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Abstract

Positive-position feedback has been presented as a suitable alternative

to the negative-velocity feedback approach taken in active damping appli-

cations. This has motivated the application of Negative-Imaginary Systems

theory to study the stability of controllers based on positive-position feed-

back. However, this theory cannot be applied in cases where low-frequency

dynamics of the sensors, actuators and/or controllers hinder the application

of Negative-Imaginary stability conditions. This work extends the theory of

Negative-Imaginary Systems by obtaining simple analytical stability condi-

tions when such low-frequency restrictions are present.
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1. Introduction

Flexible structures are used in a variety of industrial, scientific as well

as defence applications [1, 2, 3, 4]. These structures are prone to vibrations

caused by natural-frequency excitations which if left uncontrolled, may lead

to unwanted displacements, positioning errors and in severe cases, failure

due to fatigue. This has motivated a huge amount of research in the broad

field of vibration control of flexible structures [5, 6, 7, 8]. It is quite common

to employ co-located sensor-actuator pairs in controlling flexible structures.

Such structures are commonly referred to as co-located smart structures or

co-located structures/systems. Such co-located systems exhibit the interest-

ing property of pole-zero interlacing in the frequency-domain. Consequently,

their phase response lies continuously between 0◦ and 180◦. Various vibra-

tion damping techniques exploiting this property have been proposed by

researchers in the past. Velocity feedback achieves damping by using this

property to implement a very simple derivative controller [9, 10]. In prac-

tice however, velocity feedback presents some limitations. For instance, the

requirement of a differentiator in piezoelectric laminated structures involves

the inclusion of extra dynamics, which have the potential to destabilize the

closed-loop system [11]. In addition, a high control effort at all frequency is

required, thereby limiting the imparted damping at the desired frequencies.

The resulting low performance and poor phase margins have motivated the

Resonant controller, which has been applied successfully to highly resonant

co-located systems [12, 13, 14]. A typical Resonant controller can be viewed

as a negative velocity feedback controller in a narrow frequency band. This

adjustment effectively reduces the control effort and increases the imparted
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damping at the desired frequency. However, as its response does not roll-off

at higher frequencies, this control technique may not be suitable in certain

applications where out-of-bandwidth noise is a critical issue. To alleviate this

problem, Positive Position Feedback (PPF) has been proposed and experi-

mentally demonstrated [15, 16, 17]. The main drawback of control techniques

such as PPF and Resonant control is that they produce a second-order con-

troller to damp a single resonant mode of the structure, thus resulting in a

high-order controller for damping multiple modes. Also, they may be diffi-

cult to tune for cases where multiple modes need to be damped. This has

further motivated the formulation of the Integral Resonant Control (IRC)

[18], which combines the simplicity of a velocity feedback with the stability

margins of a PPF.

Positive feedback controllers are more robust against uncertainty in the

modal frequencies as well as unmodeled plant dynamics when compared

with negative feedback controllers. This has motivated the application of

Negative-Imaginary System (NIS) theory to study the stability of positive

feedback controllers [19, 20]. NIS theory has been merged with small-gain

theorems to establish the stability of interconnected systems [21]. It has

been demonstrated here that in active damping applications, NIS theory

can be applied in the bandwidth of interest (middle-frequency) by including

a low-pass filter to roll-off the magnitude and achieve the small-gain theo-

rems. In this case, the high frequency dynamics of the system are unmodeled

and are not considered in the controller design. However, the effect of the

low frequency dynamics introduced by sensor/s, actuator/s as well as the

controller/s themselves on the overall stability margins, which hinder the
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application of NIS theory, has not been studied analytically. This work pro-

poses simple analytical stability conditions when low-frequency restrictions

are present due to sensors and/or actuators [22, 23]. An example of such

a scenario is the implementation of the modified IRC technique required to

reduce the control effort at low frequencies, as presented in [18].

2. Preliminaries

The control scheme shown in Fig. 1, which can be configured as PPF

or IRC to reduce the vibrations caused by the perturbation w, is studied in

this work. GA(s) is the transfer function (TF) of the actuator, GS(s) is TF

of the sensor, Gyu(s) is the co-located TF between the output (y) and input

(u), Gyw(s) is the TF between the output (y) and disturbance input (w), Df

is a feed-through term such that D ∈ ℜ and is used to introduce a pair of

complex conjugate zeros at a frequency lower than the system resonant poles.

