
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 
 

 

 

 

The use of solubility parameters to predict the 
behaviour of a co-crystalline drug dispersed in a 

polymeric vehicle 

 

 

 

 

 

Approaches to the prediction of the interactions of co-crystals and their 
components with hypromellose acetate succinate and the 

characterization of that interaction using crystallographic, microscopic, 
thermal, and vibrational analysis 

 

 

 

A thesis presented by 

Abdullah Isreb 

 

For the degree of 

DOCTOR OF PHILOSOPHY 

 

Postgraduate studies in pharmaceutical innovations 

The School of Pharmacy 

University of Bradford 

 

 

 

2012 



i 
 

Abstract of the thesis 

Approaches to the prediction of the interactions of co-crystals and their 
components with hypromellose acetate succinate and the characterization of 
that interaction using crystallographic, microscopic, thermal, and vibrational 

analysis 

Abdullah Isreb 

Keywords: co-crystals, polymer, caffeine, malonic acid, ibuprofen, 

nicotinamide, HPMCAS, solvent effect, solubility parameters. 

Dispersing co-crystals in a polymeric carrier may improve their physicochemical 

properties such as dissolution rate and solubility. Additionally co-crystal stability 

may be enhanced. However, such dispersions have been little investigated to 

date. This study focuses on the feasibility of dispersing co-crystals in a 

polymeric carrier and theoretical calculations to predict their stability. 

Acetone/chloroform, ethanol/water, and acetonitrile were used to load and grow 

co-crystals in a HPMCAS film. Caffeine-malonic acid and ibuprofen-

nicotinamide co-crystals were prepared using solvent evaporation method. The 

interactions between each of the co-crystals components and their mixtures 

with the polymer were studied. A solvent evaporation approach was used to 

incorporate each compound, a mixture, and co-crystals into HPMCAS films.  

Differential scanning calorimetry data revealed a higher affinity of the polymer to 

acidic compounds than their basic counterparts as noticed by the depression of 

the glass transition temperature (Tg). Moreover, the same drug loading 

produced films with different Tgs when different solvents were used. Solubility 

parameter values (SP) of the solvents were employed to predict that effect on 

the depression of polymer Tg with relative success. SP values were more 

successful in predicting the preferential affinity of two acidic compounds to 

interact with the polymer. This was confirmed using binary mixtures of 

naproxen, flurbiprofen, malonic acid, and ibuprofen. On the other hand, 

dispersing basic compounds such as caffeine or nicotinamide with malonic acid 

in HPMCAS film revealed the growth of co-crystals. A dissolution study showed 

that the average release of caffeine from films containing caffeine-malonic acid 

was not significantly different to that of films containing similar caffeine 
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concentration. The stability of the caffeine-malonic acid co-crystals in HPMC-AS 

was prolonged to 8 weeks at 95% relative humidity and 45°C.  

The theory developed in this project, that an acidic drug with a SP value closer 

to the polymer will dominate the interaction process and prevent the majority of 

the other material from interacting with the polymer, may have utility in 

designing co-crystal systems in polymeric vehicles.  
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1.1 Introduction 

The improvement in drug solubility and dissolution rate is considered one of the 

main targets in drug formulation. This improvement can give rise to a better 

bioavailability of the drug. There are many approaches that can be used to 

serve this purpose. These approaches can be divided into physical 

modifications and chemical modifications. 

Changing the physical properties of the active pharmaceutical ingredients (API) 

can be performed by using one of the various methods that are well 

documented in the literature such as reducing the particle size, modifying the 

crystal habit, using polymorphs, and dispersing the drug in carriers. On the 

other hand, chemical modification includes a variety of methods such as using 

the salt form of the drug or using the co-crystalline form in addition to others. 

Using a combination of these aforementioned methods might further improve 

the solubility and the dissolution rate for drugs and is the underpinning strategy 

of this thesis.  
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1.2 Physical modification: solid dispersions 

The solid dispersion approach is one of the techniques used to enhance the 

dissolution rate and the solubility of the poorly soluble drugs (Bashiri-Shahroodi 

et al., 2008 , Patel et al., Pan et al., 2000). A solid dispersion can be simply 

defined as the molecular mixture of a poorly soluble drug and a hydrophilic 

polymer. Both materials are in their solid-state. A solid dispersion was first 

defined by (Mayersohn and Gibaldi, 1966). A solid dispersion is similar to a 

eutectic system regarding the improvement on the dissolution and the solubility 

of the poorly soluble drugs. However, solid dispersions are usually formed as a 

result of the interaction between the drug and the polymer. This interaction 

helps to slow or stop the rate of growth of drug crystals and in certain cases it 

helps to convert the drug into an amorphous material. Reducing the size of the 

drug has a great effect on dissolution rate as it increases the contact surface 

between the drug and the dissolution media.  

Solid dispersions can be divided into three generations (Vasconcelos et al., 

2007) that are summarized in figure 1.1. 

Figure 1.1 types of solid dispersions obtained from (Vasconcelos et al., 2007). 
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The first generation was noted by Sekiguchi and Obi in 1961. They prepared a 

eutectic mixture of several drugs and urea (used as a carrier). This mixture 

resulted in improving the dissolution rate of the drugs. However, the preparation 

of solid dispersions was improved later by using a molecular dispersion instead 

of eutectic mixture in preparing the solid dispersion(Levy, 1963 , Kanig, 1964). 

The second generation is characterized by the use of an amorphous carrier as 

an opposite to the first generation that is using a crystalline carrier for the drug. 

In this case, the drug is molecularly dispersed within the amorphous carrier. 

Amorphous solid dispersions can be classified according to the molecular 

interaction of the drug and the carrier into: solid solutions, solid suspension, or a 

mixture of both. 

Amorphous solid solutions are characterized by the complete miscibility of the 

drug and the amorphous polymeric carrier resulting in a homogenous molecular 

interaction between them. This type is considered to be homogenous on the 

molecular level (Van Drooge et al., 2006). 

Amorphous solid suspensions occur when the drug has a limited solubility in the 

amorphous carrier or it has an extremely high melting point (Chiou and 

Riegelman, 1971). Unlike the solid solution, this type of solid dispersion is 

composed of two phases. When the drug is dissolved and suspended in the 

amorphous carrier, a heterogeneous structure is obtained with mixed properties 

of amorphous solid solution and suspension and amorphous solid suspension 

(Van Drooge et al., 2006). 

The third generation of the solid dispersion is obtained with the use of a surface 

active agent in addition to the amorphous carrier. The third generation solid 
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dispersion is intended to provide the highest degree of bioavailability and 

stability for poorly soluble drugs in their amorphous form. 

The solubility improvement from the physical modification of the drug resulted 

from reducing drug’s particle size, solubilising it in a water soluble carrier, 

providing a better wettability, and to a certain limit producing an amorphous 

drug (Damian et al., 2000). 

 

1.2.1 Advantages and disadvantages of solid dispersion technique 

Physical modification of the drug is better than chemical modification as the 

product is not considered as a new chemical entity that needs to go through a 

clinical trial test before it goes to the market (Charman and Charman, 2003) in 

(Vasconcelos et al., 2007). However, recent discoveries unveiled the toxicity of 

some physically modified drugs. Therefore, they have to go through some of the 

clinical trial tests before being released into the market (Fischer and Chan, 

2007). 

The main advantage for the solid dispersion technique is the improvement in 

drugs bioavailability without the need to spend a lot of efforts in their 

preparation. 

The advantages of dispersing the drug in a solid carrier can be summarized in 

the following points: 

 

1- Reducing drug particle size 

A high surface area is formed as a result of reducing the drug particle size. This 

reduction can be up to the molecular level and is accompanied by dispersing 
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the drug in a highly water soluble carrier that will further enhance the release of 

the drug particles. Consequently, this will improve its bioavailability (Leuner and 

Dressman, 2000 , Bikiaris et al., 2005). 

 

2- Improving the wettability of the drug 

The improvement of drug wettability by solid dispersion of the drug was noticed 

to be independent of the surface activity of the carrier (Vasconcelos et al., 

2007). However, a carrier with a surface activity will provide a significant 

increase in the wettability of the drug by direct dissolution or co-solvent effect 

(Kang et al., 2004 , Leuner and Dressman, 2000 , Colin W, 2006). 

 

3- Increasing particles porosity 

Drug particles in solid dispersion were found to have a higher degree of porosity 

(Vasconcelos and Costa, 2007). Therefore, these solid dispersed drugs have a 

better release profile (Ghaderi et al., 1999). 

 

4- Production of amorphous drugs 

When the drug is dissolved in the polymeric carrier, it may convert into its 

amorphous state. This conversion will provide the drug with a higher solubility 

and dissolution rate that characterize the amorphous materials (Lloyd et al., 

1999). 

On the other hand, there are few disadvantages for the solid dispersion 

technique. The low physical and chemical stability of the amorphous form of the 

drug is considered one of the major drawbacks that prevent the wide use of this 
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technique. In addition to that, most of the polymers that are used in this 

technique can absorb moisture. Consequently, this may give rise to a phase 

separation, crystal growth, or conversion of a meta-stable crystalline form into a 

more stable one resulting in decreasing the solubility and dissolution rate (Van 

den Mooter et al., 2006 , Wang et al., 2007 , Wang et al., 2005).  

Another disadvantage of solid dispersions is their poor ease of scale-up for 

industrial manufacturing (Vasconcelos et al., 2007). 

 

1.2.2 Methods of preparing solid dispersions 

Solid dispersions can be prepared using one of the two methods: melting and 

solvent evaporation. 

 

1.2.2.1 Melting method 

The melting method is the first method to be discovered for the preparation of 

solid dispersions. The first generation of solid dispersion was prepared using 

the melting of the urea with other drugs to form an eutectic mixture (Sekiguchi 

Keiji and Obi Noboru, 1961). Both drug and carrier are melted and mixed to 

form the new phase. A common adaptation of this technique was conducted by 

suspending the drug into a previously melted carrier, instead of melting both 

drug and carrier (Vippagunta et al., 2007). This in turn results in the ability to 

reduce the processing temperature. 

After melting the drug and the carrier, a cooling step is performed by either 

using an ice bath agitation (Sekiguchi et al., 1964), stainless steel thin layer 

spreading followed by a cold draught (Chiou and Riegelman, 1969), or using dry 
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ice or liquid nitrogen (Ceballos et al., 2005 , Timko and Lordi, 1979) in addition 

to a few other less commonly employed methods.  

The high temperature needed to melt both drug and its carrier may cause the 

degradation of some drugs. This can be considered as one of the 

disadvantages for this method. Therefore, some improvements to this method 

were implied by using mechanical forces as in hot melt extrusion or melt 

agglomeration (Verreck et al., 2005 , Seo et al., 2003). 

 

1.2.2.2 Solvent evaporation method 

This method consists of dissolving the drug and the carrier in a proper solvent. 

After that, the solvent evaporates and leave behind the dispersed drug in the 

carrier (Rodier et al., 2005). Evaporating the solvent can be carried out through 

vacuum drying (Yoshihashi et al., 2006), using some heat (Desai et al., 2006), 

slow evaporation at low temperature (Yoshihashi et al., 2006), spray drying 

(Pokharkar et al., 2006), freeze drying (Van Drooge et al., 2006). 

Using a low temperature over the whole preparation process is considered the 

main advantages of this method over the melt approach.  

As previously mentioned, the solid dispersion is considered one of the physical 

modifications to improve the dissolution rate and therefore the bioavailability of 

the drug. On the other hand, chemical modifications, such as co-crystal 

formation, can be used to alter the solubility and the dissolution rate of drugs. 

However, these modifications are harder to achieve and may need to go 

through a clinical trial tests to insure their potency and safety. 
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1.3 Chemical modifications: co-crystallization 

Co-crystal formation is a new technique introduced recently to improve the 

physicochemical properties of APIs. This technique is based on the combination 

of two materials together in order to obtain a hybrid compound that has mixed 

properties of both. There is no unified definition of co-crystals in literature. Some 

workers have defined them as a combination of multiple components that are 

solid at room temperature (Aakeröy and Salmon, 2005 , Shan and Zaworotko, 

2008 , Almarsson and Zaworotko, 2004). This definition excluded combinations 

that contain solvent (solvates) or gas molecules as a constituent of the co-

crystal. Others have included those divisions in the definition of the co-crystals. 

Therefore, it is better to define co-crystals as crystalline forms that contain more 

than one compound in the crystal (Schultheiss and Newman, 2009). 

Co-crystals differ from salts in that they are made of polar compounds rather 

than ionisable compounds as in salts. This suggests that the bonds that link the 

constituent particles are hydrogen bond, Vander Waals or π-π bonds (Aakeröy 

and Salmon, 2005 , Etter, 1991 , Friščić and Jones, 2010 , Bertolasi et al., 2001 

, Aakeroy, 1999 , Aakeroy et al., 2001). 

There is no clear boundary that separates co-crystals and salts. It is difficult to 

differentiate between both as the difference depends mainly on the extent of 

proton transfer from one molecule to the other or in other words, the bond 

length (Schultheiss and Newman, 2009). However, there has been suggestions 

to use the rule of three to differentiate between salts and co-crystals (Ward et 

al., 2003). This rule states that a PKa difference of three or more between the 

individual components of the system will cause it to be considered a salt and 
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less than three will make it a co-crystal (Variankaval et al., 2006 , Ward et al., 

2003 , Alshahateet et al., 2004 , Ainouz et al., 2009). 

In order to predict the co-crystal formation between two materials a phase 

diagram is drawn. A ternary phase diagram is classically employed and it is a 

triangle that has each angle representing one of the components in the co-

crystals with the third angle representing the solvent used in preparing the co-

crystal. The solubility of each of the two components in the solvent is defined on 

the triangle and the stoichiometric ratio for co-crystal formation is represented 

on the third side. This helps to give some idea about the amount required from 

each of the components and the amount required from the solvent in order for 

the co-crystals to be formed (figure 1.2). 

 

Figure 1.2. General ternary phase diagram(Ainouz et al., 2009). Phase 1: co-crystals formation 
zone, 2: API+solvent, 3: co-former+solvent, 4: API+co-crystals, 5:co-former+co-crystals, and 6: 
solution of the mixture. 
 

A ternary phase diagram simplifies the relation between the API, co-crystal 

former and the solvent. It shows the optimal ratios of co-crystal formers and 
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solvent. The optimal mixing ratio in figure 1.1 is 1:1 molar ratio of API/co-crystal 

former. 

Generally speaking, co-crystal’s properties are usually the average of their 

component’s properties. This means that mixing poorly soluble drugs with a 

highly soluble entity will result in improving the solubility of the API. Co-

crystallization allows changing the physical properties of drugs without any 

covalent chemical modification.  

 

1.3.1 Methods of preparing co-crystals 

Co-crystals can be prepared by solvent or solid based methods. The solvent 

methods include slurry conversion, anti-solvent addition, solvent evaporation, 

cooling crystallization and precipitation. The solid-based methods include 

grinding (dry and wet), melt crystallization, and sonication (wet and dry). In 

addition to that, there are other methods to prepare co-crystals such as the 

Kofler method, and the use of moisture amongst others (Maheshwari et al., 

2009b , Lu et al., 2008 , Jayasankar et al., 2007). 

Co-crystal properties might differ depending on the production technique. 

Furthermore, co-crystals might only be possible to form using one or two 

techniques but not others. In addition, one method might produce a polymorphic 

form of one of the components and this will result in a different final co-crystal. 

 



 

11 
 

1.3.1.1 Solvent based co-crystallization methods 

1.3.1.1.1 Solution co-crystallization 

The co-crystal components must have similar solubility patterns in the solvent 

used in the process. If not, the component with the lowest solubility will 

precipitate first without interacting with other components. Similar solubility of 

the compounds is not the only condition for this method. Polymorphism plays a 

role in co-crystal formation in this method. The ability of the compound to form 

intermolecular bonds plays a role as well (Trask et al., 2005 , Trask et al., 2006 

, Chiarella et al., 2007 , Gagniere et al., 2009). 

 

1.3.1.1.2 Slurry conversion 

In this technique solvents are added to the co-crystals components and the 

resulting suspension is stirred for few days. Afterward, the solvent is decanted 

and the solid materials dried under the flow of nitrogen gas (Rodríguez-Hornedo 

et al., 2006 , Porter Iii et al., 2008 , Hickey et al., 2007 , Li et al., 2009). 

 

1.3.1.1.3 Anti solvent addition 

Anti solvent addition is based on the precipitation or re-crystallization of co-

crystal formers with the API. An example of this method is the preparation of co-

crystals of aceclofenac using chitosan (Padrela et al., 2009 , Trask and Jones, 

2005a , Padrela et al., 2010 , Sander et al., 2010). 
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 1.3.1.2 Non-solvent methods 

1.3.1.2.1 Grinding 

Co-crystal formation can be achieved by mechanical activation of materials by a 

mechanical process (grinding). Grinding can be carried out without the addition 

of a solvent (dry grinding) or with the addition of small amount of solvent (wet-

grinding). The amount of added solvent is only enough to wet and partially 

dissolve parts of the components but not enough to dissolve them completely. 

The grinding technique depends on the input of mechanical forces to the 

system that will result in breaking down the crystals and forcing them together in 

order to create a link or a bond (Trask et al., 2005 , Shan et al., 2002 , Braga et 

al., 2007). The use of a small amount of a solvent is meant to aid such bond 

breaking and bond formation by partially dissolving the particles. Co-crystals 

have been widely formed by dry or wet grinding (Trask et al., 2006 , Etter, 1990 

, Etter, 1991 , Etter and Reutzel, 1991 , Caira et al., 1995 , Pedireddi et al., 

1996 , Oguchi et al., 2000 , Trask and Jones, 2005b , Jayasankar et al., 2006a , 

Childs et al., 2008). 

The formation of co-crystals passes through the formation of amorphous 

materials or a disordered phase formed by the reactants. As the process 

continues, the amorphous reactants convert into co-crystals. This conversion 

was monitored in the formation of anhydrous carbamazepine and saccharin 

(Jayasankar et al., 2006b). Although co-crystals usually require some energy to 

form, some co-crystals formed spontaneously after being stored together with 

no input of any kind of force. This was the case in the formation of 

carbamazepine-nicotinamide and carbamazepine-saccharin co-crystals 

(Maheshwari et al., 2009a). 
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Co-crystals obtained from grinding are usually similar to those obtained from 

solution co-crystallization. This indicates that the hydrogen bonds formed 

between the crystals by these two methods are not idiosyncratic. However, 

there are few exceptions to this rule. Some co-crystals can be prepared by 

either solvent-based processes or solid-state grinding. An example is the co-

crystallization of 2,4,6-trinitrobenzoic acid and indole-3-acetic acid. On the other 

hand, some co-crystals cannot be prepared by grinding. This might be due to 

the inability of the grinding technique to generate suitable co-crystal 

arrangements rather than the stability of the initial phases. The addition of small 

amount of solvent during the grinding process has been shown to enhance the 

kinetics and facilitate co-crystal formation (Maheshwari et al., 2009a).  

 

1.3.2 Factors that affect the formation of co-crystals 

There are some factors that might influence the quality and the outcome yield of 

co-crystallization processes. These factors can be divided according to the 

method of manufacturing and the mechanism behind the formation. Solvent-

related methods are characterized by the obvious effect of the nature of the 

solvent used in the experiment. The type of solvent might play a significant role 

in enhancing or blocking the formation of co-crystals. The formation of co-

crystals in solvent-dependent methods (wet-methods) depends on dissolving 

the co-crystal formers in a solvent to break down the bond between similar 

molecules and allow the different type of molecule to meet up and form a bond. 

If the solvent used in this experiment does not have the adequate strength to 

dissolve those particles. This might cause interference to the whole formation 
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process. If the solvent was too strong and formed a bond with one of the 

materials, it might block the formation of the co-crystal bond.  

On the other hand, dry co-crystallization methods are affected by other factors. 

Grinding for example uses mechanical forces to break similar crystals apart. 

This technique reduces the size of the crystals and consequently increases the 

surface free energy and the surface charges. This might trigger the formation of 

co-crystals. On the other hand any electrostatic charge that results from the 

grinding may cause the particles to aggregate and prevent the formation of co-

crystals. 

Melting the materials is another technique used to form co-crystals. However, 

some drugs can be adversely affected by the increase in temperature. The 

heating of such drugs can result in the degradation of these drugs and 

consequent loss of pharmacological activity.  

 

1.3.3 Advantages and disadvantages of co-crystals 

The main disadvantage of the co-crystals is their short-term physical stability. 

This has resulted in keeping the co-crystals out of the market so far. 

Co-crystallization means an improvement of physical properties without 

changing drugs chemically. In contrast to salt formation co-crystallization is 

applicable for a larger number of APIs. This is because most of the APIs are 

polar in nature, while the formation of a salt requires the ionization of the 

compounds. In addition to that, co-crystal formation does not require full 

ionization of the molecules involved. The polar nature of most APIs makes co-
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crystallization potentially a much more widely preferable technique over salt 

formation. 

Moreover, there is a wider range of molecules that can be used as co-crystal 

formers compared to salt formers (Mirza et al., 2008). 

Many physicochemical properties can be manipulated through co-crystal 

formation these includes hygroscopicity, melting point, stability, bioavailability, 

and dissolution rate. These changes makes co-crystals better than their parent 

drugs for the pharmaceutical field. 
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1.3.3.1 Melting point 

The melting point of a compound is related to aqueous solubility and vapour 

pressure (Abramowitz and Yalkowsky, 1990). The melting point of a co-crystal 

can be either lower than one of their constituents or in some cases lower than 

the melting point of all the constituents (Rodríguez-Hornedo et al., 2006 , 

Jayasankar, 2008 , Childs, 2008 , Reddy et al., 2008 , Maheshwari et al., 

2009b). Characterization of co-crystals using differential scanning calorimeter 

(DSC) to determine their melting point can be a useful tool to check the 

formation of co-crystals and to provide an overall idea about the percentage of 

co-crystal formation (Schultheiss and Newman, 2009). 

 

1.3.3.2 Stability  

Drug stability is considered to be one of the main issues during the formulation 

of the drug and for choosing the crystal form to be used in formulation. The 

stability of the co-crystals is determined by the ability of the co-crystals to stay 

intact without breaking the bond in between the constituent compounds. The 

resistance of drug to moisture stress is an important consideration in stability 

study. 

The effect of moisture on the stability of the co-crystals has not been thoroughly 

investigated. Some crystals were found to interact and form co-crystals under 

high relative humidity atmospheres (Jayasankar et al., 2007). However, not all 

co-crystals can be formed by moisture interaction. Whilst moisture can 

theoretically act as a solvent it can also act to break co-crystal bonds. There is 

little if any information in the open literature to prove or disprove this point.  
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Some studies, however, have shown that co-crystals are less hygroscopic than 

their parent drugs (Basavoju et al., 2008 , Schultheiss and Newman, 2009).  

 

1.3.3.3 Solution stability 

This property is an important characteristic for the dissolution of the co-crystals 

in the GI tract (Schultheiss and Newman, 2009 , Stanton et al., 2009 , 

Jayasankar, 2008). 

 

1.3.3.4 Solubility 

Solubility is considered as one of the main issues in the bioavailability of drugs. 

There is a large number of drugs that have either poor or low solubility in 

simulated aqueous GI tract solutions. Co-crystals formation may improve the 

solubility of drugs. However, co-crystals can be formed with neutral drugs while 

salts formation requires the ionization of the drugs. 

Many studies were carried out on co-crystal systems to compare their solubility 

and their dissolution to the parent API. The result was a large difference 

between the co-crystals formation and the raw drug. However, they showed that 

co-crystals are not as good as salts in improving the solubility or the dissolution 

rate (Bethune, 2009).  

A study of three co-crystal systems for itraconazole showed that two of the 

three gave an enhanced solubility similar to the amorphous form of itraconazole 

(Remenar et al., 2003). 
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1.3.3.5 Dissolution 

The dissolution step can be the rate limiting step towards the bioavailability of 

the drugs. The dissolution of the drug depends on many factors. Co-crystals 

improve the dissolution rate of drugs (Anderson et al., 2008). The dissolution 

rate is enhanced due to the combining of the drug with a highly soluble entity 

(co-crystal former). This interaction may help to reduce relative lattice energy 

compared to that of the API. 

 

1.3.3.6 Bioavailability 

The bioavailability of a drug is the measurement of the amount of unchanged 

drug that reaches the systemic circulation and then the site of action. Different 

forms of the same drug can result in different bioavailability patterns. Thus, 

choosing the right form of the drug is crucial in the pharmaceutical formulation 

field. 

McNamara studied the co-crystals of 2-[4-(4-chloro-2-fluorophenoxy)phenyl] 

pyrimidine-4-carboxamide with glutaric acid and identified that co-crystals have 

a dissolution rate 18 times higher than that of the pure API (McNamara et al., 

2006). 

The study of the solid dispersion and the co-crystals showed that they both 

either started as or they are a part of eutectic systems. Thus, the study of 

eutectic mixture and the prediction of compounds miscibility may provide a 

better understanding for both systems. 

A eutectic mixture is defined as “a mixture of elements or chemical compounds 

in definite proportions which is crystallized from melt or solution simultaneously 
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at a lower temperature than any other composition” (Patra and Samantray, 

2011). The behaviour and miscibility of compounds forming eutectic mixtures 

were studied and documented in the literature. A relation was found between 

the ability of the compounds to be miscible and form an eutectic mixture and 

their chemical structure (Stott et al., 1998). A new theoretical rule was 

investigated to allow the prediction of eutectic mixtures formation. This rule 

depends on the solubility and cohesion parameters of these compounds to 

predict the feasibility of eutectic mixture formation.  
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1.4 Solubility and cohesion parameters 

The chemical structure of any material and the arrangement of the atoms in that 

material play a crucial rule in the interaction with other materials. The type of 

functional groups, their orientation in the space, and the existence of any 

adjacent electron withdrawing or donating groups will have a huge impact on 

the polarity of the molecule. This effect can influence the intensity of the bond to 

be formed between the two compounds. The polarity participates in the 

formation of the intermolecular bonds such as the bonding between water 

molecules. Such interactions have a huge effect on the physical and the 

chemical properties of the compounds. Hildebrand studied the effect of the 

different groups and the volume occupied by these groups on the capability of 

solvents to form bonds and to be miscible with each others. 

The effect of the volume that is occupied by these groups can be explained by 

the effect of steric hindrance. If the groups are too bulky then the large volume 

of them will interfere with the formation of any bond with the functional groups. 

Hildebrand has worked on the interaction between solvents and devised an 

equation to predict the miscibility of liquids. According to Hildebrand the 

solubility parameter of a solvent is calculated by the square root of its cohesive 

energy density. The equation takes into consideration the effect of each group 

separately. 

      

(equation 1.1(Hildebrand and Scott, 1950)) 
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Where  is the heat of vaporization, R is the gas constant, T temperature, 

and Vm molar volume. 

Hildebrand suggested that liquids with solubility parameter difference of 7 or 

less are miscible and can form a homogeneous monophase mixture. The use of 

solubility parameters was expanded to predict the miscibility of solids in order to 

form an eutectic mixture (Greenhalgh et al., 1999).  

The limitation of this equation comes from the fact that it can be applied only on 

the associated solutions. There are some other factors that can be taken into 

consideration such as the ability of the compound to form internal bonding. On 

the other hand, Hansen suggested another equation to calculate the solubility 

parameter for the solvents based on the principle of “like dissolves like”. Each 

molecule has three parameters named  which calculates the dispersion 

energy,  calculates the polarity energy, and  which calculates the energy 

from the hydrogen bond formed by two molecules. 

