
Computing Science

On the Equivalence between Logic Programming
Semantics and Argumentation Semantics

Martin Caminada
Samy Sá

João Alcântara

Technical Report Series ABDN–CS–13–01
Department of Computing Science March 2013
University of Aberdeen
King’s College
Aberdeen AB24 3UE

Copyright c© 2013, The University of Aberdeen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/11303924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Equivalence between Logic Programming

Semantics and Argumentation Semantics

Martin Caminada
Samy Sá

João Alcântara

Technical Report ABDN–CS–13–01
Department of Computing Science

University of Aberdeen

March 18, 2013

Abstract: In the current paper, we re-examine the connection between formal argu-
mentation and logic programming from the perspective of semantics. We observe that
one particular translation from logic programs to instantiated argumentation (the one
described by Wu, Caminada and Gabbay) is able to serve as a basis for describing vari-
ous equivalences between logic programming semantics and argumentation semantics. In
particular, we are able to provide a formal connection between regular semantics for logic
programming and preferred semantics for formal argumentation. We also show that there
exist logic programming semantics (L-stable semantics) that cannot be captured by any
abstract argumentation semantics.

Keywords: formal argumentation theory, logic programming

1 Introduction

The connection between logic programming and formal argumentation goes back to logic
programming inspired formalisms like [12] or [14], as well as to the seminal work of Dung
[7] in which various connections were pointed out. To some extent, the work of [7] can
be seen as an attempt to provide an abstraction of certain aspects of logic programming.
The connection between logic programming and argumentation is especially clear when it
comes to comparing the different semantics that have been defined for logic programming
with the different semantics that have been defined for formal argumentation. In the current
paper, we continue this line of research. We do this by pointing out that one particular
translation from logic programming to formal argumentation (the one of [17]) is able to
account for a whole range of equivalences between logic programming semantics and formal
argumentation semantics. This includes both existing results like the equivalence between
stable model semantics (LP) and stable semantics (argumentation) [7], between well-founded
semantics (LP) and grounded semantics (argumentation) [7], and between partial stable model
semantics (LP) and complete semantics [17], as well as a newly proved equivalence between
regular model semantics (LP) and preferred semantics (argumentation).

The results of the current paper, however, are relevant for more than just the connection
between logic programming and formal argumentation. They also shed light on specific as-
pects of instantiated argumentation theory in general (e.g. [3, 11, 10]). In particular we show

1

the connection between argument-labellings at the abstract level and conclusion-labellings
at the instantiated level. With one notable exception, we are able to show that maximizing
(or minimizing) a particular label (in, out or undec) at the argument level coincides with
maximizing (or minimizing) the same label at the conclusion level. These results are relevant
as they indicate the possibilities (and limitations) of applying argument-based abstractions
to formalisms for non-monotonic reasoning.

This paper is structured as follows. First, in Section 2, we will introduce the main concepts
to be applied in the current paper, such as the various semantics of abstract argumentation
and logic programming upon which we will discuss. Then, in Section 3 we provide an overview
of the three step process of instantiated argumentation and how it is applied in the particular
context of logic programming based argumentation. In Section 4 we examine some existing
work on the minimization and maximization of argument labellings. Similarly, in Section 5 we
examine the issue of minimization and maximization of conclusion labellings. The connection
between argument labellings and conclusion labellings is then studied in Section 6. Using
this connection, we are able to apply it for making the connection between argumentation
semantics and logic programming semantics in Section 7. For this, we point out that argument
labellings coincide with argument extensions and conclusion labellings coincide with logic
programming models. One notable exception on the coincidence between argumentation
semantics and logic programming semantics is studied in Section 8, where we examine possible
ways in which this coincidence can be restored. A reverse translation from argumentation
frameworks to logic programs is then specified in Section 9, and it is observed that for this
translation the coincidence of argumentation semantics and logic programming semantics
is even stronger than for the translation of (unrestricted) logic programs to argumentation
frameworks. Finally, we then round off with a discussion of the obtained results in Section
10.

2 Preliminaries

In this section, we introduce the main definitions used throughout the paper and the first
connections between formal argumentation and logic programming. We will start with the
definitions of abstract argumentation frameworks and their various semantics and then move
on to logic programs and their various semantics, in order to point out the similarities between
these concepts.

2.1 Abstract Argumentation Frameworks and Semantics

In the current paper, we follow the approach of Dung [7]. To simplify things, we will restrict
ourselves to finite argumentation frameworks.

Definition 1 ([7]). An argumentation framework is a pair (Ar , att) where Ar is a finite set
of arguments and att ⊆ Ar ×Ar.

Arguments are related to others by the attack relation att , in the sense that an argument
A attacks the argument B iff (A,B) ∈ att . An argumentation framework can be depicted as
a directed graph where the arguments are nodes and each attack is an arrow.

Definition 2 ([7]). (defense/conflict-free). Let (Ar , att) be an argumentation framework, A ∈
Ar and Args ⊆ Ar. Args is said to be conflict-free iff there exists no arguments A,B ∈ Args

2

such that (A,B) ∈ att. Args is said to defend an argument A iff every argument that attacks
A is attacked by some argument in Args. The characteristic function F : 2Ar → 2Ar is defined
as F (Args) = {A|A is defended by Args}. A conflict-free set Args is said to be admissible iff
Args ⊆ F (Args), which means that the arguments in the set can defend themselves against
any attackers in the framework. Finally, we write Args+ = {A|A is attacked by Args} to
refer to the set of arguments attacked by Args.

The traditional approaches to argumentation semantics are based on extensions of argu-
ments. Some of the mainstream approaches are summarized in the following definition1.

Definition 3. (extension-based argumentation semantics). Given an argumentation frame-
work AF = (Ar , att) and S ⊆ Ar:

• S is a complete extension of AF iff S is a conflict-free fixpoint of F (that is, if S is
conflict-free and S = F (S)).

• S is a grounded extension of AF iff S is the minimal (w.r.t. set inclusion) conflict-free
fixpoint of F .

• S is a preferred extension of AF iff S is a maximal (w.r.t. set inclusion) conflict-free
fixpoint of F .

• S is a stable extension of AF iff S is a conflict-free fixpoint of F such that S∪S+ = Ar.

• S is a semi-stable extension of AF iff S is a conflict-free fixpoint of F with maximal
S ∪ S+ (w.r.t. set inclusion).

From Definition 3, it directly follows that every grounded, preferred, stable or semi-stable
extension of a given argumentation framework is also a complete extension of that argumen-
tation framework.

Example 1. Let AF = (Ar , att) be an abstract argumentation framework such that Ar =
{A1, . . . , A6} and att = {(A6, A4), (A4, A6), (A4, A5), (A5, A3), (A3, A3)}. We depict AF as a
directed graph, in Figure 1.

Concerning semantics, AF has:

• Complete extensions: {A1, A2}, {A1, A2, A5, A6}, and {A1, A2, A4}.

• Grounded extension: {A1, A2}.

• Preferred extensions: {A1, A2, A5, A6}, and {A1, A2, A4}.

• Stable extensions: {A1, A2, A5, A6}.

• Semi-stable extensions: {A1, A2, A5, A6}.

It is worth to note that semi-stable semantics will coincide with the stable semantics
whenever the framework has at least one stable extension. The reason is straightforward: A
stable extension of (Ar , att) is characterized by having S+ = Ar \ S, so S ∪ S+ = Ar, which
implies having maximal S ∪ S+. As a consequence, every stable extension is also semi-stable
and the existence of stable extensions is sufficient to assure no other (non-stable) semi-stable
extensions exist.

1The characterization of the extension-based semantics in Definition 3 is slightly different than the way
these were originally defined in for instance [7], but equivalence is proved in [4].

3

A6

A3

A4

A1

A2

A5

Figure 1: An abstract argumentation framework with 6 arguments.

2.2 Logic Programs and Semantics

In the current paper, we account for propositional normal logic programs, which we will call
logic programs or simply programs from now on.

Definition 4. A rule r is an expression r : c ← a1, . . . , an, not b1, . . . , not bm (n ≥ 0,
m ≥ 0) where c, each ai (1 ≤ i ≤ n) and each bj (1 ≤ j ≤ m) are atoms and not represents
negation as failure. c is called the head of the rule, and a1, . . . , an, not b1, . . . , not bm is
called the body of the rule. Furthermore, a1, . . . , an is called the strong part of the body and
not b1, . . . , not bm is called the weak part of the body. Let r be a rule, we write head(r) to
denote it’s head (the atom c), body+(r) to denote the set {a1, . . . , an} and body−(r) to denote
the set {not b1, . . . , not bm}. A logic program P is then defined as a finite set of rules. If
every rule r ∈ P has body−(r) = ∅, we say that P is a positive program. The Herbrand Base
of a program P is the set HBP of all atoms appearing in the program.

A wide range of logic programs semantics can be defined based on the 3-valued interpre-
tations of programs [13] as we introduce next.

Definition 5. A 3-valued Herbrand interpretation I of a logic program P is a pair S =<
T ;F > of sets of atoms that suggests that the atoms in T are true and those in F are false.
The atoms in U = HBP \ (T ∪ F) are then suggested to be undefined in I.

Let I =< T ;F > be a 3-valued interpretation of the program P , take P/I to be the
program built by the execution of the following steps:

1. Remove each rule r from P that has body−(r) ∩ T 6= ∅;

2. From the result of step 1, remove any occurrences of atoms not bi from body of the
each rule, for every bi ∈ F .

3. From the result of step 2, substitute any occurrences of not bi left by u.

In the above, u is an atom not in HBP which is undefined in all interpretations of P (a
constant). It can be observed that P/I is a positive program, since all instances of weak
negation have been removed. As a consequence, P/I has a unique least 3-valued model [13]

4

which consists of the interpretation Ψ(I) =< TΨ;FΨ >2 with minimal TΨ and maximal FΨ

(w.r.t. set inclusion) such that, for every A ∈ HBP :

• A ∈ TΨ if there is a rule r′ in P/I with head(r′) = A and body+(r′) ⊆ TΨ;

• A ∈ FΨ if every rule r′ in P/I with head(r′) = A has body+(r′) ∩ FΨ 6= ∅;

• A ∈ UΨ otherwise.

With that in mind, we define the semantics of logic programs we will explore in this paper.

Definition 6. (model-based logic programming semantics). Given a normal logic program P
and a 3-valued interpretation I =< T,F >:

• I is a partial stable model of P iff I = Ψ(I).

• I is a well-founded model of P iff I is the T part of a partial stable model of P with
minimal T (w.r.t. set inclusion).