This results in a phase inversion at DC relative to the original co-located TF

Gyu(s) [18], and C(s) is the TF of the controller.

3. Stability proof

The control scheme in Fig. 1 can be rearranged as Fig. 2. This simpli-

fies the stability analysis for the system that now includes the co-located TF

Gyu(s) and the equivalent controller Ĉ(s). The stability of the control scheme

of Fig. 2 can now be demonstrated by considering the positive feedback inter-

connection of Gyu(s) and Ĉ(s). At this point, the results proved in [19] and

[20], which are based on the feedback connection of systems with Negative-
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Figure 1: Positive-position feedback. General control scheme.

Imaginary Frequency Response, (NIFR)1 are utilized. More precisely, it is

derived from the Theorem 5 of [19] that the positive feedback connection of

two stable single-input single-output (SISO) systems M(s) and N(s), with

j [M(jω)−M(jω)∗] ≥ 0 and j [N(jω)−N(jω)∗] > 0 ∀ ω ∈ (0,∞), is in-

ternally stable if and only ifM(0)N(0) < 1,M(∞)N(∞) = 0 andN(∞) ≥ 0.

The co-located transfer function, denoted by Gyu(s), can be written as

the following sum of infinite second-order blocks

Gyu(s) =
∞
∑

i=1

αi

s2 + 2ξiωis+ ω2
i

, (1)

where αi > 0 ∀i. Since j [Gyu(jω)−Gyu(jω)
∗] ≥ 0 ∀ ω ∈ (0,∞), the con-

trol scheme in Fig. 2 is internally stable if and only if j
[

Ĉ(jω)− Ĉ(jω)∗
]

>

0 ∀ ω ∈ (0,∞), Gyu(0)Ĉ(0) < 1, Gyu(∞)Ĉ(∞) = 0 and Ĉ(∞) ≥ 0. This

result demonstrates the stability of PPF and IRC control schemes [20]. How-

1A system G(s) has a NIFR when j [G(jω)−G(jω)∗] ≥ 0 (or > 0) for all ω ∈ (0,∞)
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Figure 2: Equivalent representation of the general control scheme.

ever, in [20] the sensor and actuator dynamics have been neglected through-

out the stability analysis. It has been seen that this simplification is not

realistic in many practical cases (see for example [22, 24, 23]). Addition-

ally, it has been shown that the approximation of an integral control by a

band-pass filter reduces the control effort at low frequencies [18].

The inclusion of these dynamics mainly affects the phase of Ĉ(jω) at

low-frequencies, where the value is not negative (the phase of the system

not contained in (−180, 0) during a frequency interval). Thus, the phase of

Gyu(jω)Ĉ(jω) could be equal to zero for ω 6= 0, which makes the system

unstable if
∣

∣

∣
Gyu(jω)Ĉ(jω)

∣

∣

∣
> 1 at this frequency. To adress this issue,

this work defines a new sufficient condition that guarantees the stability of

the overall system, thus extending the results proved in [19] and [20] to a

controller Ĉ(jω) with positive values of phase in a particular (low) frequency

interval. This sufficient condition states that the control scheme of Fig. 2,
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being j [Gyu(jω)−Gyu(jω)
∗] ≥ 0 for all ω ∈ (0,∞), is internally stable if

Gyu(∞)Ĉ(∞) = 0, Ĉ(∞) ≥ 0 and

j
[

Ĉ(jω)− Ĉ(jω)∗
]

> 0, ω ∈ (ωc,∞), (2)

max
ω∈[0,ωc]

∣

∣

∣
Gyu(jω)Ĉ(jω)

∣

∣

∣
=

∣

∣

∣
Gyu(jωc)Ĉ(jωc)

∣

∣

∣
< 1 (3)

where ωc is the frequency at which 6 Ĉ(jωc) = 0. Note that this neces-

sary condition guarantees that the gain margin is greater than or equal to

1/
∣

∣

∣
Gyu(jωc)Ĉ(jωc)

∣

∣

∣
. Some prominent practical cases are presented here in

great detail.

