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Abstract

Introduction: Microvesicles (MVs), earlier referred to as microparticles, represent a major type of extracellular vesicles
currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of
MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of
these structures.

Methods: In this study, we analyzed synovial fluid (SF) samples of patients with osteoarthritis (OA), rheumatoid arthritis (RA)
and juvenile idiopathic arthritis (JIA). To assess factors that may confound MV detection in joint diseases, we used electron
microscopy (EM), Nanoparticle Tracking Analysis (NTA) and mass spectrometry (MS). For flow cytometry, a method
commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel
approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals.

Results: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond
known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV
preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3+ and CD8+ T-cell
derived SF MVs are highly elevated in patients with RA compared to OA patients (p = 0.027 and p= 0.009, respectively, after
Bonferroni corrections). In JIA, we identified reduced numbers of B cell-derived MVs (p = 0.009, after Bonferroni correction).

Conclusions: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously
unrecognized disease-associated vesicular signatures.
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Introduction

The release of extracellular vesicles by various types of cells is

a ubiquitous process, and accompanies cellular activation and

apoptosis [1]. Among the various populations of extracellular

vesicles, microvesicles (MVs) (also referred to as microparticles in

the literature) appear to be particularly expedient in clinical

settings, as they are readily detectable by flow cytometry (FC) in

various biological fluids. These vesicles are in between , 80 and

400 nm in diameter [2,3] in biological fluids, and carry surface

molecules that are typical for the cell that releases them. High

number of studies suggest that MVs may serve as biomarkers in

several diseases including cardiovascular disorders, autoimmune

diseases and cancer [1]. However, there are numerous pitfalls that

may hinder the correct analysis of MVs especially in biological

samples. These include platelet activation in plasma samples

induced during collection and transportation of blood samples,

residual platelets in platelet-free plasma [4] or sample storage.

Furthermore, it has been shown that the isolation procedure itself

can have an impact on several parameters of vesicles, and might
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also induce artificial vesicle release from remaining intact cells or

platelets in the ‘platelet-free plasma’ [5]. All these issues may lead

to over- or underestimation of platelet-derived MV counts (for

a review see [1,6]). In addition, the presence of immune complexes

may also falsify the enumeration of MVs, particularly in diseases

associated with accelerated immune complex formation [2]. Novel

major improvements have facilitated standard analysis of MVs in

biological fluids [7,8] including improved FC settings and

preparation of platelet-free plasma. Recently we have developed

a simple method to discriminate between immune complexes and

MVs using low concentrations of a detergent by FC [2]. Here we

report the results of the first study in which we applied the

combination of several improved procedures and recommenda-

tions in the MV field for the analysis of synovial fluid (SF) samples.

Excessive formation of SF is a common clinical feature in

various arthritides including rheumatoid arthritis (RA), juvenile

idiopathic arthritis (JIA), and osteoarthritis (OA). Analysis of SFs in

these joint diseases may facilitate the establishment of early

diagnosis, and provide an insight into the pathomechanism.

Previous studies have shown that SF MVs were detectable by FC

[2], and of particular interest, CD41a+ vesicles have been shown to

be highly elevated in patients with RA compared to OA [9].

However, complex MV signatures have not yet been described.

Using standardized FC settings [7,8] and applying the novel

differential detergent lysis approach (in order to exclude the

abundant MV-mimicking non-vesicular events), this is the first

study to show various joint disease associated SF MV signatures.

Materials and Methods

Patients
Blood plasma was obtained from RA patients (9 women, 3 men,

mean age 6 s.d.: 60.5612.0 years; age range: 38–76 years) and

from patients with OA (6 women, 3 men, mean age 6 s.d.:

53.5612.79 years; age range: 31–67 years). SF samples from

patients with RA (7 women, 1 man, mean age 6 s.d.: 50.4618.5

years; age range 23–73 years, 2 patients were ACPA negative,

mean Disease Activity Score (DAS) score was: 5.69), OA (6

women; 2 men, mean age 6 s.d.: 64.167.9 years; age range 50–71

years) and JIA (6 girls; 4 boys, mean age 6 s.d.: 9.565.8 years; age

range 2–19 years) were included in this study. All RA patients

fulfilled the 2010 American College of Rheumatology/European

League Against Rheumatism classification criteria [10,11]. All JIA

patients showed oligoarticular manifestations. Patients with RA

and OA were treated in the Department of Rheumatology,

Semmelweis University (Budapest, Hungary), the National In-

stitute of Rheumatology and Physiotherapy (Budapest) and the

Department of Orthopedics, University of Szeged (Szeged,

Hungary). Patients with JIA were treated in the 2nd Department

of Pediatrics, Semmelweis University (Budapest). Plasma samples

drawn into citrate tubes were centrifuged twice at 2,500 g in order

to obtain platelet-free blood plasma. SF samples were centrifuged

once at 650 g for 20 minutes. Aliquots of the samples were stored

at 220uC until use. During the entire investigation period we

followed the guidelines and regulations of the Helsinki Declaration

in 1975, and the experiments were approved by the Hungarian

Scientific and Research Ethics Committee (TUKEB); all patients

signed an informed consent form. We obtained an informed

written consent from the parents of the children involved in our

study. The clinical and serological data of the patients were

documented at the time of venipuncture.

Isolation of Microvesicles
Cell-free SF samples were filtered through an 800 nm filter

(Millipore, Billerica, MA, USA) and MVs were pelleted at

20,500 g for 60 minutes in an Eppendorf 5417R centrifuge

(Hamburg, Germany), as described previously by many groups

[12–15]. After resuspending pellets were washed twice with

phosphate buffered saline (PBS) and MV preparations were

subjected to electron microscopy (EM), nanoparticle tracking

analysis (NTA) or mass spectrometry (MS).

Generation of Immune Complexes
Lactoferrin and anti-lactoferrin and ovalbumin-anti-ovalbumin

were mixed at 1:1 ratio, as described previously [2] (all reagents

from Sigma-Aldrich, St. Louis, MO, USA). We also isolated IgM

immune complexes from RA SF samples using anti-IgM agarose

column, as described previously [2]. Aggregates were analyzed by

NTA.

Electron Microscopy
To visualize MVs, pellets were fixed at RT for 60 minutes with

4% paraformaldehyde. After washing with PBS, the fixed pellets

were postfixed in 1% OsO4 (Taab, Aldermaston, UK) for 30

minutes, dehydrated in graded ethanol, block stained with 1%

uranyl-acetate in 50% ethanol for 30 minutes, and embedded in

Taab 812 (Taab). The ultrathin sections were analyzed with

a Hitachi 7100 electron microscope (Hitachi, San Jose, CA, USA).

Nanoparticle Tracking Analysis
For particle size determination, nanoparticle tracking analysis

(NTA) was performed with a NanoSight LM10 instrument

(NanoSight Ltd., Amesbury, UK) as described previously [16].

NTA captures real-time video files, showing particles moving by

Brownian motion. A sample video file recorded by NTA is

available in the Supporting Material (Video S1). A 635 nm laser is

used to illuminate nanoparticles in liquid suspension between

concentrations of 106 and 109 particles per ml. The light scattered

from the particles allows them to be visualized using a long

working distance 620 microscope objective fitted to an otherwise

conventional microscope. Attached to this microscope is an

EMCCD camera running at 30 frames a second which allows

a video of the particles moving under Brownian motion to be

obtained. The speed of moving particles is determined on

a particle-by-particle basis, and the size is calculated using the

Stokes-Einstein equation [16]. The concentration of particles is

determined directly from the chamber volume and particle

number. Immune complexes, native SFs, diluted 1:1,000 to

1:10,000 in filtered PBS (depending on particle concentration) as

well as isolated MVs were also analyzed using this method. A

video of 60 seconds duration was recorded, and data analysis was

carried out using the NTA 2.1 analytical software (NanoSight

Ltd.).

Mass Spectrometry
Isolated MVs (see above) were submitted to repeated freeze–

thaw cycles and the protein content of the vesicles was digested as

reported previously [17]. The LC–MS/(MS) analysis of the tryptic

peptide mixtures was performed using a nanoflow ultra perfor-

mance liquid chromatography system (nanoAcquity UPLC,

Waters, Milford, MA, USA) coupled to a Q-TOF Premier mass

spectrometer (Waters). All MS/MS samples were analyzed using

Mascot (Matrix Science, London, UK; version Mascot 2.2) and X!