The dispersion forces arise from the effect of positive nucleus and a negative 

electron. The effect of the dispersion can be explained with London theory 

(Kristyán and Pulay, 1994 , London, 1937 , Mahanty and Ninham, 1976). The 

effect of non-polar dispersive interaction between unlike molecules provides a 

contribution to the cohesion pressures. On the other hand, the polarity force 

arises from the effect of two factors: the orientation and the induction of the 

contributing groups. The orientation factor results from the dipole-dipole or 

Keesom interaction, which occurs between molecules possessing a permanent 

dipole moment. The induction effect arises from the “dipole induced dipole 
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occurring between molecules with permanent dipole moments and other 

neighbouring molecules, whether polar or not and resulting in an induced non-

uniform charge distribution” (Barton, 1991). The last factor in the equation is the 

effect of the hydrogen bonding. The effect of the hydrogen bonding depends to 

a large extent to the degree of acidity or the basicity of the compounds to form 

the bond between each others. It is mainly related to the ability of each system 

to donate or accept an electron.  

 The summation of the three energies gives the relative energy difference of the 

compound. This parameter will determine the solubility of the molecules if they 

dissolve into each other or if they do not. Although the Hansen equation can be 

applied to a wider range of molecules, there are a few variables that it does not 

include to compute the solubility parameter of the compound.  

The solubility parameter of a compound can be calculated according to a more 

comprehensive equation that calculates the effect of the group molar cohesive 

energy divided over the molar volume. Dunkle was the first to introduce an 

equation to estimate the group molar vaporization enthalpy. He showed that 

liquid molar vaporization enthalpies at a given temperature can be estimated by 

the summation of the group contributions (Dunkel, 1928). Bondi has managed 

to estimate the contributions to the enthalpy of vaporization extrapolated to zero 

Kelvin (Bondi, 1947 , Bondi, 1968). 

The solubility parameter of the compounds used in this thesis were calculated 

based on the simple version of the group contribution method of Hildebrand 

equation that is explained with the required tables in the “Handbook of solubility 

parameters and other cohesion parameters, chapter 6” (Barton, 1991). The 
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effect of internal cycle formation has not been taken under consideration as it 

does not have significant impact on the calculated results on the molecules 

used in this study. 

As previously mentioned, an attempt was carried out to link the solubility 

parameter values of compounds to their miscibility and their ability to form 

eutectic mixture (Stott et al., 1998) which is considered as a solid dispersion 

system. These attempts found that in most of the cases two compounds should 

form eutectic mixture when the difference in their solubility parameter values is 

less than 7 MPa1/2. However, the same study reveals the existence of some 

compounds that are considered to be exception for this rule. 

On the other hand, there were some attempts as well to predict the co-crystal 

formation of two or more compounds through their solubility parameter values 

difference (Mohammad et al., 2011). These attempts were based on the fact 

that the co-crystals are eutectic mixtures in origin. It was expected that two 

compounds are able to form co-crystals when their SP value difference is no 

more than 7 MPa1/2. However, this rule is not applicable in all the cases. 

Ibuprofen RS/S and nicotinamide are known to form a co-crystalline system 

(Berry et al., 2008). The solubility parameter of ibuprofen is 19.5 MPa1/2 and 

nicotinamide is 27.52 MPa1/2. The difference is 8.02 MPa1/2 yet they form co-

crystals. 

There is a dearth of information about the behaviour of co-crystals in polymeric 

films. The one recently made available study followed the growth of 

carbamazepine-nicotinamide co-crystals from a mixture that contains polyvinyl 

pyrrolidone. The moisture absorbed by the polymer dissolved the two drugs and 
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bring them together to form co-crystals. A stability study of that system showed 

that the co-crystals were partially unstable (Good et al., 2011). 

The above experiment represents the available literature for the study of loading 

co-crystals in a polymeric film. It also draws attention to the fact that dispersing 

the co-crystals in a polymeric carrier might improve their stability. 

 



 

25 
 

1.5 Summary and scope of the thesis 

The improvement of the dissolution rate and the solubility of APIs are expected 

to greatly reflect on improving the bioavailability of drugs. These improvements 

can be achieved by physical (such as solid dispersions) or chemical (such as 

co-crystallization) modifications for the API. Combining both types of 

modifications is expected to improve the physicochemical properties of the API 

even more. There was only one attempt in the literature to load co-crystals 

inside a polymeric film. Therefore, there is almost no information about the 

possible behaviour of co-crystals in a polymeric carrier, their ease of formation 

and their stability and properties. This combination can be used in future for 

either transdermal or oral use. 

 

1.6 Aims and objectives 

The aim of this project is to investigate the possibility of combining both physical 

and chemical modification of an API and to discover the effect of such 

combination on resultant properties. In addition, the preparation media effect 

was studied through the use of different solvent systems. An important sub-aim 

of this project was to probe whether a theoretical basis could be developed for 

the ease of formation and stability of co-crystals in polymeric films by utilising 

compounds that have a theoretical affinity to interact with the polymer rather 

than interacting with each other to form co-crystals. This affinity was estimated 

through the use of the solubility and cohesion parameters of the starting 

materials. 

In order to fulfil the aim of this thesis, a number of objectives need to be met. 

These objectives are as follows: 
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 To identify suitable co-crystal forming starting materials and to analyse 

the materials and their physicochemical properties when recrystallized 

using various solvent systems. 

 To produce the selected co-crystals using a variety of solvent systems to 

monitor any morphology or behaviour change and to study the interaction 

between the materials in advance of their incorporation within a 

polymeric film matrix. 

 To study the effect of various solvent systems on the physicochemical 

properties of the pure polymeric film. 

 To investigate the effect of adding each single co-crystal component on 

the physicochemical properties of the film using various solvent systems. 

 To study the effect of adding two materials simultaneously to the polymer 

using different solvent systems. 

 To identify whether any novel co-crystal systems form in the polymeric 

vehicle for the use in transdermal or oral drug delivery. 

 To identify a rational approach as to whether a co-crystal can be 

successfully incorporated into a polymer.  Specifically to investigate the 

use of solubility parameters to predict the behaviour of a co-crystalline 

drug dispersed in a polymeric vehicle 

 To explore whether additives can be used to enhance the stability and 

ease of formation of co-crystals within a polymeric film. 
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1.7 Selection of materials 

Caffeine-malonic acid and ibuprofen-nicotinamide were used as model co-

crystal systems as they are cheap, and relatively non-toxic. In addition to that, 

both co-crystals are easy to prepare and their properties have been extensively 

studied (Bothe and Cammenga, 1980). Caffeine, malonic acid, and 

nicotinamide are water soluble (1 g/46 ml, 1 g/0.65 ml, and 1 g/1 ml water 

respectively) while ibuprofen is sparingly soluble in water (<1mg/ml) (Budavari, 

2006). Thus, the two systems are expected to interact with the polymer in 

different ways.  

Hypromellose Acetate Succinate (HPMCAS) was used because it is cheap, 

relatively non-toxic, dissolves in many common solvents and for its enteric 

coating property. This latter is particularly useful as ibuprofen is known to cause 

stomach ulcer. 

 On the other hand, the solvent systems used in the preparation step are either 

mentioned in the literature for their capability of providing the required 

properties or adapted from the literature and modified to serve the purpose of its 

use. The three systems mentioned in the literature are: 

 Chloroform/methanol 30:1 v/v was used in the production of 

caffeine/malonic acid co-crystals (Trask et al., 2005). Chloroform is a 

good solvent for both caffeine and malonic acid and spiking it with 

methanol gives the required polarity to the mixture. This improves the 

solubility of the raw material and the formation of co-crystals. 

 Ethanol/water 4:1 w/w was used for its capability of dissolving the 

polymer (HPMCAS) (Shin-Etsu, 2005).  
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 Acetonitrile is the solvent of choice for producing ibuprofen-nicotinamide 

co-crystals (Berry et al., 2008). However, there was no data regarding 

the solubility of HPMCAS in acetonitrile. 

Other solvent systems will be developed as required.



 

 

 

 

 

 

 

 

Chapter 2 

Materials and methods 
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2.1 Materials 

Materials used in the thesis are summarised in the following table. 

Material supplier 
Batch 

number 
Purity 

Caffeine Fluka 
1381891 
10808p01 

99% 

malonic acid 
Sigma-
Aldrich 

S43239-487 98% 

Ibuprofen 
Sigma-
Aldrich 

026H1368 98% 

Nicotinamide 
Sigma-
Aldrich 

079K1404 98% 

Naproxen 
Sigma-
Aldrich 

078K1629 99% 

Flurbiprofen 
Sigma-
Aldrich 

070M1445V 97% 

HPMCAS Shin-Etsu 9073188 NA 

Triethyl 
citrate 

Aldrich 18621AB 99% 

Table 2.1. Materials used in the thesis. 
 

The solvents used were:  

Acetone, acetonitrile, ethanol, chloroform, methanol, and distilled water. All the 

solvents were laboratory grade and purchased from Fischer scientific 

(Loughborough, UK). 
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2.2 Data analysis 

2.2.1 Thermal analysis 

2.2.1.1 TGA 

A Thermal Analysis TGA Q5000 (TA instruments, Elstree, Hertfordshire, UK) 

was used to measure the thermal profile for the samples and in order to 

measure the residual solvent and moisture content. 

The TGA was calibrated in two steps. The first step includes the calibration for 

temperature. For this purpose, a sample of nickel was heated in the TGA. The 

cure point of nickel (627 K or 354°C) is used as a reference value for calibrating 

the temperature scale. 

On the second step of calibration, 25 mg and 125 mg standard weights are 

used to perform the mass calibration of the TGA. 

The thermal profiles for samples (powder, crystals, or films) were obtained by 

taring the TGA using the supplied software. After that, a sample of 

approximately 5 mg was placed inside the aluminum pan. The sample was 

heated from room temperature (around 25°C) to 300°C for unprocessed 

materials, recrystallized crystals, and co-crystals. Films were heated to 600°C. 

All the measurements were performed with a heating rate of 10°C/min. 

 

2.2.1.2 DSC 

A Thermal Analysis DSC Q2000 (TA instruments, Elstree, Hertfordshire, UK) 

was used to scan the samples and measure their melting enthalpy.  

Aluminum lid and pan were used for scanning unprocessed materials except for 

caffeine were TzeroTM hermetic pan and lid used for the analysis process. The 
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DSC was calibrated once a month using around 1 mg of indium. The onset 

temperature of the melting peak (156.6°C) was used to calibrate the DSC. 

Triplicates of 3-7 mg each were weighed and filled in a pan closed with a pin-

holed lid. Raw materials and the recrystallized ones were scanned from room 

temperature to above their melting point with a heating rate of 10°C (caffeine 

240°C, malonic acid 150°C, ibuprofen 120°C, nicotinamide 135°C, naproxen 

165°C, and flurbiprofen 135°C).  One sample of caffeine and recrystallized 

caffeine were scanned from room temperature to 240°C, then cooled to 0°C, 

after that the samples were reheated again to 240°C. The heating rate for that 

sequence was 10°C/min. 

HPMCAS and all the films were scanned in a different pattern. The sample were 

first heated to 100°C with a rate of 10°C/min. then the sample were kept on an 

isothermal  step at 100°C for 5 minutes in order to dry the sample off. After that, 

the sample was cooled to 0°C (films with 25% crystal concentration or above 

were cooled to -20°C at the same rate. The temperature was kept at 0°C or -

20°C for 5 minutes. Then the sample was heated again to 120°C with the same 

rate. Tg and melting points values were collected using the second run to avoid 

discrepancies due to the moisture content and the thermal history of the 

sample. For films containing ibuprofen the first run was used to measure the 

melting point as ibuprofen crystals were dissolving during the drying off step 

producing an amorphous system. 
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2.2.2 X-ray crystallography 

A Bruker D8 diffractometer (Bruker Corporation, Bruker AXS, Cambridge, UK) 

was used to scan the samples. The wavelength of the X-ray was 0.154 nm 

using Cu source. The voltage used was 40KV. Filament emission was 30 mA. 

The samples were either packed into a deep sample holder and pressed to 

have a flat surface and equal distribution, or sprayed over a flat surface sample 

holder. Samples were scanned from 5-50° (2q) using 0.01° step width and a 1 

second time count. The receiving slit was 1° and the scatter slit 0.2°. 

 

2.2.3 Vibrational spectroscopy (FT-IR) 

The samples were scanned using Digilab UMA 400 (DIGILAB, London, UK) 

was set to a scan speed of 20 KHz. Scan resolution was 4cm-1 and the 

sensitivity 1 transmission %. The accumulation of 128 scans was used and the 

samples were scanned from 4000 cm-1 to 600cm-1. 

 

2.2.4 Microscope analysis 

2.2.4.1 SEM 

Using the FEI QUANTA 400 SEM, (Oxford instruments, UK), INCAx-sight, with 

aluminum stubs and carbon tabs (12 mm Dia, FK100) samples were scanned 

for their topography and appearance. Samples often showed high electrostatic 

charge. In order to get rid of the charge, samples were coated with carbon dust 

using a coating machine (EMITECH K450, Quorumtech, the carbon thickness 

produced was 15 nm). The SEM chamber was subjected to a high pressure 

vacuum and high voltage was used for scan.  
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2.2.4.2 Hot stage microscope 

Crystals and films were scanned using a hot stage microscope (Zeiss, 

Thornwood, USA) equipped with Axiocam MRC 5 Zeiss, Tv2/3”c, 0.63x, 1069-

414 camera. The stage was connected to a heating unit (Linkam, Guildford, 

Surrey, UK). Cross polarized light was used to identify the crystals and co-

crystals. However, in some samples normal bi-focal used to observe the 

crystals as the films were thick and the light was barely passing by. Samples 

were heated using a heating rate of 5°C/min. Images were obtained when any 

change was observed. 

 

2.2.5 Dissolution station 

A USP basket method was followed to scan samples taken from the dissolution 

bath. Films containing drug (caffeine, ibuprofen), co-crystals (caffeine-malonic 

acid, ibuprofen-nicotinamide), films containing drug and a blocking agent 

(ibuprofen and malonic acid), and films containing co-crystals and a blocking 

agent were scanned in the dissolution bath by either using a small part of the 

film that can fit inside the stirring basket (caffeine and malonic acid) or by 

breaking the film and loading the pieces inside the basket (films containing 

ibuprofen, ibuprofen and malonic acid, ibuprofen co-crystals, and ibuprofen co-

crystals with a blocker). The basket was set to revolve at rate of 100 RPM. The 

dissolution vessel was connected with two rubber tubes to a peristaltic pump 

operating at a rate of 25 RPM. The tubes were connected to a closed UV cell in 

order to perform a continuous scanning for the dissolution media. The 

dissolution vessel was filled with pH 7.4 phosphate buffer solution maintained at 

a temperature of 37°C. 
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The flow through the tube was measure for 2 hrs in order to measure the drug 

release from the film. The samples were measured with a Jenway 6800 UV/VIS 

Spectrophotometer (Bibby Scientific Limited, Staffordshire, UK). The data were 

analysed using a program (Flight Deck version 1.0) and concentration v/s time 

curve were plotted. The release percentage was used instead of the released 

concentration in order to ease the comparison and eliminate the difference in 

samples concentrations. 
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2.3 Methods of preparation of materials 

2.3.1 Recrystallization experiments 

Solvent evaporation was used as a technique to prepare the recrystallised form. 

The raw materials were dissolved separately in acetone/chloroform, 

ethanol/water, and acetonitrile. Caffeine was recrystallised with 

chloroform/methanol as well as the previous solvents. After dissolving the raw 

materials in the solvents, the solution was stirred and an extra amount of the 

solute was added to ensure saturation. The solution was poured into a petri-

dish and it was left in a fume cupboard to allow the solvent to evaporate. The 

crystals were collected and stored in re-sealable plastic bags under room 

temperature (18°-25°).  

 

2.3.2 Co-crystallization experiments 

Caffeine and malonic acid co-crystals were prepared by dissolving them in their 

stoichiometric molar ratio of 2:1 mol/mol caffeine/malonic acid in one of the 

previously mentioned solvents and solvent allowed to evaporate under ambient 

conditions. 

143 mg caffeine and 380 mg malonic acid were added to 40 ml acetonitrile, 31 

ml chloroform/methanol, 50 ml acetone/chloroform, 50 ml ethanol/water. The 

mixture was stirred until all the particles dissolved. The solution was poured in a 

petri-dish and it was left in a fume cupboard to allow the solvent to evaporate. 

The co-crystals were collected and stored in re-sealable plastic bags under 

room temperature (18°-25°). 
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2.3.3 Preparation of films containing drugs or mixture 

Films containing one or more types of crystals were prepared by dissolving 

various amounts of the crystals in one of the solvents. The solution was stirred 

until all the particles dissolved. 4 g of HPMCAS were added to the solution 

gradually with continuous stirring. The solution was cast into a petri-dish with an 

acetate sheet covering its base. The films were placed in a fume cupboard to 

allow the solvent to evaporate. 

Films were separated from the acetate sheet and stored in re-sealable plastic 

bags and stored under room temperature (18°-25°) in a desiccator. 

 

2.3.4 Films containing co-crystals 

Films containing co-crystals were prepared by dissolving 4 g of HPMCAS in 

either 40 ml of acetonitrile or 50ml of acetone/chloroform 3:2 v/v. The solution 

was stirred for 1-1.5 hours using a magnetic stirrer to allow the viscosity to 

increase. 500 mg of caffeine-malonic acid co-crystals or 500 mg of ibuprofen-

nicotinamide were crushed using a mortar and pestle in order to reduce the 

particle size of the co-crystals then it was added gradually to the solution of the 

polymer. The solution was stirred for 2 minutes and then it was cast into a petri-

dish with an acetate sheet covering its base. The petri-dish was left for 2 weeks 

in a fume cupboard to allow the solvent to evaporate completely. Films were 

stored under room temperature (18°-25°) in a desiccator.



 

 
 

 

 

 

 

 

 

 

Chapter 3 

Raw material analysis and the study of the solvent effect on 

their properties 
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3.1 Raw material analysis 

The main aim of the thesis is to study the interaction between a co-crystal and a 

polymeric vehicle and the impact of such interaction on the physicochemical 

properties of the dosage form. Therefore it is imperative to start by first 

characterizing the unprocessed materials to be able to identify any changes that 

might arise when those materials interact with each other. Moreover, in order to 

produce the co-crystals alone or when interacting with the polymer, the starting 

components have to be dissolved or dispersed into a solvent system before 

they are recrystallized from the solvent. Hence, it is important to understand the 

effect of these solvent systems on the physical and chemical properties of the 

starting materials to differentiate between the effect of the solvent system and 

the effect of the interactions of the components when they are mixed together. 

For the above reasons, this chapter will investigate some of the 

physicochemical properties of the unprocessed materials: caffeine, malonic 

acid, ibuprofen, nicotinamide, and HPMCAS. It will also study the effect of re-

crystallizing these materials using ethanol/water and acetonitrile.  

A third solvent system was added after few studies that are related to the 

solubility of the previous drugs. This system is acetone/chloroform 3:2 v/v. 

The study of the solvent effect on the raw materials requires the knowledge of 

raw materials properties and hence the unmodified drugs were analyzed at first. 
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3.2 Unprocessed drug analysis 

3.2.1 Caffeine 

Caffeine (1, 3, 7 trimethyl-3, 7 dihydro-1H-purine-2, 

6-dione) is a natural alkaloid found in tea leaves, 

coffee beans, and cocoa beans. It was synthesized first by E. Fischer at 1882 

(figure 3.1). It sublimes at 178°C and melt at 238°C. Fast sublimation can be 

obtained at 160-165°C at 1mm Hg pressure. It has a hexagonal prism shape. It 

dissolves freely in alcohol and water/ alcohol mixtures. It can interact  with water 

to give a monohydrate derivative (Chemfinder, 2004). Caffeine has 2 

polymorphs I and II with a transition point of 141±2°C. Caffeine is considered as 

a CNS and respiratory tract stimulant. 

 

3.2.1.1 Thermal analysis 

TGA and DSC 

Unprocessed caffeine was scanned in order to measure the thermal 

degradation profile of the drug and its melting point.  TGA and DSC tests were 

carried out according to the method described in section 2.2.1.1 and 2.2.1.2 

TzeroTM hermetic pans and lids were used for DSC test in order to contain 

caffeine sublimation. The results are shown in figure 3.2. 
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Figure 3.2. Representative TGA (blue) and DSC (green) thermal profiles of unprocessed 
caffeine powder.  
 

Figure 3.2 shows that the TGA profile reveals an onset of weight loss due to 

sublimation/degradation at around 160°C. Meanwhile, the DSC curve shows an 

endothermic broad peak at 158°C which was correlated to the sublimation of 

caffeine (Hubert et al., 2011). The peak at 237°C corresponds to the theoretical 

value of the melting point of caffeine. However, it has to be noted that at the 

melting point of caffeine only 28% of the weight was left according to the TGA 

curve. This is due to caffeine sublimation  

 

3.2.1.2 Powder X-ray diffraction 

Caffeine was analyzed using powder x-ray diffraction in order to verify the 

crystal lattice structure of the compound. The measured diffraction was 
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compared to that obtained from the Cambridge Structure Database (CSD) 

library for the anhydrous and monohydrate forms of caffeine (figure 3.3). 

Figure 3.3. Representative X-ray diffraction patterns of caffeine monohydrate CSD (bottom), 
anhydrous caffeine CSD (middle), and caffeine as received (top). 
 

X-ray diffraction of anhydrous caffeine is characterized by a weak intensity 

single peak at 8° and another strong intensity peak at 11°. On the other hand, 

monohydrated caffeine is characterized by the existence of three peaks at 10°, 

12°, and 13°. In addition to a strong intensity peak that exists at 8°. The scan of 

caffeine as received in figure 3.3 shows a weak intensity peak at 8° and a 

strong single peak at 11°. This means that the diffraction pattern of caffeine 

received from Sigma-Aldrich corresponds well to that of anhydrous caffeine. 

Moreover, a further investigation reveals that the caffeine polymorph I has a 

single diffraction peak at 26.8° in comparison to polymorph II that reveals two 
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peaks at 26.3° and 27° (Kishi and Matsuoka, 2010). The unprocessed caffeine 

diffraction pattern contain two peaks at 26.3° and 26.9° indicating that it is type 

II polymorph. 

 

3.2.1.3 FT-IR transmission 

Caffeine was scanned with FT-IR spectroscopy as detailed in section 2.2.3. The 

results are represented in figure 3.4. The spectrum reveals three characteristic 

peaks at 3133 (N-H), 1700 (C=N), and 958 (N-H) cm-1. These peaks are 

significant since the nitrogen atom in that bond is expected to form a hydrogen 

bond when co-crystals of caffeine are formed. If such a hydrogen bond is 

formed then it will be manifested by a shift in one of those three peaks.  

Figure 3.4, Representative FT-IR spectrum of caffeine as received. 
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3.2.2 Malonic acid  

Malonic acid or propanedioic acid is a dicarboxylic 

acid. It has the structure of CH2(COOH)2 (figure 3.5). 

It has a molecular weight of 104.06146 [g/mol]. It forms crystals that melt at 

135°C (Sigma-Aldrich). It is freely soluble in water and alcohol. It is used in the 

manufacturing of barbiturates. 

Malonic acid is used as a co-crystal former with caffeine to protect caffeine from 

hydration. 

 

3.2.2.1 Thermal behaviour 

TGA and DSC 

Thermal behaviour of malonic acid was characterized using TGA and DSC 

(method section 2.2.1.1 and 2.2.1.2). The thermal profile scan revealed the 

degradation profile of malonic acid and its melting temperature (figure 3.6). A 

triplicate scan was carried out to ensure accuracy (figure Appendix II.1). 
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Figure 3.6. A representative TGA and DSC thermal profile of malonic acid as received 
 

The thermal degradation of malonic acid was observed to commence at 140°C 

on the TGA profile. The DSC profile shows two endothermic peaks. The first 

peak, at 136.6°C, can be correlated with the melting and / or decomposition 

point of malonic acid as it is similar to the theoretical value provided in Sigma-

Aldrich database (132-135°C). The difference between the two values may be 

related to the thermal lag due to the packing of the crystals in the DSC pan. The 

peak at 84°C was not mentioned in Sigma-Aldrich Database. (Caires et al., 

2009) analysed the thermal behaviour of malonic acid using TGA, X-ray, and 

FT-IR and they found that malonic acid has a solid phase transition peak at 

110°C (heating rate 20°/min) with melting point of 145°C and decomposition of 

215°C. (Bougeard et al., 1988) also analysed malonic acid thermally. They 

identified the solid phase transition peak from β to α at ca 360 K (87°C) with 

heating rate of 10°C/min. The latter result is only 2°C different to the result 
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obtained in the current and this difference might be related to the hygroscpicity 

or traces of impurity in malonic acid sample or an instrumental differences. 

 

3.2.2.3 Powder X-ray diffraction 

A malonic acid diffraction pattern using the powder x-ray diffractometer was 

performed in order to identify the polymorph type of malonic acid. Unlike 

caffeine, malonic acid has a one diffraction pattern provided by the CSD 

software. (Caires et al., 2009) provide the X-ray data for the two polymorphs  A 

comparison of the diffraction pattern provided by him shows that the diffraction 

pattern of α polymorph has two peaks at 17° and 18° in comparison to one peak 

at 17° for β polymorph. In addition β polymorph showed a diffraction peak at 27° 

with no similar peak in α polymorph. Figure 3.7 reveals that the diffraction 

pattern obtained by scanning malonic acid shows peaks at 17°, 18° and 27°. 

Thus the starting malonic acid sample used in this study is believed to contain 

both polymorphs. 
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Figure 3.7. Representative powder X-ray diffraction pattern of malonic acid as received (top) 
and a reference pattern for malonic acid from CSD (bottom). 
 
 

3.2.2.4 FT-IR transmission 

 Malonic acid is a complicated compound to analyze with FT-IR. It has two 

mirror-image carboxylate groups attached to CH2 center as shown in figure 3.5. 

Malonic acid was analyzed using FT-IR according to the method described in 

section 2.2.3. The results, shown in figure 3.8 reveals a characteristic peak at 

1700 cm-1. this peak can be correlated to the C=O and O-H bands (Bougeard et 

al., 1988). Both functional groups are expected to be involved in hydrogen bond 

formation. If such a hydrogen bond is formed then we would expect a shift in 

that peak in the FT-IR spectrum.  
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Figure 3.8.  A representitive of FT-IR spectrum of malonic acid as received. 
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3.2.3 Ibuprofen  

 

Ibuprofen or α-methyl-4-(2-methylpropyl) 

benzeneacetic acid is a non steroidal anti inflammatory drug (see figure 3.9). It 

has an analgesic antipyretic activity as well. Ibuprofen has a molecular weight of 

206.28 g/mol and a melting point of 75-77°C. It is a colorless crystalline stable 

solid. Ibuprofen exists as S, R, or R/S racemate isomer. The S isomer is more 

active than the R isomer. 

Ibuprofen (S, RS) is known to form a co-crystal with nicotinamide (Berry et al., 

2008). 

 

3.2.3.1 Thermal analysis 

TGA and DSC 

A thermal degradation profile and change of the enthalpy of ibuprofen was 

recorded using TGA and DSC following the methods described in sections 

2.2.1.1 and 2.2.1.2. TGA thermal profile in figure 3.10 shows that the thermal 

degradation of ibuprofen begins at around 150°C. The DSC scan shows a sharp 

endothermic peak at 76°C. This peak matches the melting point of ibuprofen 

(section 3.1.3). A triplicate scan is shown in Appendix  AII.2. 
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Figure 3.10. A representative of TGA and DSC thermal profile of unprocessed ibuprofen. 
 