• I is a regular model of P iff I is the T part of a partial stable model of P with maximal
T (w.r.t. set inclusion).

• I is a stable model of P iff I is the T part of a partial stable model of P that has
F = HBP \ T , i.e., U = ∅.

• I is an L-stable model of P iff I is the T part of a partial stable model of P with maximal
T ∪ F .

Some of the definitions above are not standard in the logic programming literature, but can
be found via equivalence results in different papers. The definition of a partial stable model
is compatible with that in the work of Przymusinski [13] (where it is called a 3-valued stable
model). The above definition of a stable model and the well-founded model also goes back to
[13]. The other definitions, namely of regular and L-stable models are based on the work of
Eiter et al [8], where authors discuss partial stable models (P-stable models) and variations
such as maximal (M-stable) models and least undefined (L-stable) models. In their paper
[8] it is shown that for normal logic programs, P-stable models coincide with Przymusinski’s
original notion of 3-valued stable models [13], even though they only consider the T part of
there 3-valued interpretations. The M-stable models are then defined as the maximal P-stable
models and shown to be equivalent to the regular models. Our definition of L-stable models
is then the same as in [8], but building on top of Przymusinski’s notion of 3-valued stable
models [13] instead of on to of P-stable models (notice that these are equivalent anyway).

Please notice the similarity of definitions 6 and 3. As we will show later in the paper,
this similarity is not a coincidence. The following example should help the reader to further
understand the above concepts.

2The above definition consists of a least fix-point of the immediate consequence operator Ψ defined in [13],
which is guaranteed to exist and be unique for positive programs.

5

Example 2. Consider the following normal logic program P with rules {r1, ..., r6}:

r1 : b← c, not a
r2 : a← not b
r3 : p← c, d, not p
r4 : p← not a
r5 : c← d
r6 : d←

The logic program from Example 2 has:

• partial stable models: < {d, c}; { } >, < {d, c, p, b}; {a} >, < {d, c, a}; {b} >.

• Well-founded model: {d, c}.

• Regular models: {d, c, p, b}, {d, c, a}.

• Stable models: {d, c, p, b}.

• L-stable models: {d, c, p, b}.

It is worth to note that L-stable semantics will coincide with the stable semantics whenever
the program has one or more stable models. The reason is straightforward: Any stable model
of P is a 3-valued stable model with F = HBP \ T , so T ∪ F = HBP , which means maximal
T ∪ F . As a consequence, every stable model is also L-stable and the existence of stable
models is sufficient to assure no other (non 2-valued stable) L-stable models exist.

Just as before, one can observe the similarity between the extensions derived in each
semantics of abstract framework from Example 1 and the models from each semantics of the
logic program from Example 2. Most of the similarities observed are not coincidental. In the
next section we will start shedding some light on the causes of such similarities.

2.3 An Alternative Definition of AF Semantics

Given an argumentation framework AF , the function F can be computed for any conflict-
free set of arguments S via a transformation of the framework: Let AF/S be the result of
removing the nodes that represent arguments in S+, we will find that F (S) is exactly the
set of arguments that have no attackers in AF/S (by definition). These arguments are the
ones defended by S in AF . Just as well, if F (S) = R, then R+ would be the set of rejected
arguments in AF and the status of any others would be considered undecided (according to
S).

The transformation of argumentation frameworks above is thought in the same sense as the
Gelfond-Lifschitz transformation [9] that is used to define some of the most common semantics
of logic programs. For sets of arguments S that are not conflict-free, this transformation may
fail to provide the set of arguments defended by S. As an example, consider the framework
({a}, {(a, a)}), i.e., with a single self-attacking argument. The argument a attacks and defends
itself, so S = {a} is not conflict-free. The result of the transformation is an empty framework
(no arguments left), since a ∈ S+ gets removed. The conclusion is that no arguments should
be accepted, not even a. However, this issue does not cause any real difficulties, since all
argumentation semantics considered in the current paper satisfy the conflict-freeness property.

6

Theorem 7. (alternative extension-based argumentation semantics). Given an argumenta-
tion framework AF = (Ar , att), and any set of arguments S, let G(S) be the set of arguments
with no attackers in AF/S. Then:

• S is a complete extension of AF iff S is a fixpoint of G (that is, if S = G(S)).

• S is a grounded extension of AF iff S is the minimal (w.r.t. set inclusion) fixpoint of
G.

• S is a preferred extension of AF iff S is a maximal (w.r.t. set inclusion) fixpoint of G.

• S is a stable extension of AF iff S is a fixpoint of G such that S ∪ S+ = Ar.

• S is a semi-stable extension of AF iff S is a fixpoint of G with maximal S ∪ S+ (w.r.t.
set inclusion).

Proof. We first prove that S is a complete extension of AF iff S is a fixpoint of G.
“⇒”: Let S be a complete extension of AF . This implies that A is conflict-free. As we have
observed earlier, for a conflict-free set S it holds that F (S) = G(S), so from the fact that
S = F (S) (since S is a complete extension) it follows that S = G(S), so S is a fixpoint of G.
“⇐”: Suppose S = G(S). We now prove that S is conflict-free. Suppose, towards a con-
tradiction, that there exist A,B ∈ S such that A attacks B (there is a conflict in S). As a
consequence, B 6∈ G(S), but since S = G(S), it follows that B 6∈ S, which is a contradic-
tion. Therefore, S is conflict-free. From our assumption that S = G(S) it then follows that
S = F (S). Hence, S is a conflict-free fixpoint of F , that is, S is a complete extension.

The rest of the equivalences follow from the facts that S is a complete extension of AF iff
S is a fixpoint of G and that grounded, preferred, stable, and semi-stable extensions are all
particular cases of complete extensions.

Please observe that Definitions 3 and Theorem 7 are related. Our theorem therefore pro-
vides an alternative definition of extension-based argumentation semantics while suggesting
equivalences between semantics of logic programs and semantics of argumentation frameworks.
Such equivalences will be further discussed and verified along the paper.

3 Logic Programming as Argumentation; a three-step process

In the current section, we examine how argumentation theory can be applied in the context
of logic programming. In essence, our treatment is based on the approach described in [17].3

The idea is to apply the standard three-step process of instantiated argumentation, similar
to what is done in [3, 11, 10]. One starts with a particular knowledge base and constructs the
associated argumentation framework (step 1), then applies abstract argumentation semantics
(step 2) and subsequently looks at what the results of the argumentation semantics imply at
the level of conclusions (step 3). We now specify what this process looks like in the specific
context of logic programming.

3One particular difference is that in our current approach, arguments are recursive structures, whereas in
the approach of [17], they are trees of rules. The disadvantage of the latter approach is that if one identifies
the nodes of a tree with rules, one is not able to apply the same rule at different positions in the argument.
The approach in the current paper, which is based on [3, 11], avoids this problem.

7

3.1 Step 1: Argumentation Framework Construction

The approach of instantiated argumentation starts with a particular given knowledge base. In
the context of logic programming, the knowledge base consists of a logic program. For current
purposes, we consider this logic program to be normal, as we defined previously. Based on a
particular logic program P , one can then start to construct arguments, which is done in the
following recursive way:

Definition 8. Let P be a logic program.

• If c← not b1, . . . , not bm is a rule in P then it is also an argument (say A) with
Conc(A) = c,
Rules(A) = {c← not b1, . . . , not bm}, and
Vul(A) = {b1, . . . , bm}.

• If c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each ai (1 ≤ i ≤ n) there
exists an argument Ai with Conc(Ai) = ai and c← a1, . . . , an, not b1, . . . , not bm 6∈ Ai

then c← (A1), . . . , (An), not b1, . . . , not bm is an argument (say A) with
Conc(A) = c,
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {c← a1, . . . , an, not b1, . . . , not bm} , and
Vul(A) = Vul(A1) ∪ . . . ∪ Vul(An) ∪ {b1, . . . , bm}.

In essence, an argument can be seen as a tree-like structure of rules (the only difference
with a real tree is that a rule can occur at more than one place in the argument)4 and in
examples we will often represent it as such. If A is an argument then Conc(A) is referred to
as the conclusion of A and Vul(A) is referred to as the vulnerabilities of A.

Example 3. Given the logic program P from 2, one can construct the following arguments:

A1 : d←
A2 : c← (A1)
A3 : p← (A2), (A1), not p
A4 : a← not b
A5 : p← not a
A6 : b← (A2), not a

In our example, it holds that Conc(A1) = d, Conc(A2) = c, Conc(A3) = Conc(A5) = p,
Conc(A4) = a, and Conc(A6) = b. Just as well, Vul(A1) = Vul(A2) = ∅, Vul(A3) = {p},
Vul(A4) = {b}, and Vul(A5) = Vul(A6) = {a}. The arguments are graphically depicted in
Figure 2.

We draw attention of the reader to the relations amongst these arguments. Observe, for
instance, that A1 is a subargument of A2. Just as well, we point out that A2 is a subargument
of A3 and A6 and, as consequence, A1 is a subargument of A3 and A6 as well.

The next step in constructing the argumentation framework is to determine the attack
relation: An argument attacks another iff its conclusion is one of the vulnerabilities of the
attacked argument.

4Notice that Definition 8 allows the same rule to occur multiple times if it is in different branches, but
not if it is in the same branch. This implies that, for instance, for logic program P = {a ← b, c; b ←
d; c ← d; d ←; e ← f ; f ← e f ←}, a ← (b ← (d ←)), (c ← (d ←)) is a well-formed argument, whereas
e ← (f ← (e ← (f ←))) is not. This is to prevent a finite logic program from generating an infinite number
of arguments, which would be particularly troublesome in the context of semi-stable semantics (see [6, 15]).

8

[A1] d← [A2] c← d [A3] p← c, d, not p
| � �

d← c← d d←
|

d←

[A4] a← not b [A5] p← not a [A6] b← c, not a
|

c← d
|

d←

Figure 2: Arguments constructed from P .

Definition 9. Let A and B be arguments in the sense of Definition 8. We say that A attacks
B iff Conc(A) ∈ Vul(B).

For the arguments of Figure 2, it holds that A6 attacks A4, A4 attacks A6 (mutual attacks),
A4 attacks A5, A5 attacks A3, and A3 attacks itself. The resulting argumentation framework
(depicted in Figure 3) is essentially the same argumentation framework as in Example 1.

The notion of attack has a clear conceptual meaning. The fact that b ∈ Vul(A) means
that A is constructed using at least one rule containing not b in its body. In essence, A is a
defeasible derivation that depends on b not being derivable. An argument B that provides a
(possibly defeasible) derivation of b (that is, Conc(B) = b) can therefore be seen as attacking
A.