Tandem (The GPM, thegpm.org; version 2007.01.01.1). X!

Tandem was searched against SwissProt_51.6 database assuming
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trypsin. Mascot was searched against SwissProt_51.6 database

assuming digestion enzyme trypsin. One missed cleavage was

allowed. Mascot and X! Tandem were searched with a fragment

ion mass tolerance of 0.15 Da and a parent ion tolerance of

50 ppm. Iodoacetamide derivative of cysteine was specified in

Mascot and X! Tandem as a fixed modification. Scaffold (version

Scaffold_3_00_07, Proteome Software Inc., Portland, OR, USA)

was used to validate MS/MS based peptide and protein

identifications. Peptide identifications were accepted when they

could be established at greater than 95.0% probability as specified

by the Peptide Prophet algorithm [18]. Protein identifications were

accepted when they could be established at greater than 99.0%

probability and contained at least 2 identified peptides. Protein

probabilities were assigned by the Protein Prophet algorithm [19].

Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony. Search against the decoy

database gave a false-discovery rate of 0.51% when using p,0.01

significance level. Presented results show summarized data from

three independent biological replicates, respectively. In case of one

sample three technical replicate experiments were also carried out

and the results were also taken into consideration.

Flow Cytometry
Samples were analyzed using a FACSCalibur flow cytometer

(BD Biosciences, Franklin Lakes, NJ, USA). The FC instrument

settings and MP gating were adopted from previous works

[2,9,20]. We used a 1 mm bead (Sigma-Aldrich) to determine

the upper right corner of the gate [7], (Figure S1a). The lower

border was determined after assessing signal/noise ratios and

positive event numbers, as described previously [2]. To identify

and characterize MVs, annexin V-(AX) fluorescein isothiocyanate,

anti-CD3-phycoerythrin, anti-CD4-phycoerythrin, anti-CD8-phy-

coerythrin, anti-CD14-peridinin chlorophyll protein, anti-CD19-

peridinin chlorophyll protein, anti-CD41a-fluorescein isothiocya-

nate, anti-receptor activator of nuclear factor kappa B (RANK)-

phycoerythrin and anti-RANK ligand (RANKL)-phycoerythrin

were used (all from BD Biosciences) (Figure S1b). We applied our

earlier protocol for staining MVs in biological fluids, with some

modifications [2,21]. Briefly, 1 mg of antibodies was added to

20 ml of plasma/SF, and incubated for 30 minutes at RT. To

reduce the numbers of background events, samples were diluted to

400 ml in 0.01 mm pore size membrane-filtered PBS (Millipore). In

the case of AX staining, we added 2 ml of AX-fluorescein

isothiocyanate to the samples diluted 1:20 in annexin-binding

buffer (BD Biosciences). Event numbers of equal sample volumes

were counted for 60 seconds. Background fluorescence was

compared with that of the isotype-control antibodies. When

detecting AX binding, 5 mM ethylenediaminetetraacetic acid-

containing annexin-binding buffer solution was used to determine

the background fluorescence. To determine the exact MV

concentrations, we used fluorescent counting beads (3 mm in

diameter, Partec GmbH, Münster, Germany). We enumerated the

counting beads on the SSC/FL-2 plot (Figure S1c). To determine

MV concentrations, we used the following equation: ‘MV count/

ml = (MV event count/bead event count) 6bead concentration 6
plasma dilution’.

To exclude protein aggregates and immune complex-related

events, we applied the method of differential detergent lysis.

Differential Detergent Lysis
In order to discriminate between MVs and protein aggregates,

we benefited from our previous observations that vesicular

structures were more susceptible to detergent lysis compared to

immune complexes and protein aggregates [2]. By FC, we applied

0.1% of Triton X-100, a concentration which had been

determined in preliminary measurements. Events resistant to this

concentration were excluded from MV counts, therefore event

count after Triton X-100 lysis was subtracted the from event

number before lysis. Remaining event counts were referred to

known concentration of fluorescent counting beads. The effect of

the differential detergent lysis was also confirmed using a BD

LSRII flow cytometer (BD Biosciences).