3.1. Approximation of an IRC by a band-pass filter

This approximation was presented in [18]. The control scheme of Fig. 1

is configured as follows: (a) sensor and actuator dynamics are neglected (i.e.,

GA(s) = GS(s) = 1), (b) Gyu(s) is co-located, (c) Df < 0 and (d) the TF of

C(s) is

C(s) =
γs

(s+ p1)(s+ p1)
, (4)

being γ > 0. Thus, the TF of Ĉ(s) is as follows

Ĉ(s) =
γs

s2 + 2p1s+ p21 −Dfγs
. (5)

Firstly, it can be derived that the Ĉ(s) is stable if and only if p1 ≥ Dfγ/2,

which is achieved since Dfγ < 0 in order to impart damping to Guy. Thus,

the relative order of Ĉ(s) is one, Ĉ(∞) = 0 and Gyu(∞)Ĉ(∞) = 0. There-
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fore, the stability is demonstrated if the conditions defined in Eqs. (2) and

(3) are satisfied. It can be checked that 6 Ĉ(jp1) = 0◦, which results in

ωc = p1. Then, it can be proved from the following equation

j
[

Ĉ(jω)− Ĉ(jω)∗
]

=
−2γω(−ω2 + p21)

(−ω2 + p21)
2 + ω2(2p1 −Dfγ)2

> 0, (6)

that condition in Eq. (2) is achieved when ω > ωc.

The condition in Eq. (3) is achieved if |Gyu(jω)| and
∣

∣

∣
Ĉ(jω)

∣

∣

∣
are increas-

ing over the same interval. Firstly, the modulus of Ĉ(jω) can be calculated

as follows:

∣

∣

∣
Ĉ(jω)

∣

∣

∣
=

γ
√

1
ω2 (−ω2 + p21)

2
+ (2p1 − γDf )

2
, (7)

Clearly, this increases over the interval ω ∈ [0, ωc) if and only if the following

function is decreasing

f1(ω) =
1

ω2

(

−ω2 + p21
)2

+ (2p1 − γDf )
2 , (8)

Consequently, the first derivative of this function with respect to ω has to be

less than zero over the interval ω ∈ [0, ωc). Then, df1(ω)/dω is calculated as

follows:

df1(ω)

dω
= 2ω −

2p41
ω3

< 0. (9)
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Eq. (9) is achieved if and only if

ω < p1 = ωc. (10)

Therefore, the modulus of Ĉ(jω) is increasing over the interval ω ∈ [0, ωc).

Secondly, the modulus of Gyu(jω) is increasing up to the first resonance

frequency (ωr,1), which can be obtained from the experimental frequency

response function (FRF). It is also can be analytically calculated as in Ap-

pendix A (see Eq. (A.6)). Thus, the control scheme is stable if

p1 < ωr,1 and |Gyu(jp1)|
∣

∣

∣
Ĉ(jp1)

∣

∣

∣
< 1. (11)

It should be noted that the choice of p1 = 0.1ωr,1 was suggested in [18],

guaranteeing the first part of the condition in (11).

3.2. Inclusion of sensor dynamics in an IRC

Although the problem of the sensor dynamics was dealt with in [22], a

formal stability condition was not established. The control scheme in Fig. 1

is configured as follows: (a) the actuator dynamics is neglected (i.e., GA(s) =

1), (b) Gyu(s) is co-located, (c) the TF of GS(s) = s/(s+ p), (d) Df < 0 and

(e) the TF of C(s) = γ/s, where γ > 0. Thus, the TF of Ĉ(s) is given by:

Ĉ(s) =
γs

(s−Dfγ)(s+ p)
, (12)

and is stable sinceDfγ < 0. Thus, the relative order of Ĉ(s) is one, Ĉ(∞) = 0

and Gyu(∞)Ĉ(∞) = 0. Therefore, the stability is guaranteed if the condi-

tions defined into Eqs. (2) and (3) are achieved. It can be checked that
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6 Ĉ(j
√

−Dfγp) = 0◦, which results in ωc =
√

−Dfγp. Then, it can be

proved from the following equation

j
[

Ĉ(jω)− Ĉ(jω)∗
]

=
2γω(ω2 + pDfγ)

(−ω2 + pDfγ)2 + ω2(p−Dfγ)2
> 0, (13)

that condition in Eq. (2) is achieved when ω > ωc.

The condition in Eq. (3) is achieved if the modulus of Gyu(jω)Ĉ(jω)

is increasing over the interval ω ∈ [0, ωc). Since |Gyu(jω)| is increasing for

ω ∈ (0, ωr,1), the condition in Eq. (3) is achieved if
∣

∣

∣
Ĉ(jω)

∣

∣

∣
is increasing for

ω ∈ [0, ωc) and ωc < ωr,1.

