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Abstract 
Background/Aims: Pendrin (SLC26A4), a transporter accomplishing anion exchange, is 
expressed in inner ear, thyroid gland, kidneys, lung, liver and heart. Loss or reduction of 
function mutations of SLC26A4 underlie Pendred syndrome, a disorder invariably leading to 
hearing loss with enlarged vestibular aqueducts and in some patients to hypothyroidism and 
goiter. Renal pendrin expression is up-regulated by mineralocorticoids such as aldosterone 
or deoxycorticosterone (DOCA). Little is known about the impact of mineralocorticoids on 
pendrin expression in extrarenal tissues. Methods: The present study utilized RT-qPCR and 
Western blotting to quantify the transcript levels and protein abundance of Slc26a4 in murine 
kidney, thyroid, heart and lung prior to and following subcutaneous administration of 100 
mg/kg DOCA. Results: Slc26a4 transcript levels as compared to Gapdh transcript levels were 
significantly increased by DOCA treatment in kidney, heart, lung and thyroid. Accordingly 
pendrin protein expression was again significantly increased by DOCA treatment in kidney, 
heart, lung and thyroid. Conclusion: The observations reveal mineralocorticoid sensitivity of 
pendrin expression in kidney, heart, thyroid and lung.

Introduction

Pendrin is an electroneutral anion exchanger transporting chloride, bicarbonate, 
iodide and further anions [1-3]. Loss or reduction of function mutations in the pendrin gene 
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(SLC26A4) [4-9] lead to autosomal-recessive Pendred syndrome (PDS) with sensorineural 
hearing loss paralleled by enlarged vestibular aqueducts [3, 10, 11]. Lack of functional pendrin 
may further result in an iodide organification defect with an enhanced risk of developing 
goiter and hypothyroidism [3, 12, 13]. The development of goiter and hypothyroidism in 
Pendred syndrome is variable and may depend on nutritional iodide intake [13, 14].

SLC26A4 is expressed in a variety of tissues including thyroid gland, inner ear, kidney, 
lung, liver and heart [12, 14-17]. SLC26A4 mediated transport is critically important for 
proper development of the inner ear [18, 19]. The precise contribution of SLC26A4 to 
iodide transport in thyroid glands  has, however, been a matter of debate [12, 14, 20, 21]. 
SLC26A4 contributes to cell volume regulation [22], airway transport regulation [23, 24] as 
well as HCO3

- secretion and Cl- reabsorption in the distal nephron [17, 25-28]. Renal tubular 
SLC26A4 influences expression and activity of the epithelial Na+ channel ENaC and therefore 
impacts on blood pressure regulation [28-33]. 

SLC26A4 expression and function is up-regulated by ambient pH, aldosterone, intestinal 
natriuretic hormone, angiotensin II and the pro-inflammatory cytokines, interleukin (IL)-4 
and IL-13. [28, 30, 34-39].

Mineralocorticoid sensitivity of renal SLC26A4 expression is well established [28, 30, 
32]. Mineralocorticoid receptors are, however, expressed in a  wide variety of further tissues 
[40], including colon, lung, cardiac myocytes, blood vessels, hippocampus, adipose tissue and 
thyroids [41-46]. Mineralocorticoids play a decisive role in a wide variety of functions, such 
as renal and colonic Na+ and K+ transport [45], salt appetite [47], hypertension [48], cardiac 
remodelling and fibrosis [49-52], stiff endothelial cell syndrome (SECS) [53-56], vascular 
stiffness [57] and calcification [58, 59], as well as apoptosis in hippocampal neurons [60]. 
Accordingly, aldosterone influences the expression of a wide variety of genes related to those 
functions [58, 61-66].

Little is known about the effect of aldosterone on SLC26A4 expression in tissues other 
than kidney, such as heart, lung and thyroid gland. The present study thus explored the effect 
of the mineralocorticoid deoxycorticosterone (DOCA) on the transcript levels and protein 
abundance of Slc26a4 in murine kidney, cardiac, lung and thyroid tissues.  

