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RESEARCH Open Access

Transcriptional heterochrony in talpid
mole autopods
Constanze Bickelmann1*, Christian Mitgutsch2, Michael K Richardson3, Rafael Jiménez4,
Merijn AG de Bakker3 and Marcelo R Sánchez-Villagra1*

Abstract

Background: Talpid moles show many specializations in their adult skeleton linked to fossoriality, including
enlarged hands when compared to the feet. Heterochrony in developmental mechanisms is hypothesized to
account for morphological evolution in skeletal elements.

Methods: The temporal and spatial distribution of SOX9 expression, which is an early marker of chondrification, is
analyzed in autopods of the fossorial Iberian mole Talpa occidentalis, as well as in shrew (Cryptotis parva) and mouse
(Mus musculus) for comparison.

Results and discussion: SOX9 expression is advanced in the forelimb compared to the hind limb in the talpid
mole. In contrast, in the shrew and the mouse, which do not show fossorial specializations in their autopods, it is
synchronous. We provide evidence that transcriptional heterochrony affects the development of talpid autopods, an
example of developmental penetrance. We discuss our data in the light of earlier reported pattern heterochrony
and later morphological variation in talpid limbs.

Conclusion: Transcriptional heterochrony in SOX9 expression is found in talpid autopods, which is likely to account
for pattern heterochrony in chondral limb development as well as size variation in adult fore- and hind limbs.

Keywords: SOX9 expression, Developmental penetrance, Talpidae

Background
Talpid moles (Talpidae, Lipothyphla sensu [1]) show a
great number of morphological peculiarities in their
postcranial skeleton which can be interpreted as being
related to their specialized locomotor behavior. Among
other modifications, the forelimbs of fossorial talpid
moles are enlarged and more robust than the hind limbs
(Figure 1A, B). The manus is broad and strong and its
palm faces outward (Figure 1A) [2]. Serving for further
enlargement of the autopodial area, fossorial talpid moles
also bear an extra digit-like structure (’Os falciforme’) in
both hands and feet (Figure 1A, B) [3]. The molecular
evolution and development of these accessory sesamoid
bones were recently investigated in the fossorial Iberian
mole, Talpa occidentalis, by an analysis of expression
patterns of SOX9, Fgf8 and Msx2 in mole autopodia [4].
Analysis of the timing of SOX9 expression showed that

the ‘Os falciforme’ develops later than the true digits and
extends into the digital area in spatial relationship with a
Msx2 expressing domain [4]. However, such extreme
modifications are not present in a sister-taxon of talpid
moles, the terrestrial North American least shrew Cryp-
totis parva (Soricidae sensu [5]), although some species
have also invaded a subterranean habitat (Figure 1C, D)
[4].
It has been shown that besides internal constraints,

functional or ecological factors can drive changes in de-
velopmental timing [7]. Many cases of adaptive hetero-
chrony have been reported, indicating that ontogenetic
plasticity provides opportunity for adaptive evolution [8].
In recent years, much work has been conducted on limb
developmental timing and their potential adaptive sig-
nificance, for example [9-11].
The relative timing of chondrification and ossification

has been studied quantitatively across mammals
[9,10,12,13]. A quantitative approach is crucial, as in
some cases temporal changes in the development seem
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obvious at first sight, but are not supported by statistical
analysis. One prominent example concerns limb chon-
drification in the bat Rousettus amplexicaudatus, in
which differences in the adult size of the limbs appear to
be reflected in early stages; a finding which is not sup-
ported by quantitative analyses [12,14]. These quantita-
tive studies have demonstrated that, with chondrification
and skeletogenesis being uncoupled in time across verte-
brates, different phases of skeletogenesis have different
types of change associated with them [11,15]. In Talpa
europaea, forelimb development is relatively accelerated
compared to that of the hind limb [9,12]. This acceler-
ation affects stages extending from the early limb bud to
late chondrogenesis [9,12]. In fact, changes in the devel-
opmental timing have been found in fore- and hind
limbs of many tetrapods [9,12]. Among mammals, an
accelerated development of the forelimb respective to
the hind limb has also been found in hedgehogs, and to
a much greater extent in marsupials [12]. In the latter,
this heterochrony has been interpreted as an adaptive re-
sponse to the functional requirements placed on the
neonate by its life history, as the extremely altricial neo-
nate must have enough functional maturity to travel to
the pouch and process food while completing its devel-
opment [16]. Concerning the relative timing of ossifica-
tion, monotremes and moles are the only tetrapods
known to date which show late ossification of the stylo-
pod relative to the zeugopod, which further matches
their unusual humerus morphology [17].
Transcriptional heterochrony describes temporal