The modulus of Ĉ(jω) is given by

∣

∣

∣
Ĉ(jω)

∣

∣

∣
=

γ
√

1
ω2 (ω2 +Dfγp)

2 + (p−Dfγ)
2
, (14)

which is increasing over the interval ω ∈ [0, ωc) if and only if the following

function is decreasing

f2(ω) =
1

ω2

(

ω2 +Dfγp
)2

+ (p−Dfγ)
2 . (15)

This can be demonstrated by calculating df2(ω)/dω.

df2(ω)

dω
= 2ω − 2

(Dfγp)
2

ω3
. (16)

Eq. (16) can be rewritten as

ω <
√

Dfγp = ωc. (17)
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Therefore, the modulus of Ĉ(jω) is increasing over the interval ω ∈ [0, ωc).

Thus, the control scheme is stable if

√

−Dfγp < ωr,1 and
∣

∣

∣
Gyu(j

√

−Dfγp)
∣

∣

∣

∣

∣

∣
Ĉ(j

√

−Dfγp)
∣

∣

∣
< 1. (18)

Note that, as mentioned in [22], the maximum value of Dfγ is limited by the

sensor dynamics (value of p) and the minimum gain margin required.

3.3. Inclusion of actuator dynamics in an IRC

The control scheme in Fig. 1 is configured as follows [23]: (a) the sensor

dynamics is neglected (i.e., GS(s) = 1), (b) Gyu(s) is co-located, (c) Df <

0, (d) the actuator is considered as an inertial actuator with the following

dynamics

GA(s) =
KAs

2

s2 + 2ξAωAs+ ω2
A

, (19)

where Ka > 0, ξa > 0 and ωi > 0 are the system parameters and e) C(s) can

be defined as

C(s) = Ĝ−1
A (s)

γ

s
=

s2 + 2ξAωAs+ ω2
A

KA(s+ p)2
γ

s
(20)

where Ĝ−1
A (s) is an approximate inversion of the actuator dynamics. Thus,

the transfer function of Ĉ(s) can be written as

Ĉ(s) =
sγ

s2 + (2p− γDf )s+ p2
. (21)
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Note that Eq. (21) is identical to Eq. (5) if p is substituted by p1, where the

control scheme is stable if Eq. (11) is satisfied.

3.4. Inclusion of sensor dynamics in a PPF

The control scheme in Fig. 1 is configured as follows: (a) Gyu(s) is co-

located, (b) the TF of GA(s) = 1, (c) the TF of GS(s) = s/(s + p), (d)

Df = 0 and (e) the TF of C(s) is as follows [15]

C(s) =
N
∑

i=1

γi
s2 + 2δiω̃is+ ω̃2

i

, (22)

where N is the number of modes controlled, γi > 0, δi > 0 and ω̃i are tuned

to impart damping to the vibration mode i. Thus, the TF of Ĉ(s) is given

by

Ĉ(s) =
s

s+ p

N
∑

i=1

γi
s2 + 2δiω̃is+ ω̃2

i

. (23)

Although PPF control has more than one frequency where the phase of Ĉ(jω)

is zero, the value of ωc is obtained by considering N = 1 in Eq. (26). This

is because the PPF controller exhibits high-frequency roll-off characteristics

and the phase at low frequencies (ω < ω̃1) is approximately equal if more

vibration modes are controlled (N > 1). Thus, it can be deduced that

ωc =

√

pω̃2
1

2δ1ω̃1 + p
, (24)

and the control scheme is stable if
∣

∣

∣

ˆC(jωc)Gyu(jωc)
∣

∣

∣
< 1. Note that p should

be less than ω1 to impart damping.
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3.5. Inclusion of actuator dynamics in a PPF

The control scheme in Fig. 1 is configured as follows: (a) Gyu(s) is

co-located, (b) the TF of GA(s) is defined as in Eq. (19), (c) the TF of

GS(s) = 1, (d) Df = 0 and (e) the TF of C(s) is defined as Eq. (22) but

including the dynamics inversion used into Eq. (20) given by

C(s) =
s2 + 2ξAωAs+ ω2

A

KA(s+ p)2

N
∑

i=1

γi
s2 + 2δiω̃is+ ω̃2

i

. (25)

Thus, the TF of Ĉ(s) can be written as

Ĉ(s) =
s2

(s+ p)2

N
∑

i=1

γi
s2 + 2δiω̃is+ ω̃2

i

. (26)