Statistical Analysis
SPSS software Version 15.0 was used for statistical analyses. We

used Kruskal-Wallis nonparametric test to analyze data of RA,

OA and JIA groups. As a post-hoc test, we compared individual

groups using the Mann-Whitney test, and we used Bonferroni

correction for multiple statistical testing. Correlations between

clinical and serologic data were analyzed using Spearman or

Pearson correlation.

Results

Analysis of the MV Pellet by EM and NTA
EM images of SF-derived MV preparations (20,500 g pellets)

clearly showed vesicular structures of 80–400 nm in diameter in all

tested SFs (n = 3 in each patient group) (Figure 1a). This size range

was consistent with our previous findings [2]. Strikingly, significant

amounts of amorphous substance were also present among the

vesicles in all EM preparations, in spite of the fact that the pellets

were washed twice. MV preparations from RA and OA SFs were

subsequently analyzed by NTA, and light scattering of particles

was recorded (an example is shown in Video S1). Based on the

NTA video files, we determined distributions of particle size in the

20,500 g pellets of RA and OA SF preparations (Figure 1b and

1c). A peak in the MV diameter range (determined by EM, see

above) was detectable at around 150–200 nm (Figure 1c).

However, strikingly, a significant portion of particles did not fall

into the size range of MVs: in the case of OA and RA samples,

60.5% 612.5% and 50.4% 66.0% of the particles fell below

80 nm in diameter, respectively. These events are likely to be non-

vesicular structures, as MVs smaller than 80 nm were not detected

in the EM preparations from the same samples. The application of

0.1% TritonX-100 resulted in the reduction in the particle

concentration between 100 and 200 nm and increased the

concentration of particles below 100 nm (Figure S2). Next, we

analyzed if pure immune complexes and protein aggregates

formed particles, detectable by NTA. The size histograms of

artificial immune complexes (lactoferrin-anti-lactoferrin, ovalbu-

min-anti-ovalbumin, isolated IgM immune complexes) and protein

aggregates (in BSA solution) partly overlapped the MV size range,

but most of the events were smaller than 100 nm in diameter

(Figure S3). Taken together these data, these results suggest that

particles other than MVs (protein aggregates, immune complexes)

are also present in relatively high numbers in the 20,500 g SF

pellets.

MS Analysis of MV Pellets
To further analyze the nature of non MV-related events found

in MV preparations of OA, RA and JIA SFs, we performed MS

analysis of the 20,500 g pellets (n = 3 in each group). Total protein

concentrations in RA pellets (mean 6 s.d: 0.8860.63 mg/ml) and

JIA pellets (mean 6 s.d: 0.5160.48 mg/ml) were higher

compared to OA samples (mean 6 s.d: 0.1460.10 mg/ml) (not

significant). We identified 105, 98 and 88 proteins in OA, RA and

in JIA pellets, respectively (Table S1). Among the identified
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proteins, known MV-associated proteins were clearly detectable in

all the samples. These included cytoskeletal components (actin,

actin-binding proteins (profilin-1, cofilin-1), myosin, tubulin),

enzymes (alpha-enolase, pyruvate kinase, triosephosphate isomer-

ase), membrane molecules (HLA-I, HLA-II antigens, Na/K ATP-

ase) and proteins involved in vesicle biogenesis and trafficking (e.g.

Ras-related proteins). The presence of lactadherin that binds to

the phosphatidyl-serine surface of MVs [22], also confirms the

presence of MVs in the pellets. We also detected clusterin (ApoJ) in

all patient groups, a protein involved in the clearance of apoptotic

bodies and cell debris [23]. Besides canonical MV proteins,

numerous plasma proteins (e.g. albumin, transferrin, fibrinogen,

prothrombin, haptoglobin) and immune-complex related proteins

(complement proteins and immunoglobulins) were also identified

by MS. These results further support the hypothesis that MV

pellets (prepared by conventional differential centrifugation),

contain high numbers of plasma proteins and immune-complex

related proteins as non-vesicular contaminants. Most interestingly,

the identified protein patterns were almost identical in all samples

irrespectively of the type of the joint disease (OA, RA or JIA)

(Table S1).

