), as well as slower to respond (correct trials only, WM: 1277 ms ± 360; Control: 738 

ms ± 215) (t(124) = 25.11, p < .001). The difference between WM and Control conditions decreased with 

age in terms of both accuracy and reaction time (main effect of age-1
Z respectively F(1,87.8) = 10.06, p = 

.002, and F(1,97.1) = 32.05, p < .001), however there was no main effect of genotype or age by genotype 

interaction (all ps > 0.29). Genotype thus did not affect WM vs. Control condition performance. 

Furthermore only correct trials were used in the brain activity analyses. 

 

WM-Control main effect 

FMRI data were analysed using a flexible factorial second level analysis of the WM-Control contrast which 

coded subject and testing round as factors and ageZ and sex as covariates. Because of the smaller sample 

size of the fMRI data, only the linear effect of age was tested in SPM analyses. The resulting WM-Control 

contrast image (FDR, p < .05) was saved and used as a mask for the subsequent analyses. A large 

frontoparietal network of regions was more active in the WM than the Control condition (Figure 3a). 

 

Effect of COMT genotype on the WM-Control contrast 

COMT genotype and genotype x ageZ were added as additional covariates in the flexible factorial analysis. 

Genotype was entered as an additive effect, with Val or with Met dominance. Interactions between 

genotype and sex, and genotype, sex and age were included in the follow up analyses only. In each analysis 

a single F-test assessed whether genotype or genotype x ageZ had significant effects (FDR, p < .05, within 

WM-Control mask). Only the Met dominance model resulted in significant clusters, located in the right 

inferior frontal gyrus (IFG) and in the posterior section of the right intraparietal sulcus (IPS)/angular gyrus 

(Table 2, Figure 3b and Figure S1). 
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Mean parameter estimates from the individual first level WM-Control contrasts were obtained for these 

two clusters. Linear mixed level model analyses demonstrated (see Table 2 for statistics) that the parietal 

cluster exhibited both a main effect of genotype, with greater activation in Val/Val participants than Met 

carriers, and an age by genotype interaction, with an increase in activation with age in the Val/Val 

participants only (Val/Val, F(1,22.5) = 21.5, p < .001; Met carriers, p > .2). The frontal cluster exhibited an 

age by genotype interaction, with a similar pattern (Val/Val, F(1,20.3) = 25.9, p < .001; Met carriers, p > .4) 

(Figure 3). Note that for both clusters the genotype effects were significant when using age-1
Z but the 

information criteria indicated that the models including ageZ were a better fit of the data. Figure 4 relates 

our findings to the suggestion that PFC functioning and WM performance follow an inverted-U curve 

function of dopamine levels. 

 

The main effect of genotype and age x genotype interaction remained significant (ps ≤ .001) when including 

genotype x sex, age x sex, and genotype x age x sex interactions in the model. In the IPS, the main effect of 

genotype tended to be greater in males, while in the IFG the interaction between age and genotype tended 

to be greater in males (Table 2). 

 

Further analyses (see Supplemental Information, Figures S2, S3) indicated that activations in the IFG and IPS 

clusters were more strongly correlated in the Val/Val group and that these participants also showed a 

positive correlation between IFG activation and Dot Matrix performance. 

 

Voxel-based morphometry 

Structural MRI data were available for 84 participants, including 47 with longitudinal data. rs4680 effects on 

GM volumes were analysed in the same way as for the fMRI data. Total GM volumeZ was included as an 

additional covariate to permit the study of regional rather than global effects. However, similar results 

were obtained when total GM volume was not included.  
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Again only the Met dominance model resulted in significant clusters, located in the lateral bank of the IPS 

bilaterally (see Table 2, Figure 3c and Figure S1). Individual mean GM volumes were calculated for each 

cluster. Linear mixed level model analyses indicated that all three clusters showed a main effect of 

genotype, with greater GM volumes in Val/Val participants than Met carriers. There was a weak trend in 

the largest cluster for a genotype by age interaction, with a steeper decrease in GM with age in the Val/Val 

individuals than Met carriers. The main effects of genotype in the three clusters remained significant (all ps 

≤ .0001) when including genotype x sex, age x sex, and genotype x age x sex interactions in the model. 