Applying the same conditions and performing the same analysis as detailed

in the previous section, the control scheme is stable if
∣

∣

∣
Ĉ(jωc)Gyu(jωc)

∣

∣

∣
< 1,

where ωc is given by

ωc =

√

pω̃2
1 + δ1ω̃1p2

δ1ω̃1 + p
. (27)

4. Example

This example shows how to tackle problems introduced by the sensor

dynamics during an IRC implementation. In addition, this section also ex-

plains why a band-pass filter is better than pure integral action for C(s) in

this particular case. The transfer functions of the cantilever beam instru-

mented with piezoelectric patches as employed in [22] have been utilized to

obtain simulation results for both controllers options.
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The design methodology for IRC is briefly explained. According to [18],

and neglecting the actuator and sensor dynamics (GA(s) = GS(s) = 1), the

loop dynamics used to tune IRC parameters in [18] is given by

GL,1(s) = (Gyu(s) +Df )C(s). (28)

The design methodology proposed in [18], which is shown in Fig. 3, can

be itemized as: (a) determine the maximum value of Df to guarantee the

stability of the controlled system w.r.t. Df < −Gyu(0), by adding a zero at

a frequency lower than the first resonant mode of the system (Fig. 3b), (b)

place this zero as a far away from the first resonance pole, thereby increasing

the maximum imparted damping, and (c) design C(s), given by C(s) = γ/s

as shown in Fig. 3.c, to impart damping to the system. A band-filter can be

used instead, (Eq. (4)), where p1 << ωr,1 (for example, p1 = 0.1ωr1).

 

Re 

Im 

(a)

Re 

Im 

(b)

Im 

Re 

(c)

Figure 3: Design method proposed in [18]. (a) Pole-Zero diagram of Gyu(s). (b) Pole-Zero
diagram of Gyu(s) +Df . (c) Root locus of (Gyu(s) +Df )(γ/s).
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However, if the sensor dynamics cannot be neglected, the design proposed

in [18] is not adequate, since GS(s) will affect the imparted damping possible.

In this case, [22] proposed to use the characteristic equation given by

GL,2(s) =
C(s)

1− C(s)Df

GS(s)Gyu(s), (29)

where Df and γ were chosen from the root locus given in Fig. 4. If the

sensor dynamics is not considered (GS(s) = 1), the damping imparted by the

controller depends on the position of the real pole γDf and the gain −1/Df

(see Fig. 4.a). In addition, the stability condition is −Gyu(0)/Df < 1, which

is similar to the condition defined in [18]. If GS(s) = s/(s + p), the choice

of the real pole γDf and the gain −1/Df depends on −p (see Fig. 4.b).

In addition, the stability condition is now defined by Eq. (18). It should

be remarked that, as shown in [22], the maximum damping is limited by the

position of −p. Thus, the maximum imparted damping is less when the value

of −p is bigger.

An alternative design can be proposed, where C(s) is defined as

C(s) =
γ(s+ z1)

(s+ p1)(s+ p1)
. (30)

Thus, the transfer function of Ĉ(s) if the sensor dynamics is considered is

Ĉ(s) =
γ(s+ z1)

s2 + 2p1s+ p21 −Dfγs

s

s+ p
. (31)

Then, if z1 = p1, a controller structurally similar to Eq. (5) can be derived

and the design methodology defined in [18], can be used when p1 << ωr,1.
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Im 

Re �Df 

(a)

Im 

Re �Df -p 

(b)

Figure 4: Design method proposed in [22]. (a) Pole-Zero diagram when C(s) = γ/s. (b)
Pole-Zero diagram when C(s) = γ/s and GS(s) = s/(s+ p).

In addition, the stability condition can now be defined by Eq. (11).

4.1. Simulation results

The identified model of the cantilever beam used in [22] (see Fig. 5)

is used to illustrate the two possible designs when the sensor dynamics is

considered. The state-space model is as follows
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ẋ =





























0 1 0 0 0 0

−2799 −0.8 0 0 0 0

0 0 0 1 0 0

0 0 −1.024 · 105 −4 0 0

0 0 0 0 0 1

0 0 0 0 −7.868 · 105 −11.09





























x+ (32)





























0 0

1 0.490

0 0

1 −1.148

0 0

1 −1.679





























[

w u
]





y

z



 =





−0.205 0 0.789 0 −1.222 0

13.23 0 −359.5 0 −1089 0



x+





4.411 · 10−7 1.261 · 10−6

−1.114 · 10−3 4.477 · 10−2





[

w u
]

,

and the sensor dynamics was identified as

GS(s) =
s

s+ 5
. (33)

The transfer function Gyu(s) derived from the model of Eq. (32) is given by
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Figure 5: System model, where u is the input and y is the output of the co-located patch,
w is the disturbance patch and z is the tip velocity.