Materials and Methods

Animals
Experiments were performed in 8-10 week old female and male wild type mice . All animal experiments 

were conducted according to German and Swiss laws for the welfare of animals and were approved by 
local authorities. The animals had free access to food (C1310, Altromin, Heidenau, Germany) and tap water. 
Where indicated the animals were treated with subcutaneous injections of deoxycorticosterone (DOCA , 
Sigma, Taufkirchen, Germany)  3 hours prior to determination of Slc26a4 transcript and protein levels. 

RT-PCR analysis
To determine Slc26a4 mRNA abundance in mouse organs total RNA was extracted from both tissues 

using Trifast Reagent (Peqlab, Erlangen, Germany) according to the manufacturer’s instructions. Reverse 
transcription of 2 µg RNA was performed using oligo(dT)12-18 primers (Invitrogen, Karlsruhe, Germany) and 
SuperScript III Reverse Transcriptase (Invitrogen, Karlsruhe, Germany). cDNA samples were treated with 
RNase H (Invitrogen, Karlsruhe, Germany). Quantitative RT-PCR was performed with the iCycler iQTM Real-Time 
PCR Detection System (Bio-Rad Laboratories, Hercules, CA) and iTaqTM Sybr Green Supermix with ROX (Bio-
Rad Laboratories, Hercules, CA) according to the manufacturer’s instructions. The following primers were 
used (5’→3’ orientation): Slc26a4 s: TTCGGTCTCTACTCTGCCTTT; Slc26a4 as: CCCACCATTAAACTGACCACG; 
Gapdh s: AGGTCGGTGTGAACGGATTTG; Gapdh as: TGTAGACCATGTAGTTGAGGTCA. The specificity of the PCR 
products was confirmed by analysis of the melting curves and in addition by agarose gel electrophoresis. 
All PCRs were performed in duplicate, and mRNA fold changes were calculated by the 68 °C method using 
Gapdh as an internal reference. 
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Membrane preparation and western blot analysis
For determination of Slc26a4 protein abundance, tissue samples were homogenized in an ice-cold 

K-HEPES buffer (200 mM mannitol, 80 mM HEPES, 41 mM KOH, pH 7.5) containing a protease inhibitor 
mix (Complete Mini, Roche Diagnostics, Germany; 1 tablet in a volume of 10 ml). Samples were centrifuged 
at 1500xg for 10 min at 4°C. Subsequently, the supernatant was transferred to a new tube and centrifuged 
at 12000xg for 1 h at 4°C. The resultant pellet was resuspended in K-HEPES buffer containing protease 
inhibitors. After measurement of the total protein concentration (Bio-Rad Dc Protein Assay; Bio-Rad, 
Hercules, CA, USA), 100 µg of crude membrane proteins were solubilized in Laemmli sample buffer, and 
SDS-PAGE was performed on 8% polyacrylamide gels. For immunoblotting, proteins were transferred 
electrophoretically to polyvinylidene difluoride membranes (Immobilon-P; Millipore, Bedford, MA, USA). 
After blocking with 5% milk powder in Tris-buffered saline/0.1% Tween-20 for 60 min, the blots were 
incubated with the respective primary antibodies (rabbit anti-pendrin 1:1000 [67] and rabbit monoclonal 
anti-gapdh antibody (37 kDa; Cell Signaling Technology) 1:2000, diluted in 1% milk/TBS-T) either for 2 h 
at room temperature or overnight at 4°C. After washing and subsequent blocking, the membranes were 
incubated for 1 h at room temperature with the secondary antibody conjugated with horse radish peroxidase 
(HRP) (1:2000, Cell Signaling). After washing antibody binding was detected with the ECL detection reagent 
(Amersham). All Bands were analyzed with Quantity One Software (Biorad).