3.2.3.2 Powder X-ray diffraction 

Ibuprofen has three isomers (R, S, and RS racemate). S and R/S isomers can 

form co-crystals with nicotinamide(Berry et al., 2008). In this study, ibuprofen 

was analyzed with PXRD using the method described in section 2.2.2. The 

results were compared with those obtained from CSD software (Mercury 3.0) 

(figure 3.11). Standard diffraction pattern of RS-ibuprofen shows a peak at 6°. 

On the other hand, S isomer has two peaks at 7° and 7.7° that do not appear in 

the racemate pattern. Figure 3.11 shows that the diffraction obtained for 

unprocessed ibuprofen using the method in section 2.2.2 has a high intensity 

peak at 6° with no sign for peaks at 7° or 7.7°. Therefore, it can be concluded 

that the unprocessed ibuprofen is a racemate form. 



 

49 
 

Figure 3.11. A representative powder X-ray diffraction pattern of unprocessed ibuprofen (top), 
standard diffraction pattern obtained from CSD for ibuprofen S (middle), and standard ibuprofen 
racemate (CSD) pattern (bottom). 
 

3.2.3.3 FT-IR transmission 

In order to detect any changes is the energy of the functional groups of 

Ibuprofen that may arise during co-crystal formation, a reference of the 

unprocessed ibuprofen FT-IR spectrum has to be obtained. Using the method 

described in section 2.2.3, ibuprofen was analyzed with FT-IR spectroscopy. 

The spectrum of ibuprofen was plotted in figure 3.12. COOH entity is the major 

functional group of the molecule. (Jubert et al., 2006) has identified the peak at 

around 1700 cm-1 and assigned it for C=O and OH vibrations. 
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Figure 3.12. A representative FT-IR spectrum of unprocessed ibuprofen. 
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3.2.4 Nicotinamide  

Nicotinamide (niacinamide) is an amide of nicotinic acid 

(figure 3.13). It can be described as a white or whitish 

crystalline powder that forms needle-shape crystals from benzene. It has a 

melting point of 128-131°C and a pKa of 3.3. It is freely soluble in water and 

alcohol. 1 gram of nicotinamide dissolves in 1 ml of water or 1.5 ml of alcohol. 

 

3.2.4.1 Thermal analysis 

TGA and DSC 

Nicotinamide has four known polymorphs (Hino et al., 2001). Those polymorphs 

can be differentiated by their thermal behaviour. Thus the thermal behaviour of 

unprocessed nicotinamide was obtained using TGA and DSC in order to identify 

its polymorphic type. Nicotinamide was examined using the methods described 

in section 2.2.1.1 and 2.2.1.2. The weight loss and the DSC profile of 

nicotinamide were plotted in figure 3.14. 

The thermal behaviour of nicotinamide polymorphs reveals different melting 

points for the polymorphs. The melting point for polymorph I, II, III, and IV as 

126°C -128°C, 112°C -117°C, 107°C -111°C, and 101°C -103°C respectively 

(Akalin and Akyuz, 2006). The TGA profile a weight loss associated with the 

thermal degradation of unprocessed nicotinamide to begin at around 

160°C(figure 3.14). Moreover, the DSC scan shows an endothermic peak at 

129.6°C. This peak can be correlated to the melting point of polymorph I. 
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Figure 3.14. Representative TGA and DSC thermal profiles for unprocessed nicotinamide. 
 

3.2.4.2 Powder X-ray diffraction 

The diffraction pattern of unprocessed nicotinamide was obtained using the 

method described in section 2.2.2. The results shown in figure 3.15 were 

comparable to the standard diffraction pattern obtained from CSD library. The 

measured spectrum will serve as a reference to detect any changes might arise 

as a result of a polymorphic or co-crystal formation. 
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Figure 3.15. A representative powder X-ray diffraction pattern for unprocessed (top) and a 
standard diffraction pattern of nicotinamide obtained from CSD software (bottom). 

 

3.2.4.3 FT-IR transmission 

The FT-IR spectrum of unprocessed nicotinamide was obtained using the 

method described in 2.2.3. To the best of the author’s knowledge, there is no 

available literature comparison between nicotinamide polymorphs FT-IR 

transmission spectrum. The measured spectrum will serve as a reference to 

detect any vibrational energy change that might arise due to polymorphic 

change or co-crystals formation. Figure 3.16 shows a transmission peak at 

3350 cm-1. This peak can be correlated to the NH2 vibration (Akalin and Akyuz, 

2006). This band is going to be of a particular interest to confirm the formation 

of nicotinamide-ibuprofen co-crystals. 
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Figure 3.16. A representative FT-IR spectrum for unprocessed nicotinamide. 
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3.2.5 Naproxen  

Naproxen or 2S-2-(6-methoxynaphthalen-2-yl) 

propanoic acid is a non steroidal anti-inflammatory 

drug (figure 3.17). It has analgesic and anti-pyretic activity as well. It is a white 

or whitish crystalline powder. It forms crystals when recrystallized using 

acetone-hexane. It melts at 154-158°C. Naproxen is considered to be practically 

insoluble in water. However, it dissolves in methanol, ethanol, and chloroform. 

 

3.2.5.1 Thermal analysis 

TGA and DSC 

Naproxen has four polymorphs. These polymorphs differ in their thermal profile. 

The melting point of polymorph I, II, III, IV is 156°C, 76°C, 140°C, and 148°C 

respectively (Song and Sohn, 2011). The thermal profile of unprocessed 

naproxen was measured using the methods described in section 2.2.1.1 for 

TGA and section 2.2.1.2 for DSC. The TGA scan reveals a weight loss 

associated with the degradation of naproxen begins at around 170°C (figure 

3.18). An endothermic peak at 156°C is observed in the DSC scan. This peak 

can be correlated to the melting of naproxen polymorph I as mentioned above 

(Song and Sohn, 2011). 
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Figure 3.18. Representative TGA and DSC thermal profiles for unprocessed naproxen. 
 

3.2.5.2 X-Ray 

The x-ray diffraction pattern of naproxen was obtained using the method 

described in section 2.2.2. The CSD database offers one diffraction pattern for 

naproxen. The diffraction patterns of naproxen polymorphs are available (Song 

and Sohn, 2011). The polymorphs I, III, and IV have a peak at 6°. However, 

polymorph I has two additional peaks at 11° and 12°. The measured diffraction 

of the unprocessed naproxen shows peaks at 6°, 12°, and 13° (figure 3.19). The 

difference in the peak positioning can be related to the use of a powder XRD 

instead of a single crystal XRD. This result indicates that the unprocessed 

naproxen as well as the diffraction pattern provided by the CSD software is form 

I naproxen.  
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Figure 3.19. A representative powder X-ray diffraction pattern for unprocessed (top) and 
standard diffraction pattern from CSD library for naproxen (bottom). 
 

3.2.5.3 FT-IR transmission 

Unprocessed naproxen was analysed with the FT-IR using the method 

described in section 2.2.3(figure 3.20). The scan of unprocessed naproxen will 

be used as a reference for comparison to detect any change in the vibrational 

behaviour of the bonds in the compound after processing. The full assignment 

of naproxen bond can be obtained from (Jubert et al., 2006). 
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Figure 3.20. A representative FT-IR spectrum for unprocessed naproxen. 
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3.2.6 Flurbiprofen 

Flurbiprofen is a white or whitish crystalline powder. It 

is a non- steroidal anti-inflammatory drug (figure 

3.21). It is considered as practically insoluble in water. However, it is freely 

soluble in ethanol and methylene chloride. It has a melting point of 114-117°C 

with a molecular weight of 244.26 g/mol.  

 

3.2.6.1 Thermal analysis 

TGA and DSC 

Flurbiprofen has two polymorphs, each of which has a different thermal 

behaviour. The melting point of polymorph I and II using a heating rate of 

10°C/min is 112.8°±0.2°C and 94°±0.2°C respectively (Lacoulonche et al., 

1997). In this study, the unprocessed flurbiprofen thermal profile was obtained 

using the methods described in section 2.2.1.1 and 2.2.1.2. The thermal profile 

obtained (figure 3.22) shows a weight loss resulted from the thermal 

degradation of unprocessed flurbiprofen begins at 155°C. DSC scan of 

ibuprofen reveals an endothermic peak at 114.8°C. This indicates that the 

unprocessed flurbiprofen is form I polymorph. A duplicate scan of pure 

flurbiprofen is provided in Appendix AII.4. 
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Figure 3.22. Representative TGA and DSC thermal profiles for unprocessed flurbiprofen. 
 

3.2.6.2 X-ray 

The diffraction pattern of polymorph I flurbiprofen characterized by two peaks at 

3.6° and 5.5° while polymorph II has one peak at 4.6°(Lacoulonche et al., 

1997). CSD library was found to contain one diffraction pattern for flurbiprofen 

without specifying the type of polymorph used. A sample of unprocessed 

flurbiprofen was analyzed with powder XRD using the method described in 

section 3.2.2. The diffraction pattern was found to contain a high noise/signal 

ratio preventing the identification of the polymorph (figure 3.23). This was 

caused by some cracks on the sample holder.Thus the diffraction pattern 

obtained from the unprocessed flurbiprofen was used as a template for 

comparison to detect any changes may occur to flurbiprofen. 
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Figure3.23. A representative powder X-ray diffraction pattern for unprocessed flurbiprofen (top) 
versus diffraction pattern obtained from CSD library (bottom). 
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3.2.7 HPMCAS 

Hydroxypropyl methyl cellulose or hypromellose acetate succinate is a cellulosic 

enteric coating agent. It is manufactured by Shin-Etsu. 

It is used in aqueous coatings. Tri ethyl citrate is a recommended plasticiser 

(Shin-Etsu, 2005). 

 

3.2.7.1 Thermal analysis 

TGA and DSC 

HPMCAS is known to be a hygroscopic polymer. In order to estimate the 

amount of absorbed moisture, the thermal profile for HPMCAS was obtained 

using the method described in section 2.2.1.1 and 2.2.1.2. The TGA profile 

(figure 3.24) indicates that the polymer has lost 2% of its weight at 100°C. This 

loss is believed to be due to the evaporation of residual moisture. The DSC 

profile shows a glass transition step with a value of 123.13°C calculated with TA 

software compared to a Tg literature value of around 122 ± 0.8°C (Kablitz et al., 

2006).  A duplicate scan of pure HPMCAS is shown in the Appendix AII.5. 



 

63 
 

Figure 3.24. Representative TGA and DSC thermal profiles for unprocessed HPMCAS powder.  
 

3.2.7.2  Powder X-ray diffraction 

The diffraction pattern of HPMCAS was obtained using the method described in 

section 2.2.2. The diffraction pattern in figure 3.25 reveals a very high 

noise/signal ratio, in addition to the appearance of two wide peaks. This 

diffraction pattern is a typical diffraction pattern for amorphous materials. This 

suggests that the polymer is predominantly amorphous which conforms with the 

reported literature (Shin-Etsu, 2005). 
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Figure 3.25. A representative powder x-ray diffraction pattern for unprocessed HPMCAS 
powder. 

 

3.2.7.3 FT-IR transmission 

The FT-IR transmission spectrum of HPMCAS was obtained using the method 

described in section 2.2.3. The FT-IR spectrum for unprocessed HPMCAS can 

be used as a reference to detect any vibrational energy changes might arise 

during processing (figure 3.26). 
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Figure 3.26. A representative FT-IR spectrum for unprocessed HPMCAS powder. 
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3.3 Recrystallization experiments 

The unprocessed materials were studied in section 3.1 in order to identify their 

thermal, crystallographic, and their spectroscopic characteristics. This section 

studied the effect of solvent on the raw materials (after a recrystallization with 

various solvent systems). The comparison of the data obtained from the 

analysis of the recrystallized materials should provide a clear evidence about 

the effect of solvent systems on the physicochemical properties of the 

unprocessed drugs.  

 

3.3.1 Caffeine recrystallization 

The analysis of the unprocessed caffeine section 3.1.1 revealed that caffeine is 

in the form of polymorph I. The crystal structure and the vibrational features 

were identified. The study of the solvent effect on unprocessed caffeine was 

performed by re-crystallizing caffeine using the method described in section 

2.3.1 and analyzing the resultant compound.  

 

3.3.1.1 Recrystallization using acetone/chloroform 3:2 v/v 

In order to form a drug-containing film, a suitable solvent was needed to 

dissolve the polymer (HPMCAS). Acetone is considered as a good solvent for 

the polymer. However, it is considered as a polar solvent. Therefore, it might 

disrupt the co-crystals loaded into the polymeric film and prevent their 

components from re-forming co-crystals again. Chloroform on the other hand, is 

a good solvent for caffeine, malonic acid, ibuprofen and nicotinamide but not for 

HPMCAS. Therefore a few attempts were carried out to investigate the best 

mixing ratio of both solvents. Consequently, the result revealed that the best 
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ratio is 3:2 v/v acetone/chloroform. Care was taken over the exothermic solvent 

mixing reaction. 

The recrystallization process of caffeine from acetone acetone/chloroform was 

performed using the method described in section 2.3.1. The physicochemical 

properties of the final drug after drying was identified and compared to that of 

unprocessed caffeine.  

Recrystallized caffeine was scanned using TGA, DSC, X-ray, and FT-IR. 

 

3.3.1.1.1 Thermal analysis 

TGA and DSC 

Recrystallized caffeine was scanned using TGA and DSC in order to detect any 

change in the thermal behaviour of caffeine, and to identify the existence of any 

residual solvent. TzeroTM hermetic pans were used for DSC analysis in order to 

minimize the sublimation and consequently any instrument damage. 

Recrystallized caffeine was analyzed using the method described in section 

2.2.1.1 and 2.2.1.2. The TGA profile reveals that caffeine lost about 3% of its 

weight at 35°C of the weight loss continues to around 80°C (figure 3.27). This 

3% is expected to be due to the evaporation of the residual solvent. Another 

sharp onset of weight loss for caffeine appears to begin at about 160°C. The 

DSC profile reveals 4 endothermic peaks at 79°C, 139°C, 179°C, and 235°C. 

The peak at 79°C is a strong intensity narrow peak, untypical of a solvent 

evaporation peak. the literature revealed that this peak is related to the 

peritectic decomposition process of the hydrate(Griesser and Burger, 1995 , 

Bothe and Cammenga, 1980). Hence the weight loss in the TGA profile below 
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80°C may be explained by the evaporation of water molecules. The second 

endothermic peak at 140°C in the DSC profile is found to be linked to the phase 

transformation of caffeine from polymorph I into polymorph II (Manduva et al., 

2008). It is noticeable from figure 3.27 that the peak at 179°C has a wide base. 

This peak is linked in the literature to the sublimation temperature of caffeine 

(Bothe and Cammenga, 1980). The last peak is at the melting range of caffeine 

thus it can be correlated to the melting of recrystallized caffeine. 

Figure 3.27. Representative TGA and DSC thermal profiles for recrystallized caffeine from 
acetone/chloroform. 

 
In order to identify the solvent effect on the caffeine physicochemical properties, 

DSC thermal profile of recrystallized and unprocessed caffeine were plotted in 

figure 3.28. It is noticeable that caffeine sublimation is shifted from 158°C in the 

thermal profile in unprocessed caffeine to 179°C in the thermal profile of the 
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recrystallized one. The melting point of unprocessed caffeine is shifted from 

237°C to 235°C. This shift is thought to be related to the water effect in the 

hydrated form. 

Figure 3.28. A representative DSC thermal profile of recrystallized (green) and unprocessed 
(blue) caffeine. 

 
As a conclusion, the recrystallization of caffeine from acetone/chloroform 

solvent system resulted in the conversion of anhydrous caffeine form II into 

monohydrated caffeine. 

  

3.3.1.2 Powder X-ray diffraction 

The diffraction pattern of recrystallized caffeine was obtained using the method 

described in section 2.2.2. The diffraction pattern of the recrystallized caffeine 

was compared to the diffraction pattern of the unprocessed caffeine and 

anhydrous and hydrated caffeine obtained from the CSD library (figure 3.29). 
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The diffraction pattern of recrystallized caffeine reveals a diffraction peak at 6°. 

This peak is not observed in the diffraction of hydrated or anhydrous caffeine 

(CSD). To the best of knowledge this peak could not be correlated neither to the 

polymorphism nor to the hydration of caffeine. However, it might be related to 

the sampling process. The diffraction pattern of recrystallized caffeine reveals 

peaks at 8°, 11°, 12°, and 13°. These peaks are correlated to the diffraction 

pattern of monohydrated caffeine.  

Figure 3.29. A representative powder X-ray diffraction pattern of recrystallized caffeine (top-
blue), caffeine as received (second from top-red), caffeine monohydrate CSD (third from top-
green), and anhydrous caffeine CSD (bottom-yellow). 

 
Consequently, both thermal profile and the x-ray diffraction pattern confirm the 

conversion of anhydrous caffeine form II polymorph to monohydrated caffeine.  
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3.3.2 Recrystallization with ethanol/water 4:1 w/w  

Caffeine was recrystallized from ethanol/water using the method described in 

section 2.3.1. The product was characterized and compared to the 

physicochemical properties of unprocessed caffeine. 

 

3.3.2.1 Thermal analysis 

TGA and DSC 

Thermal behaviour of recrystallized caffeine was obtained using the method 

described in section 2.2.1.1 and 2.2.1.2. The thermal behaviour of recrystallized 

caffeine was plotted in figure 3.30. The TGA profile shows a weight loss of 3% 

beginning at 35°C and ending at 75°C. This behaviour is similar to the TGA 

thermal behaviour of recrystallized caffeine section 3.2.1.1.1. The loss is 

expected to be correlated to the slow evaporation of residual solvent or water 

evaporation. DSC profile reveals four endothermic peaks at 78°C, 138°C, 

192°C and 236°C. Similarly to the DSC analysis of the recrystallized caffeine in 

section 3.2.1.1.1, those peaks can be correlated to: the peritectic decomposition 

process of the hydrate (78°C), the phase transformation temperature of caffeine 

from polymorph I into polymorph II (138°C), the sublimation temperature of 

caffeine (192°C), and the melting point of caffeine (236°C). 
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Figure 3.30. Representative TGA and DSC thermal profiles for recrystallized caffeine from 
ethanol/water. 

 
The same comparison used in section 3.2.1.1.1 is applicable in this section, i.e.  

This concluded that recrystallization of caffeine from ethanol/water has resulted 

in the conversion of anhydrous caffeine form II into monohydrated caffeine. 

 

3.3.2.2 Powder X-ray diffraction 

The diffraction pattern of recrystallized caffeine was obtained using the method 

described in section 2.2.2. The diffraction pattern of recrystallized caffeine was 

plotted and compared to the diffraction pattern of unprocessed caffeine and 

standard diffraction patterns for anhydrous (form II) and monohydrated caffeine 

(figure 3.31). Similarly to section 3.2.2, the diffraction pattern of recrystallised 

caffeine revealed four characteristic peaks at 8°, 11°, 12°, and 13°. These 

peaks can be correlated to monohydrated caffeine diffraction pattern. Thus 
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caffeine was converted by re-crystallization from anhydrous form II into a 

monohydrated from. This conclusion conforms with the conclusion obtained in 

section 3.2.2.1. 

Figure 3.31. A representative powder x-ray diffraction pattern for anhydrous caffeine CSD 
standard (bottom-purple), monohydrate caffeine CSD standard (second from bottom-red), 
caffeine as received (third from bottom-yellow), and recrystallized caffeine with ethanol/water 
(top-green).  
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3.3.3 Recrystallization of caffeine using acetonitrile 

Caffeine was recrystallized from acetonitrile using the method described in 

section 2.3.1. The physicochemical properties of the resultant product were 

obtained from analysis with TGA, DSC, and X-ray.  

 

3.3.3.1 Thermal analysis 

TGA & DSC 

The thermal profile of recrystallized caffeine was obtained using the method 

described in section 2.2.1.1 and 2.2.1.2. TGA and DSC thermal profiles were 

plotted in figure 3.32. TGA profile in figure 3.32 reveals that the weight loss 

associated with the degradation of caffeine begins at 140°C with no weight loss 

step at around 35°C such as those observed in section 3.2.1.1.1 and 3.2.2.1. 

On the other hand, DSC scan reveals the same 4 peaks observed in section 

3.2.1.1.1 and 3.2.2.1, i.e. the recrystallization of caffeine with acetonitrile 

resulted in the formation of caffeine monohydrate. 

Figure 3.32. A representative TGA and DSC thermal profile for recrystallized caffeine form 
acetonitrile. 
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3.3.3.2 Powder X-ray scan diffraction 

The diffraction pattern of recrystallized caffeine was obtained using the method 

described in section 2.2.2. The diffraction pattern was compared to the patterns 

of unprocessed anhydrous and monohydrated caffeine in figure 3.33. The 

diffraction pattern of the recrystallized caffeine reveals peaks at 8°, 10°, 11°, 

and 12°. This is similar to the diffraction pattern observed in section 3.1.2.2 and 

3.2.2.2. Those peaks can be observed in the diffraction pattern of 

monohydrated caffeine. Thus the caffeine recrystallized from acetonitrile can be 

considered as monohydrated caffeine as well. This result conforms with the 

result obtained from the thermal analysis in section 3.2.3.1.   

Figure 3.33. Representative powder x-ray diffraction pattern for a standard anhydrous caffeine 
CSD (bottom purple), a standard monohydrate caffeine CSD (second from bottom-red), caffeine 
as received  (third from bottom- yellow), and caffeine recrystallized from acetonitrile (top-bluish 
green). 
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Caffeine recrystallized with acetone/chloroform, ethanol/water, and acetonitrile 

is found to convert into the monohydrated form. This may be explained in the 

recrystallization process using ethanol/water as the caffeine comes into a 

contact with water molecules. However, it is unusual in the case of acetonitrile 

or acetone/chloroform. Caffeine most likely must have interacted with 

atmospheric moisture during the evaporation of the solvents to form the 

monohydrated caffeine form. 
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3.3.2 Recrystallization of malonic acid 

Malonic acid was recrystallized from acetone/chloroform, ethanol/water, and 

acetonitrile using the method described in section 2.3.1. Physicochemical 

properties of recrystallized malonic acid were obtained from analysis with TGA, 

DSC, and XRD.  

 

3.3.2.1. Thermal analysis 

TGA and DSC 

The thermal profiles of recrystallized malonic acid from acetone/chloroform 

were obtained using the methods described in section 2.2.1.1 and 2.2.1.2. The 

results of the thermal analyses were plotted in figure 3.34. The TGA profile 

reveals that a weight loss resulted from the thermal degradation of malonic acid 

begins at 140°C in a similar manner to the unprocessed malonic acid 

degradation profile. The DSC thermal profile reveals two endothermic peaks at 

90°C and 134°C. The first be can be correlated to the phase transition 

temperature of malonic acid (Bougeard et al., 1988). However, a shift was 

observed for the solid phase transition temperature from 85°C in the 

unprocessed malonic acid to 90°C in the recrystallized form.  
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Figure 3.34. A representative TGA and DSC thermal profile for recrystallized malonic acid from 
acetone/chloroform. 

 
The thermal profiles for malonic acid recrystallized with acetonitrile and 

ethanol/water were obtained using the methods described in section 2.2.1.1 and 

2.2.1.2 the data are given in figure AII.7. The thermal profiles for both solvent 

systems reveal similarity to the thermal profile of recrystallized malonic acid with 

acetone/chloroform. Hence, the recrystallization of malonic acid from 

acetone/chloroform, ethanol/water, and acetonitrile shifted the solid phase 

transition peak. However, it did not change the melting point of malonic acid.  

 

3.3.2.2 Powder X-ray diffraction 

The diffraction pattern of recrystallized malonic acid was obtained using the 

method described in section 2.2.2. The collected pattern is shown with the 

diffraction pattern of malonic acid recrystallized from ethanol/water, 

recrystallized from acetonitrile, and the unprocessed batch in figure 3.35. Two 

characteristic diffraction peaks at 17° and 18° are observed in the diffraction 

patterns of malonic acid recrystallized from ethanol/water, recrystallized from 
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acetonitrile, or unprocessed. However, the diffraction pattern of recrystallized 

malonic acid from acetone/chloroform reveals one peak at 17° and a very low 

intensity peak at 18°. The difference between the diffraction patterns in figure 

3.35 can be correlated to the use of a smaller quantity of sample for 

recrystallized malonic acid with acetone/chloroform, ethanol/water, and 

acetonitrile.  

Fig
ure 3.35. Representative powder x-ray diffraction pattern for  unprocessed malonic acid 
(bottom-red), malonic acid recrystallized from acetone/chloroform (second from bottom-dark 
red), recrystallized from ethanol/water (third from bottom-blue), and recrystallized from 
acetonitrile (top-pink). 

 
Therefore, it can be concluded that all the solvent systems resulted in the same 

polymorphic form. 
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3.4 Summary and conclusion 

The raw materials were characterized in order to identify their physicochemical 

properties. In addition to that, the solvent systems effect was studied as well by 

re-crystallizing these drugs. 

The characterization of the unprocessed materials revealed that caffeine is a 

form II anhydrous caffeine, malonic acid is a form α, ibuprofen is a racemic 

mixture, and nicotinamide and naproxen are form I. On the other hand, the 

morphology of flurbiprofen was hard to identify. 

Thermal DSC profile of malonic acid showed a small solid phase transition 

endotherm from polymorph β to polymorph α. 

The solvent systems were observed to have no effect on the raw materials 

except in the case of caffeine. Recrystallizing caffeine using the aforementioned 

solvent systems resulted in the conversion of anhydrous caffeine into a 

monohydrated one. It was observed as well that the thermal DSC scan of 

caffeine the appearance of a solid phase transition peak that confirms the 

presence of polymorph I. This indicates the conversion of some caffeine from 

polymorph II to polymorph I. The TGA thermal profile for caffeine showed a 3% 

weight loss except in the case of acetonitrile. This weight loss was correlated to 

the evaporation of the residual moisture. 



 

 
 

 

 

 

 

 

 

 

Chapter 4 

Preparation of co-crystals and their characterization 
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4.1 Introduction 

Drug-excipients interaction can impact the bioavailability and stability of the API. 

The study of such interactions requires a knowledge of the properties and the 

behaviour of the compounds involved. The interaction of a system composed of 

a co-crystalline drug and a polymorphic vehicle can be understood by individual 

components and their behaviour in the preparation media. Chapter 3 has 

brought to the light the properties of the APIs and other co-crystal formers. It 

also provided the information needed to understand about the behaviour of 

those materials in the preparation media of the final dosage form (co-crystals 

containing films).  

This chapter focuses on the process of co-crystal formation and their 

physicochemical properties. It also studies the possibility of producing the co-

crystals using different media in order to provide wider options to select from for 

the film loading process.  

Two co-crystal systems will be studied: caffeine-malonic acid and (±) ibuprofen 

(RS)-nicotinamide. A novel third system was discovered during the progress of 

the project. Thus, malonic acid-nicotinamide co-crystal formation is studied in 

this chapter and its physicochemical properties presented. 
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4.2 Co-crystallization of caffeine and malonic acid 

Caffeine-malonic acid co-crystals were prepared using the method described in 

section 2.3.2. In addition to the use of chloroform/methanol 30:1 v/v as a co-

crystallization solvent (Trask et al., 2005), the possibility of growing caffeine-

malonic acid co-crystals from other solvent systems was investigated. The use 

of acetone/chloroform 3:2 v/v, ethanol/water 4:1 w/w, and acetonitrile as a co-

crystallization solvent is investigated in this chapter. The properties of any 

successfully formed co-crystalline system will be characterized in order to have 

a better understanding of the formation process. 

