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Abstract

Positive-position feedback has been presented as a suitable alternative
to the negative-velocity feedback approach taken in active damping appli-
cations. This has motivated the application of Negative-Imaginary Systems
theory to study the stability of controllers based on positive-position feed-
back. However, this theory cannot be applied in cases where low-frequency
dynamics of the sensors, actuators and/or controllers hinder the application
of Negative-Imaginary stability conditions. This work extends the theory of
Negative-Imaginary Systems by obtaining simple analytical stability condi-
tions when such low-frequency restrictions are present.
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1. Introduction

Flexible structures are used in a variety of industrial, scientific as well
as defence applications [1, 2, 3, 4]. These structures are prone to vibrations
caused by natural-frequency excitations which if left uncontrolled, may lead
to unwanted displacements, positioning errors and in severe cases, failure
due to fatigue. This has motivated a huge amount of research in the broad
field of vibration control of flexible structures [5, 6, 7, 8]. It is quite common
to employ co-located sensor-actuator pairs in controlling flexible structures.
Such structures are commonly referred to as co-located smart structures or
co-located structures/systems. Such co-located systems exhibit the interest-
ing property of pole-zero interlacing in the frequency-domain. Consequently,
their phase response lies continuously between 0° and 180°. Various vibra-
tion damping techniques exploiting this property have been proposed by
researchers in the past. Velocity feedback achieves damping by using this
property to implement a very simple derivative controller [9, 10]. In prac-
tice however, velocity feedback presents some limitations. For instance, the
requirement of a differentiator in piezoelectric laminated structures involves
the inclusion of extra dynamics, which have the potential to destabilize the
closed-loop system [11]. In addition, a high control effort at all frequency is
required, thereby limiting the imparted damping at the desired frequencies.
The resulting low performance and poor phase margins have motivated the
Resonant controller, which has been applied successfully to highly resonant
co-located systems [12, 13, 14]. A typical Resonant controller can be viewed
as a negative velocity feedback controller in a narrow frequency band. This

adjustment effectively reduces the control effort and increases the imparted



damping at the desired frequency. However, as its response does not roll-off
at higher frequencies, this control technique may not be suitable in certain
applications where out-of-bandwidth noise is a critical issue. To alleviate this
problem, Positive Position Feedback (PPF) has been proposed and experi-
mentally demonstrated [15, 16, 17]. The main drawback of control techniques
such as PPF and Resonant control is that they produce a second-order con-
troller to damp a single resonant mode of the structure, thus resulting in a
high-order controller for damping multiple modes. Also, they may be diffi-
cult to tune for cases where multiple modes need to be damped. This has
further motivated the formulation of the Integral Resonant Control (IRC)
[18], which combines the simplicity of a velocity feedback with the stability
margins of a PPF.

Positive feedback controllers are more robust against uncertainty in the
modal frequencies as well as unmodeled plant dynamics when compared
with negative feedback controllers. This has motivated the application of
Negative-Imaginary System (NIS) theory to study the stability of positive
feedback controllers [19, 20]. NIS theory has been merged with small-gain
theorems to establish the stability of interconnected systems [21]. It has
been demonstrated here that in active damping applications, NIS theory
can be applied in the bandwidth of interest (middle-frequency) by including
a low-pass filter to roll-off the magnitude and achieve the small-gain theo-
rems. In this case, the high frequency dynamics of the system are unmodeled
and are not considered in the controller design. However, the effect of the
low frequency dynamics introduced by sensor/s, actuator/s as well as the

controller /s themselves on the overall stability margins, which hinder the



application of NIS theory, has not been studied analytically. This work pro-
poses simple analytical stability conditions when low-frequency restrictions
are present due to sensors and/or actuators [22, 23]. An example of such
a scenario is the implementation of the modified IRC technique required to

reduce the control effort at low frequencies, as presented in [18].

