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Abstract

Neuroinvasion and subsequent destruction of the central nervous system by prions are typically preceded by a colonization
phase in lymphoid organs. An important compartment harboring prions in lymphoid tissue is the follicular dendritic cell
(FDC), which requires both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin b receptor (LTbR) signaling for
maintenance. However, prions are still detected in TNFR12/2 lymph nodes despite the absence of mature FDCs. Here we
show that TNFR1-independent prion accumulation in lymph nodes depends on LTbR signaling. Loss of LTbR signaling, but
not of TNFR1, was concurrent with the dedifferentiation of high endothelial venules (HEVs) required for lymphocyte entry
into lymph nodes. Using luminescent conjugated polymers for histochemical PrPSc detection, we identified PrPSc deposits
associated with HEVs in TNFR12/2 lymph nodes. Hence, prions may enter lymph nodes by HEVs and accumulate or replicate
in the absence of mature FDCs.
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Introduction

Prions are unusual infectious agents thought to be comprised

solely of an abnormally folded, aggregated isoform (PrPSc) of the

endogenous cellular prion protein (PrPC) [1]. Deposition of PrPSc

aggregates, vacuolation, and neuronal loss in brain tissue are histo-

pathological hallmarks of a group of neurological disorders collec-

tively known as prion diseases or transmissible spongiform enceph-

alopathies (TSEs), including scrapie in sheep, bovine spongiform

encephalopathy (BSE) in bovids, chronic wasting disease (CWD) in

cervids, and Creutzfeldt-Jakob disease (CJD) in humans [2].

Although TSEs seem to selectively damage the central nervous

system (CNS), peripheral prion exposure leads to the accumulation of

prions and PrPSc in secondary lymphoid organs (SLOs) long be-

fore neurological symptoms appear [3,4,5,6,7,8], and it is largely

from these extraneural sites that prions transmigrate to the peripheral

nervous system (PNS) and finally the CNS [9,10,11]. Extraneural

prion accumulation is thought to occur primarily within stromal cells

found in germinal centers of lymphoid follicles known as follicular

dendritic cells (FDCs) [4,12,13,14,15,16,17]. Maintenance of mature

FDC networks depends on signaling through FDC-expressed lym-

photoxin b receptor (LTbR) and tumor necrosis factor receptor 1

(TNFR1) by B cell-derived tumor necrosis factor (TNF) and lym-

photoxins (LT) a and b [18,19,20,21,22,23]. Accordingly, ablation of

B cells, and hence loss of LTa/b and TNFa ligands, antagonizes

prion deposition in secondary lymphoid organs [24,25], and intra-

peritoneal (i.p.) injection of mice with TNFR1 or LTbR blocking

antibodies prior to peripheral prion inoculation causes transient de-

differentiation of FDCs, reduces splenic prion accumulation, and

delays prion neuroinvasion [26,27,28,29].

However, extraneural prion accumulation in SLOs is not strictly

dependent on the presence of mature FDCs. Although prion titers

remain below detection in spleens of i.p.-inoculated TNFR12/2 and

TNFa2/2 mice, PrPSc levels and prion infectivity in TNFR12/2 and

TNFa2/2 lymph nodes are only marginally reduced compared to

TNFR12/2, LTbR2/2, LTa2/2, or LTb2/2 spleens [30,31].

Furthermore, TNFR12/2 and TNFa2/2 mice succumb to terminal

disease upon i.p. prion inoculation at a noticeably higher rate than

lymphotoxin signaling-deficient mice, indicating that prions are still

effectively transmitted to the CNS in the absence of TNFR1

signaling. Since TNFR12/2 lymph nodes are devoid of detectable

mature FDCs, this implies that other undefined cell types may also

be required for prions to colonize SLOs. However, lymph nodes are

either absent or profoundly disrupted in LTbR2/2, LTa2/2, and

LTb2/2 mice compared to TNFR12/2 and TNFa2/2, making it

difficult to formally conclude that LTbR signaling is specifically re-

quired for prion accumulation in lymph nodes while TNFR1 is not.

To determine whether continuous LTbR signaling is required for

prions to accumulate in TNFR12/2 lymph nodes, we investigated

the ability of prions to colonize SLOs of prion-infected TNFR12/2

mice treated with an LTbR-Ig blocking antibody.