Flow Cytometric Analysis of Samples
Routine diagnostic assessment of MVs comprises the analysis of

diluted biological samples. Previously we have shown that the

presence of immune complexes may falsify the estimation of MV

counts [2]. Using differential detergent lysis, we could identify

MVs in SF samples (Figure 2a) based on both surface staining and

detergent sensitivity. With this approach, immune complex

particles were also detected in JIA SF samples (Figure 2b),

similarly to what had been shown previously in the case of RA [2].

Interestingly, in the case of certain cell surface labeling, positive

event counts were not reduced after detergent lysis. A striking

example is shown in Figure S4a where CD68 staining of MVs was

carried out by a standard BD antibody. Events within the MV gate

did not disappear after the addition of detergent and were also

present in PBS and in BSA solutions (Figure S4b). These MV

mimicking, anti CD68 fluorescence signals became stronger with

increasing concentration of BSA (Figure S4c). As all biological

samples have different protein concentrations, aggregation of

CD68 antibodies may also be different leading to false conclusions,

if detergent lysis is not used.

Figure 1. Analysis of SF MVs by EM and NTA. (a). Electron micrographs of the 20,500 g pellets from SFs are shown. Scale bars denote 500 nm,
original magnification was 30,0006. (b). NTA screenshot from an RA SF pellet, showing light scattering particles. The field of view is 120 mm by
80 mm. (c). Size histograms of particles in SFs obtained by NTA measurements. A small peak is visible in the MV size range indicated by an arrow
(between 100 and 200 nm), however, most particles are below 100 nm in diameter.
doi:10.1371/journal.pone.0049726.g001
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Immunophenotyping of MVs by FC
Using differential detergent lysis and counting beads, we

phenotyped and counted MVs in RA (n = 8), OA (n = 8) and

JIA SF samples (n = 10) (Figure 3). AX+ MV counts in SF were

slightly, however, not significantly elevated in RA (range:1.06107–

6.56107/ml) and in JIA patients (range: 4.56106–1.46108/ml)

compared to OA (range: 6.86106–1.06108/ml) consistent with

our previous findings [2] (Figure 3). Most vesicles were derived

from B-cells and T-cells in the case of OA and RA SF samples.

Monocyte- and platelet MVs were present in lower amounts in

SFs. Synovial CD41a+ vesicles were elevated in RA compared to

OA and JIA patients, in concordance with previous findings [9],

however, this elevation was not significant. Most interestingly,

CD3+ T-cell derived vesicles were highly elevated in patients with

RA compared to OA (p = 0.027, Mann-Whitney test, Bonferroni

correction) in our study.

Next, we tested T-cell subset-derived MVs in SFs. Both CD4+

and CD8+ vesicles were present in the samples, however, only

CD8+ MVs showed significant elevation in RA compared to OA

(p = 0.009, Mann-Whitney test, Bonferroni correction). Interest-

ingly, B-cell-derived vesicle counts were significantly lower in JIA

compared to OA and RA samples (p = 0.009 and p = 0.004,

respectively, for B-cells, Mann-Whitney test, after correction).

Counts of CD8+ and CD3+ events showed correlation in the

samples (R = 0.525, p = 0.007, Spearman correlation). To assess

whether CD3+ and CD8+ counts of vesicles were elevated not only

locally but also systematically in RA patients, we analyzed RA and

OA plasma samples. CD3+ and CD8+ vesicle counts were

undetectable in the blood plasma in both groups, indicating the

local production of these MVs (p,0.001, Mann-Whitney test)

(data not shown).

Given that the tested joint diseases are known to be

accompanied by bone erosions, we also tested whether the RANK

and RANK-ligand were associated with MVs. Interestingly, we

could detect vesicles carrying these surface molecules in all groups,

however, very few MVs were stained (Figure 3). The highest

numbers were detected in RA; however, the differences among

disease groups were not significant.