changes in or modification of the expression of develop-
mental genes, which can lead to pattern heterochrony
[9]. A few cases have been reported in which timing
changes in developmental mechanisms between fore-
and hind limb can cause morphological variation. For ex-
ample, morphological variation in carpal and tarsal ele-
ments of Xenopus laevis might be determined by

heterochronic prolongation in Hoxa11 expression [18].
On the other hand, Hoxd12 expression in the chicken
wing is delayed compared to the one in the foot, but it is
unclear if this transcriptional heterochrony accounts for
morphological pattern heterochrony in the wing [19].
Also in the chicken, there is a heterochronically early de-
cline in the expression of Hoxd11/Hoxd12 in the hind
limb, in fact, fading before cartilage formation [20]. As
the expression of these genes continues after the onset of
cartilage formation in the forelimb, the peculiar expres-
sion timing in the developing fibula was coupled with
the unusual morphology of this bone in the chicken [20].
In order to consider the possible link further between

transcriptional and pattern heterochrony, the concept of
developmental penetrance may be useful [14]. Develop-
mental penetrance describes the extent to which adaptive
changes in the adult phenotype are associated with cor-
responding changes in early development [14]. For ex-
ample, pattern heterochrony affecting relatively late
stages of chondrification and ossification of certain struc-
tures in the skulls of Monodelphis domestica appears to
be linked with precocious migration of neural crest cells
at earlier stages [21,22]. Also, concerning tooth develop-
ment in mammals, transcriptional changes are known to
cause morphological variation [23-25].These and other
examples can be contrasted with others in which such
clear connections between early developmental hetero-
chronies and adult anatomy or life history could not be
demonstrated [26-29]. Thus, there exist wide differences.
In investigations of heterochrony, markers of chondro-

genesis range from early-expressed genes associated with
chondrogenesis to histological markers that are applic-
able later, as for example, Alcian blue uptake. The tran-
scription factor SOX9 plays an important role in
chondrogenesis [30]. In particular, it is one of the earliest
markers of chondrogenic limb mesoderm and is involved
in chondrocyte differentiation [31]. It is expressed in

Figure 1 Microtomography scan images of adult Talpa occidentalis (A-B) and Cryptotis parva(C-D). The same models of right hands (A, C)
and feet (B, D) were also used in Mitgutsch et al. [4] and Mitgutsch et al. [6].
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condensing chondrogenic cells and is a useful marker for
the prospective domains of chondral elements, after ini-
tial patterning events have taken place [31-33]. In the
chicken, for example, SOX9 expression provides evidence
for the existence of a transient digit I domain in the wing
that never progresses to chondrification [34].
Here, we present the temporal and spatial distribution

of SOX9 expression in developing lipotyphlan and murid
autopodials, in order to test if transcriptional hetero-
chrony leading to morphological pattern heterochrony is
present. This will allow us to examine developmental
penetrance on limb developmental timing linked to eco-
logical specialization in talpid mole autopods.

Methods
We analyzed the temporal and spatial distribution of
SOX9 expression in developing hands and feet of the fos-
sorial talpid mole Talpa occidentalis, and the terrestrial
shrew Cryptotis parva, as well as in the terrestrial mouse
Mus musculus (Rodentia). Talpa occidentalis specimens
were captured in Santa Fé (Granada province, Spain)
under permission granted by the Andalussian Environ-
mental Council. Animal handling followed the guidelines
and approval of the University of Granada’s Ethical Com-
mittee for Animal Experimentation as well as the ATSU
(A.T. Still University) Animal Care Committee. Whole-
mount in situ hybridizations and histological prepara-
tions were performed according to Mitgutsch et al. [4].
Digoxigenin-labelled antisense RNA probes were synthe-
sized from plasmids containing PCR products of the
major part of the coding sequences of SOX9 of T. occi-
dentalis, using cDNA retro-transcribed from embryonic
mRNA of each species as a template [GenBank accession
number: HQ260700] [4].

Results
In Talpa occidentalis, SOX9 expression is apparent in
the autopods of an early 17-day embryo (Figure 2A, B).
In the hand, it has already reached its peak in that it
completely fills every digit. In the most distal parts,
SOX9 is expressed the most (Figure 2A). In the foot it is
not as strong yet (Figure 2B). The digits are only lightly
filled (Figure 2B). In a 18-day embryo, expression of
SOX9 has already started fading from proximal to distal
in the phalanges of the hand (Figure 2C). In contrast, it
has now reached its peak in all digital elements of the
foot (Figure 2D). Furthermore, in both hand and foot
there is faint SOX9 expression pre-axial to digit one,
which is where the accessory sesamoids are located
(Figure 2C, D). In a 19-day embryo, SOX9 gene expres-
sion is still apparent in digit I and V of the hand, and
faint in digits II to IV (Figure 2E). Interestingly, digits I
and V generally seem to be the last digits to ossify in
mammals [15]. In the foot it has just started fading from