Using the thus defined concepts of arguments and attacks, one is then able to define the
argumentation framework that is associated to a particular logic program.

Definition 10. Let P be a logic program. We define its associated argumentation framework
as AFP = (ArP , attP) where ArP is the set of arguments in the sense of Definition 8 and
attP is the attack relation in the sense of Definition 9.

As an example, the argumentation framework associated with the logic program of Ex-
ample 2 is depicted in Figure 3.

3.2 Step 2: Applying Argumentation Semantics

Once the argumentation framework has been constructed, the next question becomes which
arguments should be accepted and which arguments should be rejected. As we have seen
in Section 2, several approaches have been stated in the literature for determining this. For
current purposes, we will focus on the concept of complete semantics [7], which can be defined
using the concept of a complete labelling [2, 4].

Definition 11. Let AF = (Ar , att) be an argumentation framework. An argument labelling
is a function ArgLab : Ar → {in, out, undec}. An argument labelling is called a complete
argument labelling iff for each A ∈ Ar it holds that:

• if ArgLab(A) = in then for every B ∈ Ar that attacks A it holds that ArgLab(B) = out

9

Figure 3: The abstract framework built using arguments instantiated from P

• if ArgLab(A) = out then there exists a B ∈ Ar that attacks A such that ArgLab(B) = in

• if ArgLab(A) = undec then (i) not every B ∈ Ar that attacks A has ArgLab(B) = out

and (ii) no B ∈ Ar that attacks A has ArgLab(B) = in

With an argument labelling, one can express any arbitrary position on which arguments to
accept (labelled in), which arguments to reject (labelled out) and which arguments to abstain
from having an explicit opinion about (labelled undec). However, some of these positions are
more reasonable than others. The idea of a complete labelling is that a position is reasonable
iff one has sufficient reasons for each argument one accepts (all its attackers are rejected), for
each argument one rejects (it has an attacker that is accepted) and for each argument one
abstains (there are insufficient grounds to accept it and insufficient grounds to reject it).

When ArgLab is an argument labelling, we write in(ArgLab) to denote the set of {A |
ArgLab(A) = in}, out(ArgLab) for {A | ArgLab(A) = out} and undec(ArgLab) for {A |
ArgLab(A) = undec}. Since an argument labelling essentially defines a partition among the
arguments (into a set of in-labelled arguments, a set of out-labelled arguments and a set
of undec-labelled arguments), we sometimes write ArgLab as a triple (Args1,Args2,Args3)
where Args1 = in(ArgLab), Args2 = out(ArgLab) and Args3 = undec(ArgLab).

In the argumentation framework of Figure 3, there are three possible complete labellings:
ArgLab1 = ({A1, A2}, { }, {A3, A4, A5, A6})
ArgLab2 = ({A1, A2, A5, A6}, {A3, A4}, { })
ArgLab3 = ({A1, A2, A4}, {A5, A6}, {A3})

3.3 Step 3: converting argument labellings to conclusion labellings

When it comes to practical questions like what to believe or what to do, in the end what
is important are not so much the arguments themselves but their conclusions. In the argu-

10

mentation process, this means that for each position on which arguments to accept, reject or
abstain we need to determine the associated position on which conclusions to accept, reject
or abstain.

For current purposes, we follow the approach described in [16]. Here, the idea is for each
conclusion to identify the “best” argument that yields it. We assume a strict total order
between the different individual labels such that in > undec > out. The best argument
for a particular conclusion is then the argument with the highest label. In case there is no
argument at all for a particular conclusion, the conclusion will then simply be labelled out.

Definition 12 ([16]). Let P be a logic program. A conclusion labelling is a function ConcLab :
HBP → {in, out, undec} where HBP is the set of all atoms occurring in P .
Let AFP = (ArP , attP) be an argumentation framework and ArgLab be an argument la-
belling of AFP . We say that ConcLab is the associated conclusion labelling of ArgLab iff
ConcLab is a conclusion labelling such that for each c ∈ HBP it holds that ConcLab(c) =
max({ArgLab(A) | Conc(A) = c}∪{out}) where in > undec > out. We say that a conclusion
labelling is complete iff it is associated with a complete argument labelling.

When ConcLab is a conclusion labelling, we write in(ConcLab) to denote the set {c |
ConcLab(c) = in}, out(ConcLab) for {c | ConcLab(c) = out} and undec(ConcLab) for
{c | ConcLab(c) = undec}. Since a conclusion labelling essentially defines a partition among
HBP (into a set of in-labelled conclusions, a set of out-labelled conclusions and a set of undec-
labelled conclusions), we sometimes write ConcLab as a triple (Concs1, Concs2, Concs3) where
Concs1 = in(ConcLab), Concs2 = out(ConcLab) and Concs3 = undec(ConcLab).

Recall that for the argumentation framework in Figure 3 the complete argument labellings
are: ArgLab1 = ({A1, A2}, { }, {A3, A4, A5, A6}), ArgLab2 = ({A1, A2, A5, A6}, {A3, A4}, { }),
and ArgLab3 = ({A1, A2, A4}, {A5, A6}, {A3}). In the same example, observe that two of
the involved arguments yield conclusion p, namely A3 : p ← (A5), (A6), not p and A5 :
p ← not a. Observe that A3 is labelled out, while A5 is labelled in by ArgLab2. As a
consequence, the label of p in the conclusion labelling associated with ArgLab2 is in. Using
a similar reasoning, we obtain that the associated conclusion labelling ConcLab1 of ArgLab1

is ({c, d}, { }, {p, a, b}), the associated conclusion labelling ConcLab2 of argument labelling
ArgLab2 is ({c, d, p, b}, {a}, { }), and the associated conclusion labelling ConcLab2 of argument
labelling ArgLab2 is ({c, d, a}, {b}, {p}).

4 On the Minimization and Maximization of Argument La-
bellings

Now that the general overview of the three-step process has been provided, we will subse-
quently zoom in on some of its steps, starting with the argument labellings level (step 2). In
particular, we provide a brief overview (based on work originally published in [2, 4]) of how
the different argument labellings relate to each other, especially when it comes to maximizing
or minimizing a particular label.

However, we start with an alternative way to characterize the concept of a complete
argument labelling, which will be applied several times in subsequent proofs.

Proposition 1. Let AF = (Ar , att) be an argumentation framework. An argument labelling
ArgLab is a complete argument labelling iff for each A ∈ Ar it holds that:

11

• if for every B ∈ Ar that attacks A it holds that ArgLab(B) = out, then ArgLab(A) = in

• if there exists a B ∈ Ar that attacks A such that ArgLab(B) = in, then ArgLab(A) =
out

• if not for every B ∈ Ar that attacks A it holds that ArgLab(B) = out and there does
not exist a B ∈ Ar that attacks A such that ArgLab(B) = in, then ArgLab(A) = undec

Lemma 1 ([2, 4]). Let ArgLab1 and ArgLab2 be complete argument labellings of argumenta-
tion framework AF = (Ar , att). It holds that

• in(ArgLab1) ⊆ in(ArgLab2) iff out(ArgLab1) ⊆ out(ArgLab2)

• in(ArgLab1) (in(ArgLab2) iff out(ArgLab1) (out(ArgLab2)

• in(ArgLab1) = in(ArgLab2) iff out(ArgLab1) = out(ArgLab2)

From Lemma 1 it immediately follows that in(ArgLab1) = in(ArgLab2) iff ArgLab1 =
ArgLab2, and that out(ArgLab1) = out(ArgLab2) iff ArgLab1 = ArgLab2.

From Lemma 1 one can then obtain the following result.

Theorem 13 ([2, 4]). Let ArgLab be a complete argument labelling of argumentation frame-
work AF = (Ar , att). It holds that

• in(ArgLab) is maximal (w.r.t. set-inclusion) among all complete argument labellings
of AF iff out(ArgLab) is maximal (w.r.t. set-inclusion) among all complete argument
labellings of AF .

• in(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argument labellings
of AF iff out(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argument
labellings of AF .

Lemma 2 ([2, 4]). Let ArgLab1 and ArgLab2 be complete argument labellings of argumenta-
tion framework AF = (Ar , att). It holds that

• if in(ArgLab1) ⊆ in(ArgLab2) then undec(ArgLab1) ⊇ undec(ArgLab2)

• if out(ArgLab1) ⊆ out(ArgLab2) then undec(ArgLab1) ⊇ undec(ArgLab2)

• if in(ArgLab1) (in(ArgLab2) then undec(ArgLab1)) undec(ArgLab2)

• if out(ArgLab1) (out(ArgLab2) then undec(ArgLab1)) undec(ArgLab2)

From Lemma 2, the following result follows.

Theorem 14. Let ArgLab be a complete argument labelling of argumentation framework
AF = (Ar , att). It holds that

1. if undec(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argument la-
bellings of AF then in(ArgLab) and out(ArgLab) are maximal (w.r.t. set-inclusion)
among all complete argument labellings of AF , and

2. if undec(ArgLab) is maximal (w.r.t. set-inclusion) among all complete argument la-
bellings of AF then in(ArgLab) and out(ArgLab) are minimal (w.r.t. set-inclusion)
among all complete argument labellings of AF .

12

Proof. 1. Let ArgLab be a complete argument labelling where undec(ArgLab) is mini-
mal. That is, for each complete argument labelling ArgLab ′ of AF , it holds that if
undec(ArgLab ′) ⊆ undec(ArgLab) then undec(ArgLab) ⊆ undec(ArgLab ′). In order to
show that in(ArgLab) is maximal, we need to prove that for each complete argument
labelling ArgLab ′, if in(ArgLab) ⊆ in(ArgLab ′) then in(ArgLab ′) ⊆ in(ArgLab). Let
ArgLab ′ be a complete argument labelling such that in(ArgLab) ⊆ in(ArgLab ′). From
Lemma 2 it then follows that undec(ArgLab) ⊇ undec(ArgLab ′). This, together with
our initial assumption that undec(ArgLab) is minimal, implies that undec(ArgLab) =
undec(ArgLab ′). Therefore, it cannot be the case that in(ArgLab) (in(ArgLab ′) (be-
cause otherwise undec(ArgLab)) undec(ArgLab ′) would follow from Lemma 2, which
would conflict with the fact that undec(ArgLab) = undec(ArgLab ′)). This, together
with the fact that in(ArgLab) ⊆ in(ArgLab ′) implies that in(ArgLab) = in(ArgLab ′),
so in(ArgLab ′) ⊆ in(ArgLab). The case of maximality of out(ArgLab) can be proved
in a similar way.