Results

Prion accumulation in TNFR12/2 lymph nodes is LTbR
signaling-dependent

We previously showed that mice devoid of TNF signaling accu-

mulate prion infectivity and PrPSc in lymph nodes but not in spleen,

in contrast to LT signaling-deficient mice which do not accumulate

prions in either spleen or lymph nodes [31]. To determine whether
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prion accumulation in TNFR12/2 lymph nodes was dependent on

continuous LTbR signaling, we administered weekly 100 mg intra-

peritoneal (i.p.) injections of an LTbR immunoglobulin fusion

protein (LTbR-Ig) or control pooled human immunogloblulin (Ig)

to wild-type (WT) and TNFR12/2 mice to achieve sustained inhi-

bition of LTbR signaling [32]. One week following the initial

LTbR-Ig or control Ig injection, mice were inoculated intraperi-

toneally (i.p.) with 6 log LD50 RML6 prions. At 60 days post-

injection (d.p.i.), spleens and mesenteric lymph nodes (mLNs) from

these mice were assessed for accumulation of prion infectivity and

PrPSc. To confirm that LTbR-Ig treatment effectively inhibited

LTbR signaling, we analyzed follicular dendritic cell marker 1

(FDCM1) immunoreactivity in spleens from WT or TNFR12/2

mice treated with either control Ig or LTbR-Ig. FDCM1 immuno-

reactivity was absent in spleens and mLNs from TNFR12/2-Ig,

WT-LTbR-Ig, and TNFR12/2-LTbR-Ig spleens in contrast to

WT-Ig, indicating that LTbR-dependent FDCs had de-differenti-

ated in response to LTbR-Ig treatment (Fig. 1A–J). In addition, we

analyzed transcriptional targets of the LTbR pathway in spleens

from WT or TNFR12/2 mice treated with either control Ig or

LTbR-Ig. As expected, levels of both NFkB2 (p100) and CXCL13

mRNA were reduced in TNFR12/2-Ig, WT-LTbR-Ig, and

TNFR12/2-LTbR-Ig spleens compared to WT-Ig (Fig. 1K & L).

Next, to determine the effect of inhibited LTbR signaling on

prion accumulation in SLOs, we compared the pattern of PrPSc

deposition in spleens and mLNs from prion-infected TNFR12/2-Ig,

WT-LTbR-Ig, and TNFR12/2-LTbR-Ig mice to WT-Ig mice by

histoblotting. As expected, TNFR12/2-Ig, WT-LTbR-Ig, and

TNFR12/2-LTbR-Ig spleens accumulated less PrPSc than WT-Ig

spleens (Fig. 2A–D), though chronic LTbR-Ig administration

seemed less effective at preventing PrPSc deposition in WT spleens

than genetic ablation of TNFR1 (compare Fig. 2B with 2C). Since

the 60 day treatment period approaches the limit of effective LTbR-

Ig inhibition, this most likely reflects partial FDC re-maturation in

WT SLOs near the end of the experiment (J. Browning; personal

communication). Regardless, the ability of LTbR-Ig to block prion

replication in WT SLOs is well-established [26,27]. Consistent with

our previous studies, mLNs from WT and TNFR12/2-Ig-treated

mice contained similar numbers of PrPSc deposits (Fig. 2E & F),

whereas PK-resistant PrP deposits in WT-LTbR-Ig mLNs were less

numerous than in WT-Ig or TNFR12/2-Ig mLNs (Compare

Fig. 2G with Fig. 2E & F). Background PrP immunoreactivity in

PK-digested histoblots from non-infected wild-type spleens was

negligible (Supp. Fig. S1).

Of note, TNFR12/2-LTbR-Ig mLNs were devoid of PrPSc im-

munoreactivity (Fig. 2H), demonstrating that prion accumulation

in lymph nodes in the absence of TNFR1 is dependent on LTbR

signaling. To confirm this result quantitatively, we analyzed prion

infectivity in mLNs from Ig-treated versus LTbR-Ig-treated WT

and TNFR12/2 mice using the scrapie cell assay (SCA; [33,34,35]).

Consistent with the corresponding histoblots from these mice,

LTbR-Ig treatment decreased prion infectivity in WT and

TNFR12/2 mLNs by 2–3 log tissue culture infectious (TCI) units

per gram of tissue compared to Ig treatment (Fig. 2I).