Statistical analysis 
As indicated, data are provided as means ± SEM; n represents the number of independent experiments. 

All data were tested for significance using Student’s unpaired two-tailed t-test where applicable. Only 
differences with p<0.05 were considered statistically significant.

Fig. 1. Slc26a4 mRNA and protein abundance in kidney without and with DOCA treatment. A. Arithmetic 
means ± SEM (n = 5) of Slc26a4 mRNA abundance in kidney from animals without treatment (white 
bar) and 3 hours following subcutaneous injection of 100 mg/kg DOCA (black bar). **(p<0.01) indicates 
statistically significant difference with respect to untreated animals. B. Dose response curve of DOCA 
induced up-regulation of Slc26a4 mRNA levels. *(p<0.05) indicates statistically significant difference to 
untreated animals. C. Representative original blot for pendrin protein abundance in kidney from animals 
without treatment (-DOCA) and 3 hours following subcutaneous injection of 100 mg/kg DOCA (+DOCA).  
D. Arithmetic means ± SEM (n = 5) of Slc26a4 protein abundance in kidney from animals without treatment 
(white bar) and 3 hours following subcutaneous injection of 100 mg/kg DOCA (black bar). ***(p<0.001) 
indicates statistically significant difference to untreated animals.
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Results

Semi-quantitative reverse transcription polymerase chain reaction (RT-qPCR) was 
employed to quantify the transcript levels encoding Slc26a4 and Western blotting was 
utilized to quantify the Slc26a4 protein abundance in murine kidney, thyroid, heart and lung 
prior to and following subcutaneous administration of 20, 50 or 100 mg/kg DOCA. 

As illustrated in Fig. 1A,B, the abundance of Slc26a4 mRNA in the kidney was significantly 
increased following treatment of mice with the deoxycorticosterone DOCA (100 mg/kg). 
Normalization of the Slc26a4 transcript levels to the transcript levels of the house keeping 
gene Gapdh yielded the Slc26a4/Gapdh transcript level ratio, which was significantly 
increased by DOCA treatment (by 160%, n = 5). The increase of Slc26a4 transcript levels 
following DOCA treatment was paralleled by an increase of Slc26a4 protein abundance (Fig. 
1C and Fig. 1D). 

Similar to what was observed in the kidney, DOCA (50 or 100 mg/kg) treatment 
significantly increased Slc26a4 transcript levels in the heart (Fig. 2A,B). The increase of 
the cardiac Slc26a4 transcript levels following DOCA treatment was similarly evidenced 
by an increase of the Slc26a4/Gapdh transcript level ratio in the heart (by 160%, n = 9). 
The increase of cardiac Slc26a4 transcript levels following DOCA treatment was similarly 
paralleled by an increase of cardiac SLC26A4 protein abundance (Fig. 2C and Fig. 2D). 

As illustrated in Fig. 3A,B, both, Slc26a4 mRNA and protein were expressed in the lung. 
Similar to what was observed in kidney and heart, the mineralocorticoid treatment (DOCA 
50 or 100 mg/kg) significantly increased lung Slc26a4 transcript levels. The increase of 

Fig. 2. Slc26a4 mRNA and protein abundance in heart without and with DOCA treatment. A. Arithmetic means 
± SEM (n = 9) of Slc26a4 mRNA abundance in heart from animals without treatment (white bar) and 3 
hours following subcutaneous injection of 100 mg/kg DOCA (black bar). **(p<0.01) indicates statistically 
significant difference to untreated animals. B. Dose response curve of DOCA induced up-regulation of 
Slc26a4 mRNA levels. *(p<0.05), **(p<0.01) indicates  statistically significant difference to untreated animals. 
C. Representative original blot for pendrin protein abundance in heart from animals without treatment 
(-DOCA) and 3 hours following subcutaneous injection of 100 mg/kg DOCA (+DOCA). D. Arithmetic means 
± SEM (n = 5) of SLC26A4 protein abundance in heart from animals without treatment (white bar) and 
3 hours following subcutaneous injection of 100 mg/kg DOCA (black bar). *(p<0.05) indicates statistically 
significant difference to untreated animals.
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Slc26a4 transcript levels following DOCA treatment was again evidenced by an increase of 
Slc26a4/Gapdh transcript level ratio (by 153%, n = 9). The increase of Slc26a4 transcript 
levels following DOCA treatment was again paralleled by an increase of Slc26a4 protein 
abundance (Fig. 3C and Fig. 3D). 