2. Similar to the first point.

Theorem 15. Let AF = (Ar , att) be an argumentation framework. The complete argument
labelling ArgLab where in(ArgLab) is minimal (w.r.t. set inclusion) among all complete
argument labellings is unique.

Proof. Let ArgLab1 and ArgLab2 be two complete argument labellings where both in(ArgLab1)
and in(ArgLab2) are minimal. We will now prove that ArgLab1 = ArgLab2. First we observe
that from Theorem 13, it follows that also out(ArgLab1) and out(ArgLab2) are minimal. Let
us now define ArgLab to be the outcome of the skeptical judgment aggregation operator of
[5, Def. 18]. It holds that ArgLab is a complete argument labelling [5, Th. 8] such that
in(ArgLab) ⊆ in(ArgLab1), out(ArgLab) ⊆ out(ArgLab1), in(ArgLab) ⊆ in(ArgLab2) and
out(ArgLab) ⊆ out(ArgLab2) ([5, Th. 7]). The fact that ArgLab1 and ArgLab2 are com-
plete argument labellings with minimal in and minimal out then implies that in(ArgLab) =
in(ArgLab1), out(ArgLab) = out(ArgLab1), in(ArgLab) = in(ArgLab2) and out(ArgLab) =
out(ArgLab2), so ArgLab = ArgLab1 and ArgLab = ArgLab2, so ArgLab1 = ArgLab2.

Theorem 16. Let AF = (Ar , att) be an argumentation framework and ArgLab be one of its
complete argument labellings. It holds that undec(ArgLab) is maximal (w.r.t. set-inclusion)
among all complete argument labellings iff in(ArgLab) is minimal (w.r.t. set-inclusion) among
all complete argument labellings.

Proof. “⇒”: This follows from Theorem 14.
“⇐”: Let ArgLab be the unique (Theorem 15) complete argument labelling where in(ArgLab)
is minimal. That is, for any complete argument labelling ArgLab ′ it holds that in(ArgLab) ⊆
in(ArgLab ′), so we also have (by Lemma 2) undec(ArgLab) ⊇ undec(ArgLab ′). Therefore,
ArgLab is also a complete argument labelling where undec(ArgLab) is maximal.

To summarize, the complete argument labellings where in is maximal are the same as
the complete argument labellings where out is maximal (Theorem 13). These argument la-
bellings will be referred to as preferred argument labellings. Furthermore, the unique complete
argument labelling where in is minimal (Theorem 15) is the same as the unique complete
argument labelling where out is minimal (Theorem 13) and the same as the unique complete

13

argument labelling where undec is maximal (Theorem 16). This argument labelling will be re-
ferred to as the grounded argument labelling. The complete argument labellings where undec

is minimal will be referred to as semi-stable argument labellings. The complete argument
labellings where undec is empty will be referred to as argstable argument labellings. In fact,
from our results, it follows that (i) every argstable argument labelling is also semi-stable and
(ii) every semi-stable argument labelling is also preferred. These kinds of argument labellings
are further summarized in Table 1.

Condition Resulting Argument Labelling

NONE Complete
MAX In Preferred

MAX Out Preferred
MAX Undec Grounded

MIN In Grounded
MIN Out Grounded

MIN Undec Semi-stable
NO Undec Argstable

Table 1: Kinds of argument labellings

It is relatively straightforward to define associated classes of conclusion labellings. For
instance, a conclusion labelling is said to be a preferred conclusion labelling iff it is the
associated conclusion labelling of a preferred argument labelling. Similarly, a conclusion
labelling is said to be the grounded conclusion labelling iff it is the associated conclusion
labelling of the grounded argument labelling, and a conclusion labelling is said to be a semi-
stable conclusion labelling iff it is the associated conclusion labelling of a semi-stable argument
labelling. Just as well, a conclusion labelling is said to be an argstable conclusion labelling iff
it is the associated conclusion labelling of an argstable argument labelling.

5 On the Minimization and Maximization of Conclusion La-
bellings

The concepts of preferred, grounded, semi-stable, and argstable conclusion labellings, as de-
fined at the end of the previous section, are based on the common idea of performing the
maximization/minimization at the level of argument labellings and then identifying the asso-
ciated conclusion labellings. An alternative procedure would be simply to identify all complete
conclusion labellings and then to perform the maximization/minimization right at the level
of the conclusion labellings. In the current section, we analyze this alternative procedure. We
will observe that the thus derived conclusion labellings relate to each other in a way that is
very similar to how the different types of argument labellings of the previous section relate
to each other.

Lemma 3. Let ConcLab1 and ConcLab2 be complete conclusion labellings of logic program
P and associated argumentation framework AFP = (ArP , attP). It holds that

1. in(ConcLab1) ⊆ in(ConcLab2) iff out(ConcLab1) ⊆ out(ConcLab2)

2. in(ConcLab1) = in(ConcLab2) iff out(ConcLab1) = out(ConcLab2)

14

3. in(ConcLab1) (in(ConcLab2) iff out(ConcLab1) (out(ConcLab2)

Proof. Let ArgLab1 be a complete argument labelling of which ConcLab1 is the associated
conclusion labelling, and let ArgLab2 be a complete argument labelling of which ConcLab2 is
the associated conclusion labelling.

1. “⇒”: Suppose in(ConcLab1) ⊆ in(ConcLab2). Let c ∈ out(ConcLab1). We will now
prove that c ∈ out(ConcLab2). First, we observe that the fact that c ∈ out(ConcLab1)
implies (Definition 12) that for each argument A such that Conc(A) = c it holds
that ArgLab1(A) = out. This implies (Definition 11) that each such A has an at-
tacker (say B) such that ArgLab1(B) = in, which implies that (Definition 12) that
ConcLab1(Conc(B)) = in. Given the assumption that in(ConcLab1) ⊆ in(ConcLab2),
it then follows that ConcLab2(Conc(B)) = in, which (Definition 12) implies that there
exists an argument C ∈ ArP with Conc(C) = Conc(B) and ArgLab2(C) = in. Since the
notion of attack is based on the conclusion of the attacking argument (Definition 9), it
follows that C attacks A. Since C is labelled in by ArgLab2, it follows (Definition 11)
that A is labelled out by ArgLab2. Since this holds for any argument A with conclusion
c, it follows (Definition 12) that ConcLab2(c) = out. That is, c ∈ out(ConcLab2).
“⇐”: Suppose out(ConcLab1) ⊆ out(ConcLab2). Let c ∈ in(ConcLab1). First, we
observe that the fact that c ∈ in(ConcLab1) implies (Definition 12) that there is an ar-
gument (say A) such that Conc(A) = c and ArgLab1(A) = in. This implies (Definition
11) that for each attacker B of A it holds that ArgLab1(B) = out. This means that (Def-
inition 9) for each argument B with Conc(B) ∈ Vul(A) it holds that ArgLab1(B) = out,
which then implies (Definition 12) that for each b ∈ Vul(A) it holds that ConcLab1(b) =
out. From our initial assumption that out(ConcLab1) ⊆ out(ConcLab2), it then fol-
lows that ConcLab2(b) = out. So for every B ∈ ArP with Conc(B) = b, it holds that
ArgLab2(B) = out (Definition 12), which implies that all attackers of A are labelled
out by ArgLab2 (Definition 9). Hence, it follows that A is labelled in by ArgLab2 (Def-
inition 1). Since Conc(A) = c, it follows (Definition 12) that ConcLab2(c) = in. That
is, c ∈ in(ConcLab2).

2. This follows from point 1.

3. This follows from point 1 and point 2.

From Lemma 3 it immediately follows that in(ConcLab1) = in(ConcLab2) iff ConcLab1 =
ConcLab2, and, as well, that out(ConcLab1) = out(ConcLab2) iff ConcLab1 = ConcLab2.

One can then obtain the following result:

Theorem 17. Let ConcLab be a complete conclusion labelling of logic program P and the
associated argumentation framework AFP = (ArP , attP). It holds that

• in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclusion labellings
of AF iff out(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclusion
labellings of AF .

• in(ConcLab) is minimal (w.r.t. set-inclusion) among all complete conclusion labellings
of AF iff out(ConcLab) is minimal (w.r.t. set-inclusion) among all complete conclusion
labellings of AF .

15

Proof. This follows directly from Lemma 3.

Lemma 4. Let ConcLab1 and ConcLab2 be complete conclusion labellings of logic program
P and the associated argumentation framework AFP = (ArP , attP). It holds that

• if in(ConcLab1) ⊆ in(ConcLab2) then undec(ConcLab1) ⊇ undec(ConcLab2)

• if out(ConcLab1) ⊆ out(ConcLab2) then undec(ConcLab1) ⊇ undec(ConcLab2)

• if in(ConcLab1) (in(ConcLab2) then undec(ConcLab1)) undec(ConcLab2)

• if out(ConcLab1) (out(ConcLab2) then undec(ConcLab1)) undec(ConcLab2)

Proof. 1. Suppose that in(ConcLab1) ⊆ in(ConcLab2). Then (Lemma 3) it follows that
out(ConcLab1) ⊆ out(ConcLab2). Considering that (in(ConcLab1), out(ConcLab1),
undec(ConcLab1)) and (in(ConcLab2), out(ConcLab2), undec(ConcLab2)) are partitions,
and given that in(ConcLab1) ⊆ in(ConcLab2) and out(ConcLab1) ⊆ out(ConcLab2),
we conclude that undec(ConcLab1) ⊇ undec(ConcLab2).

2. Similar to the first point.

3. Suppose that in(ConcLab1) (in(ConcLab2). Then (by Lemma 3) it follows that
out(ConcLab1) (out(ConcLab2). Considering that (in(ConcLab1), out(ConcLab1),
undec(ConcLab1)) and (in(ConcLab2), out(ConcLab2), undec(ConcLab2)) are partitions,
together with the facts that in(ConcLab1) (in(ConcLab2) and out(ConcLab1) (
out(ConcLab2), implies that undec(ConcLab1)) undec(ConcLab2).

4. Similar to the third point.

From Lemma 4, the following result follows.

Theorem 18. Let ConcLab be a complete conclusion labelling of logic program P and asso-
ciated argumentation framework AFP = (ArP , attP). It holds that

1. if undec(ConcLab) is minimal (w.r.t. set-inclusion) among all complete conclusion la-
bellings of AF then in(ConcLab) and out(ConcLab) are maximal (w.r.t. set-inclusion)
among all complete conclusion labellings of AF , and

2. if undec(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclusion
labellings of AF then in(ConcLab) and out(ConcLab) are minimal (w.r.t. set-inclusion)
among all complete conclusion labellings of AF .