To determine the effect of LTbR-Ig treatment on PrPC

expression in SLOs, which might explain the differential ability

of TNFR12/2-Ig versus TNFR12/2-LTbR-Ig mLNs to accumu-

late prions, we measured Prnp mRNA levels in spleens and lymph

nodes from all treatment groups by quantitative PCR. Prnp mRNA

levels were reduced in WT-LTbR-Ig, TNFR12/2-Ig, and

TNFR12/2-LTbR-Ig spleens compared to WT-Ig (Fig. 2J), most

likely reflecting de-differentiation of FDCs, the primary PrPC-

expressing cell type in spleen. In contrast, no differences in Prnp

mRNA expression were found in mLNs from mice of different

treatment groups. Of particular note, no difference in Prnp mRNA

expression was found between TNFR12/2-Ig and TNFR12/2-

LTbR-Ig mLNs (Fig. 2K). Taken together, our data indicate that

TNFR12/2 lymph nodes accumulate prions in the absence of

mature FDCs yet in an LTbR-dependent manner. Moreover,

inhibited prion deposition in mLNs upon loss of LTbR signaling

seems to be unrelated to local Prnp levels.

MadCam1 expression correlates with prion infectivity in
mesenteric lymph nodes

We reasoned that prion accumulation in TNFR12/2 lymph

nodes might rely on a putative LTbR signaling-dependent,

TNFR1 signaling-independent cell present in lymph nodes but

not in spleens. In order to identify such a cell, we screened spleens

and mLNs from WT-Ig, WT-LTbR-Ig, TNFR12/2-Ig, and

TNFR12/2-LTbR-Ig mice for a variety of hematopoietic and stro-

mal cell markers by immunohistochemistry (IHC) whose expres-

sion correlated with prion replication ability. As previously noted,

the pattern of FDCM1 immunoreactivity was consistent with PrPSc

deposition in spleen, but not in mLNs (Fig. 1A–J). Likewise, sev-

eral other markers for B cells (B220), T cells (CD3), marginal zone

macrophages (MOMA-1), monocytes (F4/80), and stromal cells

(CD21/35, C4, VCAM1, ICAM1) revealed no staining patterns

consistent with an involvement in splenic or lymph nodal prion

accumulation (Supp. Figs S2A–H & S3A–H). However, we

identified one stromal cell marker that exhibited a staining pattern

consistent with prion deposition in both spleen and mLNs:

mucosal addressin cell adhesion molecule 1 (MadCam1 [36]).

MadCam1 weakly stained FDC networks of both WT-Ig spleen

(Fig. 3A & E) and lymph nodes (Fig. 4A), as well as the marginal

sinus (MS) of spleens from WT-Ig mice (Fig. 3A). Although FDC

and MS-associated MadCam1 immunoreactivity was absent upon

loss of TNFR1 or LTbR signaling in both spleen (Fig. 3B–E) and

lymph nodes (Fig. 4 B–D), MadCam1 immunoreactivity persisted

in TNFR12/2-Ig mLNs (Fig. 3G & J; 4B). Of note, MadCam1

immunoreactivity was completely absent in mLNs from LTbR-Ig-

treated WT and TNFR12/2 mice (Fig. 3I–J & 4C–D). Fur-

thermore, analysis of MadCam1 mRNA expression by Real Time

Author Summary

Prions are unique infectious agents thought to be composed
entirely of an abnormal conformer of the endogenous prion
protein. Prions cause a severe neurological disorder in hu-
mans and other animals known as prion disease. Though
prion disease can arise spontaneously or from genetic mu-
tations in the gene encoding the prion protein, many cases
of prion disease arise due to peripheral exposure to the in-
fectious agent. In these cases, prions must journey from the
gastrointestinal tract and/or the bloodstream to the brain.
Prions often colonize secondary lymphoid organs prior to
invading the nervous system via neighboring peripheral
nerves. Prion accumulation in follicular dendritic cells found
in germinal centers of lymphoid organs is thought to be a
crucial step in this process. However, prion colonization of
lymph nodes, in contrast to spleen, does not depend on folli-
cular dendritic cells, indicating that other mechanisms must
exist. Here, we identify the signaling pathway required for
follicular dendritic cell-independent prion colonization of
lymph nodes, which also controls the differentiation of high
endothelial venules, the primary entry point for lymphocytes
into lymph nodes. Importantly, prions could be found within
these structures, indicating that high endothelial venules are
required for prion entry and accumulation in lymph nodes.