Significant interactions between sex and genotype were observed bilaterally (Table 2). In both cases, the 

effect of genotype was greater in males than females. 
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Discussion 

This longitudinal and cross-sectional study of 6 to 20 year-olds combined a large sample and full age range 

of participants to investigate developmental changes in the effect of a functional polymorphism of the 

COMT gene on cognition, brain structure and brain function. Previous studies of children and adolescents 

observed inconsistent COMT genotype effects and were restricted by either a small age range (21) or a 

small sample size (22,23). Our results show that the adult pattern of the effects of the COMT Val158Met 

polymorphism on brain and behavior during the performance of a visuospatial WM task emerges during 

adolescence. Met/Met individuals showed a steeper increase in performance with age than Val carriers, 

while Val/Val individuals exhibited an increase in activation in the right IFG and right IPS/angular gyrus with 

age. Additional main effects of genotype were observed in the parietal cortex for both fMRI and gray 

matter data, with larger activation and GM volumes in Val/Val participants than Met carriers. 

 

Differences in genotype effects on the behavioral and neuroimaging data, such as the Val vs. Met 

dominance effects, may have been driven by a range of factors. For example the fMRI visuospatial WM task 

included only relatively low WM loads and a control task while the behavioral score reflected the 

performance achieved up to the participants’ maximum WM load level. In addition, behavior may reflect 

more complex and global dopamine effects on brain activity and structure in a wide network of brain 

regions.  

 

Behavioral results of the Dot Matrix task indicated that Met/Met homozygotes switched from being the 

underperformers to follow the adult pattern of better WM performance at around the age of 10-12 years 

old, typically considered as the start of puberty. Barnett et al. (21) reported a greater effect of COMT 

genotype on verbal IQ in 8 year-old boys who were pubertal at age 9 compared to prepubertal boys or girls. 

This pattern was not observed on other measures, including a counting span measure of WM. The present 

study did not evaluate pubertal state. However, WM capacity showed no significant effect of sex or 

interaction between sex and age or gene. We therefore interpret the observed interaction of COMT 

genotype by age as a result of a changing dopamine system during development, independent of possible 
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additional interactions with hormonal effects. Note however that substance use was not recorded in this 

study and is a potential confound of the age effect observed here (55). In Sweden, daily or almost 

daily smoking increases during adolescence from < 1 % at age 11-12 to a 12 % at age 18-20 (56,57), and 

the COMT Val allele has been shown to be a small risk factor (odds ratio 1.12) for smoking (58). Smoking is 

associated with lower WM in adults, while the evidence is mixed in younger samples (59). The increasingly 

poorer WM performance in Val carriers compared to Met/Met individuals may thus partly reflect increased 

smoking during adolescence particularly in Val carriers. However, smoking rate is low, the associations 

between the Val allele and smoking, and between smoking and WM, are weak and therefore unlikely to 

explain the entire effect observed here. 

 

The effects of genotype and genotype x age interactions also remained significant in the neuroimaging data 

when interactions with sex were included in the models. In the IPS both brain activity (trend in the right 

IPS) and GM volumes (bilateral IPS) exhibited an interaction between sex and genotype, with greater 

genotype effects in males than females. In addition a greater interaction effect on IFG activation tended to 

be observed in males. There is widespread but weak evidence of an interaction between sex and rs4680 on 

behavior, brain structure and the incidence of psychiatric disorders (47). Estrogens have been implicated to 

explain these sex differences, as they are thought to down-regulate COMT activity (47). The current study 

included only small age groups when split for sex. This limitation and the lack of pubertal stage information 

prevented us from investigating sex differences during development in more detail. 