proximal into the outer autopodial region (Figure 2F).
SOX9 expression in the accessory sesamoid region in the
foot is distinct (Figure 2E, F). In summary, in Talpa occi-
dentalis, we observe an advanced SOX9 expression in
the hand compared to the foot.
In the shrew Cryptotis parva, SOX9 expression differs

in the temporal distribution from the one seen in the tal-
pid mole. In the hand and foot of a 13.5-day embryo, it
has reached its peak (Figure 2G, H). All digits are com-
pletely filled (Figure 2G, H). In 15.5-day hand and foot,
SOX9 expression is still very strong, but is about to start
fading from proximal to distal (Figure 2I, J). In autopods
of a 17.5-day embryo, it is in the process of fading in all
digital elements from proximal into the outer autopodial
region (Figure 2K, L). To summarize, in the shrew, SOX9
expression is synchronous in hand and foot.
In the mouse, SOX9 relative timing of expression in

the hand and foot is similar to the one seen in the shrew.
It is very strong in all digits in the hand and foot of a
12.5-day embryo (Figure 2M, N). Because all digits are
completely filled, it has already reached its peak
(Figure 2M, N). In the autopods of a 13.5-day embryo, it
is still strong in all digital elements, but has already
started fading from proximal to distal (Figure 2O, P). In
the hand and foot of a 14.5-day embryo, SOX9 expres-
sion is in the process of fading simultaneously from
proximal to distal (Figure 2Q, R). As in Talpa occidenta-
lis, SOX9 expression is more apparent in digits I and V
than digits II to IV (Figure 2Q, R). In summary, as in the
shrew, there is synchronous SOX9 expression in the
hand and foot in the mouse.
Opposed to observed changes in the temporal SOX9

expression, the spatial distribution is similar in the digits
of hands and feet of all investigated species. SOX9 is
expressed in all digits as well as the accessory sesamoid
regions, marking all areas of prechondral condensations.
Fading starts at the proximal base of the digits, proceed-
ing to the distal ends.

Discussion
Heterochrony in chondral limb development of talpid
mole limbs has been reported, with forelimbs showing
an advanced development compared to the hind limbs
[12]. Among Lipotyphla, this heterochrony was found to
be present in terrestrial hedgehogs as well, leading the
authors to the assumption that it is a consistent pattern
within this clade and not linked to ecological
specialization [12]. However, shrews, which are the
sister-taxon of talpid moles, were not considered in their
study [12], but are included here. In murids, the relative
timing has been found to be rather synchronous [12].
Since Talpa occidentalis shows a relative acceleration

of SOX9 expression in its hands compared to the feet,
whereas in the shrew, which does not display adult
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specializations in the autopodial skeleton, it is synchron-
ous, we hypothesize that this transcriptional hetero-
chrony in limbs of the talpid mole accounts for the
pattern heterochrony in chondral limb development [12].
Further, it accounts for morphological modification, that
is, an enlargement of the autopodial region of the fore-
limb, in T. occidentalis. It is linked to locomotor behav-
ior and is best explained by the concept of
developmental penetrance, describing the finding that se-
lection for an adult trait can cause significant changes
already early in developmental mechanisms [14]. Based
on comparison with shrew and mouse, we hypothesize
that the differential timing of SOX9 expression in the tal-
pid mole is the derived condition. However, since
embryos of other, less-specialized talpid moles are cur-
rently unavailable for study, it remains unknown at what
point in talpid phylogeny since the separation from
shrews this change occurred. The separation of shrews
and moles is estimated to have occurred between 75.32
and 62.44 million years ago [5]. Both SOX9 expression
and chondral autopodial development are synchronous
in the mouse [12].

Conclusions
In the Iberian mole (Talpa occidentalis) expression of
SOX9, which is an early marker of chondrification,

appears earlier in the hand than in the foot. In contrast,
SOX9 expression is synchronous in the sister-taxon of
talpid moles, the shrew (Cryptotis parva), and in the
mouse (Mus musculus). We hypothesize that this tran-
scriptional heterochrony is related to pattern hetero-
chrony reported in Talpa europaea limb chondrogenesis
[7]. Furthermore, it shows that selection for an adult trait
can cause changes in developmental mechanisms, a case
of developmental penetrance and is linked to ecological
specialization [14]. The results contribute to our under-
standing of the evolution of adaptive morphologies and
their underlying genetic mechanisms in mammalian nat-
ural mutants (sensu [35]).
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