Proof. 1. Suppose ConcLab is a complete conclusion labelling such that undec(ConcLab)
is minimal. As a consequence, for each complete conclusion labelling ConcLab′, if
undec(ConcLab′) ⊆ undec(ConcLab) then undec(ConcLab) ⊆ undec(ConcLab′). In
order to prove that in(ConcLab) is maximal, we need to prove that for each complete
conclusion labelling ConcLab′, if in(ConcLab) ⊆ in(ConcLab′) then in(ConcLab′) ⊆
in(ConcLab). Suppose that in(ConcLab) ⊆ in(ConcLab′) for some complete conclusion
labelling ConcLab′. It follows (Lemma 4) that undec(ConcLab) ⊇ undec(ConcLab′).
From our initial assumption, one can conclude that undec(ConcLab) ⊆ undec(ConcLab′),

16

so we have undec(ConcLab) = undec(ConcLab′) as consequence. This means it can-
not be the case that in(ConcLab) (in(ConcLab′) (since otherwise Lemma 4 would
imply that undec(ConcLab)) undec(ConcLab′)) so in(ConcLab) = in(ConcLab′), so
in(ConcLab′) ⊆ in(ConcLab). From the thus obtained fact that ConcLab has maximal
in, it follows (Theorem 17) that ConcLab also has maximal out.

2. Similar to the first point.

Theorem 19. Let P be a logic program and AFP = (ArP , attP) be its associated argumen-
tation framework. The complete conclusion labelling ConcLab of AFP where in(ConcLab) is
minimal (w.r.t. set inclusion) among all complete conclusion labellings of AFP is unique.

Proof. It suffices to show that the associated conclusion labelling of the grounded argument
labelling has a set of in-labelled conclusions that is a subset of the set of in-labelled conclu-
sions of any arbitrary complete conclusion labelling. Let ArgLabgr be the grounded argument
labelling of AFP and ConcLabgr be its associated conclusion labelling (that is, ConcLabgr

is the grounded conclusion labelling). We need to prove that for any complete conclu-
sion labelling ConcLab it holds that in(ConcLabgr) ⊆ in(ConcLab). Let ConcLab be an
arbitrary complete conclusion labelling of P and AFP . Assume it is the associated con-
clusion labelling of complete argument labelling ArgLab. From the fact that ArgLabgr is
the grounded argument labelling, it follows (Theorem 15) that in(ArgLabgr) ⊆ in(ArgLab).
Let c ∈ in(ConcLabgr). Then (Definition 12) there exists an argument A ∈ ArP with
Conc(A) = c and ArgLabgr(A) = in. From the fact that in(ArgLabgr) ⊆ in(ArgLab) it fol-
lows that ArgLab(A) = in, so (Definition 12) ConcLab(c) = in. That is, c ∈ in(ConcLab).
So in(ConcLabgr) ⊆ in(ConcLab).

Theorem 20. Let P be a logic program, AFP = (ArP , attP) be the associated argumentation
framework of P and ConcLab be one of the complete conclusion labellings of AFP . It holds that
undec(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclusion labellings
of AFP iff in(ConcLab) is minimal (w.r.t. set-inclusion) among all complete conclusion
labellings of AFP .

Proof. “⇒”: This follows from Theorem 18.
“⇐”: Let ConcLab be the unique (Theorem 19) complete conclusion labelling with mini-
mal in(ConcLab). That is, for any complete conclusion labelling ConcLab′ it holds that
in(ConcLab) ⊆ in(ConcLab′), so (by Lemma 4) undec(ConcLab) ⊇ undec(ConcLab′). There-
fore, ConcLab is also a complete conclusion labelling where undec(ConcLab) is maximal.

To summarize, the complete conclusion labellings where in is maximal are the same
as the complete conclusion labellings where out is maximal (Theorem 17). These argument
labellings will be referred to as regular conclusion labellings. Furthermore, the unique complete
conclusion labelling where in is minimal (Theorem 19) is the same as the unique complete
conclusion labelling where out is minimal (Theorem 17) and the same as the unique complete
conclusion labelling where undec is maximal (Theorem 20). This conclusion labelling will
be referred to as the well-founded conclusion labelling. The complete conclusion labellings
where undec is minimal will be referred to as L-stable conclusion labellings. Just as well,
the complete conclusion labellings where undec is empty will be referred to as concstable
conclusion labellings. In fact, from our results, it follows that (i) every concstable conclusion

17

labelling is also L-stable and (ii) every L-stable conclusion labelling is also a regular conclusion
labelling. These kinds of conclusion labellings are further summarized in Table 2.

Condition Resulting Conclusion Labelling

NONE Complete
MAX In Regular

MAX Out Regular
MAX Undec Well-founded

MIN In Well-founded
MIN Out Well-founded

MIN Undec L-stable
NO Undec Concstable

Table 2: Kinds of conclusion labellings derived from programs

6 Maximizing/Minimizing Argument Labellings vs. Maximiz-
ing/Minimizing Conclusion Labellings

So far, we have described two ways of selecting particular subsets of the complete conclusion
labellings:

1. Perform minimization (resp. maximization) of a particular label at the level of complete
argument labellings, then determine the associated conclusion labellings. This is the
approach sketched in Section 4.

2. Take all complete conclusion labellings (these are the associated labellings of all com-
plete argument labellings) and then perform the minimization (resp. maximization) of
a particular label at the level of complete conclusion labellings. This is the approach
sketched in Section 5.

An interesting question is whether the outcome of the two procedures is actually the
same. That is, does minimizing (resp. maximizing) a particular label at the level of complete
argument-labellings yield the same result as minimizing (resp. maximizing) the label at the
level of complete conclusion labellings? We will see that, in general, the answer is “yes”, with
one notable exception.

We first formally define two functions between argument labellings and conclusion la-
bellings.

Definition 21. Let P be a logic program and AFP be its associated argumentation framework.
Let ArgLabs be the set of all argument labellings of AFP and let ConcLabs be the set of all
conclusion labellings of P and AFP .

We define a function ArgLab2ConcLab : ArgLabs → ConcLabs such that for each ArgLab ∈
ArgLabs, it holds that ArgLab2ConcLab(ArgLab) is the associated conclusion labelling of
ArgLab.

We define a function ConcLab2ArgLab : ConcLabs → ArgLabs such that for each ConcLab ∈
ConcLabs and each A ∈ ArP it holds that:
ConcLab2ArgLab(ConcLab)(A) = in iff for each v ∈ Vul(A) it holds that ConcLab(v) = out

18

ConcLab2ArgLab(ConcLab)(A) = out iff there exists a v ∈ Vul(A) such that ConcLab(v) = in

ConcLab2ArgLab(ConcLab)(A) = undec iff not for each v ∈ Vul(A) it holds that ConcLab(v) =
out and there does not exist a v ∈ Vul(A) such that ConcLab(v) = in

Theorem 22. When restricted to complete argument labellings and complete conclusion la-
bellings, the functions ArgLab2ConcLab and ConcLab2ArgLab are bijections and each other’s
inverse.

Proof. It suffices to show that for each complete argument labelling ArgLab, it holds that
ConcLab2ArgLab(ArgLab2ConcLab(ArgLab)) = ArgLab. In that sense, consider ConcLab is
ArgLab2ConcLab(ArgLab), and let ArgLab ′ be ConcLab2ArgLab(ConcLab). Our aim is to
show that ArgLab ′ = ArgLab.

We first prove that if ArgLab ′(A) = in then ArgLab(A) = in. Let A be an argument
such that ArgLab ′(A) = in. Then, by definition of ConcLab2ArgLab, for each v ∈ Vul(A) it
holds that ConcLab(v) = out. It then follows (by definition of ArgLab2ConcLab) that each
argument with conclusion v is labelled out by ArgLab. This (Definition 9) means that all
attackers of A are labelled out by ArgLab, which then implies (Lemma 1) that A is labelled
in by ArgLab. That is, ArgLab(A) = in.

The next thing to prove is that if ArgLab ′(A) = out then ArgLab(A) = out. Let A be an
argument such that ArgLab ′(A) = out. Then, by definition of ConcLab2ArgLab, there exists
a v ∈ Vul(A) such that ConcLab(v) = in. It then follows (by definition of ArgLab2ConcLab)
that there exists an argument (say B) with Conc(B) = v and ArgLab(B) = in. This then
implies (Definition 9) that A has an attacker (B) that is labelled in by ArgLab, which then
implies (Lemma 1) that A is labelled out by ArgLab. That is, ArgLab(A) = out.

Finally, we prove that if ArgLab ′(A) = undec then ArgLab(A) = undec. Let A be an
argument such that ArgLab ′(A) = undec. Then, by definition of ConcLab2ArgLab it holds
that:

(1) not for each v ∈ Vul(A) it holds that ConcLab(v) = out, and

(2) there does not exist a v ∈ Vul(A) such that ConcLab(v) = in.

From (1) it follows by definition of ArgLab2ConcLab that not for each each argument B
with Conc(B) ∈ Vul(A) it holds that ArgLab(B) = out, which implies (Definition 9) that not
every attacker of A is labelled out by ArgLab. Therefore (Definition 11) A is not labelled in

by ArgLab. From (2) it follows by definition of ArgLab2ConcLab that there does not exist an
argument B with Conc(B) ∈ Vul(A) and ArgLab(B) = in. This implies (Definition 9) that
A does not have an attacker that is labelled in by ArgLab. Therefore (Definition 11) A is
not labelled out by ArgLab. From the thus obtained facts that A is labelled in nor out by
ArgLab, it follows that A is labelled undec by ArgLab. That is, ArgLab(A) = undec.

Lemma 5. Let P be a logic program, AFP = (ArP , attP) be its associated argumentation
framework. Let ArgLab1 and ArgLab2 be complete argument labellings of AFP , and ConcLab1

and ConcLab2 be their respective associated conclusion labellings. It holds that

1. in(ArgLab1) ⊆ in(ArgLab2) iff in(ConcLab1) ⊆ in(ConcLab2),

2. in(ArgLab1) = in(ArgLab2) iff in(ConcLab1) = in(ConcLab2), and

3. in(ArgLab1) (in(ArgLab2) iff in(ConcLab1) (in(ConcLab2).