Lastly, DOCA (50 or 100 mg/kg) treatment increased Slc26a4 transcript levels in thyroid 
gland (Fig. 4A,B). The increase of the thyroid Slc26a4 transcript levels following DOCA 
treatment was again evidenced by  an increase of the Slc26a4/Gapdh transcript level ratio 
(by 319%, n = 7). The increase of thyroid Slc26a4 transcript levels following DOCA treatment 
was again paralleled by an increase of thyroid Slc26a4 protein abundance (Fig.  4C and Fig. 
4D). 

Discussion

The present study demonstrates that pendrin transcript (Slc26a4) levels and pendrin 
protein abundance in kidney, heart, lung and thyroids are modified by the mineralocorticoid 
deoxycorticosterone (DOCA). 

The present study did not attempt to define the molecular mechanisms involved in the 
up-regulation of the carrier. A candidate signaling molecule is the serum & glucocorticoid 
inducible kinase SGK1, which is strongly upregulated by mineralocorticoids and is a powerful 
regulator of a variety of channels and transporters [68]. SGK1 is partially effective by up-
regulating the transcription factor NFκB [69], which contributes to the stimulating effect of 

Fig. 3. SLC26A4 mRNA and protein abundance in lung without and with DOCA treatment. A. Arithmetic means 
± SEM (n = 9) of Slc26a4 mRNA abundance in lung from animals without treatment (white bar) and 3 hours 
following subcutaneous injection of 100 mg/kg DOCA (black bar). **(p<0.01) indicates statistically significant 
difference to untreated animals. B. Dose response curve of DOCA induced up-regulation of Slc26a4 mRNA 
levels. *(p<0.05) indicates a statistically significant difference to untreated animals. C. Representative 
original blot for pendrin protein abundance in lung from animals without treatment (-DOCA) and 3 hours 
following subcutaneous injection of 100 mg/kg DOCA (+DOCA). D. Arithmetic means ± SEM (n =6) of SLC26A4 
protein abundance in lung from animals without treatment (white bar) and 3 hours following subcutaneous 
injection of 100 mg/kg DOCA (black bar). *(p<0.05) indicates  statistically significant difference to untreated 
animals.
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mineralocorticoids on inflammation and fibrosis [70]. Whether or not NFκB is involved in 
the up-regulation of SLC26A4 expression during mineralocorticoid excess or inflammation, 
remains to be tested.

The effect of DOCA on SLC26A4 expression in the kidney is expected to affect HCO3
- 

secretion and Cl- reabsorption across the distal nephron [17, 25-28]. Moreover, SLC26A4 is 
expected to modify expression and function of the renal epithelial Na+ channel ENaC resulting 
in enhanced renal tubular NaCl transport and increased blood pressure [28-33]. As a matter 
of fact, pendrin deficient mice are resistant to aldosterone-induced hypertension [32]. 

The up-regulation of SLC26A4 expression in lung tissue may serve to foster transport of 
anions across the aiway epithelium [23, 24]. Notably, SLC26A4 expression is up-regulated in 
bronchial asthma and chronic obstructive pulmonary disease. The carrier presumably does 
play an active role in respiratory inflammation and tissue destruction/remodeling  [23, 24].

The effect of DOCA treatment on SLC26A4 protein abundance is only moderate in lung 
tissue. Nevertheless, the effect is statistically significant. Possibly, mineralocorticoids up-
regulate SLC26A4 protein abundance only in a subset of cells in lung tissue. If so, Western 
blotting of whole organ tissue would underestimate the effect on mineralocorticoid sensitive 
cells. 