 

Our findings of rs4680 effects on GM volumes are consistent with previous evidence for an effect of this 

polymorphism on both adolescent and adult GM volumes (14,16) and cortical thickness (15,18). However, 

the locations of the observed effects differ between studies, which may be due to differences in 

methodology and age of the participants. rs4680 is a functional variant and could be thought to affect brain 

function but not brain structure. However, the pruning of synapses and axons during development is 

affected by synaptic functioning (60,61). Thus, during maturation, genotype effects on brain function could 

gradually impact on brain structure and GM volumes in particular. The weaker genotype by age interaction 



Dumontheil et al. 
 

14 
 

observed in the VBM compared to the fMRI and behavioral data may be due to the fact that these 

processes occur over protracted period and are not as flexible and rapid as functional changes in brain 

activity.  

 

It is unclear yet what the greater parietal GM volumes observed in Val/Val individuals across ages precisely 

reflect, and why the Val carriers are those with greater volumes. Further investigation using a combination 

of cortical thickness, cortical surface area and volume data may provide more insight on the underlying 

developmental changes in structure (62). A possible interpretation of the results of this study relates them 

to the altered trajectories of brain structure maturation reported in developmental psychiatric disorders 

(63). For example, delayed peaks in cortical thickness in Attention-Deficit/Hyperactivity Disorder (ADHD) 

(64), a disorder associated with visuospatial WM impairments (65), lead to increased cortical thickness in 

ADHD during late childhood and early adolescence. In the current study, Val/Val participants had greater 

gray matter volumes in the parietal cortex and show poorer WM capacity from mid-adolescence onwards.  

 

The effects of COMT genotype we observed were not limited to the PFC. In line with these results, 

dopamine D1 receptors availability (34) and correlation between D1 receptors availability and COMT 

genotype (66) are similar throughout the cortex, and dopamine D1 receptors density and change in WM 

capacity after training are correlated in both prefrontal and parietal cortex (67). Recent multimodal studies 

combining positron emission tomography (PET) and fMRI data to study the dopamine system in adults have 

repeatedly identified parietal and lateral PFC regions similar to the clusters observed in the present study 

and provide independent evidence that these regions are sensitive to basal dopamine levels and dopamine 

levels in interconnected subcortical regions (68-70).  

 

In both the behavioral and fMRI data sets, we observed a gradual emergence from age 12 of the adult 

pattern of COMT genotype effects. PFC functioning and WM performance have been suggested to follow 

an inverted-U curve function of dopamine levels (24), with adult rs4680 Met/Met individuals near the apex 

of this curve (2). The pattern observed in children (Figure 4) resembles the reduction of lateral PFC 
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activation and improvement in WM performance observed in Val/Val adults administered amphetamine, 

which increases basal dopamine levels (27). Thus our findings are compatible with a decrease in basal 

dopamine levels during adolescence (23), providing indirect evidence for the development of the dopamine 

system in humans. 

 

Increased prefrontal activity could reflect top-down boosting of WM capacity in the parietal cortex (71). 

Val/Val individuals showed an increase in prefrontal and parietal activation during adolescence, a greater 

correlation between the activation in these two clusters than Met carriers, and a correlation between 

greater WM activity in the right IFG and better WM capacity outside the scanner. Together these results 

suggest that a top-down excitation from frontal to parietal cortex may be gradually implemented during 

adolescence in Val/Val individuals to compensate for deficient amounts of dopamine levels and parietal 

functioning. 

 

Given that the onset of many psychiatric conditions occurs during adolescence (72), and that genotype 

variations have been associated with the incidence of developmental psychiatric disorders, elucidating the 

role of genetics in determining brain function during childhood and adolescence is critical to our 

understanding of the development of these disorders. The findings presented here show that the full 

developmental picture should be considered when trying to understand the impact of genetic 

polymorphisms on the mature cognition of healthy adult or psychiatric populations.  
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Figure legends 

Figure 1: Distribution of the data points across round 1 and round 2 according to age and COMT genotype 

in each of the three analyses. For each age group, the number of participants from round 1 and round 2 is 

indicated above each bar (round 1 N / round 2 N). 