2. Preliminaries

The control scheme shown in Fig. 1, which can be configured as PPF
or IRC to reduce the vibrations caused by the perturbation w, is studied in
this work. G 4(s) is the transfer function (TF) of the actuator, Gg(s) is TF
of the sensor, Gy, (s) is the co-located TF between the output (y) and input
(u), Gyw(s) is the TF between the output (y) and disturbance input (w), Dy
is a feed-through term such that D € R and is used to introduce a pair of
complex conjugate zeros at a frequency lower than the system resonant poles.

This results in a phase inversion at DC relative to the original co-located TF

Gyu(s) [18], and C(s) is the TF of the controller.

3. Stability proof

The control scheme in Fig. 1 can be rearranged as Fig. 2. This simpli-
fies the stability analysis for the system that now includes the co-located TF
G'yu(s) and the equivalent controller C(s). The stability of the control scheme
of Fig. 2 can now be demonstrated by considering the positive feedback inter-
connection of Gy, (s) and C(s). At this point, the results proved in [19] and

[20], which are based on the feedback connection of systems with Negative-
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Figure 1: Positive-position feedback. General control scheme.

Imaginary Frequency Response, (NIFR)! are utilized. More precisely, it is
derived from the Theorem 5 of [19] that the positive feedback connection of
two stable single-input single-output (SISO) systems M (s) and N(s), with
J[M(jw) — M(jw)*] > 0 and j[N(jw) — N(jw)*] >0 V w € (0,00), is in-
ternally stable if and only if M (0)N(0) < 1, M (co)N(oc0) = 0 and N (o) > 0.

The co-located transfer function, denoted by Gy,(s), can be written as

the following sum of infinite second-order blocks

oo

Cru(s) =Y & (1)

Y
£~ 5% + 2Gw;s + W}

where a; > 0 Vi. Since j [Gy,(jw) — Gyu(jw)*] >0 V  w € (0,00), the con-
trol scheme in Fig. 2 is internally stable if and only if j [é(jw) - é(]w)*] >
0 V we(0,00), Gyu(0)C(0) < 1, Gyy(o0)C(00) = 0 and C(o0) > 0. This
result demonstrates the stability of PPF and IRC control schemes [20]. How-

LA system G(s) has a NIFR when j [G(jw) — G(jw)*] > 0 (or > 0) for all w € (0, 00)
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Figure 2: Equivalent representation of the general control scheme.

ever, in [20] the sensor and actuator dynamics have been neglected through-
out the stability analysis. It has been seen that this simplification is not
realistic in many practical cases (see for example [22, 24, 23]). Addition-
ally, it has been shown that the approximation of an integral control by a
band-pass filter reduces the control effort at low frequencies [18].

The inclusion of these dynamics mainly affects the phase of C'(jw) at
low-frequencies, where the value is not negative (the phase of the system
not contained in (—180,0) during a frequency interval). Thus, the phase of
Gyu(jw)C(jw) could be equal to zero for w # 0, which makes the system
unstable if |G, (jw)C(jw)| > 1 at this frequency. To adress this issue,
this work defines a new sufficient condition that guarantees the stability of
the overall system, thus extending the results proved in [19] and [20] to a

controller C'(jw) with positive values of phase in a particular (low) frequency

interval. This sufficient condition states that the control scheme of Fig. 2,



being j [Gyu(jw) — Gyu(jw)*] > 0 for all w € (0,00), is internally stable if
Gyu(00)C(00) = 0, C(o0) > 0 and

N

j [C(jw) . C*(jw)*} >0, w € (we, ), 2)

C(j)C )| = |Guliwe)Cliws)| < 1 3)

max
we[0,wc]
where w, is the frequency at which /C(jw,) = 0. Note that this neces-

sary condition guarantees that the gain margin is greater than or equal to

~

1/1Gyu(jwe)C(jwe)
great detail.