19

Proof. 1. “⇒”: Suppose in(ArgLab1) ⊆ in(ArgLab2). Let c ∈ in(ConcLab1). Then, by
definition of ArgLab2ConcLab, there exists an argument A ∈ ArP with Conc(A) = c
and ArgLab1(A) = in. From our initial assumption, it follows that ArgLab2(A) = in.
So, by definition of ArgLab2ConcLab, c ∈ in(ConcLab2).
“⇐”: Suppose in(ConcLab1) ⊆ in(ConcLab2). Let A ∈ in(ArgLab1). Then it follows
(Definition 11) that each attacker B of A is labelled out by ArgLab1. That is (Defi-
nition 9) for each B ∈ ArP with Conc(B) ∈ Vul(A) it holds that ArgLab1(B) = out.
From the definition of ArgLab2ConcLab it then follows that for each v ∈ Vul(A) it
holds that ConcLab1(v) = out. From our initial assumption it follows (Lemma 3) that
out(ConcLab1) ⊆ out(ConcLab2). Therefore, ConcLab2(v) = out. This (by definition
of ArgLab2ConcLab) implies that each argument (say C) with Conc(C) ∈ Vul(A) is
labelled out by ArgLab2. Therefore (Definition 9) each attacker of A is labelled out by
ArgLab2, so (Lemma 1 A is labelled in by ArgLab2. That is, A ∈ in(ArgLab2).

2. This follows directly from point 1.

3. This follows directly from points 1 and 2.

Lemma 6. Let P be a logic program, AFP = (ArP , attP) be its associated argumentation
framework. Let ArgLab1 and ArgLab2 be complete argument labellings of AFP , and ConcLab1

and ConcLab2 be their respective associated conclusion labellings. It holds that

1. out(ArgLab1) ⊆ out(ArgLab2) iff out(ConcLab1) ⊆ out(ConcLab2),

2. out(ArgLab1) = out(ArgLab2) iff out(ConcLab1) = out(ConcLab2),

3. out(ArgLab1) (out(ArgLab2) iff out(ConcLab1) (out(ConcLab2).

Proof. This follows from Lemma 5, together with Lemma 1 and Lemma 3.

We are now ready to provide some of the key results of the current paper.

Theorem 23. Let ConcLab be a conclusion labelling of logic program P and associated ar-
gumentation framework AFP = (Ar , att). It holds that ConcLab is a preferred conclusion
labelling iff it is a regular conclusion labelling.

Proof. “⇒”: Suppose ConcLab is a preferred conclusion labelling. As a direct consequence,
there exists a preferred argument labelling ArgLab such that ArgLab2ConcLab(ArgLab) =
ConcLab. The fact that ArgLab is a preferred argument labelling means that in(ArgLab) is
maximal (w.r.t. set-inclusion) among all complete argument labellings. This implies (Lemma
5) that in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclusion la-
bellings. That is, ConcLab is a regular conclusion labelling.
“⇐”: Let ConcLab be a regular conclusion labelling and take an argument labeling ArgLab
such that ArgLab2ConcLab(ArgLab) = ConcLab. The fact that ConcLab is a regular conclu-
sion labelling means that in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete
conclusion labellings. This implies (by Lemma 5) that in(ArgLab) is maximal (w.r.t. set-
inclusion) among all complete argument labellings. That is, ConcLab is a preferred conclusion
labelling.

20

Theorem 24. Let ConcLab be a conclusion labelling of logic program P and associated ar-
gumentation framework AFP = (Ar , att). It holds that ConcLab is the grounded conclusion
labelling iff it is the well-founded conclusion labelling.

Proof. Similar to the proof of Theorem 23.

Theorem 25. Let ConcLab be a conclusion labelling of logic program P and associated ar-
gumentation framework AFP = (Ar , att). It holds that ConcLab is an argstable conclusion
labelling iff it is a concstable conclusion labelling.

Proof. “⇒”: Let ConcLab be an argstable conclusion labelling. This means that there is a
stable argument labelling ArgLab such that ArgLab2ConcLab(ArgLab) = ConcLab. The fact
that ArgLab is a stable argument labelling means that no argument is labelled undec. But
then, by Definition 12, also no conclusion in ConcLab is labelled undec. Hence, ConcLab is
a concstable conclusion labelling.
“⇐”: Let ConcLab be a concstable conclusion labelling and take an argument labeling ArgLab
such that ConcLab2ArgLab(ConcLab). The fact that ConcLab is a concstable labelling means
that no conclusion is labelled undec by ConcLab. This, by definition of ConcLab2ArgLab

implies that also no argument in ArgLab is labelled undec. That is, ArgLab is a stable
argument labelling, which implies that ConcLab is a argstable conclusion labelling.

In a similar way, one can ask the question of whether semi-stable conclusion labellings
are the same as L-stable conclusion labellings. Here, however, the answer is negative. As a
counter example, consider the following program:5

Example 4. Consider the following logic program P :

r1 : c← not c
r2 : a← not b
r3 : b← not a
r4 : c← not c, not a
r5 : g ← not g, not b

One can then build the arguments from P :

• A1 = r1, with Conc(A1) = c and Vul(A1) = {c}

• A2 = r2, with Conc(A2) = a and Vul(A2) = {b}

• A3 = r3, with Conc(A3) = b and Vul(A3) = {a}

• A4 = r4, with Conc(A4) = c and Vul(A4) = {c, a}

• A5 = r5, with Conc(A5) = g and Vul(A5) = {g, b}

The associated argumentation framework of P is AFP , depicted in Figure 4.
The complete argument labellings of AFP are

• ArgLab1 = (∅, ∅, {A1, A2, A3, A4, A5})
5We would like to thank Wolfgang Dvořák for this example.

21

A2A1

A3

A4

A5

Figure 4: The argumentation framework AFP associated with P .

• ArgLab2 = ({A2}, {A3, A4}, {A1, A5})

• ArgLab3 = ({A3}, {A2, A5}, {A1, A4})

The associated complete conclusion labellings are

• ConcLab1 = (∅, ∅, {a, b, c, g}),

• ConcLab2 = ({a}, {b}, {c, g}), and

• ConcLab3 = ({b}, {a, g}, {c}).

ArgLab2 and ArgLab3 are semi-stable argument labellings. Hence, the associated con-
clusion labellings ConcLab2 and ConcLab3 are semi-stable conclusion labellings. However,
ConcLab2 is not L-stable, because undec(ConcLab2) is not minimal. So here we have an
example of a logic program where the semi-stable and L-stable conclusion labellings do not
coincide.

We summarize our results concerning the comparison of argument-based conclusion la-
bellings and logic programming-based conclusion labellings in Table 3.

Argument-Based Relation Logic Programming-Based
Conclusion Labelling Conclusion Labelling

Preferred ≡ Regular
Grounded ≡ Well-Founded

Semi-stable 6≡ L-stable
Argstable ≡ Concstable

Table 3: Kinds of conclusion labellings derived from programs

7 On the Connection between Argument Extensions and Logic
Programming Models

So far, we have examined the general question of how argument labellings are related to
conclusion labellings. We found that:

22

• maximizing in at the argument level yields the same result as maximizing in at the
conclusion level

• minimizing in at the argument level yields the same result as minimizing in at the
conclusion level

• maximizing out at the argument level yields the same result as maximizing out at the
conclusion level

• minimizing out at the argument level yields the same result as minimizing out at the
conclusion level

• maximizing undec at the argument level yields the same result as maximizing undec at
the conclusion level

• minimizing undec at the argument level does not yield the same result as minimizing
undec at the conclusion level

These results are summarized in Table 4.

Cond. on Comp. Name of Ass. Result Name of Cond. on Comp.
Arg. Lab. Conc. Lab. Conc. Lab. Conc. Lab.

None Complete [17] Complete None
Max. IN Preferred (Th13) Th23 Regular (Th17) Max. IN
Max. OUT Preferred (Th13) Th23 Regular (Th17) Max. OUT
Max. UNDEC Grd. (Ths 13,16) Th24 WF (Ths 17,20) Max. UNDEC
Min. IN Grd. (Ths 13,16) Th24 WF (Ths 17,20) Min. IN
Min. OUT Grd. (Ths 13,16) Th24 WF (Ths 17,20) Min. OUT
Min. UNDEC Semi-stable Ex4 L-stable Min. UNDEC
Empty UNDEC Argstable Th25 Concstable Empty UNDEC

Table 4: Kinds of conclusion labellings derived from programs

Table 4 should be read as follows. The left-hand side of the table is related to the process
of maximizing/minimizing a particular labelling at the argument-level, and then generating
the associated labellings at the conclusion level (as was outlined in Section 4). Here, we have
that selecting the complete argument labellings with maximal in is the same as selecting the
complete argument labellings with maximal out (Th13). These selected argument labellings
are called the preferred argument labellings, just like their associated conclusion labellings are
called the preferred conclusion labellings. We also have that selecting the complete argument
labellings with maximal undec is the same as selecting the complete argument labellings with
minimal in, and the same as selecting the complete argument labellings with minimal out
(Ths 13, 16). This unique (Th15) selected argument labelling is called the grounded argument
labelling, just like its associated conclusion labelling is called the grounded conclusion labelling
(abbreviated “Grd.” in the table).

The right-hand side of the table is related to the process of first generating all com-
plete argument labellings and associated complete conclusion labellings, and then to maxi-
mize/minimize a particular label at the conclusion level (as was outlined in Section 5). Here,
we have that selecting the complete conclusion labellings with maximal in is the same as

23

selecting the complete conclusion labellings with maximal out (Th23). These selected con-
clusion labellings are called the regular conclusion labellings. We also have that selecting
the complete conclusion labellings with maximal undec is the same as selecting the complete
conclusion labellings with minimal in, and the same as selecting the complete conclusion
labellings with minimal out. This unique (Th19) selected labelling is called the well-founded
conclusion labelling (abbreviated “WF” in the table).

In the middle column of the table, the connection between these two approaches is indi-
cated. From Th23 it follows that the preferred conclusion labellings are precisely the same as
the regular conclusion labellings. From Th24 it follows that the grounded conclusion labelling
is precisely the same as the well-founded conclusion labelling. From Th25 it follows that the
argstable conclusion labellings are precisely the same as the concstable conclusion labellings.
Example 4, however, makes clear that in general, the semi-stable conclusion labellings are
not the same as the L-stable conclusion labellings. Minimizing undec at the argument-level
yields fundamentally different results as minimizing undec at the conclusion level.

In the current paper, we have proved these results for an instantiation based on logic
programs. However, similar results can be obtained also for other forms of instantiated
argumentation. In order to apply the proofs that were specified in sections 4, 5 and 6, all
that matters is that attack is defined on the conclusion of the attacking argument and the set
of vulnerabilities (Vul) of the attacked argument. This makes our results directly applicable
also to formalisms such as [10] and [3, 18].6

7.1 Relating Conclusion Labellings to Models of Programs

In the current paper, we have chosen an instantiation based on logic programming partly
because of its relative simplicity, but also because it allows us to study an additional research
question: how are (traditional) approaches to argumentation semantics related to (traditional)
approaches to logic programming semantics?