 

4.2.1 Co-crystal analysis 

Caffeine-malonic acid co-crystals were prepared using the method described in 

section 2.3.2 using chloroform/methanol, acetone/chloroform, ethanol/water, 

and acetonitrile as preparation media. The physicochemical properties of the 

co-crystals were characterized using techniques presented in the previous 

chapter. 

  

4.2.1.1 Thermal analysis 

4.2.1.1.1 TGA analysis 

Thermal profiles of caffeine-malonic acid co-crystals from the aforementioned 

solvent systems were obtained using the method described in section 2.2.1.1. 

The obtained profiles were compared to the thermal profiles of unprocessed 

caffeine and malonic acid (figure 4.1). The TGA profile reveals a two event for 

the co-crystals. The first stage commences at around 140°C and the second 

one commences at around 170°C.  Comparing the degradation steps to the 
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thermal degradation profile obtained for caffeine and malonic acid reveals that 

the degradation step at 140°C can be correlated to the degradation of malonic 

in the co-crystals. The second degradation step can be correlated to caffeine 

degradation.  However, there is a noticeable difference between the thermal 

degradation profiles of co-crystals prepared from different solvents in a similar 

manner to the profiles of recrystallized caffeine in section 3.1.1.1.  

Figure 4.1. A representative TGA thermal profile for caffeine-malonic acid co-crystals prepared 
from  chloroform/methanol (green), acetone/chloroform (blue), ethanol/water (red), and 
acetonitrile (pink) in comparison to unprocessed caffeine (teal) and malonic acid (navy blue). 

 

4.2.2.1.2 DSC analysis 

Caffeine-malonic acid co-crystals were examined using the method described in 

section 2.2.1.2. for the purpose of comparison we will consider the two largest 

endotherms obtained (figure 4.2). The first set is observed at around 133°-
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135°C. These peaks are similar to the melting peak of malonic acid. The second 

major  peak occur around 234°C- 237°C except for that co-crystals prepared 

using acetone/chloroform where it was found at 230°C. This set of peaks can be 

correlated to the melting peak of unprocessed caffeine. The shift in the melting 

peak in the later case may result from the existence of some impurities. A third 

set of common peaks with a wider base are observed at 168°C-171°C. This set 

is similar to the peaks found for recrystallized caffeine in section 3.2.1.1, 

3.2.2.1, and 3.2.3.1. These peaks were identified earlier as caffeine sublimation 

peaks. The shifting of this peak in co-crystals prepared from acetone/chloroform 

to 200°C might be related to the existence of polymorph II of caffeine (Griesser 

et al., 1999 , Emel’yanenko and Verevkin, 2008). Figure 4.2 also shows weak 

intensity wide peaks around 85°C-98°C. These peaks can be correlated to the 

solid transition phase of malonic acid.   
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Figure 4.2. A representative DSC thermal profile for unprocessed caffeine (green), unprocessed 
malonic acid (navy blue), co-crystals prepared from chloroform/methanol (blue), 
acetone/chloroform (red), ethanol/water (pink), and acetonitrile (teal). 
 

Thermal analysis for caffeine-malonic acid co-crystals reveals a similar pattern 

to the unprocessed material thermal profile. The absence of new peaks and the 

existence of the raw materials melting peaks indicate that neither co-crystals 

nor eutectic mixture were formed.  

 

4.2.1.2 Powder X-ray diffraction 

The diffraction patterns of co-crystals prepared with various solvent systems 

were obtained using the method described in section 2.2.2. The collected 

diffraction patterns were compared to unprocessed anhydrous caffeine, 

unprocessed malonic acid, caffeine monohydrate (CSD), and caffeine-malonic 

acid co-crystals (CSD) diffraction patterns (figure 4.3). The last two diffraction 
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patterns were obtained from CSD library. The diffraction patterns of all the co-

crystals show reference peaks at 16.4°, 22.4°, 25°, and 28°. These peaks are 

the reference peaks for caffeine-malonic acid co-crystals (Ibrahim et al., 2010). 

These peaks can also be observed in the diffraction pattern (CSD). 

Consequently, the powder x-ray data confirms the formation of co-crystals from 

all solvent systems. However, co-crystals prepared using acetonitrile showed 

two extra peaks at 12° and 13.4°. These extra peaks can be observed in the 

diffraction pattern of caffeine monohydrate. Hence, it can be stated that the 

product from co-crystallizing caffeine and malonic acid using acetonitrile is a 

combination of the co-crystal and caffeine monohydrate. 

Figure 4.3.  A representative powder x-ray diffraction pattern for co-crystals prepared with: 
acetonitrile (top), ethanol/water (second from top), acetone/chloroform (third from top), 
chloroform methanol (forth from top), standard co-crystals diffraction (fourth from bottom), 
standard anhydrous caffeine diffraction (third from bottom), standard monohydrated caffeine 
diffraction (second from bottom), and standard malonic acid diffraction (bottom). 
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4.2.1.3 FT-IR transmission 

Co-crystals were examined using the method described in section 2.2.3. The 

collected spectra revealed shift in the following peaks: 1692 cm-1 peak to 1699 

cm-1, 1168 cm-1to 1178 cm-1, 962 cm-1 to 957 cm-1, 920 cm-1 to 904 cm-1.(Figure 

4.4) The first peak is assigned for the vibration energy of C=N, NH bond. This 

shift indicates the presence of a hydrogen bond. On the other hand, malonic 

acid has two mirror-image carboxylic acid groups. Thus there are few peaks 

that assign for the C=O, OH bond vibration energy (Bougeard et al., 1988). 

Nevertheless, the observed shifted peaks are some of the peaks that assign for 

these bonds energy. Therefore, the shift can be considered as a result for the 

hydrogen bond that formed between caffeine and malonic acid. Consequently, it 

confirms the successful formation of co-crystals using all the aforementioned 

solvents.  

 
Figure 4.4. A representative FT-IR spectrum for malonic acid (bottom), caffeine (second form 
bottom), co-crystals prepared with: chloroform/methanol (third from bottom), acetone/chloroform 
(forth from bottom), ethanol/water (second from top), and acetonitrile (top). 
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4.3 Co-crystallization of ibuprofen and nicotinamide 

Ibuprofen-nicotinamide co-crystals are one of the two co-crystals to be loaded 

into a polymeric film. The main difference between this system and the other is 

the solubility of the co-crystal components. While both caffeine and malonic acid 

are considered as water soluble drugs, ibuprofen, unlike nicotinamide, is 

considered to be a sparingly soluble one. This difference can create a challenge 

in the film loading process. In order to get a clear image about the 

physicochemical properties of the system, ibuprofen-nicotinamide co-crystals 

will be prepared and characterized using the aforementioned methods. 

Ibuprofen-nicotinamide co-crystals were prepared with acetonitrile using the 

method described in section 2.3.2. the result of their characterization is 

presented below. 

 

4.3.1 Thermal analysis 

TGA & DSC 

The DSC and TGA thermal profiles of ibuprofen-nicotinamide co-crystals were 

obtained using the methods described in sections 2.2.1.1 and 2.2.1.2. The data 

obtained were compared to the thermal profiles of unprocessed ibuprofen and 

nicotinamide (figure 4.5). The TGA thermal profile reveals that this co-crystal 

has a one step thermal degradation in contrast to the two step thermal 

degradation of caffeine-malonic acid (section 4.2.1.1.1). The degradation of the 

co-crystal starts after the degradation of ibuprofen and before the degradation 

of nicotinamide. On the other hand, the DSC profile shows an endothermic peak 

at 94°C. This peak was investigated and it appeared to be related to the melting 

of the co-crystalline system (Friscic and Jones, 2007). Another low-intensity 
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peak was observed on the DSC profile. This peak is observed at 71°C. This 

peak is consistent with the melting of the residual ibuprofen.  

Figure 4.5. A representative TGA and DSC thermal profiles for unprocessed ibuprofen, 
unprocessed nicotinamide, and co-crystals of ibuprofen-nicotinamide.  

 

4.3.2 Powder X-ray diffraction 

The powder x-ray diffraction pattern for the co-crystal was collected using the 

method described in section 2.2.2. The collected pattern was compared to a 

standard diffraction pattern obtained from the CSD library in addition to the 

unprocessed components (figure 4.6). The X-ray diffraction pattern of the co-

crystals reveals three diffraction peaks at 9°, 16°, and 21°. The same peaks can 

be observed in the standard diffraction pattern. In addition, the same peaks are 

not observed in the diffraction pattern of the individual unprocessed ibuprofen 
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and nicotinamide. This indicates that ibuprofen-nicotinamide co-crystals were 

successfully formed. 

Figure 4.6. Representative powder x-ray diffraction patterns for ibuprofen (purple), nicotinamide 
(red), ibuprofen, co-crystals standard diffraction pattern obtained from CSD library (yellow), and 
co-crystals (green). 

 

4.3.3 FT-IR transmission 

The FT-IR spectrum for the ibuprofen-nicotinamide co-crystal was obtained 

using the method described in section 2.2.3. The collected spectrum was 

compared to the FT-IR spectrum for unprocessed ibuprofen and nicotinamide 

(figure 4.7). The co-crystals spectrum reveals two major peaks shifts from 3154 

cm-1 in the unprocessed nicotinamide spectrum and 1704 cm-1 in the 

unprocessed ibuprofen spectrum to 3175 cm-1 and 1698 cm-1 in the co-crystal 

spectrum respectively. The first peak shift is assigned in the literature for C=N, 

NH bond vibrational energy. The second peak is assigned for C=O, OH bond 
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vibrational energy. Both peak shifts are consistent with the formation of a 

hydrogen bond formed between the NH group in nicotinamide and C=O group 

in ibuprofen.  

Figure 4.7. Representative FT-IR spectrum for unprocessed ibuprofen (bottom), unprocessed 
nicotinamide (middle), and co-crystals of ibuprofen and nicotinamide (top).  
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4.4 Co-crystallization of nicotinamide and malonic acid 

Nicotinamide-malonic acid co-crystals were produced during the progress of the 

study. In order to have a deeper insight for general co-crystal-excipient 

interaction (chapter 8), their properties are studied in this chapter. Nicotinamide-

malonic acid co-crystals were not known until very recently (VOGURI, Sep 

2010b). Hence there was an interest for studying this system. Nicotinamide-

malonic acid co-crystals were co-crystallized from acetonitrile using the method 

described in section 2.3.2. Then the co-crystals were characterized using a set 

of analytical instruments. 

 

4.4.1 Thermal analysis 

TGA & DSC 

The TGA and DSC thermal profiles of nicotinamide-malonic acid co-crystals 

were obtained using the methods described in sections 2.2.1.1 and 2.2.1.2. The 

TGA profile shows a two step loss of weight for co-crystals prepared in both 

solvents (figure 4.8). The first step of weight loss commences at around 114°C 

and the second starts around 160°C. The first step is expected to be associated 

with its malonic acid component. This is consistent with the observed fact that 

about 50% weight loss resulted from the first degradation step (malonic acid 

MW is 104g/mol and nicotinamide 122 g/mol and the co-crystals has a 1:1 

stoichiometric ratio).  
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Figure 4.8. Representative TGA thermal profiles for unprocessed malonic acid (pink), 
unprocessed nicotinamide (blue), co-crystals prepared using acetone/chloroform (red), and co-
crystals prepared using acetonitrile (green). 
 

On the other hand, DSC thermal profiles in figure 4.9 reveals the presence of a 

single endothermic peak at 109°C-110°C and the disappearance of the 

nicotinamide and malonic acid melting peaks. This indicates the formation of a 

co-crystalline system of nicotinamide and malonic acid.  
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Figure 4.9. Representative DSC thermal profiles for unprocessed nicotinamide green, 
unprocessed malonic acid (pink), nicotinamide-malonic acid co-crystals prepared using 
acetone/chloroform (red), and co-crystals prepared using acetonitrile (blue). 

 

4.4.2 Powder X-ray diffraction 

The powder x-ray diffraction patterns for co-crystals prepared with both solvents 

were collected using the method described in section 2.2.2. They were 

compared to the diffraction pattern of the raw materials (figure 4.10). The 

diffraction pattern for co-crystals prepared with both solvent systems revealed 

the presence of three new peaks at 9°, 21°, and 22°. The presence of these 

peaks indicates the formation of a new crystalline structure (co-crystal). Since 

this co-crystal system was only recently discovered, no reference pattern was 

included 
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Figure 4.10.  Representative powder x-ray diffraction patterns for unprocessed nicotinamide 
(bottom-red), unprocessed malonic acid (second from bottom- blue), co-crystals prepared using 
acetone/chloroform (second from top-pink), and co-crystals prepared using acetonitrile (top-
teal). 

 

4.4.3 FT-IR transmission 

The FT-IR spectrum for the nicotinamide-malonic acid co-crystal was obtained 

using the method described in section 2.2.3. The spectrum was obtained in 

order to be used as a reference for comparison between ibuprofen-nicotinamide 

and nicotinamide-malonic acid co-crystals. Figure 4.11 shows a peak shift was 

detected in FT-IR transmission pattern from 3366 cm-1 in unprocessed 

nicotinamide spectrum to 3374 cm-1 and 3379 cm-1 in the co-crystal prepared 

with acetone/chloroform and acetonitrile respectively. Additional shifts in two 

other peaks at 1397 and 770 cm-1 in unprocessed malonic acid spectrum 

shifted to 1392 cm-1 and 764 cm-1 in both co-crystal spectra respectively. These 
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peaks were previously assigned for C=N, NH vibration in nicotinamide (3374 

cm-1) (Akalin and Akyuz, 2006 , Hino and Ford, 2001) and C=O, OH (1397 and 

770 cm-1) (Bougeard et al., 1988). The shifts indicate that a hydrogen bond has 

formed between the nicotinamide nitrogen atom (NH) and malonic acid oxygen 

atom (C=O). 

Figure 4.11. Representative FT-IR spectra for unprocessed malonic acid (bottom-blue), 
unprocessed nicotinamide (second from bottom-purple), co-crystals prepared using 
acetone/chloroform, (second from top-red), and co-crystals prepared using acetonitrile (top-
teal). 
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4.5 Summary and Conclusions 

Caffeine-malonic acid co-crystals were prepared using chloroform/methanol as 

previously mentioned in the literature (Trask et al., 2005). In addition, the co-

crystal was prepared using three other solvent systems in order to study the 

effect of formation of caffeine-malonic acid co-crystals with a suitable solvent for 

co-crystals containing film preparation. These solvents were: 

acetone/chloroform, ethanol/water, acetonitrile. The analysis of the resultant co-

crystals prepared with the solvents showed that co-crystal purity was high from 

acetone/chloroform and ethanol/water. However, when co-crystals prepared 

with acetonitrile were analyzed, the product of the preparation process showed 

the presence of some caffeine monohydrate in addition to co-crystals. 

An ibuprofen-nicotinamide co-crystal was successfully prepared as previously 

described in the literature (Berry et al., 2008). Its physicochemical properties 

were characterizd using DSC, X-ray, and FT-IR. The results indicated the co-

crystals formation. 

A third system was studied as well. Nicotinamide-malonic acid co-crystals were 

prepared using acetone/chloroform and acetonitrile with a stoichiometric ratio of 

1:1 mol/mol. Their physicochemical properties were characterized using thermal 

analysis: TGA and DSC, Crystallographic analysis: x-ray diffraction, and 

vibrational analysis: FT-IR spectroscopy. 

Other workers (VOGURI, sep 2010a), have recently identified that nicotinamide 

and malonic acid can form a co-crystal. Thus the previous results indicating co-

crystals formation are consistent with this work. 
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This chapter has identified methods of preparing co-crystals that are suitable for 

use with solvent systems that potentially could allow co-crystals to be cast in 

polymeric films. 



 

 
 

 

 

 

 

 

 

 

Chapter 5 

Solvent effect on the HPMCAS properties and TEC-

HPMCAS interaction 
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5.1 Introduction 

Studying the relationship between a co-crystal active compound and a 

polymeric vehicle or any other excipients requires at least a basic 

understanding of the behaviour of the unprocessed materials first. This is 

considered an important process in order to obtain a reference point for 

comparison. The starting materials of this project and their relationship with the 

preparation media of the final dosage form were thoroughly studied in chapter 

3. Since the final intended dosage form contains a co-crystal rather than a 

single crystalline drug, investigation of such systems requires a study of the co-

crystals prior to loading into the polymer (chapter 4). A third aspect of the 

project is to study the interaction between each individual component of the co-

crystals with the polymeric vehicle. Moreover, the solvent system might have an 

impact on the drug-polymer interaction. Therefore, this chapter also investigates 

the effect of potential solvent systems on the polymer physical properties. 

 

5.2 Solubility parameters of the raw materials 

Solubility parameters were calculated as a potential prediction of the drug 

behaviour in the polymeric vehicle. They were calculated using Hildebrand 

equation.  

  (equation 5.1(Hildebrand and Scott, 1950)) 

Where  is the heat of vaporization, R is the gas constant, T temperature, 

and Vm molar volume. 
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Some drugs such as malonic acid have the ability to form a dimer. Such 

formation will affect the value for the cohesive energy and consequently it will 

change the solubility parameter value. A correction factor can be introduced to 

the equation to optimize the parameter value for materials possessing this 

property. However, the effect of dimerization on the solubility parameter value 

can be considered small compared to the original value (Barton, 1991). Hence 

the normal equation was used in the calculation (Table 5.1).  

compound solubility parameter (MPa1/2) Pka 

ibuprofen 19.5 4.4 

naproxen 21.9 4.2 

malonic acid 22.47 2.83-5.69 

HPMCAS 24  

flurbiprofen 24.45 4.2 

caffeine 26.52 0.5-1.5 

nicotinamide 27.52 3.6 

TEC 24.78  

Table 5.1. The solubility parameters of the compounds used in the study with their pKa values. 
 

The solubility parameters for solvents were calculated based on the equation 

5.1 then the parameters of the solvent mixtures were calculated using the 

equation provided by (Burke, 1984). The values obtained are detailed in table 

5.2. 

Solvent Solubility parameter 
(MPa1/2) 

chloroform 19 

acetone 20.2 

acetonitirle 24.42 

ethanol 26 

water 47.9 

ethanol/water 30.54 

acetone/chloroform 19.78 

Table5.2. Calculated Solubility Parameters SP MPa
1/2

 of the solvent and solvent combinations 
used in this study. 
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5.3 The effect of solvent on polymer physical properties 

(plasticity) 

Polymers are composed of repeated small units called monomers. These 

monomers are linked together to form chains of various lengths. In amorphous 

polymers, the chains are entangled together in a non-organised state. When the 

polymer is dissolved into a solvent these chains disentangle and chain 

movement increases as they separate from each other. However, when the 

solvent starts to evaporate, the free volume between the chains diminish and 

the chains start to interact with each other and entangle again. The 

conformation of the chain entanglements might depend on the interaction 

between the polymer chains and between the chains and the solvent. A residual 

amount of solvent can still have an impact on the chain dynamics. Solvent 

molecules will interpose between adjacent chains and weaken the interaction 

between those chains thus producing a “plasticizing effect”. Furthermore, this 

effect can be quantified by measurement of the glass transition temperature 

(Tg) of the polymer. 

As defined in section 1.9, the measurement of the Tg will reflect the impact of 

the solvent on the arrangement of the polymer chains. 

 

5.4 Thermal analysis 

Plain HPMCAS films were prepared using acetone/chloroform, ethanol/water, 

and acetonitrile following the method described in section 2.3.3. The Tg values 

of these films revealed a shift from the Tg value reported in the literature 

(Kablitz et al., 2006) (figure 5.1). 



 

102 
 

Figure 5.1. A comparison of films Tg values for unprocessed polymer (Kablitz et al., 2006) 
(purple), films prepared using: acetone/chloroform (blue), ethanol/water (red), and acetonitrile 
(green). DSC thermal profiles are provided in figures AII 10, AII 11, and AII 12. 

 
The effect of the solvent on the interaction between the polymeric chains 

appears clearly in figure 5.1. Acetone/chloroform appears to have the lowest 

effect on the polymeric vehicle. This can be concluded from the higher Tg value 

(for the polymeric film prepared using acetone/chloroform compared to films 

prepared with the other two solvents). Nevertheless, the Tg value of the film 

prepared with acetone/chloroform is lower than the Tg value of the unprocessed 

polymer. On the other hand, films prepared using acetonitrile or ethanol/water 

revealed a close Tg values. This result raises the concern about the effect of 

the solvent system on the loading of the co-crystals into the polymeric film. The 

polarity and the cohesive energy for the system were believed to have an effect. 

Therefore, the solubility parameters of these solvents were measured in order 

to provide an indication for their cohesiveness.  

From the data presented in table 5.1 the solubility parameter calculated for 

acetonitrile is close to the SP value of the polymer (24 MPa1/2). This similarity 
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may explain the preference of the acetonitrile molecule to interact with the 

polymer in a stronger manner compared to the interaction between the other 

two solvents and the polymer. This interaction may have interfered with the 

folding process of the polymeric chains. Hence, the Tg value of the film 

prepared with acetonitrile is lower than the Tg of the film prepared with 

acetone/chloroform. This explanation cannot be extended however on films 

prepared by ethanol/water. 

Ethanol/water has a SP value that is further away from the SP value of the 

polymer than acetone/chloroform or acetonitrile. This behaviour might be 

explained by the fact that water and ethanol have a strong polarity. This polarity 

can trigger the bonding between the solvent mixture and the polymer. Hence, 

the effect of that solvent on the HPMCAS cannot be evaluated using the simple 

SP rule. A more detailed SP that takes into account the polarity and hydrogen 

bond formations might be needed to give a more accurate representation for 

this solvent system. 

In order to expose the effect of the solvent system on the possible interaction 

between a drug and the polymer, the interaction between the polymer and a 

plasticizer using a different solvent was monitored. 

 

5.5 Solvent effect on the plasticizer-polymer interaction 

Tri-ethyl citrate (TEC) is a well known plasticizer that is used in pharmaceutical 

formulations. It is an ester of citric acid. Films containing various concentrations 

of TEC were prepared using acetone/chloroform, ethanol/water, or acetonitrile. 

Tg determination of films prepared using the method described in section 2.3.3 

of these films uncover the question raised by the previous section. The results 
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are presented in figure 5.2.  Depending on the concentration of TEC, Tg is 

statistically unaffected by the nature of the solvent.  However at some of the 

levels of TEC employed, the effect of the preparation solvent on the Tg obtained 

is statistically significant. 

It is worthy of mention that the standard error of the measurements was high for 

certain samples as was the case for films containing 13%  (w/w) TEC prepared 

using acetonitrile.  Films prepared with acetonitrile showed a similar or slightly 

lower Tg values to those prepared with ethanol/water. On the other hand, films 

prepared using acetone/chloroform produced the lowest Tg values for films 

containing 4-9% (w/w) and but the Tg obtained was higher than the Tg of films 

prepared with the other two solvents when the TEC concentration was 16.7% 

w/w. Nevertheless in general, films containing 15% (w/w) TEC and cast from 

acetone/chloroform resulted in a film with about a 5°C higher Tg than those 

prepared using the other two solvents (figure 5.2). 

Figure 5.2. Representative Tg values for polymeric films containing various amounts of TEC 
prepared using acetone/chloroform (red square), ethanol/water (green circle), and acetonitrile 
(blue diamond). More details in Appendix AII 13-16. 
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The observed difference in the Tg values for films prepared with the 

aforementioned solvents might be explained by the solubility of the plasticizer in 

each of the previous solvents. When the plasticizer favours to interact with the 

solvent rather than the polymer, it may results in drawing the plasticizer away 

from the polymer during the evaporation stage. This will result in concentrating 

the plasticizer on the upper surface and the sides of the polymer. The strength 

of such interaction will affect the distribution of the plasticizer in the polymer, i.e. 

a strong interaction between the drug and the polymer will results in a higher 

film Tg value than a weak interaction.  

The variation of Tg values of films prepared using acetonitrile and 

acetone/chloroform is worthy of comment.  To explain the differences in the Tg 

values obtained, the solubility parameters of the solvent systems and TEC were 

compared. The theory we wish to test here is that if the solubility parameter 

value of the TEC or the polymer is closer to the SP value of the solvent, then 

either of the two will favour interacting with the solvent more than interacting 

with each other. On the other hand, if the SP value of TEC and HPMCAS is 

closer to each other than the SP value of the solvent, the interaction between 

them will be stronger and consequently the plasticization effect will be greater. 

TEC has a SP value of 24.78 MPa1/2. Acetonitrile is the only solvent with SP 

value that is closer to the TEC than the polymer. Hence, it is expected that the 

solvent will interact/dissolve TEC in a strong manner and that the interaction will 

interfere with the dispersion and the interaction of the TEC with the polymer. 

Such behaviour would result in high Tg values being observed with these films. 

On the other hand, acetone/chloroform has a solubility parameter that is 

considered far from both polymer and plasticizer. Therefore, theory would be 
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predicted the film to have a lower Tg values from films prepared using 

acetone/chloroform. However, films prepared with ethanol/water presents an 

unusual behaviour. Ethanol/water has SP value of 30.54. This value is remote 

from the SP values for both the polymer and plasticizer. Thus, it would be 

expected to observe low Tg values for these films. On the contrary, these films 

revealed high Tg values. This behaviour might be related to the fact that ethanol 

and water are quite miscible with each other. They interact in a strong manner 

that changes their polarity and final SP value. This was observed by Hildebrand 

and a new method was placed to calculate the SP parameter for liquids that 

interact in  a similar manner (Barton, 1991). 

Additionally the SP calculated in this thesis is a hybrid value of the two solvents 

mixed together and does not reflect differential evaporation of one of the 

solvents over the other and thus cannot be expected to reflect the complexity in 

the experimental film production. Furthermore, it is well documented that the 

amount of the residual solvent in the film can affect the Tg value of that film 

(Lopez and Mijangos, 1994). However, samples were kept at 100°C for 5 

minutes in order to evaporate the residual solvent. Nevertheless, the thermal 

TGA profile of the previous films were collected and revealed the existence of 

the 2% weight loss between 30-100°C that can be found in unprocessed 

HPMCAS and is due to evaporation of the residual moisture (figure AI 7-9). 
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5.6 Summary and conclusion 

Plain films casted using acetone/chloroform, ethanol/water, and acetonitrile 

showed a different Tg values than the unprocessed HPMCAS. Films prepared 

using ethanol/water or acetonitrile showed almost the same Tg values around 

118°C. However, films prepared using acetone/chloroform showed a higher Tg 

value of about 120°C. This difference in the Tg value was correlated to the 

effect of solvent on the polymeric chain entanglement. On the other hand, this 

difference can be explained according to solubility parameter values presented 

in tables 5.1 and 5.2, the SP value of acetone/chloroform can be considered 

remote to that of acetonitrile. This reflects the lower affinity for the 

acetone/chloroform to interact with the polymer chains. Nevertheless, this rule 

cannot be applied on the calculated SP value of ethanol/water. The 

aforementioned solvent has a remote SP value to the polymer. However, the Tg 

of films casted using that solvent is similar to those prepared using acetonitrile. 

It is worthy to mention that the equation used to calculate the SP values for 

solvents and their combination is considered a simple equation and doesn’t 

include the effect of the interactions in the solvent mixtures. Hence, the 

calculated SP value for ethanol/water might be far away from the true SP value 

of this solvent. 