Associations with Clinical Parameters
Finally we tested whether the number of MVs correlated with

either the clinical or the serological data of patients. Interestingly,

the level of rheumatoid factor (RF) showed robust correlations

with both T-cell- and B-cell-derived MV numbers in RA (Pearson

correlation, R = 0.912, p = 0.002 and R = 0.956, p = 0.001, re-

spectively). T- and B-cell-derived MV counts also showed strong

correlation with one another (p,0.001, R = 0.876). DAS Score,

Visual Analogue Scale score and anti-citrullinated protein

antibody levels did not correlate with MV counts. However,

disease duration positively correlated with the CD41a+ MV counts

(Pearson correlation, R = 0.886, p = 0.008). SF cell number

showed only a weak correlation with CD3+ and CD8+ MV counts

(Pearson correlation, R = 0.883, p = 0.039 and R = 0.892,

p = 0.017), and showed no correlation with other MV phenotypes,

suggesting that the count of MVs reflect the state of cellular

activation rather than the number of the cells.

Discussion

In the past few years, the number of publications assessing MVs

by flow cytometry platforms has risen rapidly. However, pitfalls of

MV measurement have also received increasing attention in the

past few years. Efforts to standardize sample collection and FC

measurements have already led to numerous results; however, the

standardization work is still in progress [7,8]. In our present study

we aimed at benefiting from recent developments in this field in

order to reveal novel disease-associated MV signatures. These

developments included i) the use of standard preanalytical

conditions, ii) bead-based definition of MV gates, iii) bead-based

MV enumeration, and iv) discrimination of MVs from non-

vesicular structures.

Biological fluids contain high amounts of proteins, which may

form aggregates or complexes under certain circumstances. We

have shown earlier that protein aggregates share biophysical

Figure 2. Differential detergent lysis by FC. Events are shown within the MV gate. Background fluorescence was determined using an isotype
control antibodies. Values show percents of positive events. Counting beads are visible in the upper right corner of the dot plots. (a). CD3+ and CD8+

vesicles were detected by FC. Most positive events disappear after the addition of 0.1% Triton X-100. Remaining events were subtracted from the
original event counts. (b). Detergent-resistant IgG and IgM staining in JIA SF samples suggested that these events were related to immune complexes
rather than vesicular structures.
doi:10.1371/journal.pone.0049726.g002

Improved Assessment of Microvesicles

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e49726



parameters with MVs that may confound correct assessment of

these structures [2]. Using EM and NTA, here we demonstrated

the presence and abundance of particles other than vesicular

structures in MV pellets. These non-vesicular structures may

correspond to immune-complexes, protein aggregates [2] or

membrane fragments formed during centrifugation. In addition,

they might derive from lysed, disrupted MVs [5]. Centrifugation

alone is not sufficient to pellet out all cells, for instance even after

a 2,880 g 20 minutes and a subsequent 10,840 g 5 minutes

centrifugation, platelets have been shown to be still present in the

‘platelet-free plasma’ (up to a concentration of 47/ml, which

corresponded to 0.02% of the original platelet count) [4]. The

high-speed centrifugation of cells during MV isolation results in

high shear stress that may tear off membrane fragments or even

vesicles from these remaining cells [5]. However, fragmentation of

cells during the 20,500 g centrifugation probably did not

contribute to the amorphous structures seen by EM in our study,

because we used a gentle, gravity driven filtration of the SFs

through an 800 nm membrane prior to centrifugation. To our

surprise, using NTA we detected predominantly very small sized

particles in 20,500 g pellets. EM analyses of numerous samples,

however, ruled out the possibility that small size (,80 nm) vesicles

Figure 3. Immunophenotyping of SF MVs by FC. MV count/ml is shown in the y axis. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0049726.g003
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(easily recognized based on membrane osmium staining) were

present in these preparations. Therefore, the abundant light

scattering small ‘particles’ in NTA were more likely protein

aggregates rather than vesicles. MS analysis in this work also

demonstrated the presence of primarily non-MV related proteins.

Although it can not be excluded that SF MVs can harbor certain

plasma proteins, the presence and abundance of nearly all major

plasma- and immune complex-related proteins in the MV

preparations makes it unlikely that all these proteins were

associated with vesicles.

Improved MV measurement by FC should exclude these non-

MV related events. For discrimination, we suggested the use of

differential detergent lysis method. In this paper we provided an

example how omission of this step may lead to false conclusions,

even when using standard, controlled antibodies.