FDC-Independent Prion Accumulation in Lymph Nodes
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Figure 1. Repeated LTbR-Ig administration chronically downregulates LTbR signaling and de-differentiates FDC networks in C57BL/
6 and TNFR12/2 spleens and lymph nodes. Frozen sections from spleens (A–D) and mesenteric lymph nodes (E–H) of C57BL/6 (WT) Ig-treated
(A & E), C57BL/6 (WT) LTbR-Ig-treated (C & G), TNFR12/2 Ig-treated (B & F), or TNFR12/2 LTbR-Ig-treated (D & H) mice were analyzed by
immunohistochemistry and developed with alkaline phosphatase for follicular dendritic cell marker 1 (FDCM1). The total number of FDCM1-positive
(FDCM1+; black) or FDCM1-negative (FDCM12; white) lymphoid follicles were scored for spleens (I) and mesenteric lymph nodes (mLNs; J) and
expressed as a percentage of total follicles in each treatment group. FDCM1+ FDC networks were visible in 82% of WT Ig-treated spleen follicles (A; I)
and 94% of WT-Ig lymph node follicles (E; J), whereas FDCM1+ FDCs were absent (0% of follicles) in spleens and lymph nodes from mice lacking
TNFR1 and/or LTbR signaling (B–D; F–H; I–J). Total mRNA was isolated from spleens of mice from the indicated treatment groups and analyzed for
expression of LTbR signaling targets CXCL13 (Mean 6 S.E.M.: WT-Ig = 102.68611.56, WT-LTbR-Ig = 18.0562.30, TNFR12/2-Ig = 19.5661.63, and
TNFR12/2-LTbR-Ig = 15.1460.15) (K) and NFkB2 (Mean 6 S.E.M.: WT-Ig = 103.10614.65, WT-LTbR-Ig = 33.3062.10, TNFR12/2-Ig = 46.0467.53, and
TNFR12/2-LTbR-Ig = 33.3961.18) (L) by Real Time PCR. Both CXCL13 and NFkB2 mRNA levels were reduced in all treatment groups relative to WT-Ig.
doi:10.1371/journal.ppat.1002867.g001

FDC-Independent Prion Accumulation in Lymph Nodes
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Figure 2. PrPSc accumulation in TNFR12/2 lymph nodes requires LTbR signaling independent of Prnp expression. C57BL/6 (WT) or
TNFR12/2 mice inoculated i.p. with 6 log LD50 RML6 and treated weekly with control Ig or LTbR-Ig were sacrificed at 60 d.p.i. Histoblots were
performed on frozen sections from spleens (SPL; A–D) or mesenteric lymph nodes (mLN; E–H) from mice in each treatment group to visualize PrPSc

deposition. Whole organs are shown in left panels, and corresponding higher resolution images for each treatment group are shown in right panels.
Note that lack of TNFR1 signaling can prevent PrPSc accumulation in spleen (B) but not lymph node (F). However, blocking LTbR signaling can prevent
PrPSc accumulation in TNFR12/2 lymph nodes (compare F and H). Prion infectivity titers in mLN homogenates from individual TNFR12/2 Ig-treated
and LTbR-Ig treated mice were measured using the scrapie cell assay (I). Whereas TNFR12/2-Ig mLNs all harbored $6.1 log TCI units/g tissue, prion
infectivity in TNFR12/2-LTbR-Ig mLNs was reduced by at least 2.5 log TCI units/g tissue. Total mRNA was isolated from spleens (J) or mesenteric
lymph nodes (mLN; K) of mice from the indicated treatment groups and analyzed for Prnp expression by Real Time PCR (Mean 6 S.E.M.: Spleen – WT-
Ig = 100.6966.74, WT-LTbR-Ig = 46.0264.30, TNFR12/2-Ig = 48.9460.55, and TNFR12/2-LTbR-Ig = 50.1160.55; mLN – WT-Ig = 106.05622.54, WT-LTbR-
Ig = 101.69612.88, TNFR12/2-Ig = 56.4363.13, and TNFR12/2-LTbR-Ig = 72.3566.65). Whereas spleens from WT-LTbR-Ig, TNFR12/2-Ig, and TNFR12/2-
LTbR-Ig mice all showed decreases in Prnp expression relative to WT-Ig spleens (J), no differences could be found in Prnp expression in mLNs from
mice in any treatment group (K).
doi:10.1371/journal.ppat.1002867.g002
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Figure 3. MadCam1 immunoreactivity in lymphoid tissue correlates with prion deposition. Formalin-fixed cryosections from spleens (SPL;
A–D) or mesenteric lymph nodes (mLN; F–I) of C57BL/6 (WT) Ig-treated (A & F), TNFR12/2 Ig-treated (B & G), C57BL/6 (WT) LTbR-Ig-treated (C & H), or
TNFR12/2 LTbR-Ig-treated (D & I) mice were immunostained with an antibody against the stromal cell marker, mucosal addressin cell adhesion
molecule 1 (MadCam1), and visualized with alkaline phosphatase. (E) The total number of MadCam1-positive (MadCam1+; black) or MadCam1-
negative (MadCam1-; white) lymphoid follicles were scored for spleens and expressed as a percentage of total follicles in each treatment group. (J)
The total number of MadCam1-postive (MadCam1+) structures per mesenteric lymph node (mLN) was counted and averaged for each treatment
group. WT-Ig mLNs contained 47.5614 MadCam1+ structures, WT-LTbR-Ig = 9.563, TNFR12/2-Ig = 74619, and TNFR12/2-LTbR-Ig = 0. MadCam1
immunoreactivity in WT-Ig spleens was localized to the marginal sinus (A; black arrow) and 55% (E) of germinal centers (A; white arrow). This staining