. Some prominent practical cases are presented here in

3.1. Approximation of an IRC by a band-pass filter

This approximation was presented in [18]. The control scheme of Fig. 1
is configured as follows: (a) sensor and actuator dynamics are neglected (i.e.,
Ga(s) =Gs(s) =1), (b) Gyu(s) is co-located, (¢) Dy < 0 and (d) the TF of
C(s) is

— s
C(S) - (8—|—p1)(8—|—p1)’ (4)

being v > 0. Thus, the TF of C(s) is as follows

A S
C(s) = . 5
( ) 32+2p15+p%—Df'ys ( )

Firstly, it can be derived that the C(s) is stable if and only if p; > D;v/2,
which is achieved since D;y < 0 in order to impart damping to G,,. Thus,
the relative order of C(s) is one, C(c0) = 0 and Gy, (00)C/(00) = 0. There-



fore, the stability is demonstrated if the conditions defined in Egs. (2) and
(3) are satisfied. It can be checked that /C(jp;) = 0°, which results in

w. = p1. Then, it can be proved from the following equation

—2yw(—w? 4 pi)
(—w? +p?)? 4+ w?(2p1 — Dyv)?

j|CGw) = CGwy| = >0, (6)
that condition in Eq. (2) is achieved when w > w.

The condition in Eq. (3) is achieved if |G, (jw)| and ’C’ ( jw)‘ are increas-
ing over the same interval. Firstly, the modulus of C (jw) can be calculated

as follows:

N Y

C(jw)| = —= 2 o (7)
V2 (=2 + ) + (2o = D))

Clearly, this increases over the interval w € [0,w,) if and only if the following

function is decreasing

fiw) = =5 (~?+82)" + (21— 7Dy, 0

Consequently, the first derivative of this function with respect to w has to be
less than zero over the interval w € [0,w,.). Then, df;(w)/dw is calculated as

follows:

dfi(w) 2pi




Eq. (9) is achieved if and only if
w < P = We. (10)

Therefore, the modulus of C(jw) is increasing over the interval w € [0, w,).
Secondly, the modulus of G, (jw) is increasing up to the first resonance

frequency (w,.1), which can be obtained from the experimental frequency

response function (FRF). It is also can be analytically calculated as in Ap-

pendix A (see Eq. (A.6)). Thus, the control scheme is stable if

<1. (11)

p1 < wy1 and ‘Gyu(jpl)’ )é(jpl)

It should be noted that the choice of p; = 0.1w,; was suggested in [18],
guaranteeing the first part of the condition in (11).

3.2. Inclusion of sensor dynamics in an IRC

Although the problem of the sensor dynamics was dealt with in [22], a
formal stability condition was not established. The control scheme in Fig. 1
is configured as follows: (a) the actuator dynamics is neglected (i.e., G(s) =
1), (b) Gyu(s) is co-located, (c) the TF of Gg(s) = s/(s+p), (d) Dy < 0 and
(e) the TF of C(s) = ~/s, where 4 > 0. Thus, the TF of C(s) is given by:

~ - 0E]
O = DG (12)

and is stable since Dy < 0. Thus, the relative order of C'(s) is one, C'(c0) = 0

and G, (00)C(00) = 0. Therefore, the stability is guaranteed if the condi-
tions defined into Eqgs. (2) and (3) are achieved. It can be checked that

9



Zé’(j —Dyvyp) = 0°, which results in w. = y/—Dsyp. Then, it can be

proved from the following equation

2yw(w? + pDy7y)
(—w? +pDysv)? + w?(p — Dyy)?

3 |CUw) = Cwy| = >0, (1)

that condition in Eq. (2) is achieved when w > w,.

A

The condition in Eq. (3) is achieved if the modulus of G, (jw)C(jw)

is increasing over the interval w € [0,w,.). Since |Gy, (jw)| is increasing for

A

w € (0,wy1), the condition in Eq. (3) is achieved if |C'(jw)

is increasing for
w € [0,w.) and w, < wy.1.