In [4] two functions are specified to convert an argument extension to an argument la-
belling and vice versa. The function Lab2Ext converts an argument labelling to a set of
arguments (extension) and is defined as Lab2Ext(ArgLab) = in(ArgLab). The function
Ext2Lab converts a conflict-free set of arguments (extension) to an argument labelling and
is defined as Ext2Lab(Args) = (Args, {A ∈ Ar | there is an argument in Args that attacks
A},Ar \(Args∪{A ∈ Ar | there is an argument in Args that attacks A})). When Ext2Lab and
Lab2Ext are restricted to operate on complete extensions and complete labellings, they be-
come bijective functions that are each other’s inverse [4]. This means that complete extensions
and complete labellings are one-to-one related, just like preferred extensions and preferred
labellings, the grounded extension and the grounded labelling, semi-stable extensions and
semi-stable labellings, and stable extensions and stable labellings.

Now that we have observed that the traditional approaches to argumentation semantics
(argument extensions) coincide with the approach of argument labellings, the next step is
to show that the traditional approaches to logic programming semantics (models based on
fixpoints of a reduced program) coincide with the approach of conclusion labellings.

We now introduce two functions ConcLab2Mod and Mod2ConcLab to convert a conclusion
labelling to a model and vice versa. The function ConcLab2Mod converts a conclusion la-
belling to a model and is defined as ConcLab2Mod(ConcLab) = (in(ConcLab), out(ConcLab)).

6In the latter approaches, the set of vulnerabilities of an argument consists of the statements on which it
can be rebutted or undercut.

24

The function Mod2ConcLab converts a model to a conclusion labelling and is defined as
Mod2ConcLab((T, F)) = (T, F,HBP \ (T ∪ F)). It is not difficult to see that ConcLab2Mod

and Mod2ConcLab are bijective functions that are each other’s inverse, making conclusion
labellings and models one-to-one related.

The next step is to show that 3-valued stable models coincide with complete conclusion
labellings. This actually follows from the foundational work of [17]. Here it is proved that
if one applies complete semantics at step 2 of the argumentation process, one obtains the
3-valued stable models of the original logic program. From this, together with the results
in the current paper, it directly follows that complete conclusion labellings are one-to-one
related to 3-valued stable models.

From the correspondence between complete conclusion labellings and 3-valued stable mod-
els, the other correspondences between conclusion labellings and models follow. Since a reg-
ular model is a 3-valued stable model with maximal T , and a regular conclusion labelling
is a complete conclusion labelling with maximal in, it follows that they correspond to each
other (through the functions ConcLab2Mod and Mod2ConcLab). Similar correspondences can
be observed between the well-founded model and the well-founded conclusion labelling, be-
tween L-stable models and the L-stable conclusion labellings and between stable models and
concstable conclusion labellings. That is, the various types of logic programming models are
actually different forms of conclusion labellings.

7.2 Abstract Argumentation and Logic Programming Semantics Equiva-
lences

We have now arrived at the main point of the current paper: the connection between (tra-
ditional) approaches to argumentation semantics and (traditional) approaches to logic pro-
gramming semantics. Let us again look at the 3-step process of Section 3. Assume that step
1 (AF construction) and step 3 (converting argument labellings to conclusion labellings) are
fixed, and that the only degree of freedom is which semantics to apply at step 2. From the
results in the current paper, it follows that

• if one applies complete semantics at step 2, the overall outcome is equivalent to calcu-
lating the 3-valued stable models to the original logic program[17]

• if one applies preferred semantics at step 2, the overall outcome is equivalent to applying
regular semantics to the original logic program

• if one applied grounded semantics at step 2, the overall outcome is equivalent to applying
well-founded semantics to the original logic program

• if one applies stable semantics at step 2, the overall outcome is equivalent to applying
stable model semantics to the original logic program

That is, differences in logic programming semantics can be reduced purely to differences
in what happens at the abstract argumentation level (step 2). In essence, partial stable
model semantics coincides with complete semantics, preferred semantics coincides with regular
semantics, grounded semantics coincides with well-founded semantics and stable semantics
coincides with stable model semantics.

Moreover, we are also able to explain why these semantics coincide. Recall that the vari-
ous argumentation semantics that are studied in the current paper are based on minimization

25

or maximization (of a particular label) at the argument level, whereas the various logic pro-
gramming semantics turn out to be based on minimization and maximization (of a particular
label) at the conclusion level. The fact that argumentation semantics coincide with logic
programming semantics is due to the fact that what happens at the argument level tends
to coincide with what happens at the conclusion level. The fact that preferred semantics
coincides with regular semantics is because maximizing in at the argument level is the same
as maximizing in at the conclusion level. Similarly, the fact that grounded semantics co-
incides with well-founded semantics is because minimizing in at the argument level is the
same as minimizing in at the conclusion level. Also, the fact that stable semantics coincides
with stable model semantics is because ruling out undec at the argument level is the same as
ruling out undec at the conclusion level. Finally, the fact that semi-stable semantics does not
coincide with L-stable model semantics is because minimizing undec at the argument level is
something really different from minimizing undec at the conclusion level.

8 Semi-Stable Semantics versus L-Stable Semantics Revisited

As we have seen, since minimizing undec at the argument-level does not yield the same result
as minimizing undec at the conclusion level, semi-stable semantics does not coincide with
L-stable semantics. In the current section, we study this discrepancy in more detail. In
particular, we are interested in the following two questions:

1. is there any abstract argumentation semantics at all that can generate results that are
equivalent to L-stable conclusion labellings?

2. is there a class of restricted logic programs for which minimizing undec at the argument
level yields the same result as minimizing undec at the conclusion level?

As for the first question, what we are looking for is an abstract argumentation semantics
that can be applied at step 2 of the argumentation process. We assume steps 1 and 3 to remain
the same. That is, we are looking for an abstract argumentation semantics that is able to
generate the L-stable conclusion labellings, just like preferred semantics is able to generate
the regular conclusion labellings and grounded semantics is able to generate the well-founded
conclusion labelling. Therefore, the selection of the arguments in such a semantics should
be based purely on the structure of the graph, and not on the particular contents of the
arguments. This can be warranted by requiring that the semantics satisfies the language
independence principle [1].

Definition 26. We say that an abstract argumentation semantics X is L-stable generating
iff it is a function such that

1. For any logic program P , X takes as input AFP and yields as output a set of argument
labellings ArgLabs

2. X satisfies language independence, that is, if for any pair of argumentation frameworks
AF1, AF2, if AF1 is isomorphic to AF2 by a mapping M of their arguments (the nodes
in the graphs), then each labelling of AF1 can be mapped to a different labelling of AF2

by that same mapping M .

26

3. It holds that {ArgLab2ConcLab(ArgLab) | ArgLab ∈ ArgLabs} is precisely the same as
the set of all L-stable conclusion labellings of AFP .

Theorem 27. There exists no abstract argumentation semantics that is L-stable generating.

Proof. Consider the following two logic programs P with rules r1, ..., r4 and P ′ with rules
r′1, ..., r

′
4:

r1 : c← not c r′1 : d← not c, not d
r2 : a← not b r′2 : a← not b
r3 : b← not a r′3 : b← not a
r4 : c← not c, not a r′4 : c← not c, not a, not d

For the above programs, please observe that:

• P has three 3-valued stable models: S1 =< { }; { } >, S2 =< {a}; {b} >, S3 =<
{b}; {a} >, where S2, S3 are L-stable models.

• P ′ has three 3-valued stable models: S1 =< { }; { } >, S2 =< {a}; {b, c} >, S3 =<
{b}; {a} >, where S2 is the single L-stable model.

The arguments A1, ..., A4 built from P and A′1, ..., A
′
4 built from P ′ are listed below.

A1 : c← not c A1′ : d← not c, not d
A2 : a← not b A2′ : a← not b
A3 : b← not a A3′ : b← not a
A4 : c← not c, not a A4′ : c← not c, not a, not d

The argumentation frameworks of P and P ′ are depicted in Figure 5.

A2A1

A3

A4 A′1 A′2

A′3

A′4

Figure 5: The argumentation frameworks associated with P and P ′.

Since P has two L-stable models while P ′ has only one, the L-stable semantics is sensitive
to the difference between them. However, given that these programs have isomorphic asso-
ciated graphs, they are indiscernible in the perspective of abstract argumentation semantics:
By the language independence principle, both argumentation frameworks should have the
same number of extensions, but this is not the case. As a consequence, we conclude that
no semantics of abstract argumentation can coincide with the L-stable semantics for every
program.

Now that we have observed that in general no abstract argumentation semantics is able
to coincide with L-stable model semantics, the next question is whether one can define a
restricted class of logic programs for which semi-stable semantics does coincide with L-stable
semantics.

27

Definition 28. Let P be a logic program. We say that P is semi-stable-L-stable compatible
iff it holds that {ArgLab2ConcLab(ArgLab) | ArgLab is a semi-stable argument labelling of
AFP } = {ConcLab | ConcLab is a L-stable conclusion labelling of P and AFP }.

We will now provide two classes of logic programs that are semi-stable-L-stable compatible:
The AF-programs and the stratified programs.

Definition 29. (AF-program) A logic program P is said to be an AF-program if (i) every
rule r in P has body+(r) = ∅; and (ii) there is at most one rule with head(r) = c, for each
c ∈ HBP .

Theorem 30. Every AF-program is semi-stable-L-stable compatible.

Proof. Let P be an AF-program and AFP it’s associated argumentation framework. Since
each rule has body+(r) = ∅, we will have one argument for each rule of P and each such
argument will consist of exactly that rule. As a consequence, minimizing undecided arguments
is the same as minimizing undecided conclusions and P is semi-stable-L-stable compatible.

Definition 31. (stratified program) A logic program P is stratified if it is possible to attribute
a positive integer l(p) to each atom p ∈ HBP in a way that, for each rule r in P with
head(r) = p, it holds: (i) for each q ∈ body−(r), l(q) < l(p); and (ii) for each q ∈ body+(r),
l(q) ≤ l(p).

Theorem 32. Every stratified program is semi-stable-L-stable compatible.

Proof. A stratified program P has a single 3-valued stable model S, so AFP has a single com-
plete conclusion labelling that coincides with S [17]. Therefore, the only L-stable extension
of P coincides with the sole semi-stable conclusion labelling of AFP .