Interestingly, total particle counts, measured by NTA, were two

orders of magnitude higher than the total (AX+) counts detected by

FC. This supports the ‘iceberg’ theory which assumes that FC only

detects particles above 200–300 nm (although the detection

threshold is also dependent on the refractive index of the particles,

[24]) and most of the particles in SFs fall below this range. On the

other hand, NTA detects any particles, whereas by FC we

enumerated only the true (AX-positive, Triton sensitive) vesicle-

related events. However, using the fluorescence capability of the

NTA system and specific labeling, individual populations may also

be analyzed in the future [16].

After using the differential detergent lysis approach to evaluate

MV signatures in SFs, we observed for the first time that CD3+

and CD8+ MVs were highly elevated in patients with RA

compared to OA.

T-cells, in particular CD4+ cells have been implicated in the

pathogenesis of RA as summarized by a recent review [25]. In

spite of numerous observations that suggested a role of CD8+ T

cells in RA, CD8+ T cell involvement is absent from the current

mainstream understanding of the pathomechanism of RA.

Evidence for the role of CD8+ T cells includes that CD8+ T

cells were present in high numbers in the SFs of RA patients

[26,27]. Moreover, phenotype analysis of SF T-cells confirmed

that the accumulating T-cell clones in RA were predominantly

CD8+ memory T cells [26]. Furthermore, memory CD8+ T-cells

in RA were found to be specific to viruses, such as Epstein-Barr

virus, cytomegalovirus or influenza virus [28]. It has also been

suggested that CD8+ cells may contribute to the pathogenesis of

RA by regulating structural integrity and functional activity of

germinal centers in the synovium [29]. The MV signatures that we

detected in this study may reflect either elevated SF CD8+ T cell

numbers or CD8+ T cell activation in the RA joints. The latter

may have importance, since CD8+ and CD4+ T cell counts were

found to be similar in both RA and OA [30]. Thus, our data might

reflect a locally enhanced activation of the CD8+ T cell

population. As part of the SF MV signature of RA, here we also

found an elevated number of platelet-derived in RA SFs in

accordance with the findings of Boilard et al [9]. Similarly, the

number of both RANK and RANKL positive MVs was found to

be elevated in RA SFs.

Even though JIA is an inflammatory disease characterized by

the proliferation of B-cells, in this study we detected a strikingly

reduced number of B-cell-derived MVs in SFs of patients with JIA.

This was possibly due to the fact that we analyzed only JIA

patients with oligoarticular involvement. As shown in a recent

report, synovial CD20 expression differs significantly between

polyarticular and oligoarticular JIA patient groups [31]. Patients

with polyarticular involvement have three times higher expression

of CD20 in the synovium. Our present study suggests that

oligoarticular JIA may have distinct MV signature from other joint

diseases.

In conclusion, our data suggest that the differential detergent

lysis method and other improvements in MV assessment by FC

may provide important novel insights into the pathomechanism of

RA and other joint diseases.

Supporting Information

Figure S1 MV gate (R1) was determined using a 1 mm

calibration bead (arrow) (a) Arrowhead shows counting beads

(3 mm in diameter). MVs were stained with AX, events are shown

from the MV gate (b). The background was determined adding

5 mM EDTA to the samples. The number of counting beads was

determined on the SSC/FL-2 dot plot (R2 gate) (c).

(TIF)

Figure S2 Size histograms of particles in an MV preparation

from an RA patient, obtained by NTA. Dashed line represents

0.1% TritonX-100 treated sample.

(TIF)

Figure S3 Size histograms of immune complexes and protein

aggregates measured by NTA. Lactoferrin (LF) was mixed 1:1 with

anti-lactoferrin, ovalbumin (OVA) was mixed 1:1 with anti-

ovalbumin. IgM immune complexes were isolated from RA SF

using anti-IgM agarose column.

(TIF)

Figure S4 Flow cytometric MV-mimicking signals using an anti-

CD68 antibody. The fluorescent events do not disappear after

detergent lysis in blood plasma (a) and in BSA solution (b). The

increasing concentration of BSA results in stronger fluorescent

signals. The y axis represents event number/ml (c).

(TIF)

Table S1 MS analysis of MV preparations from patients with

RA, OA and JIA.

(XLS)

Video S1 Sample NTA screenshot of an MV preparation from

an RA patient. The field of view is 120 mm by 80 mm.

(WMV)
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