FDC-Independent Prion Accumulation in Lymph Nodes
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PCR in mLNs quantitatively corroborated the MadCam1 IHC

findings: MadCam1 mRNA levels were equally reduced in spleens

from WT-LTbR-Ig, TNFR12/2-Ig, and TNFR12/2-LTbR-Ig

mice, compared to WT-Ig (Fig. 4E). In contrast, MadCam1

mRNA levels were intermediately reduced in TNFR12/2-Ig mLNs

compared to WT-Ig, and a further reduction in MadCam1 mRNA

levels was observed in TNFR12/2-LTbR-Ig mLNs compared to

TNFR12/2-Ig (Fig. 4F). Thus far, our data suggested that the

presence of a MadCam1-expressing cell was associated with

accumulation of prions in lymph nodes but not in spleen.

pattern was absent (0%; E) in the spleens of mice from all other treatment groups (B,C & D). In contrast, MadCam1 immunoreactivity in WT-Ig mLNs
was largely found in thick vessels (F). MadCam1 immunoreactivity was retained in TNFR12/2-Ig mLNs (G) but absent in mLNs from mice treated with
LTbR-Ig (H–J). Size bars: Left panels = 200 mm; Right panels = 100 mm.
doi:10.1371/journal.ppat.1002867.g003

Figure 4. Vessel-associated MadCam1 expression in lymph nodes is preserved in the absence of TNFR1 signaling. Frozen sections
from mesenteric lymph nodes (mLN) of C57BL/6 (WT) Ig-treated (A), TNFR12/2 Ig-treated (B), C57BL/6 (WT) LTbR-Ig-treated (C), or TNFR12/2 LTbR-Ig-
treated (D) mice were analyzed by immunofluorescence with MadCam1 antibody. In WT-Ig mLNs (A), MadCam1 robustly stained thick vessels (yellow
arrow), while germinal centers were weakly MadCam1-positive (white arrow). In TNFR12/2-Ig mLNs (B), MadCam1-positive germinal centers were
absent, while vessel-associated MadCam1 staining persisted. In contrast, both WT-LTbR-Ig and TNFR12/2-LTbR-Ig mLNs were MadCam1-negative (C &
D). Size bars = 100 mm. Total mRNA was isolated from spleens (E) or mesenteric lymph nodes (F) of C57BL/6 (WT) Ig-treated, C57BL/6 (WT) LTbR-Ig-
treated, TNFR12/2 Ig-treated, or TNFR12/2 LTbR-Ig-treated mice and analyzed for MadCam1 expression by Real Time PCR (Mean 6 S.E.M.: Spleen –
WT-Ig = 104.21616.56, WT-LTbR-Ig = 29.9861.28, TNFR12/2-Ig = 30.4162.56, and TNFR12/2-LTbR-Ig = 27.9563.77; mLN – WT-Ig = 100.8968.06, WT-
LTbR-Ig = 45.4066.75, TNFR12/2-Ig = 49.4260.63, and TNFR12/2-LTbR-Ig = 24.7967.25). MadCam1 expression was reduced in spleens of WT-LTbR-Ig-
treated, TNFR12/2 Ig-treated, and TNFR12/2 LTbR-Ig-treated mice compared to WT-Ig. MadCam1 expression in WT-LTbR-Ig and TNFR12/2 Ig mLNs
was reduced compared to WT-Ig, and MadCam1 expression in TNFR12/2 LTbR-Ig mLNs was reduced compared to TNFR12/2-Ig.
doi:10.1371/journal.ppat.1002867.g004
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MadCam1-positive structures in TNFR12/2 lymph nodes
are PrPC-expressing HEVs