On the other hand, it was noticed that the use of various solvents in casting 

films containing the same amount of TEC resulted in the observation of 

difference in the Tg values. This difference was linked to the SP values of the 

solvent systems, HPMCAS, and TEC. A theory was developed after monitoring 

the behaviour of films prepared with the aforementioned solvents. It states that 

if the polymer and the plasticizer have a closer SP values to each other than the 

solvent used, then the solvent effect will be lower than the solvent with a closer 
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SP value to any of them. In other words, the closeness in the SP values reflects 

the affinity of the materials to interact with each others. This theory explained 

the behaviour of films prepared using acetonitrile and acetone/chloroform. 

Acetone/chloroform has a remote SP value to the polymer and the plasticizer 

than acetonitrile. Therefore, the effect of acetone/chloroform on the interaction 

between HPMCAS and TEC is lower than the effect of acetonitrile. Hence, films 

prepared using acetone/chloroform showed lower Tg values. However, this 

theory cannot be applied in the case of films prepared using ethanol/water as 

they showed almost a similar Tg values to those prepared using acetonitrile. 

On the other hand, this phenomenon can be explained by the solubility of the 

TEC and the polymer in those solvents. The higher the difference in solubility 

between them, the more phase separation will be. Therefore, it worth to 

measure the solubility of HPMCAS and TEC in each of the aforementioned 

solvents in order to clarify the reason for the Tg difference between films 

prepared with each of them. 



 

 

 

 

 

 

 

 

 

 

Chapter 6 

Preparation and characterisation of HPCMAS films containing 

acidic drugs/species 
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6.1 Introduction 

Understanding the interaction between the polymeric vehicle and the individual 

components of the co-crystals would be the next step towards understanding 

the interactions between the co-crystals and the polymer.  Studying the 

unprocessed materials and the effect of the preparation media on their re-

crystallization have been investigated in chapters 3 and 4 respectively.  

Moreover, the findings presented in chapter 5 revealed that the solvent system 

has a noticeable effect on the interaction between the polymer and a plasticizer. 

Hence, the study of drug-polymer interaction in this chapter will include the 

study of the effect of using different solvents on these interactions.  Drug-

polymer interactions have been well documented in the literature. It has been 

identified that such interaction might cause a delay of the drug release. 

However, this property was useful in controlling the release of drug in sustained 

or controlled release dosage forms (Puttipipatkhachorn et al., 2001 , Murdande 

et al., 2011 , Huang et al., 2008 , Lin et al., 1995 , Feely and Davis, 1988). 

Moreover, there are few reported cases of drug-HPMCAS interactions 

(Yamaguchi and Tominaga, 2008 , Dong and Choi, 2008 , Tanno et al., 2004 , 

Riedel and Leopold, 2005 , Yamaguchi and Tominaga, 2006). These studies 

revealed the ability of HPMCAS to interact or adhere to the surface of drug 

crystals, inhibiting their growth and may convert them into amorphous materials. 

The interaction of HPMCAS with drugs was used in a controlled release drug. 

Drug-containing films were prepared by the method described in section 2.3.3. 

In this chapter we consider the interaction of acidic materials with HPMCAS. 

Namely malonic acid, ibuprofen, naproxen, and flurbiprofen were investigated 

with the interaction of malonic acid and ibuprofen with the polymer being more 
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extensively studied. Naproxen and flurbiprofen were used in a limited 

assessment of a drug substitution theory (where two acidic materials are 

simultaneously cast in a polymeric film). The other category includes the basic 

drugs such as caffeine and nicotinamide which will be investigated in a later 

chapter.  

 

6.2 Preparation and characterisation of HPCMAS films 

containing a single acidic drug/species 

HPMCAS is known to interact with acidic drugs (Dong and Choi, 2008, Tanno et 

al., 2004, Riedel and Leopold, 2005). However, there are few reported cases of 

the interaction between basic drugs and HPMCAS (Yamaguchi and Tominaga, 

2006 , Yamaguchi and Tominaga, 2008).  

Films containing acidic drugs were prepared using the method described in 

section 2.3.3. Malonic acid and ibuprofen interactions with HPMCAS were 

independently studied thoroughly because of their subsequent use in the 

incorporation of their co-crystal in the film.  

 

6.2.1 Malonic acid 

Various concentrations of malonic acid (1:100-60:100 w/w malonic 

acid/HPMCAS) were loaded into polymeric films in order to see the effect of 

malonic acid on the polymer physical properties. 
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6.2.1.1 General analysis 

Films containing low concentrations of malonic acid (1:100-30:100 w/w malonic 

acid/HPMCAS) were visually similar to a 100% HPMCAS film. On the other 

hand, the flexibility of the film measured by hand increased with increasing the 

malonic acid concentrations from 1-30:100 w/w malonic acid/HPMCAS. This 

increase in flexibility was not accompanied by a change in the film 

transparency. When the concentration of malonic acid goes above 30:100 w/w 

malonic acid/HPMCAS, the polymer starts to show some opacity. At that point, 

the flexibility of the films stopped increasing and became independent on the 

malonic acid concentration in the film. When the concentration of malonic acid 

reaches 40:100 w/w, it was hard to detect a Tg value on the thermal DSC profile 

(appendix AII 23). Nevertheless, exceeding 40% revealed a lower flexibility in 

the film and the growth of large malonic acid crystals through all the film. The 

growth of these crystals might have affected the overall flexibility and made the 

film brittle. 

 

6.2.1.2 Thermal analysis 

TGA and DSC 

The thermal profiles of HPMCAS films containing various concentrations of 

malonic acid were obtained using the method described in section 2.2.1.1. A 2-

6 % weight loss can be observed between 25°-100°C (figure 6.1 and AI 2). A 

similar weight loss (3%) can be observed with the unprocessed HPMCAS. the 

extra weight loss can be either correlated to extra moisture trapped in 30:100 

and 50:100 w/w malonic acid/HPMCAS films as 60:100 w/w malonic 

acid/HPMCAS. However, the first heating cycle in the DSC should evaporate 
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this extra moisture. This loss was linked to the evaporation of the residual 

solvent and moisture in the sample. The main weight loss of the sample can be 

divided into two stages. The first commences at about 130°C and involves a 

weight loss of around 25%. This weight loss can be linked to the thermal 

degradation of malonic acid in the film as unprocessed malonic acid thermal 

profile reveals the weight loss caused by the thermal degradation starting at 

around 140°C. The second commences at 300°C and almost results in a total 

weight loss. The second step can be correlated to the thermal degradation of 

the polymer as the weight loss caused by heating the film is similar to that of the 

unprocessed HPMCAS. 

Figure 6.1. Representative TGA thermal profile for unprocessed malonic acid (green), 
unprocessed HPMCAS (pink), HPMCAS film prepared with acetonitrile (red), and a film 
containing 25% w/w malonic acid prepared with acetonitrile (blue). 

 
The thermal DSC profiles for the films revealed a shift in the Tg value of the 

polymer (appendix AII 24). It can be observed that films prepared using 

ethanol/water gave the highest Tg values among other films (figure 6.2) 
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whereas, in general, films prepared using acetonitrile revealed the lowest Tg 

values. Applying the solubility parameter theory shows that the observed results 

do not conform to the expected behaviour based on the solubility parameter 

values of solvents, malonic acid and HPMCAS. According to the SP values of 

the aforementioned materials acetonitrile is expected to more strongly interact 

with malonic acid as it has a closer SP value to that of malonic acid. Thus it can 

be anticipated that acetonitrile will act to promote the migration of malonic acid 

molecules to the surface of the polymeric film when it evaporates. On the other 

hand, films produced with acetone/chloroform should reveal low Tg based on 

their far SP value compared to malonic acid and the polymer. Thus, it can be 

concluded that the solvent effect on malonic acid-HPMCAS interaction is 

different from the observed behaviour in section 5.4. However, it is worth 

mentioning that SP values of solvent systems were calculated without taking the 

interaction between solvents into consideration. Ethanol and water are known to 

interact with each other. This interaction will affect the polarity of their mixture. 

Therefore, the SP values of the solvent systems are not accurate. On the other 

hand, the previous behaviour could be explained based on the difference of 

solubility between malonic acid and HPMCAS in the solvent used. Malonic acid 

is highly soluble in water. However, HPMCAS is considered as a sparingly 

soluble in it. Thus, malonic acid will prefer to interact with water rather than the 

polymer. Ethanol/water has a good solubility for malonic acid and the polymer. 

However, the solubility of malonic acid in that solvent system is expected to be 

higher than the affinity of malonic acid to HPMCAS. The polarity of 

ethanol/water plays a rule in increasing such interaction. On the other hand, 

acetonitrile has a weak polarity that doesn’t allow for a strong interaction to take 
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a place, therefore, the effect of acetonitrile on malonic acid-HPMCAS is weaker. 

Chloroform and acetone are known to have a moderate polarity. Hence, their 

effect lies between the effect of ethanol/water and acetonitrile (figure 6.2). The 

solvent effect on the Tg value of polymer was studied for polyvinyl chloride and 

it was found that solvent type plays a role in the Tg value of that polymer (López 

and Mijangos, 1994).   

Figure 6.2. Graph to show the relation between the Tg and the percentage weight concentration 
of malonic acid in HPMCAS films cast from different solvent systems. 
 

6.2.1.3 Powder X-ray diffraction 

The powder x-ray diffraction patterns for films containing malonic acid were 

obtained using the method described in section 2.2.2. However, the patterns 

collected showed a high noise/signal ratio and an amorphous peak. Hence, it 

was not possible to distinguish the existence of malonic acid diffraction peaks 

with films containing low concentrations of malonic acid. Films containing 30% 

malonic acid and higher revealed the existence of some peaks that can be 
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found in the diffraction pattern of unprocessed malonic acid. A representative 

for the diffraction pattern is provided in figure AIII 3. 

  

6.2.1.4 FT-IR transmission 

The FT-IR spectra obtained for the polymeric films using the method described 

in section 2.2.3 revealed a low signal/noise ratio (figure 6.3). Additionally, films 

with a malonic acid concentration below 25:100 w/w malonic acid/HPMCAS 

produced transmission spectra similar to that of a plain film. However, films 

containing high concentrations (30% w/w) of malonic acid revealed clear 

transmission peaks similar to the ones found in the spectrum of unprocessed 

malonic acid. This indicates that the FT-IR microscope is sensitive enough to 

detect the presence of malonic acid crystals in films containing 25:100 w/w 

malonic acid/HPMCAS or less. 

Figure 6.3. Representative FT-IR spectra for HPMCAS film cast using acetonitrile (red), 
unprocessed malonic acid (blue), a film containing 1:4 w/w malonic acid/HPMCAS (green), and 
a film containing 3:10 w/w malonic acid/HPMCAS (yellow). 
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6.2.1.5 Hot Stage Microscopy 

Cast films were examined by HSM following the method described in section 

2.2.4.2. The events that occurred during the analysis of HPMCAS films 

containing 40:100 w/w malonic acid/HPMCAS cast using acetone/chloroform. It 

was noted that the crystals in the film were heavily condensed in a way that 

blocked the light from passing through. When the heating started, the polymeric 

matrix started to expand causing a change in the focal length of the observed 

field. Malonic acid crystals were observed to melt with an onset of around 

118°C (figure 6.4). This temperature is low compared to the melting point of the 

unprocessed malonic acid. However, the dispersion of malonic acid in the 

polymeric film can cause such a depression in melting point. The depression of 

melting point of drugs dispersed in the polymer has been observed before in the 

literature and linked to Flory-Huggins lattice theory (Marsac et al., 2009). The 

melted malonic acid continued to occupy the cavities in the polymer where the 

crystals previously used to be. At higher temperatures the liquid malonic acid 

was observed to diffuse through the polymeric matrix and mix with it forming a 

homogenous phase. Cooling the sample to room temperature did not induce 

recrystallization during the time frame of the experiment. Thus it can be 

concluded that the crystals converted into an amorphous material in the 

polymeric film.  
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Figure 6.4. Representative HSM images for films 40% w/w malonic acid/HPMCAS at: (A) 24°, 
(B) 87°, (C) 95°, (D) 107°, (E) 112°, (F) 120°, (G) 124°, (H) 134°, and (I) 136°C  all using x10 
magnification power. 

 
 
6.2.1.6 SEM 

Films containing malonic acid crystals were analyzed using the SEM in order to 

obtain a good image for the crystal shape. SEM imaging was performed using 

the method described in section 2.2.4.1. Malonic acid crystals were typically 

observed to have the length of 30-60 micrometers as exemplified in figure 6.5.  

Figure 6.5. Representative SEM images for films containing different concentrations of malonic 
acid with magnification powers: x1600 (top left), x3180 (top right), x1800 (bottom left), and 
x3000 (bottom right). 
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6.2.2 Ibuprofen   

Ibuprofen-polymer interaction is well documented in the literature (Kazarian and 

Martirosyan, 2002 , Nakayama et al., 2009 , Whelan et al., 2002). The polymer 

inhibits the growth of ibuprofen crystals. It deposits on the active growing 

surfaces of the crystal inhibiting its growth. In order to characterize the effect of 

such interaction on the loading process of ibuprofen-nicotinamide co-crystals 

into the polymeric film, films containing various concentrations of ibuprofen were 

prepared using the method described in section 2.3.3. Films were prepared 

using acetone/chloroform and/or acetonitrile as a solvent system.  

 

6.2.2.1 Thermal analysis 

6.2.2.1.1 TGA 

In order to characterise the amount of moisture or residual solvent in the 

prepared films, the thermal profiles for films containing ibuprofen were collected 

using the method described in section 2.2.1.1. The collected data were 

compared to the thermal profile for unprocessed ibuprofen and unprocessed 

HPMCAS (figure 6.6). It can be noticed that the weight loss due to the thermal 

degradation of the films passes through two steps. The first step commences 

around 170°C. This step can be correlated to the weight loss resulted from the 

thermal degradation of ibuprofen in the film as the thermal profile of the 

unprocessed ibuprofen revealed the same weight loss pattern that commences 

around 150°C and the observed weight loss at the end of this stage is 

consistent with the percentage of ibuprofen concentration in the film. The 

second stage commences around 300°C which can be correlated to the thermal 

degradation of the polymer as the weight loss at the end of this step is 
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consistent with the weight loss observed in the thermal profile of the 

unprocessed polymer. It can be observed that films containing ibuprofen have 

lost less than 2% weight at 100°C. A similar weight loss can be observed in the 

thermal profile of unprocessed HPMCAS. thus it is expected to be the result of 

the evaporation of residual moisture.  

Figure 6.6. Representative TGA thermal profiles for unprocessed ibuprofen (blue), HPMCAS 
cast from acetonitrile (red), a film containing 3:10 w/w ibuprofen/HPMCAS (green), and a film 
containing 3:5 w/w ibuprofen/HPMCAS (pink). 

 
 

6.2.2.1.2 DSC 

The thermal profiles for films containing various concentrations of ibuprofen 

were collected using the method described in section 2.2.1.2. The Tg values 

were obtained from the thermal data and plotted against the concentration of 

ibuprofen and compared to the Tg of films containing various concentrations of 

malonic acid (section 6.2.1.2.2) in figure 6.7.  
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Figure 6.7. A chart of polymer Tg against the concentrations of ibuprofen (blue diamond) and 
malonic acid (red circle) in polymeric films separately. 

 
It can be noted from figure 6.7 that the malonic acid has plasticized the polymer 

in almost a similar manner to that produced by using ibuprofen, using the same 

solvent (acetonitrile).  

 

 6.2.2.2 Powder X-ray diffraction 

The diffraction patterns of films containing ibuprofen were collected using the 

method described in section 2.2.2. The diffraction pattern of a film containing 

60% w/w ibuprofen/HPMCAS displays the appearance of an amorphous peak 

between 5°-20°. The pattern in figure 6.8 reveals a high noise/signal ratio, yet, 

there are some clear diffraction peaks that can be observed.  The diffraction 

pattern reveals some peaks at 6°, 12°, 16°, 18°, 19°, 19.8°, 20°, 22°, 25°, and 

27° in addition to other peaks (figure 6.8). The above peaks can be observed in 
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the standard diffraction pattern of ibuprofen RS. Consequently, the ibuprofen 

isomerism didn’t change after loading it into the polymer and the films contained 

some crystalline ibuprofen. 

Figure 6.8. Representative powder x-ray diffraction patterns for unprocessed ibuprofen (purple), 
standard diffraction pattern for S-ibuprofen CSD (red), RS- ibuprofen CSD (green), and a film 
containing 6:10 w/w ibuprofen/HPMCAS prepared using acetonitrile (blue). 
 

6.2.2.3 FT-IR transmission 

FT-IR spectra for films containing ibuprofen were obtained in order to detect any 

peak shifts in the spectrum resulting from hydrogen bond formation between the 

polymer and ibuprofen. The spectrum was obtained using the method described 

in section 2.2.3. The FT-IR spectrum in figure 6.9 revealed a shift in the 1700 

cm-1 peak to 1715 cm-1. In addition to that, it can be noticed that in films 

containing 5:10 ibuprofen/HPMCAS there are two peaks at 1699 and 1715 cm-1. 

This peak was noticed to be assigning for the C=O, OH vibration energy in 

section 3.1.3.3. However, C=O, OH peaks usually shift to a lower wavenumber 

when they participate in hydrogen bonding. Hence, this shifting might or might 

not be related to the formation of a hydrogen bond.  
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Figure 6.9. Representative FT-IR spectra for unprocessed HPMCAS (dark red), unprocessed 
ibuprofen RS (yellow), a film containing 3:10 w/w ibuprofen/HPMCAS (light red), and a film 
containing 1:2 ibuprofen/HPMCAS (blue) both films prepared using acetonitrile. 
 

 

6.2.2.4 Hot stage microscopy 

In order to characterize the behaviour of ibuprofen crystals inside the polymeric 

film, a sample of a film containing 3:5 w/w ibuprofen:HPMCAS was analyzed 

using the hot stage microscope following the method described in section 

2.2.4.2. The sample was heated to around 95°C (figure 6.10). A magnification 

power of x10 was used to capture the film images up to 70°C then X20 

magnification power was used to get detailed images for the crystals melting. 

The crystals appeared small using X10 magnification power. This behaviour can 

be correlated to the ability of the polymer to inhibit the crystal growth of drugs. It 

can be observed from figure 6.10 that ibuprofen crystals start to melt at around 
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75°C. The melting of the crystals was noticed to end at around 78°C. Increasing 

the temperature was noted to causes the polymeric matrix to expand and the 

liquefied ibuprofen to penetrate into the polymer matrix and form a 

homogeneous system.  

Figure 6.10. A representative HSM scan of a film containing 3:5 w/w ibuprofen/HPMCAS at: (A) 
25°, (B) 66°, (C) 69°, (D) 71°, (E) 73°, (F) 75°, (G) 76°C, (H) 78°C, and (I) 90°C. Magnification 
power is x10 (A) to (D) and x20 from (E) to (I). 
 

Films containing naproxen and flurbiprofen were not extensively studied 

separately as the two aforementioned drugs were used to investigate a 

displacement hypothesis only (section 6.3.1.2 and 6.3.3). 

 

6.3 Characterisation of films containing two different acidic 

species/drugs 

6.3.1 Films containing malonic acid with ibuprofen 

To this point this thesis has evaluated the behaviour of films cast to contain a 

single material.  It has also evaluated the films prepared from different solvents. 
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The effect of introducing a second acidic system to the same film is an 

interesting and novel area to study.  

Films containing two acidic species were prepared using the method described 

in section (2.3.3). In summary, the method involved casting films containing 

2:2:10, 3:2:10, 3:3:10, and 3:4:10 w/w/w ibuprofen/malonic acid/HPMCAS. Two 

solvent systems identified to prepare these films were acetonitrile and 

acetone/chloroform. 

 

6.3.1.1 Thermal analysis 

6.3.1.1.1 TGA 

Thermal profiles for films containing ibuprofen and malonic acid were obtained 

using the method described in section 2.2.1.1. Collected thermal data of 

polymeric films containing 3:2:10 and 3:4:10 w/w/w ibuprofen/malonic acid/ 

HPMCAS revealed that the weight loss in their thermal TGA profile can be 

divided into three steps (Figure 6.11). The first step commences at around 

130°C. This step can be easily correlated to the weight loss resulted from the 

thermal degradation of malonic acid (sections 3.1.2.1 and 3.2.2.1). The second 

step commences at around 180°C which can be correlated to the weight loss 

resulted from the thermal degradation of ibuprofen (section 3.1.3.1). The third 

step commences at around 250°C and it can be correlated to HPMCAS thermal 

degradation (section 3.1.7.1). It can be noted from figure 6.11 that the film has 

lost less than 5% of total weight between 30-100°C. This loss was observed in 

films containing malonic acid (3:10 and 5:10 w/w). This extra percentage might 

indicate that the solvent has not evaporated completely. Nevertheless, the 

amount of residual moisture is small to affect the crystallization or the 
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interaction with the polymer. In addition, malonic acid is considered as a 

hygroscopic material and that might have caused the increase in the amount of 

residual moisture. Thus these films might have additional moisture.  

Figure 6.11. Representative TGA thermal profiles for unprocessed ibuprofen (teal), 
unprocessed malonic acid (green), HPMCAS film prepared with acetonitrile (blue), and films 
containing 3:2:10 and 3:4:10 w/w/w ibuprofen/malonic acid/HPMCAS (red and pink 
respectively). 
 

6.3.1.1.2 DSC 

Thermal profiles for films containing ibuprofen and malonic acid were obtained 

using the method described in section 2.2.1.2.Collected thermal data revealed 

the existence of an endothermic peak in the first heating run on the DSC chart 

as in figure 6.12. This peak appears at 61°C. This peak relates to the melting of 

ibuprofen crystals in the polymeric film. The reduction in the melting point 

results from the impurity effect of the polymer on the ibuprofen melting point. In 
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order to have clear evidence, other films containing malonic acid and a higher 

concentration of ibuprofen were analyzed. The collected data showed a higher 

area under the curve for the same peak indicating that this peak is related to a 

thermal transition for at least a part of the ibuprofen content. 

Figure 6.12. DSC scan of films containing 3:2:10 (green), 2:3:10 (pink), 1:2.5:10 (blue), and 
1:1:5 (red) ibuprofen/malonic acid/HPMCAS w/w/w. 
Cooling the sample and reheating it revealed a flat thermal profile indicating that 

ibuprofen crystals melted on the first heat and remained amorphous or liquefied 

in the polymeric film (figure AII 19-21). 

Interestingly, the thermal profiles showed no other peak at or near the melting 

point of malonic acid. Malonic acid would therefore be molecularly dispersed in 

the film and not in a crystalline state.  
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6.3.1.2 powder X-ray diffraction 

Powder x-ray diffraction data was collected using the method described in 

section 2.2.2. The diffraction pattern for films containing 3:4:10, 3:3:10, and 

3:2:10 ibuprofen/malonic acid/HPMCAS w/w/w revealed the existence of three 

characteristic diffraction peaks at 6°, 12°, and 24°. These peaks can be 

observed in the diffraction pattern of ibuprofen RS. Therefore, it can be 

concluded that ibuprofen is present in a crystalline state in the film. On the other 

hand, the absence of any peaks that can be correlated to crystalline malonic 

acid diffraction pattern was noted. This result conforms to the result obtained in 

section 6.3.1.1.2. Therefore, it can be concluded that malonic acid was 

predominantly molecularly dispersed while ibuprofen crystallized in the 

polymeric film. 

Figure 6.14. Representative powder x-ray diffraction pattern for unprocessed malonic acid 
(blue), unprocessed ibuprofen RS (red), a film containing 3:4:10 ibuprofen/malonic 
acid/HPMCAS w/w/w (pink), 3:3:10 (light red), and 3:2:10 (teal). 
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6.3.1.3 FT-IR transmission 

The FT-IR spectra for a film containing 3:4:10 w/w/w ibuprofen/malonic 

acid/HPMCAS were collected using the method described in section 2.2.3. The 

collected spectrum revealed a similar FT-IR transmission pattern to the 

unprocessed ibuprofen (figure 6.15). The spectrum revealed a transmission 

peak at 1698 cm-1. This peak was previously assign to C=O, OH vibration 

energy. There was no obvious shifting for this peak. This might reflect the 

existence of no bonding between ibuprofen crystals and HPMCAS. On the other 

hand, the FT-IR could not detect the existence of malonic acid. This might 

happen due to the small size of malonic acid crystals that hindered the 

detection by the FT-IR.  

Figure 6.15. Representative FT-IR spectrum for unprocessed HPMCAS (bottom), unprocessed 
malonic acid (pink), unprocessed ibuprofen (blue), film containing malonic acid (teal), and a film 
containing 3:4:10 w/w/w ibuprofen/malonic acid/HPMCAS (red). 
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6.3.1.4 Hot Stage Microscopy 

Hot stage microscopy was performed in order to have visual evidence that 

supports the results obtained using DSC. A film containing 3:3:10 w/w/w 

ibuprofen/malonic acid/HPMCAS was analyzed using the method described in 

section 2.2.4.2. The film was heated with a heating rate of 2°C/min to 100°C 

then cooled to room temperature using the same rate (figure 6.16).  

Figure 6.16. Hot Stage Microscope scan of a film containing 3:3:10 w/w/w ibuprofen/malonic 
acid/HPMCAS prepared with ethanol/water at: (A) 62°C, (B) 65°C, (C) 75°C, (D) 76°C, (E) 79°C, 
(F) 83°C, (G) 100°C, (H) 50°C, (I) 80°C. Magnification was x10 for all cases. 

 
A large amount of crystals were observed in the film at room temperature. 

When commencing heating, the polymeric film expanded. The melting 

sequence of the crystals started at around 65°C and it lasted until the 

temperature reached 67°C. After that, the melt was observed to diffuse through 

the polymeric film and form a homogenous structure. The cooling sequence 

revealed that re-crystallisation did not occur within the experimental time frame. 
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The HSM behaviour of the film is consistent with the endothermic peak found in 

the DSC thermal profile. The crystals observed in the film to melt can be 

identified as ibuprofen crystals that phase separated from the polymer. 

Ibuprofen alone in HPMCAS did not crystallise at this concentration. 

Only above 60:100 w/w ibuprofen/HPMCAS was this behaviour observed. The 

finding indicates that the addition of malonic acid lowers the saturation 

concentration for ibuprofen with HPMCAS. The finding is also consistent with 

malonic acid having a greater affinity to interact with HPMCAS than ibuprofen. 

According to the solubility parameter values of malonic acid, ibuprofen, and 

HPMCAS obtained from table 5.1 and 5.2. Malonic acid has a closer SP value 

(22.4) to the polymer (24) than ibuprofen (19).  This observation if universally 

applicable might open the road towards finding a theoretical method for 

predicting and controlling the interactions between acidic drugs and HPMCAS. 

To test the validity of the above finding for other systems, naproxen and 

flurbiprofen were used to test the applicability of the previous conclusion.  

 

6.3.2 Investigation of HPMCAS films containing malonic acid and 

naproxen 

A film containing 20:20:100 w/w/w naproxen/malonic acid/HPMCAS was 

prepared using acetonitrile and following the method described in section 2.3.3.  

Malonic acid has a solubility parameter (22.47) that is relatively closer to 

HPMCAS parameter value (24) than naproxen (21.9). Hence, from the SP 

theory it was expected that malonic acid should dispersed in the polymer 



 

132 
 

reducing the saturation point for naproxen. Consequently, naproxen crystals 

should be observed in the polymeric films.  