The modulus of C(jw) is given by

C(jw)| = = _, (14)
\/ 5 (W + Dpyp)” + (p — D)

which is increasing over the interval w € [0,w,.) if and only if the following

function is decreasing

1 2
fow) = — (" + Dyyp)” + (0 = Dy7)”. (15)
This can be demonstrated by calculating d fo(w)/dw.

dfalw) _, (D) (16)

dw w3

Eq. (16) can be rewritten as
w < \/Dyyp = we. (17)

10



Therefore, the modulus of C'(jw) is increasing over the interval w € [0, w,).

Thus, the control scheme is stable if

V _Df7p < Wr1 and ’Gyu(j —Df’}/p)‘ ‘é(] _Df’}/p)’ <L (18>

Note that, as mentioned in [22], the maximum value of D~ is limited by the

sensor dynamics (value of p) and the minimum gain margin required.

3.3. Inclusion of actuator dynamics in an IRC

The control scheme in Fig. 1 is configured as follows [23]: (a) the sensor
dynamics is neglected (i.e., Gs(s) = 1), (b) G,u(s) is co-located, (c) Dy <
0, (d) the actuator is considered as an inertial actuator with the following

dynamics

KA82

Ga(s) =
a(s) $2 4+ 28 awas + wh’

(19)

where K, > 0, {, > 0 and w; > 0 are the system parameters and e) C(s) can
be defined as

. 2 2 2
C(s) = Gy (5)) = T Zaens Lo

s Ki(s+p)? s (20)

where G’;l(s) is an approximate inversion of the actuator dynamics. Thus,

the transfer function of C(s) can be written as

~ B 57y
Cls) = s>+ (2p —yDy)s + p* (21)

11



Note that Eq. (21) is identical to Eq. (5) if p is substituted by p;, where the
control scheme is stable if Eq. (11) is satisfied.

3.4. Inclusion of sensor dynamics in a PPF

The control scheme in Fig. 1 is configured as follows: (a) G,(s) is co-
located, (b) the TF of Ga(s) = 1, (c) the TF of Gg(s) = s/(s + p), (d)
Dy =0 and (e) the TF of C(s) is as follows [15]

Cls)=) i (22)

52 4 20,5 + OF
1=

where N is the number of modes controlled, v; > 0, §; > 0 and @; are tuned
to impart damping to the vibration mode i. Thus, the TF of C (s) is given
by

A S

i
Cls) = s+p

82 + 251(:)15 -+ C:)lz ’

WE

(23)
i=1
Although PPF control has more than one frequency where the phase of C'(jw)
is zero, the value of w,. is obtained by considering N = 1 in Eq. (26). This
is because the PPF controller exhibits high-frequency roll-off characteristics
and the phase at low frequencies (w < @;) is approximately equal if more

vibration modes are controlled (N > 1). Thus, it can be deduced that

~2
o= 4| L (24)
251001 +p

C(jwe) Gyu(jwe)

be less than w; to impart damping.

and the control scheme is stable if < 1. Note that p should

12



3.5. Inclusion of actuator dynamics in a PPF

The control scheme in Fig. 1 is configured as follows: (a) Gy,(s) is
co-located, (b) the TF of Ga(s) is defined as in Eq. (19), (c) the TF of
Gs(s) =1, (d) Dy = 0 and (e) the TF of C(s) is defined as Eq. (22) but

including the dynamics inversion used into Eq. (20) given by

52 + 26 4wa8 + WA l Vi
C(s) = 4 - : 25
)= R+ P ; 2 + 20,5 + @2 (25)

Thus, the TF of C(s) can be written as

2 N

A B S Vi
Cls) = (s +p)? ; §2 4 20,08 + w? (26)

Applying the same conditions and performing the same analysis as detailed

in the previous section, the control scheme is stable if ‘CA‘ (Jwe)Gyu(jwe)| < 1,

~2 ~,m2
o = | PR O (27)
01w +p

This example shows how to tackle problems introduced by the sensor

where w,. is given by

4. Example

dynamics during an IRC implementation. In addition, this section also ex-
plains why a band-pass filter is better than pure integral action for C(s) in
this particular case. The transfer functions of the cantilever beam instru-
mented with piezoelectric patches as employed in [22] have been utilized to

obtain simulation results for both controllers options.