MadCam1 immunoreactivity in TNFR12/2-Ig mLNs was re-

stricted to thick vessels (Fig. 3G & 4B) that were absent from

TNFR12/2-LTbR-Ig mLNs (Fig. 3I & Fig. 4D), as well as iso-

type controls (Supp. Fig. S4B), and were morphologically distinct

from MadCam1-positive FDC networks found in WT-Ig spleens

(Fig. 3A) and mLNs (Fig. 4A). These MadCam1-positive struc-

tures were morphologically consistent with high endothelial ve-

nules (HEVs) responsible for controlling lymphocyte entry into

LNs, Peyer’s patches (PPs), and other SLOs, with the exception of

spleen [37]. Co-localization of Madcam1-positive vessels with

peripheral node addressin (PNAd; a.k.a. MECA-79), a specific

marker of HEVs [38], confirmed that these structures in

TNFR12/2-Ig mLNs were HEVs (Fig. 5A–F), whereas Mad-

Cam1-positive FDC networks in WT-Ig mLNs (Fig. 5A–C) and

isotype controls (Supp. Fig. S4A) were PNAd-negative. To gather

evidence that HEVs could be potential sites of prion replication, we

analyzed PrPC immunoreactivity in HEVs of WT-Ig mLNs. Co-

immunofluorescent (co-IF) staining of WT-Ig mLNs with Mad-

Cam1 and PrPC antibodies confirmed that PrPC immunoreactivity

was present in HEVs (Fig. 5G–I) and absent from isotype controls

(Supp. Fig. S4C). Thus, HEVs fulfill at least one requirement of a

prion replicating tissue - PrPC expression.

PrPSc localizes to HEVs in TNFR12/2 lymph nodes
To determine whether prions were localized to HEVs in mLNs,

we performed co-IF with PrPC and MadCam1 antibodies in prion-

infected TNFR12/2-Ig mLNs. Prion-infected TNFR12/2-Ig

mLNs contained areas of intense PrP-positive deposits which were

not detectable in non-infected TNFR12/2-Ig mLNs (data not

shown; [31]). Of note, many of these PrPC-positive areas localized

to MadCam1-postive vessels in prion-infected TNFR12/2-Ig

mLNs, indicating that HEVs are probable sites of PrPSc

localization in infected lymph nodes (Fig. 6A–C). However, PrP

immunostaining of prion-infected tissue cannot reliably distinguish

between PrPSc deposits and sites of high PrPC expression, and

HEVs expressed relatively high levels of PrPC in uninfected mLNs

(Fig. 5G–I).

To develop an independent method of distinguishing PrPSc

from PrPC in lymphoid organs, we tested the ability of a series of

fluorescent amyloid-binding dyes known as luminescent conjugat-

ed polymers (LCPs [39,40,41,42]) to stain PrPSc deposits in spleen

and lymph node. LCPs were previously shown to recognize PrPSc

in brain [43]. One LCP, pentameric formic thiophene acetic acid

(p-FTAA; [44]), stained PrP-positive FDC networks of prion-

infected spleens from WT mice (Supp. Fig. S5). In contrast, no

immunofluorescence could be detected with p-FTAA in spleens

and lymph nodes from uninfected mice (Supp. Fig. S6). Using

this method, points of PrPSc/MadCam1 co-localization could be

reliably identified in prion-infected TNFR12/2 lymph nodes,

which again indicated that a proportion of PrPSc localizes to HEVs

in TNFR12/2 mLNs (Fig. 6D–F). However, at lower magnifica-

tion we also noted that a number of PrPSc deposits were located

outside of HEVs (Fig. 6G–I). To confirm this observation and to

analyze the tissue-wide distribution of PrPSc deposits relative to

HEVs in prion-infected TNFR12/2-Ig mLNs, we performed

histoblot co-stains with PNAd antibody, which is highly immuno-

reactive to HEVs and can be visualized even after proteinase K

digestion (Supp. Fig. S7). This analysis confirmed that some

PrPSc deposits were localized to HEVs in TNFR12/2-Ig mLNs.