Therefore, if P is either an AF-program or an stratified program, the semi-stable conclu-
sion labellings of its associated argumentation framework AFP are the same as the L-stable
models of P .

9 Translating Abstract Argumentation Frameworks to Logic
Programs

So far, when making the connection between argumentation semantics and logic programming
semantics, we have used a translation from logic programs to argumentation frameworks. In
the current section, we will go the other way around. That is, we still examine the connection
between argumentation semantics and logic programming semantics, but this time using a
translation from argumentation frameworks to logic programs.

In essence, the idea is to use a translation that is fairly standard in the literature and
that has for instance been applied in [17]. Here, each argument generates an associated logic
programming rule, with the name of the argument in its head, and the name of its attackers
in the weak part of the body.

Definition 33 ([17]). Let AF = (Ar , att) be an argumentation framework. Its associated
logic program is PAF = {A ← not B1, . . . , not Bm | A,B1, . . . , Bm ∈ Ar(m ≥ 0) and
{Bi | (Bi, A) ∈ att} = {B1, . . . , Bm}}.

28

Example 5. Consider AF , the argumentation framework below:

A2A1

A3

A4

This is the argumentation framework on the left hand side of Figure 5, copied here for
easier reference. It’s associated logic program PAF is:

r1 : A1 ← not A1, not A4

r2 : A2 ← not A3

r3 : A3 ← not A2

r4 : A4 ← not A4, not A1, not A2

The first thing to be observed is that for any argumentation framework AF , the associated
logic program PAF is an AF-program (Definition 29).

Now let us examine what happens if we translate PAF back to argumentation theory.
That is, what will AFPAF

look like? Since each rule in PAF has only a weak part (no strong
atoms in the body), each argument will consist of precisely one rule (Definition 8) and the
attack relation coincides with the original attack relation in AF .

Example 6. (Example 5 continued) The argumentation framework AFPAF
associated with

PAF from Example 5 is:

Arg2Arg1

Arg3

Arg4

Here, each argument Argi consists of only the rule ri from PAF .

Theorem 34. Let AF be an argumentation framework, PAF be the associated logic program
(Definition 33), and AFPAF

be the argumentation framework that is associated with this logic
program (Definition 10). It holds that AF and AFPAF

are isomorphic.

Proof. Let AF = (Ar , att) and AFPAF
= (ArPAF

, attPAF
). In order to show isomorphism,

it suffices to provide a bijective function f : Ar → ArPAF
such that (A,B) ∈ att iff

(f(A), f(B)) ∈ attPAF
. Building such a function is straightforward: We have f(Ai) = Argi,

i = {1, 2, 3, 4}. That is so because each rule ri in PAF is built on top of a single Ai ∈ Ar in
a one-to-one relation (a bijection itself) and each Argi ∈ ArPAF

is built on top of a single ri
from PAF (another bijection).

29

It has been observed that complete semantics, preferred semantics, grounded semantics,
semi-stable semantics and stable semantics all satisfy the language independence principle
[1]. This implies that the complete, preferred, grounded, semi-stable and stable labellings of
AFPAF

are essentially the same (modulo isomorphism) as the complete, preferred, grounded,
semi-stable and stable labellings of AF .

What does this mean for the connection between argumentation semantics and logic pro-
gramming semantics, from the perspective of translating argumentation frameworks to logic
programs? First of all, we observe that for the translation of PAF to AFPAF

the earlier ob-
served results hold. That is, applying complete semantics to AFPAF

yields the same results
as applying partial stable model semantics to PAF , applying preferred semantics to AFPAF

yields the same results as applying regular semantics PAF , applying grounded semantics to
AFPAF

yields the same results as applying well-founded semantics to PAF , applying stable
semantics to AFPAF

yields the same results as applying stable model semantics to PAF , and
(due to the fact that PAF is an AF-program) applying semi-stable semantics to AFPAF

yields
the same results as applying L-stable semantics to PAF .

From the facts that all of the above mentioned argumentation semantics satisfy the lan-
guage independence principle, and that AF is isomorphic with AFPAF

, it then follows that
applying complete semantics to AF yields the same results as retrieving the 3-valued stable
models of PAF , applying preferred semantics to AF yields the same results as applying regular
semantics to PAF , applying grounded semantics to AF yields the same results as applying
well-founded semantics to PAF , applying semi-stable semantics to AF yields the same results
as applying L-stable model semantics to PAF and applying stable semantics to AF yields the
same results as applying stable model semantics to PAF . These results have been summarized
in Table 5.

Abstract argumentation Relation Logic Programming
semantics on AF semantics on PAF

Complete ≡ 3-valued Stable
Preferred ≡ Regular
Grounded ≡ Well-Founded

Semi-stable ≡ L-stable
Stable ≡ Stable

Table 5: The relations between semantics over AF-programs.

Hence, we see that, when translating argumentation frameworks to logic programs, the
connection between argumentation semantics and logic programming semantics is stronger
than when translating (unrestricted) logic programs to argumentation frameworks. Whereas
for the latter translation, semi-stable and L-stable do not coincide, for the former translation
they do.

10 Discussion

In this paper we studied various connections amongst abstract argumentation semantics and
logic programming semantics. We started by giving proper definitions of these in a way that
already suggests their connections. In the same spirit, we introduced a division operation
over argumentation frameworks which resembles the Gelfond-Lifschitz program transforma-

30

tion from [9]. Based on that newly introduced concept, we provided an alternative for the
definition of argumentation semantics. After these definitions, we would start looking deeper
into the reasons why the semantics coincidence. By presenting a three-step process of instanti-
ated argumentation, we observed that differences in step 2 (applying abstract argumentation
semantics) are able to fully account for the differences between various logic programming
semantics. In the then following sections, we examined how the argumentations labellings
and conclusion labellings of argumentation frameworks relate to each other and how these,
in their turn, relate to the models from the various logic programming semantics. In doing
so, we showed how logic programming semantics is intimately connected to the set of argu-
ments that can be built from a logic program. This is an important result, especially because
the equivalences between argument labellings and conclusion labellings also apply to other
instantiations of abstract argumentation, like ASPIC [3] and ASPIC+ [11].

Another important aspect of our contributions concerns instantiated argumentation in
general, as we showed how arguments at the abstract level relate to conclusions at the in-
stantiated level of argumentation: Our results show that, in general, analyzing the attack
relation amongst arguments is enough to retrieve the possible sets of conclusions from such
arguments. We analyzed various ways of distinguishing admissible sets of arguments and
conclusions, such as maximizing or minimizing those arguments (or conclusions) that are
accepted, rejected, or undecided. In that context, we provided several equivalence results
and brought the sole exception to attention, namely the situation when undecided arguments
are minimized. This result was shown for instantiated argumentation in general, i.e., it was
shown that choosing extensions where the set of arguments left undecided is minimal is not
the same as minimizing undecidedness on the possible conclusions. In the particular context
of logic programs, minimizing undecided conclusions characterizes the L-stable models. On
that matter, we proved that abstract argumentation semantics cannot capture the L-stable
semantics for normal logic programs. We then showed two classes of programs to which
the semi-stable argumentation semantics is capable capture to capture the L-stable models,
namely the here defined AF-programs and the well-known class of stratified programs.

Finally, we analyzed the semantics connections the other way around, i.e., by associating
a logic program to an argumentation framework. In that sense, we showed how to properly
build a program from an argumentation framework in such a way that the models from
each logic programming semantics corresponds exactly the extensions of an argumentation
semantics. The connection amongst argumentation and logic programming semantics turns
out to be even stronger when translating argumentation frameworks to logic programs, then
when translating (unrestricted) logic programs to argumentation frameworks.

Acknowledgements

This work has been supported by the National Research Fund, Luxembourg (LAAMI project)
and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref.
EP/J012084/1 (SAsSy project). We would also like to thank Wolfgang Dvořák for his useful
comments.

31

References

[1] P. Baroni, M.W.A. Caminada, and M. Giacomin. An introduction to argumentation
semantics. Knowledge Engineering Review, 26(4):365–410, 2011.

[2] M.W.A. Caminada. On the issue of reinstatement in argumentation. In M. Fischer,
W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics in Artificial Intelligence;
10th European Conference, JELIA 2006, pages 111–123. Springer, 2006. LNAI 4160.

[3] M.W.A. Caminada and L. Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171(5-6):286–310, 2007.

[4] M.W.A. Caminada and D.M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2-3):109–145, 2009. Special issue: new ideas in argumentation theory.

[5] M.W.A. Caminada and G. Pigozzi. On judgment aggregation in abstract argumentation.
Autonomous Agents and Multi-Agent Systems, 22(1):64–102, 2011.

[6] M.W.A. Caminada and B. Verheij. On the existence of semi-stable extensions. In
G. Danoy, M. Seredynski, R. Booth, B. Gateau, I. Jars, and D. Khadraoui, editors,
Proceedings of the 22nd Benelux Conference on Artificial Intelligence, 2010.

[7] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[8] Th. Eiter, N. Leone, and D. Saccá. On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell., 19(1-2):59–96, 1997.

[9] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R.A. Kowalski and K. Bowen, editors, Proceedings of the 5th International Confer-
ence/Symposium on Logic Programming, pages 1070–1080. MIT Press, 1988.

[10] N. Gorogiannis and A. Hunter. Instantiating abstract argumentation with classical logic
arguments: Postulates and properties. Artificial Intelligence, 175(9-10):1479–1497, 2011.

[11] H. Prakken. An abstract framework for argumentation with structured arguments. Ar-
gument and Computation, 1(2):93–124, 2010.

[12] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

[13] T.C. Przymusinski. The well-founded semantics coincides with the three-valued stable
semantics. Fundamenta Informaticae, 13(4):445–463, 1990.

[14] G.R. Simari and R.P. Loui. A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence, 53:125–157, 1992.

[15] Emil Weydert. Semi-stable extensions for infinite frameworks. In Patrick de Caus-
maecker, Joris Maervoet, Tommy Messelis, Katja Verbeeck, and Tim Vermeulen, editors,
Proceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC 2011),
pages 336–343, 2011.

32

[16] Y. Wu and M.W.A. Caminada. A labelling-based justification status of arguments.
Studies in Logic, 3(4):12–29, 2010.

[17] Y. Wu, M.W.A. Caminada, and D.M. Gabbay. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia Logica, 93(1-2):383–
403, 2009. Special issue: new ideas in argumentation theory.

[18] Yining Wu. On the issue of non-interference in the aspic-light formalism. Technical
report, University of Luxembourg, 2011.

33