13



The design methodology for IRC is briefly explained. According to [18],
and neglecting the actuator and sensor dynamics (Ga(s) = Gg(s) = 1), the

loop dynamics used to tune IRC parameters in [18] is given by
Grai(s) = (Gyuls) + Dy)C(s). (28)

The design methodology proposed in [18], which is shown in Fig. 3, can
be itemized as: (a) determine the maximum value of D; to guarantee the
stability of the controlled system w.r.t. Dy < —G,,(0), by adding a zero at
a frequency lower than the first resonant mode of the system (Fig. 3b), (b)
place this zero as a far away from the first resonance pole, thereby increasing
the maximum imparted damping, and (c) design C(s), given by C(s) = /s
as shown in Fig. 3.c, to impart damping to the system. A band-filter can be

used instead, (Eq. (4)), where p; << w,; (for example, p; = 0.1w,).

Alm . 4Im AIm
Re * g? Re

O
X
@)
X

X
O
X
@)
> o
X
@)
X

X
©)
X
©)

(a) (b) (c)

Figure 3: Design method proposed in [18]. (a) Pole-Zero diagram of Gy, (s). (b) Pole-Zero
diagram of Gy, (s) + Dy. (c) Root locus of (Gyy(s) + Dy)(v/s).
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However, if the sensor dynamics cannot be neglected, the design proposed
in [18] is not adequate, since Gg(s) will affect the imparted damping possible.

In this case, [22] proposed to use the characteristic equation given by

C(s)

)= T,

Gs(5)Gyuls), (29)

where Dy and v were chosen from the root locus given in Fig. 4. If the
sensor dynamics is not considered (Gg(s) = 1), the damping imparted by the
controller depends on the position of the real pole 7Dy and the gain —1/D;
(see Fig. 4.a). In addition, the stability condition is —G,,(0)/D; < 1, which
is similar to the condition defined in [18]. If Gg(s) = s/(s + p), the choice
of the real pole 7D and the gain —1/D; depends on —p (see Fig. 4.b).
In addition, the stability condition is now defined by Eq. (18). It should
be remarked that, as shown in [22], the maximum damping is limited by the
position of —p. Thus, the maximum imparted damping is less when the value
of —p is bigger.

An alternative design can be proposed, where C(s) is defined as

V(s + 21)
(S +p1)(s +p1).

O(s) = (30)

Thus, the transfer function of C (s) if the sensor dynamics is considered is

R v(s+ 21) S
C(s) = - 5 )
52+ 2p1s+pi — Dgyss+p

(31)

Then, if z; = py, a controller structurally similar to Eq. (5) can be derived

and the design methodology defined in [18], can be used when p; << w; ;.

15
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Figure 4: Design method proposed in [22]. (a) Pole-Zero diagram when C(s) = ~/s. (b)
Pole-Zero diagram when C(s) = /s and Gg(s) = s/(s + p).

In addition, the stability condition can now be defined by Eq. (11).

4.1. Simulation results

The identified model of the cantilever beam used in [22] (see Fig. b5)
is used to illustrate the two possible designs when the sensor dynamics is

considered. The state-space model is as follows

16



0 1 0 0 0 0
—2799 —-0.8 0 0 0 0
, 0 0 0 1 0 0
X = x+ (32)
0 0 —1.024-10° —4 0 0
0 0 0 0 0 1
0 0 0 0 —7.868-10° —11.09
0 0
1 0.490
0 0
v ]
1 —1.148
0 0
1 —1.679
y —0.205 0 0.789 0 —1.222 0
= X_|_
z 1323 0 —=3595 0 —1089 0

4411-1077 1.261-1076
v ]
—1.114-1072 4.477-1072

and the sensor dynamics was identified as

Gs(s) = S j 5 (33)

The transfer function Gy, (s) derived from the model of Eq. (32) is given by

17
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Figure 5: System model, where u is the input and y is the output of the co-located patch,
w is the disturbance patch and z is the tip velocity.