However, PrPSc deposits were also present outside of HEVs

(Fig. 6J–K), which is consistent with our previous study showing

that strong PrP immunoreactivity in prion-infected TNFR12/2

mLNs can also be found in other cell types (i.e. macrophages [31]).

Since HEVs could potentially serve as entry portals for prion-

harboring lymphocytes, and it was recently reported that neigh-

boring dendritic cells (DCs) are responsible for HEV differentia-

tion [45], we also performed PrP co-immunofluorescence on

prion-infected TNFR12/2-Ig mLNs using the DC marker, CD11c,

to determine whether DCs in the vicinity of HEVs might also

contain PrPSc. However, no overlap of PrP and CD11c immu-

noreactivity in prion-infected TNFR12/2-Ig mLNs was identified

(Supp Fig. S8).

Discussion

The means by which prions evade the immune system’s nu-

merous defense mechanisms and finally transmigrate to, and se-

lectively damage, neurons of the CNS has been the subject of

scientific scrutiny for two decades. A number of studies have im-

plicated FDCs in the germinal centers of SLOs as the primary

reservoirs of prions prior to neuroinvasion [4,12,13,14,15,16,17].

Yet the ability of TNFR12/2 mLNs to accumulate prions with a

minimal loss of infectivity compared to WT mLNs presents an

apparent paradox, since FDC maintenance depends on TNFR1

signaling [21,22,23].

Here we have established that lymph nodal prion accumulation

in the absence of TNFR1 signaling is LTbR signaling-dependent.

Crucially, transient loss of LTbR signaling was sufficient to block

TNFR1-independent prion accumulation in lymph nodes, indi-

cating that prion accumulation in lymph nodes specifically

requires LTbR signaling and is not simply prevented by general

developmental defects or architectural disruptions caused by lack

of LTbR signaling in LTb2/2 lymph nodes.

We previously showed that intense PrP immunoreactivity was

localized to macrophages in prion-infected TNFR12/2 mLNs [31],

and others have reported that PK-resistant PrP is localized to

macrophages in spleens with PrPC-deficient FDCs [46], indicating

that macrophages serve as alternative sites of prion accumulation in

the absence of PrPC-expressing FDCs. How this phenomenon was

mechanistically linked to LTbR signaling and the pattern of prion

accumulation in lymph nodes was initially unclear, since most

macrophage populations were preserved in the absence of both

TNFR1 and LTbR signaling [31]. Here, we discovered that loss of

LTbR signaling in mLNs was also correlated with the dedifferen-

tiation of HEVs – the primary point of entry for lymphocytes into

lymph nodes and a likely determinant in the ability of prions to

colonize lymph nodes.

Consistent with the pattern of prion accumulation in spleens

and lymph nodes of mice lacking TNF and/or LT signaling com-

ponents, HEVs exist in lymph nodes and other SLOs but not

spleens [37], and the maintenance of HEV architecture is TNFR1

signaling-independent yet LTbR signaling-dependent [47]. More-

over, we identified sites of PrPSc-HEV overlap in TNFR12/2-Ig

mLNs, indicating that HEVs might replicate prions and/or serve

as points of entry for prions or prion-harboring lymphocytes.

FDC-deficient mice can succumb to scrapie even in the absence of

detectable splenic prion titers [24]. In light of our current results,

this phenomenon is most likely explained by HEV-dependent

entry and accumulation of prions in lymph nodes and other HEV-

containing SLOs, such as Peyer’s patches.