The functional role of pendrin sensitivity to DOCA in other tissues is less obvious. In 
theory, the up-regulation of pendrin in the thyroid could impact on the formation of thyroid 

Fig. 4. SLC26A4 mRNA and protein abundance in thyroid gland without and with DOCA treatment. A. 
Arithmetic means ± SEM (n = 7) of Slc26a4 mRNA abundance in thyroid gland from animals without 
treatment (white bar) and 3 hours following subcutaneous injection of 100  mg/kg DOCA (black bar). 
*(p<0.05) indicates statistically significant difference to untreated animals. B. Dose response curve of 
DOCA induced up-regulation of Slc26a4 mRNA levels. *(p<0.05) indicates statistically significant difference 
to untreated animals. C. Representative original blot for pendrin protein abundance in thyroid gland from 
animals without treatment (-DOCA) and 3 hours following subcutaneous injection of 100 mg/kg DOCA 
(+DOCA). D. Arithmetic means ± SEM (n = 5) of SLC26A4 protein abundance in thyroid gland from animals 
without treatment (white bar) and 3 hours following subcutaneous injection of 100 mg/kg DOCA (black bar). 
**(p<0.01) indicates statistically significant difference to untreated animals.
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hormones. Loss of function SLC26A4 mutations, however, do not necessarily affect iodide 
transport and hormone release in thyroid glands [12, 14, 20, 21]. Thus, aldosterone sensitive 
regulation of SLC26A4 in the thyroid may be relevant for functions other than thyroid 
hormone release. It is worth mentioning, however, that the heart has been claimed to possess 
all enzymes required for thyroid hormone formation [16].

SLC26A4 is further known to serve cell volume regulation [22]. Parallel activation of 
Na+/H+ exchangers and Cl-/HCO3

- exchangers participate in cell volume increase [71, 72], as they 
accomplish cellular NaCl uptake, which in turn is followed by osmotically driven water entry. 
Extrusion of H+ by Na+/H+ exchange and extrusion of HCO3

- by Cl-/HCO3
- exchange, respectively, 

are osmotically not relevant, as H+ and HCO3
- are replenished in the cell from CO2 via H2CO3 [10, 

71]. Along those lines, aldosterone is known to upregulate Na+/H+ exchange in the kidney [73-
80], heart [81-85], and a variety of other extrarenal tissues [86-103]. 

Opposite regulation of SLC26A4 activity and expression have previously been observed 
in liver and kidney following alterations of acid base balance [15]. Following acidosis Slc26a4 
transcript levels, protein abundance  and/or activity are down-regulated in kidney [15, 27, 
67, 104] and Slc26a4 transcript levels are up-regulated in liver [15]. Similarly, carbonic 
anhydrase inhibition or deficiency downregulate Slc26a4 expression in the kidney  [15, 
105, 106] but up-regulate Slc26a4 transcript levels in liver [15]. Conversely, bicarbonate 
induced metabolic alkalosis up-regulates Slc26a4 expression in the kidney [15, 105], but 
down-regulates Slc26a4 transcript levels in liver [15]. The opposite regulation of pendrin in 
liver and kidney may serve the complimentary functions of these organs in the regulation of 
systemic acid-base balance [107]. As mineralocorticoids stimulate renal tubular H+ secretion 
and thus cause alkalosis [27], their effect on renal pendrin may similarly aim to influence 
acid base balance. 

In conclusion, Slc26a4 transcripts and protein were observed in kidney, thyroids, lung 
and heart. Moreover, SLC26A4 abundance was sensitive to DOCA not only in kidney, but as 
well in heart, thyroids and lung. The present observation point to DOCA sensitive pendrin 
functions beyond its well established role in inner ear, thyroids and kidney. 
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