6.3.2.1 Thermal analysis 

6.3.2.1.1 TGA 

TGA thermal profile for the aforementioned film was obtained using the method 

described in section 2.2.1.1. A weight loss of around 2% was found between 

30-100°C (figure 6.17). A similar weight loss was observed in the thermal profile 

of unprocessed HPMCAS and it was correlated to evaporation of residual 

moisture. 

Figure 6.17. Representative TGA thermal profile for unprocessed naproxen (green), 
unprocessed malonic acid (blue), HPMCAS film (teal), film containing 3:10 w/w 
naproxen/HPMCAS (pink), and film containing 1:1:5 naproxen/malonic acid/ HPMCAS (red).  
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6.3.2.1.2 DSC 

The DSC thermal profiles for films containing naproxen and malonic acid were 

obtained using the method described in section 2.2.1.2. The collected data 

reveals an endothermic peak appears in the analysis of films containing 3:10 

naproxen/HPMCAS and a film containing 1:1:10 naproxen/malonic 

acid/HPMCAS. This peak can be observed at 153°C (figure 6.18). Hence, this 

peak can be correlated to the melting of naproxen crystals in the film. A weak 

intensity, yet wide endothermic peak can be observed around 100°C. This peak 

is believed to be related to the evaporation of the residual moisture in the film.  

Figure 6.18. Representative DSC thermal profiles for a film containing 3:10 naproxen/HPMCAS 
prepared with ethanol/water (green) and a film containing 1:1:5 naproxen/malonic 
acid/HPMCAS prepared with acetone/chloroform (blue). 
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6.3.2.2 Powder X-ray diffraction 

The powder x-ray diffraction patterns for films containing 1:1:5 w/w/w 

naproxen/malonic acid/HPMCAS, 3:10 w/w naproxen/HPMCAS, and 1:5 

naproxen/HPMCAS were obtained using the method described in section 2.2.2. 

The collected diffraction pattern shown in figure 6.19 reveals the existence of a 

broad amorphous peak around 10°. It can be noticed that the patterns reveals a 

high noise/signal ratio. However, a number of peaks can be observed in the film 

diffraction pattern. Those peaks can be found at 16°, 19°, 20°, and 23°. These 

peaks can be easily observed in the diffraction pattern of unprocessed 

naproxen. On the other hand, none of the detected peaks can be correlated to 

the diffraction pattern of malonic acid.  

Figure 6.19. X-ray scan of malonic acid, naproxen, a film containing 1:1:5 naproxen/malonic 
acid/HPMCAS w/w/w, film containing 3:10 naproxen/HPMCAS, and a film containing 1:5 
naproxen/HPMCAS. All films were prepared using acetone/chloroform. 
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6.3.2.3 Hot Stage Microscopy 

A film containing 20:100 w/w naproxen/HPMCAS was analyzed using hot stage 

microscopy in order to monitor the behaviour of naproxen crystals. The analysis 

was performed using the method described in section 2.2.4.2. Figure 6.20 

reveals that naproxen crystals started to melt around 126°C.  

Figure 6.20. A representative Hot Stage Microscope analysis for a film containing 20:100 w/w 
naproxen/HPMCAS prepared with acetonitrile at: (A)  49°, (B) 110°, (C) 112°, (D) 126°, (E) 
133°, (F) 139°, (G) 161°, (H) 150°, (I) 59°C.  Magnification power of x10 was used. 
 

In addition, a film containing 20:20:100 w/w/w naproxen/malonic acid/HPMCAS 

was analyzed by HSM (figure 6.21). 
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Figure 6.21. A representative Hot Stage Microscope analysis for a film containing 20:20:100 
w/w/w naproxen/malonic acid/HPMCAS prepared with acetone/chloroform at: (A)  112°, (B) 
131°, (C) 134°, (D) 140°, (E) 147°, (F) 167°. Magnification power of x10 was used. 
 

It was observed that crystals started to melt around 130°C. It was observed that 

crystals in both films were behaving similarly. Hence, the scan of those films 

conforms to the results obtained from the DSC scan indicating the existence of 

naproxen crystals in both films. On the other hand, the characteristic melting of 

malonic acid crystals could not been detected. Hence, it is expected that it 

malonic acid is once again molecularly dispersed in the polymer and acts to 

reduce the saturation concentration for naproxen in the polymer.  

This result confirms the expected behaviour according to SP theory of malonic 

acid and naproxen in the polymeric film. 

In order to test the applicability of using the solubility parameters to predict the 

behaviour of two acidic drugs in a polymer, other drug combinations were tested 

in the next section. 
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6.3.3 Flurbiprofen as a blocker of the acidic drug-polymer interaction 

Flurbiprofen is characterized by having a SP value very close to that of 

HPMCAS (table 5.1). Hence, according to the previous conclusion and in line 

with SP theory flurbiprofen should preferably interact with HPMAS reducing the 

saturation point for the other acidic materials and resulting in their preferential 

crystallisation. Films containing flurbiprofen and one of the other acids (malonic 

acid, naproxen, and ibuprofen) were prepared using the method described in 

section 2.3.3. 

Despite the different effect that might arise from adding two acidic drugs to the 

polymeric matrix, films were analyzed to identify the type of the crystals that 

might grow inside. 

  

6.3.3.1 General analysis 

Films were prepared using the following concentrations: 800 mg (malonic acid, 

naproxen, or ibuprofen), 800mg flurbiprofen, and 4000 mg HPMCAS using 

acetonitrile as the preparation solvent. The visual inspection for films containing 

malonic acid or naproxen became relatively opaque and the change of their 

flexibility compared to plain HPMCAS films. However, films containing ibuprofen 

stayed relatively transparent even when 1200 mg of ibuprofen used instead of 

800 mg.  

 

6.3.3.2 Powder X-ray diffraction 

A sample of each film was analyzed using the x-ray diffractometer in order to 

identify the crystalline material that caused the film opacity. The diffraction data 
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were obtained using the method described in section 2.2.2. The diffraction 

patterns obtained from films containing malonic acid and flurbiprofen (figure 

6.22) reveals the existence of diffraction peaks at 17, 19, 23.4, 23.9, 25°. These 

peaks can be observed in the diffraction pattern of unprocessed malonic acid. 

However, there is a low intensity peak at 21° that matches one found in the 

diffraction pattern of flurbiprofen. Thus it can be concluded that the majority of 

flurbiprofen has been molecularly dispersed in the polymer and acts to promote 

malonic acid crystallization in line with the SP theory being developed in this 

thesis. 

Figure 6.22. Representative powder x-ray diffraction patterns for unprocessed malonic acid 
(green), unprocessed flurbiprofen (red), and a film containing flurbiprofen and malonic acid 
(blue). 

The diffraction pattern obtained from films containing flurbiprofen and naproxen 

reveals some peaks at (6°, 12°, 13°, 17°, 19°, 22°, and 24° (2 theta)). These 

peaks can be easily distinguished in the diffraction pattern of unprocessed 
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naproxen (figure 6.23). It was difficult to confirm the existence of flurbiprofen 

crystals in the diffraction pattern, in addition to a high noise/signal ratio. Hence, 

there may or may not be some flurbiprofen crystals in the films. However, it can 

be concluded that most of the crystalline phase in the polymeric film can be 

correlated to naproxen crystals. 

Figure 6.23. Representative powder x-ray diffraction pattern for unprocessed naproxen (red), 
unprocessed flurbiprofen (purple), and a film containing flurbiprofen and naproxen (green). 
 

Both results obtained from the diffraction patterns of films containing flurbiprofen 

and either naproxen or malonic acid conform to the previous expectations 

observed from the solubility parameters of the three materials. 

The diffraction pattern of a film containing 20:20:100 w/w/w 

flurbiprofen/ibuprofen/HPMCAS revealed a low signal/noise ratio. This indicate 

that the diffractometer couldn’t detect the presence of neither flurbiprofen nor 
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ibuprofen crystals. Hence, the flurbiprofen and ibuprofen might be in the 

amorphous state or their crystals are too small to be detected by the x-ray. 

Figure 6.24. Representative powder x-ray diffraction patterns for unprocessed ibuprofen (red), 
unprocessed flurbiprofen (purple), and a film containing 20:20:100 w/w/w 
flurbiprofen/ibuprofen/HPMCAS prepared using acetonitrile (blue). 
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6.4 Summary and Conclusion 

The acidic materials malonic acid and ibuprofen were found to interact with 

HPMCAS as shown by a reduction in its Tg value. Difficulties in signal to noise 

ratios meant that the exact nature of the malonic acid interaction with the 

polymer was not identified. It might be a hydrogen bond interaction or Van der 

Waals interaction. Such interactions for acidic drugs have been observed in the 

literature (Patrick et al., 1998 , Bharate et al., 2010 , Dong and Choi, 2008 , 

Konno and Taylor, 2006). Interestingly, the study showed that the nature of the 

solvent system used to produce the films affected the degree of interaction 

between malonic acid and HPMCAS. Ethanol/water was found to interfere with 

this interaction as observed with the high Tg values of films prepared using 

ethanol/water in comparison to those prepared using other solvents. This might 

be due to the interaction between the solvent and malonic acid that competed 

with malonic acid-HPMCAS interaction. On the other hand, acetonitrile and 

chloroform has less effect on malonic acid-HPMCAS interaction. The findings 

were consistent in accordance with the polarity of the solvent used. High 

polarity solvents (e.g ethanol/water) form a bond with either the acidic 

component or the polymer and interfere with their interaction. On the other 

hand, weakly polar solvents did not compete or interfere with acidic drug-

HPMCAS interaction. 

Increasing the concentration of the acidic species resulted in their saturation of 

the polymer accompanied by the growth of large crystals as indicated by HSM. 

The addition of both malonic acid and ibuprofen to the polymer resulted in the 

growth of large ibuprofen crystals at lower ibuprofen concentrations than were 

observed without the presence of malonic acid. Similar behaviour was noticed 
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with films containing malonic acid and naproxen where naproxen crystals were 

observed in the film. A theory to explain this behaviour was put forward and 

involved the competition between malonic acid and ibuprofen for interaction with 

the polymer. The behaviour of two acidic materials in the polymer can be 

correlated to their SP values. Malonic acid has the closest SP value to that of 

the polymer. Hence, it can be concluded from the previous experiments that the 

closer the SP value for the drug to a polymeric vehicle, the more potential for 

that material to preferably interact with the polymer and thus lower the apparent 

solubility of the other acidic component in HPMCAS and thus facilitate its 

apparent earlier onset of crystallisation. 

In addition, flurbiprofen was used to prove the aforementioned theory as it has a 

unique SP value of 24.45 MPa1/2. This value is considered to be the closest 

value to that of HPMCAS than other acidic drugs. The diffraction patterns of 

films containing flurbiprofen with either malonic acid or naproxen show the 

presence of malonic acid or naproxen crystals. However, flurbiprofen crystals 

couldn’t be detected. This result conforms to the expected behaviour based on 

the aforementioned theory considering that both malonic acid and naproxen 

have a remote SP values from that of HPMCAS in comparison to the SP value 

of flurbiprofen. However, the diffraction pattern of a film containing flurbiprofen 

and ibuprofen revealed a low signal/noise ratio with no appearance for any 

diffraction peaks. This indicates that both flurbiprofen and ibuprofen are in the 

amorphous state or their crystals were too small to be detected by x-ray 

diffractometer. The result obtained with the last film doesn’t conform to the 

previous theory. The presence of flurbiprofen might have increased the 



 

143 
 

solubility of ibuprofen in the polymer. Therefore, further investigations are 

needed. 



 

 
 

 

 

 

 

 

 

Chapter 7 

Films containing basic drugs and their 

physicochemical properties 
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7.1 Introduction 

Acidic drugs interaction with HPMCAS has been studied in chapter 6. This 

chapter focuses on the interaction between caffeine and nicotinamide with 

HPMCAS. It also studies the possible effect of the preparation media on that 

interaction. HPMCAS is reported to interact with some basic drugs such as 

indomethacin and omeprazole (Bharate et al., 2010 , Stroyer et al., 2006). 

Therefore it is essential to study the relationship between the basic drugs used 

in this project with the polymer. 

Films containing alkaline drugs were prepared using the method described in 

section 2.3.3. Various solvent systems were used in order to identify the 

possible effects of the preparation media on the aforementioned interaction. 
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7.2 Films containing caffeine 

Films containing caffeine were prepared using the method described in section 

2.3.3. Three solvent systems were used as film preparation media: acetonitrile, 

acetone/chloroform, and ethanol/water.  

 

7.2.1 General analysis 

Films containing low concentrations of caffeine (up to 3:50 caffeine/HPMCAS 

w/w) were noted to be transparent and brittle. However, when caffeine 

concentration increased, the film became more flexible, less brittle and more 

opaque. It was noted that caffeine crystals started to grow on the external 

edges of the film initially. Then the growth continued inward with increasing 

caffeine concentration. Unlike malonic acid, a film containing 2:25 

caffeine/HPMCAS w/w was fully opaque whereas a concentration of 3:5 w/w 

malonic acid/HPMCAS was required to achieve the same outcome.  

 

7.2.2 Thermal analysis 

7.2.2.1 TGA 

The TGA thermal profiles for films containing caffeine were obtained using the 

method described in section 2.2.1.1. It can be observed in figure 7.1 that films 

containing caffeine lost around 3% of the total weight between 30-100°C. This 

weight loss was found in the thermal profile of unprocessed HPMCAS and it 

was considered to be due to the residual moisture in the film. The weight loss 

accelerated above 110°C as a result of caffeine and HPMCAS degradation. It 

has to be noted that the degradation of the film containing caffeine starts at 
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lower temperature than caffeine or HPMCAS alone. This might indicate that the 

polymer is accelerating the degradation of caffeine. 

Figure 7.1. Representative TGA thermal profiles for unprocessed caffeine (blue), unprocessed 
HPMCAS (red), and a film containing 1:10 caffeine/HPMCAS. 
 

 

7.2.2.2 DSC 

The DSC thermal profiles for films containing various amounts of caffeine were 

obtained using the three solvent systems according to the method described in 

section 2.2.1.2. Thermal data were used to obtain the Tg values for these films. 

The Tg values were plotted against the concentration of caffeine in the film 

using the aforementioned solvents. Figure 7.2 reveals that films prepared with 

ethanol/water have the highest Tg values independent of the caffeine 

concentration in the film. On the other hand, films prepared with 

acetone/chloroform shows the lowest values for the Tg. This behaviour can be 
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explained by the affinity of the solvent to form a bond with the polymer/drug and 

consequently interfering with the drug-polymer interaction. In addition to that, 

the value of the Tg was more or less constant when a concentration of 1:10 w/w 

caffeine/HPMCAS or more was added to the film. This might indicate that the 

polymer became saturated with caffeine molecules. Hence any additional  

caffeine molecules will not affect the Tg or the plasticity of the polymer. 

Figure 7.2. Graph to show the relation between the Tg and the percentage weight concentration 
of caffeine in HPMCAS films cast from different solvent systems 
 

 

7.2.3 Powder X-ray diffraction 

The powder x-ray diffraction data were obtained using the method described in 

section 2.2.2. The diffraction pattern revealed a high noise/signal ratio (figure 

7.3). However, it is possible to observe a diffraction peak at 11.9°. This peak 

can be seen as well in the diffraction pattern of unprocessed caffeine. Hence, it 

indicates the presence of crystalline caffeine in the film. 
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Figure 7.3. Representative powder x-ray diffraction patterns for unprocessed caffeine(red), a 
film containing 1:10 caffeine/HPMCAS prepared with ethanol/water (purple), and a film 
containing 1:10 caffeine/HPMCAS prepared with acetone/chloroform (blue). 
 

 

7.2.4 FT-IR transmission 

The FT-IR spectra for films containing 7:100 w/w caffeine/HPMCAS prepared 

using the aforementioned solvent systems were collected using the method 

described in section 2.2.3 in order to identify the presence of any potential 

interaction between caffeine and HPMCAS. The FT-IR spectra for films 

containing various amounts of caffeine revealed a shift in the 1692 cm-1 peak. 

This peak was assigned to C=N, NH vibrational energy (section 3.1.1.3). It can 

be noticed that this peak has shifted to around 1704-1709 cm-1. This indicates 

that the NH group is participating in the bond between caffeine and HPMCAS 

through a hydrogen bond. 
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Figure 7.4. representative FT-IR spectra for unprocessed HPMCAS (teal), unprocessed caffeine 
(red), film containing 9:100 w/w caffeine/HPMCAS prepared using acetone/chloroform (teal), 
film containing 7:100 w/w caffeine prepared with ethanol/water (pink), and a film containing 1:10 
w/w caffeine prepared with acetonitrile (red). 
 

 

7.2.5 SEM 

Films containing malonic acid crystals were analyzed using the SEM in order to 

obtain a good image for the crystal shape. SEM imaging was performed using 

the method described in section 2.2.4.1. The collected data revealed that 

crystals had a diameter of around 50 micrometer (figure 7.5). Some small 

particles appeared to cluster around the crystals. These particles might be 

some carbon dust resulting from the carbon coating of the sample that was 

needed due to the high electrostatic charge of the films. On the other hand, 

those particles might be HPMCAS particles that are adhering to the edges of 

the caffeine crystals. 
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Figure 7.5. SEM scan of films containing 1:100 w/w caffeine/HPMCAS with magnification 
powers of X3000 (top left), X1400 (top middle), X2600 (top right), X1600 (bottom left), X4000 
(bottom middle), and X2200 (bottom right). 
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7.3 Films containing nicotinamide 

Nicotinamide was planned to be used as a co-crystal former with ibuprofen. A 

possible nicotinamide-HPMCAS interaction was studied by analyzing films 

containing various amount of nicotinamide. These films were prepared using the 

method described in section 2.3.3.  

 

7.3.1 Thermal analysis 

7.3.1.1 TGA analysis 

The TGA thermal profile for a film containing 1:5 nicotinamide/HPMCAS was 

collected using the method described in section 2.2.1.1. The data obtained in 

the profile reveal a weight loss of about 2% between 30-100°C. A similar weight 

loss was observed in the thermal profile of unprocessed HPMCAS and was 

correlated to the evaporation of the residual moisture in the film (figure 7.6). It is 

noted that the weight loss in the film containing nicotinamide starts earlier than 

the degradation of the unprocessed polymer or the API. This might indicate that 

the interaction between the two components is accelerating the degradation of 

the nicotinamide. 
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Figure 7.6. Representative TGA thermal profiles for unprocessed nicotinamide (green), 
unprocessed HPMCAS (blue), and a film containing 1:5 w/w nicotinamide/HPMCAS prepared 
with acetonitrile (red). 
 

7.3.1.2 DSC analysis 

The DSC thermal profiles for films containing various amount of nicotinamide 

were obtained using the method described in section 2.2.1.2. The collected data 

were used to calculate the Tg values for these films. Then the Tg values were 

plotted against nicotinamide concentration in films (figure 7.7). It can be noticed 

from figure 7.7 that the Tg values decrease as the concentration of nicotinamide 

increase. However when the nicotinamide concentration exceeds 15:100 w/w in 

the film, the change in the Tg values becomes minimal. The plateau effect might 

be related to a saturation point of nicotinamide in the film. 
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Figure 7.7. A representative plot for the polymeric film Tg values against nicotinamide 
concentrations in these films. 
 

7.3.2 FT-IR transmission 

The FT-IR spectra of films containing 15:100 and 20:100 w/w 

nicotinamide/HPMCAS of nicotinamide were collected following the method 

described in section 2.2.3. It can be noticed in figure 7.8 the presence of a peak 

shift from 3348 cm-1 in nicotinamide to around 3358 cm-1 in films containing 

nicotinamide. This peak was assigned for the C=N, NH vibrational energy in 

nicotinamide (section 3.1.4.3). Consequently, it can be concluded that 

nicotinamide NH group is participating in hydrogen bonding with HPMCAS.  
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Figure 7.8. Representative FT-IR spectra for unprocessed HPMCAS (red), unprocessed 
nicotinamide (purple), film containing 15:100 w/w nicotinamide/HPMCAS (blue), and film 
containing 1:5 w/w nicotinamide/HPMCAS (teal). 
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7.4 Characterisation of films prepared containing one acidic 

and one basic species/drug 

In chapter 6, it was found that adding two acidic drugs to the film resulted in one 

being “salted out” by the other. However, in this chapter, it was decided to 

investigate the effect of including two drugs in the polymer, one is acidic and 

one is basic. . The acidic compound used here is malonic acid and the basic 

counterparts are caffeine and nicotinamide. The films were prepared using the 

method described in section 2.3.3. 

Caffeine and malonic acid are known to form a co-crystalline system (section 

4.2). This system might be affected by the interaction of either one or both of 

them with the polymer. Solubility parameter data were employed in order to 

predict the behaviour of those drugs inside the polymeric film. it can be noticed 

by looking to table 5.1 and 5.2 that both caffeine and malonic acid have SP 

values that are closer to that of HPMCAS than each other. Therefore, 

theoretically, malonic acid and caffeine will preferably interact with the polymer 

rather than interacting with each other. Similar behaviour is expected between 

nicotinamide and malonic acid.  

 

7.4.1 Films containing caffeine and malonic acid 

In order to monitor the interaction affinity of caffeine and malonic acid, both 

materials were added to the film using the same stoichiometric ratio required for 

their co-crystal formation.  
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7.4.1.1 Thermal analysis 

TGA & DSC 

Thermal profiles for films containing various concentrations of caffeine and 

malonic acid were obtained using the methods described in sections 2.2.1.1 

and 2.2.1.2. The TGA thermal profile reveals a weight loss of 2% between 30-

100°C. A similar weight loss was found in the thermal profile of unprocessed 

HPMCAS and was correlated to the evaporation of the residual moisture. On 

the other hand, DSC thermal profiles were used to calculate the Tg values for 

these films (table 7.1). The Tg values of films prepared with acetone/chloroform 

appeared to be higher than those prepared using ethanol/water independent of 

the caffeine and malonic acid concentrations. On the other hand, the Tg of the 

films containing mixture of caffeine and malonic acid revealed Tg values in 

between the Tg values of the films containing caffeine alone or malonic acid 

alone previously discussed in sections 7.2.2 and 6.2.1.2. 

The Tg values of the previous films are less than it would be expected to be for 

films containing mixtures of caffeine and malonic acid behaviour of the Tg can 

be explained by the presence of an interaction between some molecules of 

caffeine and malonic acid. Hence, the effect on the Tg is not linear or additive. 
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Films prepared by acetone/chloroform 
Average Tg value 

(°C) 
Standard 
deviation Malonic acid concentration 

(w%) 
Caffeine concentration 

(W%) 
0 0 119.79 0.3748 

1.4 4.8 82.097 2.1093 
2.6 9.2 74.815 1.5452 
5.3 16.8 64.438 2.2596 

Films prepared by ethanol/water   

Malonic acid concentration Caffeine concentration Average Tg value 
Standard 
deviation 

0 0 118.63 0.5769 
0.2 0.8 114.92 2.0141 
1.3 5 92.997 2.0740 
2.6 9.2 88.477 1.2050 
5.2 16.8 73.863 0.8680 

Table 7.1. Tg values for HPMCAS films containing various concentrations of caffeine and 
malonic acid prepared by acetone/chloroform and ethanol/water. 

 

7.4.1.2 Powder X-ray diffraction 

Powder x-ray diffraction patterns for films containing both caffeine and malonic 

acid were obtained using the method described in section 2.2.2. The diffraction 

patterns (figure 7.9) revealed a high noise/signal ratio, probably due to the high 

amorphous content of the film. However, a peak was observed at 11°. This 

peak was found to exist in unprocessed caffeine diffraction pattern. On the other 

hand, a co-crystal formation peak at 8° was not observed. This indicates that 

caffeine and malonic acid might have not formed a co-crystalline system in the 

polymer or that their co-crystal concentration was below the detection limit. 



 

158 
 

Figure 7.10. A representative powder x-ray diffraction patterns for unprocessed malonic acid 
(red), unprocessed caffeine (purple), co-crystals of both (blue), a film containing 2:9:100 
malonic acid/caffeine/HPMCAS (teal), and a film containing 8:25:100 malonic 
acid/caffeine/HPMCAS (yellow). The last three were prepared using ethanol/water. 
 

7.4.1.3 FT-IR transmission 

The FT-IR transmission spectrum for a film containing 10:3:100 w/w/w 

caffeine/malonic acid/HPMCAS was obtained following the method described in 

section 2.2.3. The collected spectrum reveals a shift in 1692 cm-1 peak in 

caffeine to 1705 cm-1 in the film containing the mixture (figure 7.10). This shift is 

similar to that observed in films containing caffeine alone. This indicates that at 

least some of the caffeine in these films is not forming a bond with malonic acid. 

11 
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Figure 7.10. Representative FT-IR spectra for plain HPMCAS film (red), unprocessed caffeine 
(teal), unprocessed malonic acid (dark red), co-crystals prepared using acetone/chloroform 
(blue), film containing 7:100 w/w caffeine/HPMCAS (pink), and film containing 10:3:100 
caffeine/malonic acid/HPMCAS (green). 

 
It can be concluded that caffeine and malonic acid have interacted with the 

polymer and plasticized it. However, there is a possibility that some particles 

might have formed co-crystals as the observed Tg values of the film were 

lowered than expected for films containing caffeine malonic acid mixture.  

Nevertheless, the thermal profile of the co-crystals appeared in section 4.2.2.1.2 

to be hard to measure. Hence, it cannot be used as an identification tool. 

 

7.4.1.4 Hot stage microscopy  

A film containing 1.4:4.8:100 w/w/w malonic acid/caffeine/HPMCAS was 

examined by HSM following the method described in section 2.2.4.2. The 
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crystals inside the polymer revealed a thin and long shape. It can be noticed 

that the crystals spread through all the layers of the film (figure 7.12). 

Figure 7.12. A representative HSM imaging for a film containing 1.4:4.8:100 w/w/w malonic 
acid/caffeine/HPMCAS with different magnification power: X10 (top and bottom left), X20 (top 
right), and X50 (bottom right). 
 

In summary: loading malonic acid and caffeine in the film resulted in their 

interaction with the polymer. This result conforms to the expected behaviour of 

both drugs obtained from their SP values. However, there was a possibility of 

growing the co-crystals after they reach their saturation concentration. 

Therefore, films containing 8:15:100, 8:20:100, and 8:25:100 w/w/w 

caffeine/malonic acid/HPMCAS were prepared. Acetonitrile was used as a 

solvent system. Films were analyzed using the X-ray diffractometer following 

the method described in section 2.2.2 (figure 7.13). The diffraction patterns 

revealed the presence of diffraction peaks at 16° for all the films. The film 

containing 8:25:100 w/w/w caffeine/malonic acid/HPMCAS revealed the 

presence of two other significant peaks at 22.8° and 25.6°. These peaks 

collectively are considered as the characteristic peaks for caffeine-malonic acid 

co-crystals. On the other hand, films prepared with acetonitrile showed the 
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conversion of anhydrous caffeine into caffeine monohydrate. However, the x-ray 

diffraction pattern did not detect caffeine monohydrate in the film. 

Figure 7.13. Representative powder x-ray diffraction patterns for unprocessed malonic acid 
(red), unprocessed caffeine (green), co-crystal (CSD) (yellow), 8:25:100 (green), 8:20:100 
(purple), and 8:15:100 w/w/w caffeine/malonic acid/HPMCAS (blue). 
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7.4.2 Films containing nicotinamide and malonic acid 

Films containing malonic acid and nicotinamide were prepared using the 

method described in section 2.3.3. Films were analyzed in order to identify the 

molecular interactions that occurred within the film. 