Gyu(s) = 0.045 ·
(s2 + 0.80s+ 2925)

(s2 + 0.80s+ 2799)
· (34)

(s2 + 4.01s+ 1.11 · 105)

(s2 + 4.00s+ 1.02 · 105)
·
(s2 + 11.08s+ 8.28 · 105)

(s2 + 11.09s+ 7.87 · 105)
,

where ωr,1 = 52.91rad/s, and is used to design the IRC as described in

Sections 3.1 and 3.2.

First, the parameters Df and γ are chosen according to [18] for the fol-

lowing cases: (Case a) Gyu(s) without considering GS(s) and C(s) = γ/s,

(Case b) Gyu(s) together with GS(s) and C(s) = γ/s and (Case c) Gyu(s)

together with GS(s) and C(s) as defined in Eq. (31) for z1 = p = 5 and

p1 = 5 < 0.1ωr,1.

If GS(s) is not considered, Df must be less than −Gyu(0) = −0.053. The

following five values of Df are identified Df = {−Gyu(0)/0.5, −Gyu(0)/0.6,

−Gyu(0)/0.7, −Gyu(0)/0.8, −Gyu(0)/0.9 }. The maximum damping ratios

obtained for each value ofDf and its corresponding value of γ are summarized
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in Table 1. In addition, these damping ratios are also calculated for (Case

b) and (Case c) by using the same values of Df and γ. It can be deduced

from Table 1 that: (a) the damping ratios are increased when GS(s) is not

considered as long as Df is increased (until the limit of Df = −Gyu(0)),

(b) the damping ratios are also increased in the same way when GS(s) is

considered together with C(s) defined as Eq. (31) for z1 = p = 5 and (c) the

design criterion of [18] is not useful when GS(s) is considered together with

C(s) = γ/s since ξ1 increases only up to a certain value of Df .

Secondly, the design used in [22] when C(s) = γ/s is considered. Here,

the pole Dfγ was placed by considering the dynamics of GS(s). Thus, the

maximum imparted damping can be increased by moving away Dfγ from the

origin up to a certain value. Then, the minimum value for Dfγ was selected

as −226.2 and the controller gain was 1/Df = −18 [22]. If the stability

condition in Eq. (18) is used, it results as follows

√

−Dfγp = 33.63 < ωr,1 = 52.91 and
∣

∣

∣
Gyu(j

√

−Dfγp)
∣

∣

∣

∣

∣

∣
Ĉ(j

√

−Dfγp)
∣

∣

∣
= 0.9768 < 1, (35)

showing that the control scheme is stable. In addition, the damping ratios

are ξ1 = 0.101, ξ2 = 0.0321 and ξ3 = 0.0116, which show that the value of

ξ1 is close to Df = −Gyu(0)/0.9 and γ = 6.73 · 103 without considering the

GS(s). However, the values for ξ2 and ξ3 are smaller. If the band-pass filter

is utilized, the same damping can be achieved by the following variations

to the original design: (a) increasing Df and γ, which reduces the stability

margins of the controlled system and/or (b) reducing the value of p1, which
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Table 1: Damping ratios when the design criterion of [18] is used.

Df = −Gyu(0)/0.5 and γ = 1.18 · 103

ξ1 ξ2 ξ3
Case a 0.0185 0.0134 0.0078
Case b 0.0166 0.0134 0.0078
Case c 0.0166 0.0133 0.0078
Df = −Gyu(0)/0.6 and γ = 1.71 · 103

ξ1 ξ2 ξ3
Case a 0.0240 0.0167 0.0085
Case b 0.0208 0.0167 0.0085
Case c 0.0211 0.0165 0.0085
Df = −Gyu(0)/0.7 and γ = 2.46 · 103

ξ1 ξ2 ξ3
Case a 0.0333 0.0213 0.0095
Case b 0.0276 0.0214 0.0095
Case c 0.0287 0.0211 0.0095
Df = −Gyu(0)/0.8 and γ = 3.89 · 103

ξ1 ξ2 ξ3
Case a 0.0518 0.0301 0.0113
Case b 0.0366 0.0303 0.0113
Case c 0.0476 0.0299 0.0113
Df = −Gyu(0)/0.9 and γ = 6.73 · 103