(52 4 0.80s + 2925)
Gyu(s) = 0.045 - : 34
() (s2 + 0.80s + 2799) (34)
(s2 +4.01s + 1.11-10%) (2 + 11.08s + 8.28 - 10%)

(s2+4.00s + 1.02-105) (s + 11.09s + 7.87 - 10%)’

where w,; = 52.91rad/s, and is used to design the IRC as described in
Sections 3.1 and 3.2.

First, the parameters D; and +y are chosen according to [18] for the fol-
lowing cases: (Case a) Gy,(s) without considering Gg(s) and C(s) = v/s,
(Case b) Gyu(s) together with Gg(s) and C(s) = /s and (Case ¢) Gy,(9)
together with Gg(s) and C(s) as defined in Eq. (31) for z; = p = 5 and
p1 =5 <0.1w,;.

If Gg(s) is not considered, Dy must be less than —G/,,(0) = —0.053. The
following five values of Dy are identified Dy = { —G,,(0)/0.5, —G,,(0)/0.6,
-Gy, (0)/0.7, —G,,(0)/0.8, —G,,(0)/0.9 }. The maximum damping ratios

obtained for each value of D and its corresponding value of v are summarized

18



in Table 1. In addition, these damping ratios are also calculated for (Case
b) and (Case c) by using the same values of Dy and . It can be deduced
from Table 1 that: (a) the damping ratios are increased when Gg(s) is not
considered as long as Dy is increased (until the limit of Dy = —Gy,(0)),
(b) the damping ratios are also increased in the same way when Gg(s) is
considered together with C(s) defined as Eq. (31) for z; = p =5 and (c) the
design criterion of [18] is not useful when Gg(s) is considered together with
C(s) = /s since &; increases only up to a certain value of Dy.

Secondly, the design used in [22] when C(s) = 7/s is considered. Here,
the pole Dy was placed by considering the dynamics of Gg(s). Thus, the
maximum imparted damping can be increased by moving away D¢y from the
origin up to a certain value. Then, the minimum value for D,y was selected
as —226.2 and the controller gain was 1/D; = —18 [22]. If the stability

condition in Eq. (18) is used, it results as follows

v/ —=Dyyp = 33.63 < w1 = 52.91 and
’Gyu<.j —Dﬂp)‘ ‘é(j —Dyvyp)| = 0.9768 < 1, (35)

showing that the control scheme is stable. In addition, the damping ratios
are & = 0.101, & = 0.0321 and &3 = 0.0116, which show that the value of
& is close to Dy = —G,,(0)/0.9 and v = 6.73 - 10* without considering the
Gs(s). However, the values for & and & are smaller. If the band-pass filter
is utilized, the same damping can be achieved by the following variations
to the original design: (a) increasing D; and 7, which reduces the stability

margins of the controlled system and/or (b) reducing the value of p;, which

19



reduces the gain attenuation at low frequencies.

Table 1: Damping ratios when the design criterion of [18] is used.