 

7.4.2.1 Thermal analysis 

7.4.2.1.1 TGA 

The thermal profiles for films containing nicotinamide and malonic acid were 

obtained using the method described in section 2.2.1.1. The data collected 

reveals a 2% weight loss between 30-100°C. A similar weight loss was also 

observed in the thermal profile of unprocessed HPMCAS and was correlated to 

the evaporation of residual moisture (figure 7.13).  

Figure 7.13. Representative TGA thermal profiles for unprocessed malonic acid (red), 
unprocessed nicotinamide (pink), HPMCAS film (teal), a film containing 15:100 w/w 
nicotinamide/HPMCAS (blue), and a film containing 1:1:5 nicotinamide/malonic acid/HPMCAS 
(green). 
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7.4.2.1.2 DSC analysis 

Thermal profiles for films containing nicotinamide and malonic acid were 

collected using the DSC following the method described in section 2.2.1.2. The 

collected data reveals the existence of a strong intensity peak at 109°C (figure 

7.14). This peak might be related to the melting of either malonic acid or 

nicotinamide crystals inside the polymer. On the other hand, a new system 

might have formed inside the film and this endothermic peak is the melting peak 

for that system. Another small peak can be noticed at 92°C. This peak might be 

an indication for the presence of some impurities. 

Figure 7.14. A representative thermal DSC profile for a film containing 1:1:5 w/w/w 
nicotinamide/malonic acid/HPMCAS and prepared with acetone/chloroform. 
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7.4.2.2 Powder X-ray diffraction 

The powder diffraction patterns for films containing malonic acid and 

nicotinamide were obtained using the method described in section 2.2.2. The 

diffraction pattern reveals the existence of new peaks at 21° and 28° (figure 

7.15). These two peaks have no matching in the diffraction pattern of 

unprocessed nicotinamide or malonic acid diffraction pattern. However, these 

peaks were observed in the diffraction pattern of malonic acid-nicotinamide co-

crystals (section 4.4.2). Consequently, it can be concluded that part of the two 

drugs may have formed a co-crystalline system inside the polymeric film.  

Figure 7.15. Representative powder x-ray diffraction patterns for unprocessed nicotinamide 
(yellow), unprocessed malonic acid (blue), and a film containing 1:1:5 w/w/w 
nicotinamide/malonic acid/HPMCAS (red). 

 



 

165 
 

7.4.2.3 FT-IR transmission 

The FT-IR spectra for films containing malonic acid and nicotinamide were 

obtained using the method described in section 2.2.3. The resulting spectrum 

reveals a shift in the 3354 cm-1 peak to 3372 cm-1(figure 7.16). This peak was 

previously assigned to the C=N, NH vibration in nicotinamide (section 4.4.3). 

The shift indicates the participation of this group in a bond between 

nicotinamide and either HPMCAS or malonic acid. However, the x-ray 

diffraction pattern showed the existence of new peaks that were observed with 

the diffraction pattern of nicotinamide-malonic acid co-crystals. In addition the 

similarity of this shift with the FT-IR shift in the co-crystals spectrum. Hence, the 

shift might be another indication for the formation of nicotinamide-malonic acid 

co-crystals in the film.  

Figure 7.16. Representative FT-IR spectra for a plain HPMCAS film (red), unprocessed malonic 
acid (yellow), unprocessed nicotinamide (blue), a film containing 1:5 nicotnamide/HPMCAS 
(teal), and a film containing 1:1:5 w/w/w nicotinamide/malonic acid/HPMCAS (green). 
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7.5 Summary and conclusion 

Basic drugs interacted with HPMCAS affecting its plasticity. However, unlike the 

case for acidic additives, a relatively small amount of caffeine or nicotinamide 

amount was enough to saturate the polymer. In addition a slightly lower effect 

on the Tg reduction was observed in comparison to acidic drugs. This can be 

demonstrated by comparing the effect of each of malonic acid, caffeine, and 

nicotinamide on the Tg of the polymer (figure 7.17). It can be seen that caffeine 

has affected the Tg to almost a similar manner like nicotinamide. However, a 

smaller amount of caffeine was enough to produce the saturation concentration. 

Figure 7.17. A comparison between the Tg values of films containing: caffeine, nicotinamide, or 
malonic acid against the concentrations of these drugs in the film. 
 

FT-IR spectra for films containing caffeine or nicotinamide revealed a shift in the 

peak  assigned for the C=N, NH vibration in both of the compounds. This 

indicates that each of them is formed a hydrogen bond with the polymeric 

matrix. 
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When films containing caffeine were prepared using various solvent systems, it 

was noticed that the high polarity solvent system (ethanol/water) interfered with 

the drug-polymer interaction. On the other hand, the low polarity solvent 

(acetonitrile) had less effect on that interaction and resulted in a low Tg values 

expected.   

Malonic acid was used to study the effect of loading an acidic and a basic drug 

into the polymeric film. Despite that solubility parameter values provided in table 

5.1 indicated that malonic acid and nicotinamide or caffeine would theoretically 

favour to interact with the polymer rather than interacting with each other, 

malonic acid managed to form a bond with caffeine and nicotinamide forming a 

co-crystalline system during the loading of the two materials (malonic acid-

nicotinamide and/or malonic acid- caffeine) into a polymeric film. However, a 

smaller amount of malonic acid was needed to interact with nicotinamide than 

that needed to interact with caffeine. The excess amount in the second case 

appeared to be needed to saturate the polymer first and bring the interaction 

favour toward caffeine. This result doesn’t conform to the proposed theory of 

interaction affinity prediction based on the closeness of the solubility parameter 

values of the drugs and the polymer. This difference can be explained by the 

affinity factor between the acidic and basic compounds to interact which has not 

been taken into consideration in the proposed theory.  

It can be concluded from the previous observation that increasing the 

concentration of the acidic part of the co-crystal system can be considered as a 

technique to grow co-crystals in a polymeric carrier of HPMCAS. this technique 

proved itself in the case of caffeine-malonic acid co-crystals in HPMCAS film. 

however, this technique cannot be considered as a general rule as it may 
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resulted in the use of an excess amount of the drug over its therapeutic level as 

in the case of ibuprofen-nicotinamide were ibuprofen is the acidic part of the 

drug.



 

 
 

 

 

 

 

 

 

 

 

Chapter 8 

Manufacture and stability of co-crystals in a polymeric carrier 
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8.1 Introduction 

This chapter examines the loading process of co-crystals (caffeine-malonic acid 

and ibuprofen-nicotinamide) into a polymeric vehicle (HPMCAS). It will also 

investigate the factors that affect this process and study the dissolution release 

and stability of the co-crystals in the film. 

Caffeine-malonic acid co-crystals can be grown in the polymeric film by using 

an excess above their saturation concentrations. Therefore, the excess amount 

of the acidic moiety of the co-crystals was used in chapter 7 to saturate the 

polymer for the acidic drug. This in turn has allowed the growth of free crystals 

in the film that have the ability to interact with the basic moiety and form a co-

crystal (as in caffeine-malonic acid co-crystal formation in chapter 7). However, 

the increase in the acidic moiety may not always be possible for the rest of co-

crystalline systems, e.g. Ibuprofen-nicotinamide co-crystals are one of the 

examples were the API is the acidic moiety. Increasing the ibuprofen 

concentration to reach the saturation concentration may not be possible as it 

will result in overdosing. 

Therefore, it was necessary to find a method that can preserve the 

concentrations around their acceptable therapeutic concentrations. 

The possibility of loading the co-crystals without increasing the acidic moiety 

concentration was investigated. Therefore, the co-crystals of caffeine-malonic 

acid and ibuprofen-nicotinamide were prepared and then dispersed in a 

HPMCAS solution. 

The solvent effect on the loading process and on co-crystal integrity was 

evaluated through the use of different solvents for the loading process. 



 

170 
 

It was revealed in chapter 7 that the HPMC-AS film has a higher affinity to 

interact with the acidic moiety of the co-crystal, therefore the approach of using 

another acidic drug with a closer SP to that of the polymer was investigated to 

verify if it can reduce the saturation concentration of the co-crystal acidic moiety 

and therefore protect the co-crystal integrity. 

Two co-crystal systems were studied, caffeine-malonic acid and ibuprofen-

nicotinamide. 

 

8.2 HPMCAS films containing co-crystals of caffeine and malonic 

acid 

Films designed to contain 500 mg caffeine-malonic acid co-crystal in 4000 mg 

HPMCAS were prepared using the method described in section 2.3.4. Two 

solvent systems were used for the loading process: acetonitrile and 

acetone/chloroform. The resulting films were analyzed in order to confirm co-

crystal integrity. 

 

8.2.1 Thermal analysis 

TGA & DSC 

Films containing 500 mg of caffeine-malonic acid co-crystals prepared and cast 

using acetonitrile or acetone/chloroform were analysed using TGA and DSC to 

obtain their thermal profiles. The moisture content of the film was similar to the 

moisture content of unprocessed HPMCAS (section 3.1.7.1) around 2% 

between 30-100°C (Appendix AI 10).  
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The thermal DSC profile for films containing co-crystals didn’t reveal any of the 

melting peaks observed in the thermal profile of caffeine-malonic acid co-

crystals (figure 4.1 and 4.2). In addition to that, the Tg values of films containing 

co-crystals prepared using acetone/chloroform was difficult to measure.  

However, the two measureable Tg values (91.52° and 35.73°C) are lower than 

those observed with films prepared using acetonitrile (110.37° and 72.73°C). 

This may reflect that the type of materials interacting with the polymer is 

different between the two films. It was noticed that malonic acid (or acidic drugs 

generally) causes more depression for the Tg of the polymer than basic ones. 

Therefore, this might suggests that the amount of free malonic acid in the film 

prepared using acetone/chloroform is higher than that in a film prepared using 

acetonitrile (figure 8.1). 

Nevertheless, it is unclear if the Tg shift is the result of the interaction between 

the co-crystals and the polymer or the caffeine and malonic acid interaction with 

the polymer. Consequently, detecting Tg changes to quantify drug interaction 

with the polymer and compare the effect of using various solvents on such 

interaction was not practical.  
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Figure 8.1. Representative thermal DSC profiles for films containing caffeine-malonic acid co-
crystals prepared using acetone/chloroform (green) and acetonitrile (blue). 

 

8.2.2 Powder X-ray diffraction 

The diffraction pattern obtained from a film containing co-crystals prepared 

using acetonitrile revealed two diffraction peaks at 12.5° and 27.4°. The second 

diffraction peak can be correlated to the diffraction pattern of caffeine- malonic 

acid co-crystals (section 4.2.1.2). On the other hand, the diffraction pattern 

obtained from films prepared using acetone/chloroform revealed a high 

noise/signal ratio with a weak diffraction peak appeared at 12°. Therefore, it 

was not possible to confirm conclusively the co-crystals presence in these films 

(figure 8.2).  
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Figure 8.2. Representative x-ray diffraction patterns for unprocessed malonic acid (purple), 
unprocessed caffeine (blue), co-crystals diffraction pattern obtained from CSD (green), a film 
containing co-crystals prepared using acetone/chloroform (teal), and a film containing caffeine-
malonic acid co-crystals prepared using acetonitrile (red). 
 

8.2.2 FT-IR transmission 

The collected FT-IR spectra using the method described in section 3.2.3 

revealed a shift in caffeine C=N, NH peak from 1692 cm-1 to 1699 cm-1 and 

1705 cm-1 in films containing co-crystals prepared with acetonitrile and 

acetone/chloroform respectively. The shift of C=N, NH peak from 1692 to 1698 

cm-1 was observed previously in the FT-IR transmission pattern of caffeine-

malonic acid co-crystals (section 4.2.1.3). As the degree of shifting reflects the 

change of the vibrational energy of the system, therefore it can be concluded 

that the films prepared using acetonitrile reveals the presence of co-crystals. On 

the other hand, the observed shift in films containing 500 mg co-crystals and 
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prepared using acetone/chloroform is similar to the shift in films containing 

caffeine alone. In addition, this shift is higher than the shift resulting from co-

crystal formation. Therefore, it can be concluded that a shift of the C=N, NH 

peak in the analysis of films prepared using acetone/chloroform is an indication 

of the bond formed between caffeine and HPMCAS which in turns reflect the 

absence of co-crystals in the scanned spot (figure 8.3). It was difficult to identify 

the shift in malonic acid C=O, OH representative peaks as the polymer 

transmission pattern was covering a wide range of the chart and due to the high 

number of peaks that assign for that particular functional group. Therefore, the 

vibrational energy in the C=N, NH bond was used as an indicator for the 

presence of caffeine-HPMCAS or caffeine-malonic acid interaction. It is worth 

mentioning that films prepared using both solvents showed the presence of both 

co-crystals and caffeine-HPMCAS interaction. However, it was easier to find co-

crystals in films prepared using acetonitrile than those prepared using 

acetone/chloroform. Nevertheless, since the FT-IR microscopy is a single spot 

scan therefore it is difficult to quantify the co-crystals/crystals ratio in each film.  
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Figure 8.3. Representative FT-IR spectra for unprocessed HPMCAS (red), unprocessed 
malonic acid (teal), unprocessed caffeine (yellow), a film containing 1:10 caffeine/HPMCAS 
(blue), co-crystals prepared using acetone/chloroform (brown), film containing co-crystals 
prepared using acetone/chloroform (purple), and a film containing co-crystals prepared using 
acetonitrile (green). 
 

 

It can be concluded that caffeine-malonic acid co-crystals were successfully 

loaded into the polymer and that some of them stayed intact. A quantitative 

study for the co-crystals/constituents ratio was difficult to perform; therefore no 

blocker was used as its effect cannot be measured. 



 

176 
 

8.3 Films containing co-crystals of ibuprofen and nicotinamide 

Films containing 500 mg ibuprofen-nicotinamide co-crystals were prepared 

using the method described in section 2.3.4. Acetonitrile and 

acetone/chloroform were used for the loading of these co-crystals in the 

polymeric film.  

 

8.3.1 Thermal analysis 

TGA and DSC 

The thermal profiles of films containing ibuprofen-nicotinamide co-crystals 

prepared with acetone/chloroform and/or acetonitrile reveal a weight loss 

around 2% between 30-100°C which was similarly observed in the thermal 

profile of unprocessed HPMCAS. This weight loss was correlated to the 

evaporation of the residual moisture in the film (Appendix AI 11). A shift of the 

polymer Tg can be observed as well. From figure 8.4, the Tg values were 53° 

and 41°C for films prepared using acetonitrile and acetone/chloroform 

respectively. Comparing these values to the values observed in films containing 

ibuprofen and nicotinamide separately reveals that the observed Tg shift in films 

loaded with ibuprofen-nicotinamide co-crystals might be due to the plasticizing 

effect produced by the effect of the constituents on the polymer. Hence, free 

ibuprofen and nicotinamide were detected (figure 8.4). On the other hand, this 

change in Tg value might be the result of co-crystals interaction with the 

polymer. 
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Figure 8.4. Representative DSC thermal profiles for a film containing 1:10 w/w 
ibuprofen/HPMCAS (green), 1:10 w/w nicotinamide/HPMCAS (blue), a film containing co-
crystals prepared with acetone chloroform (1) (red), and acetonitrile (2) (purple). 
 

8.3.2 powder X-ray diffraction 

The diffraction pattern obtained from films containing ibuprofen-nicotinamide co-

crystals prepared using acetonitrile revealed the existence of three peaks at 3°, 

16°, and 17°. The presence of these peaks is confirmatory of the presence of 

co-crystal inside the polymer. On the other hand, the diffraction pattern of the 

film prepared using acetone/chloroform failed to provide any diffraction peak 

due to the low signal/noise ratio due to the domination of the amorphous peaks 

related to the polymeric matrix (figure 8.5). 
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Figure 8.5. representative powder x-ray diffraction pattern for unprocessed nicotinamide (black), 
unprocessed ibuprofen (red), co-crystals (silver), a film containing co-crystals prepared using 
acetone/chloroform (teal), and a film containing co-crystals prepared using acetonitrile (green). 

 

This result doesn’t prove or disprove the existence of ibuprofen-nicotinamide 

co-crystals in films prepared using acetone/chloroform. Therefore, FT-IR 

microscopy was used to provide supporting evidence for identifying the type of 

crystal in the film. 

 

8.3.3 FT-IR transmission 

Analysis of the data in figure 8.6 revealed that it was difficult to detect the shift 

in films containing ibuprofen-nicotinamide co-crystals. This is due to the nature 

of the polymer that has wide range of interfering vibrations. 
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Figure 8.6. Representative FT-IR spectra for, unprocessed ibuprofen RS (green), unprocessed 
nicotinamide (blue), co-crystals (pink), a film containing co-crystals prepared using 
acetone/chloroform (red), and a film containing co-crystals prepared using acetonitrile (silver). 

 

The results collected from the DSC, X-ray, and FT-IR indicate the presence of 

some ibuprofen-nicotinamide co-crystals in the film prepared using acetonitrile, 

contrary to films prepared using acetone/chloroform. However, the co-crystal 

percentage appeared to be lower than that that the DSC can detect. The FT-IR 

data revealed no shifting in the analyzed spots. Hence, it can be concluded that 

free nicotinamide and ibuprofen are present in the film. Thermal analysis of both 

films revealed the presence of an interaction between the drug, crystalline/co-

crystalline, and the polymeric matrix. This interaction caused the depression 

noticed in the Tg value of the polymer. 
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HPMCAS is known to have a preferential interaction with acidic drugs. Hence, 

in order to prevent such an interaction from affecting the integrity of the loaded 

co-crystals, a second acid was selected based on the observations in sections 

6.3 and 6.4 in order to reduce the saturation concentration for ibuprofen and 

consequently reduce the affinity of HPMCAS to interacting with ibuprofen. 

Malonic acid was selected as it has a SP value that is closer to HPMCAS SP 

value than that of ibuprofen and HPMCAS. Since malonic acid SP value is 

closer to that of the polymer rather than nicotinamide SP value, there should 

theoretically be no or little interaction between malonic acid and nicotinamide. 

 

8.4 The use of a blocking agent for ibuprofen-HPMCAS interaction 

Malonic acid was noticed to reduce the saturation point of ibuprofen by 

competing with it on the interaction with the polymer as in section 6.3.1. 

Therefore, malonic acid is used in this experiment to reduce the affinity of 

ibuprofen to interact with the polymer. This might preserve more co-crystals 

during the loading process. As it was mentioned earlier, there is some affinity 

between nicotinamide and malonic acid to interact and form co-crystals. 

However, based on the affinity rule derived from the SP values, malonic acid 

should preferably interact with HPMCAS more than nicotinamide. Hence, if no 

excess amount of malonic acid were used, the right environment for loading the 

co-crystals should be achieved.  

Films were prepared using the method described in section 2.3.4. Various 

concentrations of malonic acid were tested to find an optimum amount of 800 

mg/4000 mg HPMCAS to use with all films. 
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8.4.1 General analysis 

Visual inspection of these films revealed an increase in opacity of the polymeric 

matrix compared to films containing the same concentration of co-crystals only. 

In addition, small white crystals were noticed dispersing in the polymeric films.  

 

8.4.2 Thermal analysis 

TGA & DSC 

Thermal profiles for films containing ibuprofen-nicotinamide co-crystals with a 

blocking agent (malonic acid) prepared using acetone/chloroform and 

acetonitrile revealed about 2% weight loss between 30-100°C. A similar weight 

loss was observed in the thermal profile for unprocessed HPMCAS and was 

correlated to the evaporation of the residual moisture in the film. In addition to 

that, these profiles main difference from the thermal profile of films containing 

no blocking agent is the degradation step that around 140°C. This step can be 

correlated to the degradation of malonic acid (Appendix AI 11). On the other 

hand, the Tg values of these films were difficult to measure. However, two 

interesting peaks were detected in the thermal profile of films prepared using 

acetonitrile. Those peaks were found at 92°C and 104°C (figure 8.7). These 

peaks can be correlated to the melting peaks of ibuprofen-nicotinamide co-

crystals (93°C) and malonic acid-nicotinamide co-crystals (110°C). The 

endothermic peak at 92°C was noticed in the first heating run in the DSC 

thermal profile. This peak disappeared from the second heating run. It can be 

noticed that heat melted the co-crystals and the polymeric matrix prevented 

their reformation on cooling. This can be observed in the disappearance of the 

co-crystals peak from the second heating run. However, the second peak is not 
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close to the melting point of the individual components of the melted co-crystals. 

It is rather close to the melting point of malonic acid-nicotinamide melting point. 

Hence, this may indicate the presence of malonic acid-nicotinamide co-crystals 

in the film. Since the last co-crystal system was not added to the film, this 

means that malonic acid has substituted ibuprofen in the co-crystal and took its 

place (similar to substitution reaction in salts). This substitution was predicted 

according to the solubility parameter values of the three compounds. However, 

malonic acid was expected to interact preferentially with the polymer.  

Figure 8.7. Representative DSC thermal profiles for ibuprofen-nicotinamide co-crystals (green), 
malonic acid-nicotinamide co-crystals (blue), the first heating run of a film containing co-crystals 
and malonic acid prepared with acetonitrile (brown), and the second heating step for the same 
film (pink). 
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8.4.3 Powder X-ray diffraction 

The X-ray diffraction pattern reveals the existence of 3 peaks diffraction at 6°, 

19° and 28° (figure 8.8) These peaks can be observed in the diffraction pattern 

of unprocessed ibuprofen (6°) and nicotinamide-malonic acid co-crystals (19° 

and 28°). Therefore, according to the thermal and the X-ray analysis, it can be 

said that the film contains ibuprofen-nicotinamide co-crystals, malonic acid-

nicotinamide co-crystals, ibuprofen, and malonic acid crystals.  

Figure 8.8. Representative powder x-ray diffraction pattern for unprocessed nicotinamide 
(yellow), unprocessed ibuprofen (green), unprocessed malonic acid (purple), nicotinamide-
malonic acid co-crystals (teal), ibuprofen-nicotinamide co-crystals (red), and film containing 
ibuprofen-nicotinamide co-crystals with malonic acid (black). 

 

8.4.4 FT-IR transmission 

The FT-IR spectrum was used in order to probe the interactions that exist in the 

polymeric film. The FT-IR spectrum revealed a peak shift at 3354 to 3371 cm-1. 
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This peak was correlated to the C=N, NH vibrational energy in nicotinamide. 

There was no observed shift in the 1698 cm-1 in ibuprofen that assign for C=O, 

OH bond. In addition to that, there was a peak observed at in scan shows that 

the nicotinamide peak at 1686cm-1 (figure 8.9). This peak can be observed in 

malonic acid-nicotinamide co-crystals. This peak was found to assign for C=O, 

C-O vibrational energy in malonic acid. Hence, the FT-IR analysis reveals the 

existence of nicotinamide-malonic acid co-crystals in films loaded with 

ibuprofen-nicotinamide co-crystals in addition to malonic acid as well. 

Figure 8.9. Representative FT-IR spectra for unprocessed HPMCAS (blue), unprocessed 
malonic acid (teal), unprocessed ibuprofen RS (purple), unprocessed nicotinamide (silver), 1:2 
ibuprofen/HPMCAS (green), 1:5 nicotinamide/HPMCAS (black), ibuprofen-nicotinamide co-
crystals (red), film containing ibuprofen-nicotinamide co-crystals (light green), malonic acid-
nicotinamide co-crystals (yellow), and film containing ibuprofen-nicotinamide co-crystals with 
malonic acid (white). Films were prepared using acetonitrile. 
 

The analysis of films containing ibuprofen-nicotinamide co-crystals and malonic 

acid revealed the existence of a free ibuprofen and malonic acid in addition to a 
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mixture of two co-crystalline systems: ibuprofen-nicotinamide and malonic acid-

nicotinamide. Therefore, the use of malonic acid to improve the outcome of the 

loading process of co-crystals into a polymeric film can be described as in-

effective in terms that it was not 100 percent efficient in preserving the desired 

co-crystals. On the other hand, it was not feasible to quantify the percentage of 

both co-crystalline systems in the film. Therefore, any improvement in the total 

loading ratio is difficult to measure. 

 

8.5 Dissolution test 

Generally co-crystals have a faster dissolution rate than their parent drug 

(Blagden et al., 2007 , Vishweshwar et al., 2006 , Mirza et al., 2008). However, 

there is a dearth of information about the release and the dissolution behaviour 

of co-crystals dispersed in a polymeric carrier. Caffeine and malonic acid can be 

easily measured with UV spectroscopy as there is no major overlap for their 

absorption profiles. On the other hand, the UV absorption spectra for ibuprofen, 

nicotinamide and malonic acid overlap which render the use of UV to measure 

the release profile very complex. Therefore, the dissolution test was performed 

only on films containing caffeine-malonic acid co-crystals. The release pattern 

was obtained following the method described in section 2.2.5. The collected 

data was then compared to the dissolution rate of a film containing a similar 

caffeine concentration to that used in films containing co-crystals (1:10 w/w 

caffeine/HPMCAS). The experiment was repeated twice in order to reduce the 

effect of experimental error. Even though that the average dissolution rate of 

films containing caffeine alone is greater than that of films containing co-

crystalline caffeine (figure 8.10), the standard error for the experiment was high 
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and thus prevented any significance from being assigned or real comparison 

from taking place (Appendix AVI 1-3).  

 
Figure 8.10. Comparison of the dissolution rate of caffeine from a film containing 1:10 
caffeine/HPMCAS w/w, and a film containing equivalent amount of caffeine as co-crystals. Error 
bars removed for clarity and can be found at Appendix AVI 1-3. 

 

Given the above constraints, the graph (Fig. 8.10) shows that the dissolution of 

caffeine from the polymer is higher than the dissolution of it when formulated as 

a co-crystal and loaded into the polymeric film. 

 

8.4.6 Stability study 

The stability of caffeine-malonic acid co-crystals against high humidity and 

temperature was measured in order to monitor the effect of the film coating 

(dispersion of co-crystals in the polymeric film) on caffeine resistance to 

hydration. 

The stability test was performed on films containing caffeine-malonic acid co-

crystals only due to the abundance of caffeine-malonic acid co-crystals in 
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comparison to ibuprofen-nicotinamide co-crystals in films containing either. In 

addition, it is easier to detect the presence of caffeine-malonic acid co-crystals 

in comparison to ibuprofen-nicotinamide co-crystals using FT-IR microscopy. 

Although the ICH guidelines suggest the use of 40°C and 75% relative humidity 

for 6 months (Guideline, 2003), the parameters were chosen as 45°C and 95% 

relative humidity as the available time was 3 months. However, the sample 

didn’t reveal any difference after the end of the third month. Therefore, the 

samples were kept for additional 4 months. 

Caffeine-malonic acid co-crystals was reported in the literature to have a good 

stability for hydration more than caffeine alone (Trask et al., 2005). HPMCAS is 

known to be a hygroscopic material. Therefore, dispersing caffeine-malonic acid 

co-crystals in HPMCAS film will bring the co-crystals in contact with the 

moisture.  

HPMCAS films containing 500 mg of caffeine-malonic acid co-crystals were 

divided into small pieces and analyzed with FT-IR to ensure the presence of the 

co-crystals and to obtain a reference for future comparison. Samples were 

stored in a closed oven with a relative humidity (RH) of 95% and temperature of 

45°C. 

Caffeine-malonic acid co-crystals revealed a good stability against relative 

humidity of 75% for 7 weeks. However, when the RH was increased to 98%, the 

co-crystals was stable for the first week and the FT-IR analysis showed the 

disappearance of their transmission profile after 7 weeks (Schultheiss and 

Newman, 2009). On the other hand, another study in the literature revealed that 
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the co-crystals disappeared after one day of storing them at 98% RH at room 

temperature (Trask et al., 2005). 