ξ1 ξ2 ξ3
Case a 0.1070 0.0480 0.0150
Case b 0.0117 0.0486 0.0150
Case c 0.0871 0.0476 0.0150

reduces the gain attenuation at low frequencies. For example, if p1 = 3,

Df = −Gyu(0)/0.91 and γ = 6.8 · 103, the damping ratios are ξ1 = 0.103,

ξ2 = 0.0484 and ξ3 = 0.0151. Applying the stability condition in Eq. (11),

results in

p1 = 3 < ωr,1 = 52.91 and
∣

∣

∣
Gyu(j

√

−Dfγp)
∣

∣

∣

∣

∣

∣
Ĉ(j

√

−Dfγp)
∣

∣

∣
= 0.9483 < 1, (36)
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Figure 6: FRF of Gzw for the first three vibration modes. (− · −) open-control, (—)
closed-loop with C(s) of Eq. (30) for p1 = 3, Df = −Gyu(0)/0.91 and γ = 6.8 · 103 and
(−−) closed-loop with C(s) = γ/s for Dfγ = −226.2 and 1/Df = −18.

which shows that the control scheme is stable. Simulation results were carried

out as a check and are summarized in Fig. 6. It can be seen that the

amplitude of the second and third vibration mode for C(s) = γs/(s + p1)
2

are, respectively, 3.7dB and 2.5dB less than for C(s) = γ/s. Thus, this

example shows that the band-pass filter mitigates the problem associated to

the sensor dynamics.

5. Conclusion

This work has shown that stability theory based on Negative-Imaginary

Systems can be extended for control schemes that include low-frequency re-

strictions. Simple and analytical stability conditions have been defined for

a group of low-frequency restrictions that commonly appear in practice. In

addition, the work includes a comparison between two different controllers,

showing how to apply the formulated stability conditions to tune the con-
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trollers and to guarantee the stability of the overall system.

Appendix A. Resonance frequency of Gyu

The transfer function in Eq. (1) can be rewritten as follows

Gyu(s) = Gyu(0)
∞
∏

i=1

Gi
yu(s) = Gyu(0)

∞
∏

i=1

s2/(ω2
z,i) + 2ξz,is/(ωz,i) + 1

s2/(ω2
i ) + 2ξis/(ωi) + 1

, (A.1)

where ωi < ωz,i ∀i due to the pole-zero interlacing property of co-located

systems [25]. Thus, it can be demonstrated that |Gyu(jω)| is increasing if

every block in Eq. (A.1) is increasing over the interval ω ∈ (0, ωc). The

modulus of ith block (Gi
yu(s)) is as follows:

∣

∣Gi
yu(jω)

∣

∣ =

√

(1− ω2/(ω2
z,i))

2 + 4ω2ξ2z,i/(ω
2
z,i)

(1− ω2/(ω2
i ))

2 + 4ω2ξ2i /(ω
2
i )

. (A.2)

After deriving Eq. (A.2) and simplifying further, the following increasing

condition can be defined:

[

−4ω(1− ω2/ω2
z,i)/ω

2
z,i + 8ξ2z,iω/ω

2
z,i

] [

(1− ω2/ω2
i )

2 + 4ω2ξ2i /ω
2
i

]

− (A.3)

[

(1− ω2/ω2
z,i)

2 + 4ω2ξ2z,i/ω
2
z,i

] [

−4ω(1− ω2/ω2
i )/ω

2
i + 8ξ2i ω/ω

2
i

]

> 0

If Eq. (A.3) is simplified, it results in

ω4∆1 + ω2∆2 +∆3 > 0, (A.4)
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where ∆1, ∆2 and ∆3 are given by:

∆1 = ω2
z,i

(

1− 2ξ2z,i
)

− ω2
i

(

1− 2ξ2i
)

(A.5)

∆2 = ω4
i − ω4

z,i

∆3 = ω2
i ω

2
z,i

[

ω2
z,i

(

1− 2ξ2i
)

− ω2
i

(

1− 2ξ2z,i
)]

.

Thus, the resonance frequency of each Gi
yu(s) can be calculated from the

expression,

ωr,i =

√

−∆2 −
√

∆2
2 − 4∆1∆3

2∆1

, (A.6)

where each
∣

∣Gi
yu(jω)

∣

∣ is increasing up to ωr,i.
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