Dy =—-G,,(0)/0.5 and v = 1.18 -

10°

&1 &2 &3
Case a 0.0185 0.0134 0.0078

Case b 0.0166 0.0134 0.0078
Case ¢ 0.0166 0.0133 0.0078

Dy =—-G,,(0)/0.6 and v = 1.71 -

103

&1 & &3
Case a 0.0240 0.0167 0.0085

Case b 0.0208 0.0167 0.0085
Case ¢ 0.0211 0.0165 0.0085

Dy =—-G,,(0)/0.7 and v = 2.46 -

103

&1 3 &3
Case a 0.0333 0.0213 0.0095

Case b 0.0276 0.0214 0.0095
Case ¢ 0.0287 0.0211 0.0095

Dy =—-G,,(0)/0.8 and v = 3.89 -

103

&1 S &3
Case a 0.0518 0.0301 0.0113

Case b 0.0366 0.0303 0.0113
Case ¢ 0.0476 0.0299 0.0113

Dy =—-G,,(0)/0.9 and v = 6.73 -

103

&1 3 &3
Case a 0.1070 0.0480 0.0150

Case b 0.0117 0.0486 0.0150
Case ¢ 0.0871 0.0476 0.0150

For example, if p; = 3,

Dy = —G,,(0)/0.91 and v = 6.8 - 10%, the damping ratios are & = 0.103,
& = 0.0484 and & = 0.0151. Applying the stability condition in Eq. (11),

results in

p1 = 3 < Wr1 = 52.91 and

’Gyu(j —vap)Hé(j —Dy7p)

20

= 0.9483 < 1,

(36)



Magnitude (dB)

Frequency (rad/s)

Figure 6: FRF of G, for the first three vibration modes. (— - —) open-control, (—)
closed-loop with C(s) of Eq. (30) for py = 3, Dy = —G,,,(0)/0.91 and v = 6.8 - 10* and
(——) closed-loop with C(s) = ~/s for Dyy = —226.2 and 1/Dy = —18.

which shows that the control scheme is stable. Simulation results were carried
out as a check and are summarized in Fig. 6. It can be seen that the
amplitude of the second and third vibration mode for C(s) = vs/(s + p1)?
are, respectively, 3.7dB and 2.5dB less than for C'(s) = «/s. Thus, this
example shows that the band-pass filter mitigates the problem associated to

the sensor dynamics.

5. Conclusion

This work has shown that stability theory based on Negative-Imaginary
Systems can be extended for control schemes that include low-frequency re-
strictions. Simple and analytical stability conditions have been defined for
a group of low-frequency restrictions that commonly appear in practice. In
addition, the work includes a comparison between two different controllers,

showing how to apply the formulated stability conditions to tune the con-
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trollers and to guarantee the stability of the overall system.

Appendix A. Resonance frequency of G,

The transfer function in Eq. (1) can be rewritten as follows

ﬁ §7)(w2,) + 28,8/ (W) + 17 (A.1)

Gun(s) = Gl [ 1 G) = 0O [ =70 e s 71

i=1
where w; < w,; Vi due to the pole-zero interlacing property of co-located
systems [25]. Thus, it can be demonstrated that |G, (jw)| is increasing if
every block in Eq. (A.1) is increasing over the interval w € (0,w.). The

modulus of " block (Gi,(s)) is as follows:

G ()] = \/<1—w J@20) + €2/ (w2) 42

(1= w?/(w}))? + 4w?e?/ (w})

After deriving Eq. (A.2) and simplifying further, the following increasing

condition can be defined:

[—dw(l —w?/wl) fwl; + 862 w/wl,] [(1 - w?/wi)? + 4w’€l Jw]] — (A.3)

(1= w?/w2,)® + 4w’ Jwl;] [—4w(l — w*fwf) /w} + 8w /wi] > 0
If Eq. (A.3) is simplified, it results in

W4A1 + CUQAQ + Ag > 0, (A4>
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where A1, Ay and Aj are given by:

Ay = Wg,z‘ (1 - 25;) - W? (1 - 251'2) (A.5)
Dy = w; — W;l,z'

Ay =wiw?; [w, (1-26) —wi (1-28,)].

2,0

Thus, the resonance frequency of each Gj,(s) can be calculated from the

expression,

A — /AL IAIA,
o \/ NERVIS BN o)

24,

i . . . .
where each ‘Gyu(jw)‘ is increasing up to w.;.
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