The available stability study oven was limited to 95% RH, Therefore the study 

was performed on 95% and a temperature of 45°C to provide an extra 

challenge for the co-crystals dispersed in the HPMCAS film. 

The samples were removed periodically and analyzed using the FT-IR 

microscopy to monitor the presence of caffeine-malonic acid co-crystals. The 

analysis revealed that samples stored for 8 weeks containing intact co-crystals 

(Appendix AVII 1-23). Afterward the analysis revealed the disappearance of the 

co-crystals transmission profile and the appearance of caffeine or caffeine-

HPMCAS transmission profile. Therefore, it can be concluded that dispersing 

caffeine-malonic acid co-crystals in a film of HPMCAS increased the stability of 

those co-crystals against 95% RH and 45°C temperature. 
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8.5 Summary and conclusions 

Loading caffeine-malonic acid co-crystals was successful using acetonitrile and 

acetone/chloroform. However, the percentage of intact co-crystals was 

observed to be higher with the first solvent. 

On the other hand, loading ibuprofen-nicotinamide co-crystals into HPMCAS 

films revealed the presence of a very small number of intact co-crystals that 

couldn’t be detected by the DSC and were only detectable by x-ray. 

When malonic acid was used as a blocking agent to reduce the ibuprofen 

saturation concentration, it was noticed that some ibuprofen-nicotinamide co-

crystals were detected by the DSC in addition to the detection of malonic acid-

nicotinamide co-crystals as well. 

A- Caffeine-malonic acid co-crystals in HPMCAS film: 

Caffeine-malonic acid co-crystals were loaded into a polymeric vehicle using 

two solvent systems: acetonitrile and acetone/chloroform. Although acetonitrile 

was found to aid formation of caffeine monohydrate (chapter 3 and 4), the FT-IR 

results in this chapter showed no sign of caffeine monohydrate. The quantitative 

comparison between films containing caffeine-malonic acid co-crystals prepared 

using acetonitrile or acetone/chloroform was difficult through thermal analysis 

(DSC) as the Tg values for films prepared using acetone/chloroform were 

difficult to be measured. However, the calculated Tg values for films prepared 

using acetone/chloroform is lower than that prepared using acetonitrile (91.52° 

and 35.73°C for films prepared using acetone/chloroform compared to 110.37° 

and 72.73°C observed for films prepared using acetonitrile). Since malonic acid 

and caffeine in their free state can interact better with the polymer and 
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consequently reduce the Tg more. The amount of free drugs is inversely related 

to the amount of the intact co-crystals. Therefore, it can be concluded that the 

amount of free drug in the film prepared using acetone/chloroform containing 

less amount of co-crystals than the one prepared using acetonitrile. 

B- Ibuprofen-nicotinamide co-crystals in HPMCAS film: 

The second part of this chapter focused on the loading of ibuprofen-

nicotinamide co-crystals into a polymeric film in the presence of malonic acid. 

The DSC thermal profile shows the presence of two endothermic peaks at 92°C 

and 104°C. These peaks are expected to be the melting peaks of ibuprofen-

nicotinamide co-crystals (92°C) and malonic acid-nicotinamide (110°C) 

respectively. The X-ray diffraction pattern of films containing ibuprofen-

nicotinamide co-crystals revealed the presence of nicotinamide-malonic acid co-

crystals in the film. Therefore, it can be stated that films loaded with ibuprofen-

nicotinamide co-crystals and malonic acid as a blocking agent revealed the 

presence of: ibuprofen-nicotinamide co-crystals, malonic acid-nicotinamide co-

crystals, ibuprofen, nicotinamide, and a possible malonic acid-HPMCAS and 

ibuprofen-HPMCAS. 

C- Ibuprofen-nicotinamide co-crystals in HPMCAS film using malonic 

acid as a blocker: 

Malonic acid was used in order to protect the co-crystals of ibuprofen-

nicotinamide from interacting with the polymer. Malonic acid was chosen based 

on its SP value which is closer to that of the polymer than either ibuprofen or 

nicotinamide to the polymer SP value. 
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Malonic acid was not used in excess in order not to affect the co-crystals as 

well. Nevertheless, the analysis of these films showed the presence of malonic 

acid-nicotinamide co-crystals. 

The quantification of co-crystals was not feasible, thus it was difficult to quantify 

the effect of using the malonic acid on the loading of the co-crystals. 

 

D- Dissolution test of caffeine-malonic acid co-crystals in HPMCAS 

film 

The dissolution test of films containing caffeine-malonic acid co-crystals 

revealed a lower dissolution rate than films containing the same amount of 

caffeine alone. However, the standard error of the release profile was high. 

Thus the actual superiority for films containing caffeine alone is not fully 

confirmed. 

 

E- Stability test of caffeine-malonic acid co-crystals in HPMCAS film 

The ability of HPMC-AS as a protective film to enhancing the stability of 

caffeine-malonic acid co-crystal against high RH and temperature was 

measured through a stability test for films containing co-crystals over 7 months. 

The test revealed that co-crystals disappeared after 8 weeks of storage. This is 

considered to be higher than the documented stability test for caffeine-malonic 

acid co-crystals alone in the literature were the co-crystals stayed stable for 1 

day or less (Trask et al., 2005 , Schultheiss and Newman, 2009). Therefore, it 
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can be concluded that the polymer enhanced the stability of caffeine-malonic 

acid co-crystals against high RH and temperature. 

 



 

 
 

 

 

 

 

 

 

 

 

Chapter 9 

Summary, conclusions, and future work 
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Summary and conclusion 

This thesis has investigated whether co-crystals can be formed within a polymer 

film (HPMC-AS) and has used a range of techniques to characterise their solid-

state form. The dissolution and stability properties of the co-crystal in the film 

systems have also been investigated. The aim of the thesis was novel and the 

literature contains only one limited study of the behaviour of co-crystals formed 

and dispersed in a polymeric carrier, namely nicotinamide-carbamazepine 

dispersed in polyvinyl pyrrolidone (Good et al., 2011). The study in this thesis is 

much more extensive and highlights the difficulty of producing co-crystals within 

films. 

To outline the structure of this thesis: 

The first step was analyzing the raw materials to identify their properties. This 

step revealed that the anhydrous caffeine used in this study was obtained as 

polymorph I. On the other hand, malonic acid was shown to contain a mixture of 

two polymorphs in the received batch: α and β. 

Ibuprofen was characterised in its received state and was found to be its 

racemic mixture. Nicotinamide was found to be in its polymorph I form. 

The effect of the recrystallization solvent systems to be used in casting films on 

the initial starting materials was evaluated in chapter 3. The aim was to observe 

the effect of the preparation media (solvent systems) on the physicochemical 

properties of each of the raw materials. Three solvent systems were used: 

acetone/chloroform 3:2 v/v, ethanol/water 4:1 w/w, and acetonitrile. 

Ethanol/water was included in particular to dissolve the polymer as was advised 

by the manufacturer. . Acetonitrile was used because of its known capability to 
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form ibuprofen-nicotinamide co-crystals (Berry et al., 2008). A third solvent 

system was identified after preliminary experimental work. This system 

consisted of acetone/chloroform 3:2 v/v. Re-crystallization of the raw materials 

with the aforementioned solvent systems revealed no change in the solid state 

form of any of the raw materials properties except in the case of caffeine. Re-

crystallizing caffeine revealed the formation of caffeine monohydrate as 

evidenced by thermal and X-ray methods.   

The third step in this study was studying the formation and properties of the 

selected co-crystals using a solvent evaporation method (the co-crystals 

evaluated would be later incorporated into the polymeric film) and the effect of 

various solvent systems on their properties. It was noticed that caffeine-malonic 

acid co-crystals were successfully produced using all the solvent systems. 

However, use of acetonitrile revealed the formation of a mixture of a co-crystal 

and residual caffeine monohydrate in the final product of the co-crystallization 

experiment. A new co-crystal system was discovered during the study. It is a 

co-crystalline system of nicotinamide and malonic acid 1:1 mol/mol. This system 

was found to be easily formed with acetonitrile and acetone/chloroform using 

the solvent evaporation method for preparation. Very recently in comparison, 

solution mediated and drop grinding was used in the literature to prepare 1:1 

nicotinamide/malonic acid co-crystals using ethanol or methanol as a solvent 

system(Voguri, 2010). 

The next area for investigation was to study the interaction of each of the raw 

materials with the polymeric film. The interaction was found to be related to the 

solvent system used in the loading process. High polarity solvents were noticed 

to interfere with the interaction more significantly than low polarity solvents. For 
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example, malonic acid was found to have a higher affinity to the polymer and 

lowered its Tg value by a greater extent than basic additives with the same 

molar ratio in the film. 

Loading two acidic additives simultaneously to the polymer was found to affect 

the interaction of those materials with the polymer. It was found that compound 

A (e.g. flurbiprofen) interacts more favourably with the polymer than compound 

B (e.g. malonic acid and naproxen), saturating it and competitively inhibiting 

interaction.  The evidence for this was provided by the X-ray, FT-IR, and DSC 

analysis of the polymeric films that shows the existence of B crystals in the 

presence of A in the film at a lower concentration than films containing B alone. 

Additionally the disappearance of A crystals from the analysis data confirms 

their conversion into the amorphous form. This in turn reflects the interaction 

between the polymer and compound A that lead to saturating the polymer and 

reducing the saturation concentration for compound B. 

In a novel way the thesis explored the use of solubility parameters as a 

predictive tool for the incorporation of co-crystals into films. The behaviour could 

be predicted from use of calculated solubility parameter values of acidic 

additives. The solubility parameters theory was developed mainly to predict the 

miscibility of liquids. However, the theory was expanded to include the 

miscibility of solid compounds. However, it is worth mentioning that this theory 

cannot be applied for negative deviations from Raoult’s law solutions or 

compounds, in other words, it doesn’t take the polarity of the molecules into 

account. This was noticed when a mixture of acidic and basic compounds was 

dispersed in the polymeric film. It was also noticed with the formation theory 

prediction of the co-crystals alone (Mohammad et al., 2011). The theory 
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developed and refined in this project suggested that an acidic drug with a closer 

SP value to the polymer will dominate the interaction process and prevent the 

majority of the other material from interacting with the polymer. This was 

investigated using flurbiprofen as a drug with a closer SP value to the polymer 

one than other acidic drugs (malonic acid, naproxen, and ibuprofen). The 

experiment revealed that naproxen and malonic acid mixtures with flurbiprofen 

in the polymeric film behaved according to the postulated theory. However, 

when ibuprofen was added to a film containing flurbiprofen both drugs dissolved 

in the film. The concentration was increased in order to reach the saturation 

point of ibuprofen. Nevertheless, the films remained clear. It is not clear if the 

presence of flurbiprofen enhanced the solubility of ibuprofen in the film. .  The 

way SP is calculated may have contributed to the theory not being generally 

applicable for the acidic systems.  

The SP theory was found to be not applicable for basic additives when mixed 

with acidic drugs in the polymeric film. This might be considered as one of 

limitations to the previous theory. However, it was noticed that adding malonic 

acid to films containing nicotinamide resulted in the formation of nicotinamide-

malonic acid co-crystals. These co-crystals were identified by analysis with 

powder X-ray diffractometry and FT-IR spectroscopy. It is difficult to 

compensate for the interaction between the co-crystal formers. 

On the other hand, adding malonic acid to films containing caffeine resulted in 

the formation of caffeine-malonic acid co-crystals. However, it was noticed that 

the amount needed of malonic acid to form caffeine-malonic acid co-crystals in 

the film was higher than that needed to form nicotinamide-malonic acid co-

crystals in the film.  Thus the use of another additive to block polymer binding 
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sites and allow the easier formation of co-crystals in films has been 

demonstrated.  Each system needs its own preliminary experiments to titrate 

the level of additive needed for the blockage.  

Adding an excess amount of malonic acid was noted to saturate the polymeric 

film and allow the rest of malonic acid molecules to interact with the basic 

molecule to form co-crystals. This method might be not practical when the 

acidic moiety is the API since using an excess amount might lead to 

overdosing. Therefore another approach was used to load the co-crystals into 

the polymeric film. Co-crystals were prepared and loaded to the polymer 

solution.  

Briefly we should consider whether the SP theory developed in this thesis is 

applicable to other published systems.  Carbamazepine-nicotinamide co-

crystals have previously been noted to form within the polymeric carrier PVP 

(Good et al., 2011). From the data presented in the study it is notable that both 

drugs possess a good affinity to form co-crystals in a polymeric carrier in an 

easy manner compared to the behaviour noted by the systems in this thesis, 

with both caffeine-malonic acid and ibuprofen-nicotinamide co-crystal systems 

in a polymeric film of HPMCAS not readily forming.  Applying the theory 

advanced in this thesis to nicotinamide-carbamazepine co-crystals in PVP 

revealed the closeness of carbamazepine SP value (27 MPa1/2) to that of 

nicotinamide (30 MPa1/2) over that of PVP (21 MPa1/2). These values propose 

the affinity of carbamazepine to interact with nicotinamide and form a co-crystal 

rather than interacting with PVP. This result provides the evidence for the 

possible application of the theory developed in this thesis to other polymers 

other than HPMC-AS. 
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Considering the effect of the choice of solvent for the materials in this thesis, 

loading the co-crystals into the polymeric vehicle was noted to be affected by 

the solvent used in this process. The depression of the Tg values of films 

prepared using acetonitrile was noticed to be greater than those prepared using 

acetone/chloroform for the same concentration of caffeine-malonic acid co-

crystals (91.52° and 35.73°C for films prepared using acetone/chloroform and 

110.37° and 72.73°C for films prepared using acetonitrile). In addition to the FT-

IR transmission profiles collected after analysing different points of films 

prepared with either solvent systems which revealed a higher percentage of co-

crystals existed in films prepared using acetonitrile than those prepared using 

acetone/chloroform. Nevertheless, the analysis method possessed limitations 

as it was hard to scan the whole film and in spite of repeating the whole 

analysis for the raw materials, co-crystals, films containing the raw materials 

separately, and films containing co-crystals in order to minimize possible error, 

there still exists the need to find a better quantification method to measure the 

percentage of the co-crystals in films prepared using each solvent. 

On the other hand, films containing ibuprofen-nicotinamide co-crystals in a 

concentration of around 500 mg per 4000 mg HPMCAS showed no sign of co-

crystals or any crystalline form in the film. Because acidic materials showed a 

higher affinity to polymer than basic compounds, an acidic drug (malonic acid) 

with a closer SP value to that of HPMC-AS was added in an attempt to reduce 

the interaction of ibuprofen with the polymer and thus promote its interaction to 

form co-crystals. The results showed that the final film contained four species; 

co-crystals, ibuprofen, nicotinamide and even a new co-crystal system 

(nicotinamide-malonic acid) figure 9.1. This behaviour was linked to the 
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solubility parameters of the three molecules.   The schematic below illustrates 

the range of the interactions between the three molecules and HPMC-AS.  

Figure 9.1. Chart representing the behaviour of acidic (A) and basic (B) moiety of co-crystals 
with and without the use of acidic blocker (BLK) in a polymeric film (P). 

 
Before work on this thesis commenced there was a dearth of information about 

the behaviour of co-crystals in polymeric carrier. Recently,  a report has come 

into the literature showing that nicotinamide and carbamazepine co-crystals 

tend to form co-crystals when dispersed in a polymeric carrier of PVP (Good et 

al., 2011). The formation rate and percentage co-crystal content varied in 

relation to the molecular weight of the PVP used in the experiment. However, 

the formation of the co-crystals in the polymer fits the previously mentioned 

theory. 

Whilst the formation of co-crystals may confer an advantage so that higher drug 

loads can be used, it is also important to understand how the polymer affects 

drug release.  This is studied using a dissolution test. The preliminary 
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dissolution study suggested that the films containing caffeine alone released 

caffeine more readily than those containing caffeine containing co-crystals. It is 

possible that the different micro-environmental pH’s controlled the dissolution 

behaviour. However, the high standard error values prevented too much 

significance being attached to the data. 

An accelerated stability study showed that co-crystals loaded into the polymer 

were intact for 8 weeks in 45°C and 98% RH in comparison to 8 weeks for co-

crystals in 25°C and 75% RH.  Therefore, the HPMCAS polymer acts to prolong 

co-crystal stability for this system. 

It can be concluded from the previous results of the project that dispersing 

caffeine-malonic acid co-crystals in a polymeric carrier was successful in 

improving their stability while it was not successful in improving their dissolution 

rate. 

 

Future work 

The relationship between two drugs dispersed in a polymeric carrier revealed a 

link between the acidic drugs solubility parameter values and their competitive 

interaction with the polymer. On the other hand, the same link was observed 

with the dispersion of an acidic drug (malonic acid) with basic drugs. However, 

the behaviour of the dispersed ibuprofen and flurbiprofen in HPMCAS was an 

exception from the discussed role. Therefore, it is worth to monitor the 

behaviour of other acidic and basic drugs in other polymers in order to evaluate 

the new approach for predicting the drugs behaviour. In addition, the proposed 
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theory can be tested on the behaviour of dispersed basic drugs in polymeric 

carriers. 

Since drug-polymer interaction is one of the techniques to produce small drug 

crystals, the observed effect of the preparation solvent on the degree of such 

interaction may resulted in affecting the properties of the produced crystals. 

Therefore, the effect of the solvent on the polymer properties and drugs-

polymers interaction should be studied. 

Using an acidic blocker to minimise the interaction between the acidic moiety of 

the co-crystals and the film is an interesting approach. However, more 

investigation is needed to refine the process of selecting this blocking agent. SP 

has been shown here to have an influence. However it is worth investigating 

other factors such as the expanded SP proposed by Hansen (Barton, 1991), the 

capability of forming hydrogen bonding and the polarity of the molecule. This 

theory needs to be investigated using other polymers and other co-crystal 

systems. Refining the blocking agent might improve the co-crystal yield inside 

the polymer and avoid its interaction with the co-crystal formers. Finally, a 

productive area would be to investigate the effect of a blocking agent that has 

no affinity to form an interaction with any of the co-crystal components on the 

loading process of those co-crystals in a polymeric film. 
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Appendix I (TGA) 

Figure AI.1. TGA scan of HPMCAS films containing TEC prepared with acetone/chloroform. 

Figure AI.2. TGA scan of HPMCAS films containing 1:100, 10:100, 20:100, 25:100, 30:100, 
50:100, and 60:100 w/w malonic acid/HPMCAS. 
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Figure AI.3. A representative TGA thermal profile for a film containing caffeine 

and malonic acid prepared using acetone/chloroform. 

 

Figure AI.4. Representative TGA thermal profile for co-crystals prepared with 
chloroform/methanol (pink), HPMCAS film prepared using acetonitrile (red), film containing co-
crystals prepared with acetone/chloroform (green), and film containing co-crystals prepared with 
acetonitrile (blue). 
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Figure AI.5. Representative TGA thermal profile for plain film (pink), co-crystals of ibuprofen and 
nicotinamide (red), films containing co-crystals prepared with acetonitrile (green), and a film 
containing co-crystals prepared with acetone/chloroform (blue). 

 
Figure AI.6. Representative thermal analysis for films containing ibuprofen-nicotinamide co-
crystals and malonic acid prepared using acetone/chloroform (green) and acetonitrile (blue), 
films containing co-crystals alone prepared using acetone/chloroform (teal) and acetonitrile 
(dark blue), and co-crystals of ibuprofen and nicotinamide (pink). 
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Figure AI.7. Representative TGA thermal profiles for films containing: 5% (green), 10% (blue), 
15% (red), and 20% (pink) of TEC. 

 
Figure AI.8. Representative TGA thermal profiles for films containing: 5% (green), 10% (blue), 
and 15% (red) of TEC. 
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Figure AI.9. Representative TGA thermal profiles for films containing: 10% (green), 15% (blue), 
and 20% (red) of TEC. 

 
Figure AI. 10. Representative thermal TGA profiles for films containing caffeine-malonic acid co-
crystals prepared using acetone/chloroform or acetonitrile. 
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Figure AI. 11. Repredentative thermal profiles for films containing ibuprofen-nicotinamide co-
crystals prepared with either acetonitrile (green) or acetone/chloroform (blue), plain film 
prepared with acetonitrile (red), and ibuprofen-nicotinamide co-crystals (pink). 
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Appendix II (DSC) 

 

Figure AII.1, DSC triplicate scan of pure malonic acid. 
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figure AII.2. DSC triplicate scan of pure ibuprofen. 

 

Figure AII.3. DSC duplicate scan of pure nicotinamide. 
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figure AII.4. DSC duplicate scan of pure flurbiprofen. 

 

Figure AII.5. DSC duplicate scan of pure HPMCAS. 
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Figure AII.6. DSC scan of caffeine recrystallised with chloroform/methanol, acetone/chloroform, 
and ethanol water. First heating cycle. 

 

Figure AII.7. DSC scan of malonic acid recrystallised with acetone/chloroform and acetonitrile. 
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Figure AII.8. DSC scan of malonic acid recrystallised with acetonitrile. 

 

Figure AII.9, DSC scan of pure HPMCAS showing the Tg of the pure material. 
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Figure  AII.10. DSC scan of cast HPMCAS film using acetonitrile for preparation. 

 

Figure AII.11. DSC scan of cast HPMCAS film using ethanol/water for preparation. 
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Figure AII.12. DSC scan of cast HPMCAS film using acetone/chloroform for preparation. 

 

Figure AII.13. DSC scan of three films of HPMCAS containing 5% TEC prepared with 
acetone/chloroform, ethanol/water, and acetonitrile. 
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Figure AII.14. DSC scan of HPMCAS films containing 10% TEC prepared with 
acetone/chloroform, ethanol/water, and acetonitrile. 

 
Figure AII.15. DSC scan of HPMCAS films containing 15% TEC prepared with 
acetone/chloroform, ethanol/water, and acetonitrile. 
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Figure AII.16. DSC scan of HPMCAS films containing 20% TEC prepared with 
acetone/chloroform, ethanol/water, and acetonitrile. 

 
Figure AII.17. DSC scan of HPMCAS containing an ascending concentrations of malonic acid, 
prepared with acetonitrile. 
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Figure AII.18. Representative DSC thermal profiles for a plain film prepared using acetonitrile 
(pink), a film prepared using acetone/chloroform (blue), a film containing co-crystals prepared 
using acetonitrile (red), and a film containing co-crystals prepared using acetone/chloroform 
(green). 
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Figure AII. 19. A representative of the thermal DSC profile for a film containing 3:4:10 
ibuprofen/malonic acid/HPMCAS prepared using ethanol/water. 

 
Figure AII. 20. A representative thermal DSC profile for a film containing 3:2:10 w/w/w 
ibuprofen/malonic acid/HPMCAS prepared using acetonitrile. 

 
Figure AII. 21. A representative thermal DSC profile for a film containing 3:2:10 w/w/w 
ibuprofen/malonic acid/HPMCAS prepared using acetone/chloroform. 
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Figure AII.22. Representative thermal DSC profiles for films containing caffeine-malonic acid co-
crystals prepared using acetone/chloroform (green) and acetonitrile (blue). 

 
Figure AII. 23. Representative thermal DSC profiles for films containing: 30:100 (green), 40:100 
(blue), and 50:100 (red) w/w malonic acid/HPMCAS. 
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Figure AII. 24. Representative thermal DSC profiles for films containing: 100% HPMCAS (pink), 
1:100 w/w (green), 10:100 (red), and 20:100 (blue) w/w malonic acid/HPMCAS. all prepared 
using ethanol/water. 
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Appendix III (Powder X-ray diffraction) 

 
Figure AIII.1. X-ray scan of malonic acid as received (top) and the diffraction pattern of malonic 
acid obtained from CSD (bottom). 

 
Figure AIII.2. X-ray scan of pure HPMCAS. 
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Figure AIII. 3. Representative powder x-ray diffraction patterns for unprocessed malonic acid 
(green), a film containing 15:100 malonic acid/HPMCAS (blue), and a film containing 3:10 
malonic acid/HPMCAS (red)
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Assignment 
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malonic 

acid 
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mh30-2-
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2994 

     

 

2958 

 

2934 wide 2951 2959 2941 multi+ wide 2934 

 

2360 2362 2360 2363 2360 2362 2365 

 

2365 

 

2341 2342 2338 2340 2340 2342 2342 

 

2338 + 2321 

                    

   

1738 

   

1731 

 

1730 

C=N 1692 
1698 

1708 1694 wide 1698 1692 
1702 

1704 

 

Appendix IV (FT-IR) 

transmission) 
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        Table AIV.1. FT-IR band assignment for film containing caffeine malonic acid co-crystals prepared with acetone/chloroform or acetonitrile.
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Figure AIV.1.  a represent of FT-IR scan of malonic acid as received. 
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Appendix V (SEM) 

figure AV.1. SEM scan of caffeine-malonic acid co-crystals using different magnification powers. 
(A) and (B) 40X, (C) and (D) 400X, (E) 250, (F) and (G) 1500X, (H) 3000X.  
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Appendix VI (Dissolution test) 

 

Figure AVI.1. standard curve for caffeine in distilled water.  

 

Figure AVI.2. the dissolution test of the film containing 10% w/w caffeine with error bars. 
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figure AVI.3. Drug release profile with error bars for films containing caffeine-malonic acid co-
crystals prepared with acetone/chloroform. 



 

241 
 

 

Appendix VII (Stability study) 

 

Figure AVII.1. FT-IR scan of co-crystals in a film after 1 month of storage. The film prepared 
with acetone/chloroform. 

 
Figure AVII.2. FT-IR scan of co-crystals in a film after 1 month of storage. The film prepared 
with acetone/chloroform. 
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Figure AVII.3. FT-IR scan of co-crystals in a film after 1 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.4. FT-IR scan of co-crystals in a film after 2 month of storage. The film prepared 
with acetone/chloroform. 
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Figure AVII.5. FT-IR scan of co-crystals in a film after 2 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.6. FT-IR scan of co-crystals in a film after 2 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.7. FT-IR scan of co-crystals in a film after 4 month of storage. The film prepared 
with acetone/chloroform. 

 
Figure AVII.8. FT-IR scan of co-crystals in a film after 4 month of storage. The film prepared 
with acetone/chloroform. 
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Figure AVII.9. FT-IR scan of co-crystals in a film after 4 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.10. FT-IR scan of co-crystals in a film after 4 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.11. FT-IR scan of co-crystals in a film after 5 month of storage. The film prepared 
with acetone/chloroform. 

 
Figure AVII.12. FT-IR scan of co-crystals in a film after 5 month of storage. The film prepared 
with acetone/chloroform. 
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Figure AVII.13. FT-IR scan of co-crystals in a film after 5 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.14. FT-IR scan of co-crystals in a film after 5 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.15. FT-IR scan of co-crystals in a film after 5 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.16. FT-IR scan of co-crystals in a film after 6 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.17. FT-IR scan of co-crystals in a film after 6 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.18. FT-IR scan of co-crystals in a film after 6 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.19. FT-IR scan of co-crystals in a film after 7 month of storage. The film prepared 
with acetone/chloroform. 

 
Figure AVII.20. FT-IR scan of co-crystals in a film after 7 month of storage. The film prepared 
with acetone/chloroform. 
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Figure AVII.21. FT-IR scan of co-crystals in a film after 7 month of storage. The film prepared 
with acetonitrile. 

 
Figure AVII.22. FT-IR scan of co-crystals in a film after 7 month of storage. The film prepared 
with acetonitrile. 
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Figure AVII.23. FT-IR scan of co-crystals in a film after 7 month of storage. The film prepared 
with acetonitrile. 
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