 

Figure 2:  Working memory capacity as a function of each age year group at testing and COMT Val158Met 

polymorphism. The bars are included for illustrative purposes only and represent the mean and standard 

error (SE) of WM capacity, as measured by the Dot Matrix score, in each age group, collapsing across 

longitudinal and cross-sectional data. Participants tested at both rounds are included as two data points. 

Analyses were performed with age as a covariate rather than considering the age groups separately. The 

lines represent the mean predicted Dot Matrix score for each genotype group, as obtained from the mixed 

model analysis using the inverse of age as a factor and genotype effects with Val dominance. 

 

Figure 3: FMRI and VBM results. a) Render of the fMRI main effect WM – Control (FDR, p < 0.05) on a 

surface-based human atlas (see Methods and Materials). From left to right: lateral view of the left and right 

hemisphere, dorsal view of the left and right hemispheres. This contrast was used as a inclusive mask for 

the tests of the effect of COMT genotype presented in b and c. b) F-test of COMT genotype or genotype x 

age effects on the fMRI WM – Control contrast (FDR, p < 0.05). Mean parameter estimates of the WM – 

Control contrast at the first level were calculated and plotted for the parietal and frontal clusters observed 

in the right hemisphere. Full lines connect those participants who participated to both testing rounds. 

Dashed lines are the predicted fit from linear mixed models including sex, ageZ, COMT genotype (with Met 

dominance) and genotype x ageZ interaction as covariates. The age by genotype interaction was significant 

in both clusters. There was an additional main effect of genotype in the parietal cluster. c) F-test of COMT 

genotype or genotype x age effects on the VBM gray matter data (FDR, p < 0.05). Mean gray matter volume 

were calculated and plotted for the two largest parietal clusters (see Table 2). Full lines connect those 

participants who participated to both testing rounds. Dashed lines are the predicted fit from linear mixed 
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models including sex, ageZ, total gray matter volume (Z), COMT genotype (with Met dominance) and 

genotype x ageZ interaction as covariates. The main effect of genotype but not the age x genotype 

interaction was significant in both clusters. (see also Figure S1) 

 

Figure 4: COMT genotype, WM capacity and WM activity and their relation to a hypothetical basal 

dopamine concentration. Brain activity is from the right lateral PFC. 8 and 18 year-old age groups were 

chosen to illustrate the changes in the influence of COMT genotype on WM function during development.  

On the top row, WM capacity Z scores were calculated using the Dot Matrix scores of the 8 and 18 year-

olds separately and are plotted in the inset bar charts for each COMT genotype. The three COMT genotypes 

were accordingly located on the hypothetical inverted U-curve of prefrontal functioning as a function of 

dopamine concentration proposed from adult and animal data (e.g. 25, 27). Here an arbitrary Gaussian 

curve was used. On the bottom row, similar steps were applied to the WM – Control activation in the right 

lateral PFC. Note that greater brain activation is associated with worse performance (27) and thus the y-axis 

is inverted to highlight the similarities between the behavioral and imaging results. 8 year-olds showed a 

detrimental effect of the Met allele, while 18 year-olds showed the typical adult pattern of a beneficial 

effect of the Met allele, with higher WM capacity and lower brain activity in the frontal cortex.  This pattern 

of change in genotype effect with age can be regarded as a shift during development of the position of the 

COMT Val158Met genotypes on the inverted-U curve of PFC function relative to dopamine levels in the 

direction of lower basal dopamine levels. 

 

 

 

 

 

 



Dumontheil et al. 
 

23 
 

Figure 1 

 

 

Figure 2 

 

 



Dumontheil et al. 
 

24 
 

Figure 3 

 

 

 

 

 

 

 

 

 

 



Dumontheil et al. 
 

25 
 

Figure 4  

 

 

 