HEVs can also form ectopically in certain chronic inflammatory

conditions. Prion accumulation at sites of chronic inflammation has

previously been observed, but in most cases this could be attributed

to local formation of FDC networks [48,49,50]. However, we also

previously reported LTbR-dependent prion colonization of gran-

ulomas in the absence of FDC markers [51]. Since ectopic HEV
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Figure 5. MadCam1-positive vessels in mesenteric lymph nodes are prion protein-expressing high endothelial venules. Co-
immunofluorescent confocal microscopy was performed on frozen sections from WT-Ig mesenteric lymph nodes with the high endothelial venule
(HEV)-specific marker, peripheral node addressin (PNAd; green; A & D) and MadCam1 (red; B & E). Merged image shown in C & F. MadCam1-positive
vessels co-localized with PNAd (A,B & C; yellow arrow). Note that MadCam1-positive germinal centers were PNAd-negative (B & C; white arrow).
Standard co-immunofluorescence was performed on frozen sections from WT-Ig mesenteric lymph nodes with MadCam1 (red; G) and an antibody
directed against the C-terminus of the prion protein (PrP; green; H; POM1; [62]). MadCam1-positive HEVs were also PrP-positive (I). Size bars in A–
C = 150 mm. Size bars in D–F = 50 mm. Size bars in G–I = 20 mm.
doi:10.1371/journal.ppat.1002867.g005
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Figure 6. PrPSc is present both in and around MadCam1-positive HEVs in TNFR12/2-Ig mesenteric lymph nodes. TNFR12/2 mice
inoculated i.p. with 6 log LD50 RML6 and treated weekly with control Ig were sacrificed at 60 d.p.i. Immunofluorescence (A–I) and histoblots (J & K)
were then performed on frozen sections from prion-infected TNFR12/2-Ig mesenteric lymph nodes. Co-IF with anti-serum (XN) against PrP (green; A)
and MadCam1 (red; B) showed points of intense PrP immunoreactivity localized to HEVs (C). Confocal co-IF with the amyloid-binding dye, p-FTAA
(green; D) and MadCam1 (red; E,F) revealed some points of PrPSc association with HEVs (F); however much of the PrPSc was present outside of HEVs (I).
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formation without any evidence of FDC networks has previously

been reported in certain inflammatory conditions [52], ectopic HEV

formation might be a source of prion replication and/or uptake in

granulomas, as well.

Of note, LTa/b signaling to HEVs differs from LTa/b signaling

to FDCs. Though HEVs express LTbR [53], HEVs persist in the

absence of B cells [47], in contrast to FDCs which rely on B cells to

provide LTa/b ligand [19,20]. This indicates that the LTa/b signal

to HEVs emanates from another cell type. Until recently the cell

type providing LTa/b to HEVs was not known; however a recent

publication reports that dendritic cells (DCs) may be the source of

LTa/b signaling to HEVs [45]. If HEV differentiation is indeed B

cell-independent, this may explain why prion neuroinvasion can

occur in the absence of B cells in some cases, since LTbR signaling

to HEVs and hence the ability of prions to enter and accumulate in

lymph nodes would be preserved [24,54].

Do prions actually replicate in TNFR12/2 lymph nodes, or do

they simply accumulate? Accumulation seems likely, as the only cell

type in SLOs known to replicate prions are FDCs, and prion

replication in macrophage populations was not observed [46]. In

any case, experimental evidence suggests that prion accumulation in

SLOs is sufficient for prions to invade the CNS [55,56,57].

Moreover, deletion of complement factors dramatically impairs

prion accumulation in SLOs and subsequent neuroinvasion without

affecting PrPC levels [58], indicating that the ability of SLOs to

physically capture prions is indeed critical for the development of

downstream pathology.

Curiously, we previously showed that PrPC expression is required

in either the stromal or the hematopoietic compartment for lymph

nodes to accumulate prion infectivity [31], which implies that prion

replication can occur in both compartments in lymph nodes.

However, an alternative explanation is that a hematopoietic cell is

required for delivery of prions to a ‘‘trapping’’ cell within the lymph

node, and PrPC expression on the hematopoietic cell mediates

efficient uptake of PrPSc in the bloodstream. Hence, HEVs may

facilitate the selective uptake and accumulation of prions or prion-

containing lymphocytes into lymph nodes, rather than serving as

sites of bona fide prion replication. Based on both current and past

findings, it is likely that the ‘‘trapping’’ cells in lymph nodes are

endothelial cells in HEVs (HEVECs), and the hematopoietic de-

livery cells are macrophages. Once prions or prion-harboring cells

have successfully invaded mLNs through HEVs, they may be

transported via conduits to FDCs [59] under normal conditions.

However, in the absence of mature FDCs, prions may remain in or

be transferred to macrophages.

Materials and Methods

Animals, treatments & ethical statement
TNFR12/2 mice carrying a targeted deletion of exons 2, 3, and

part of exon 4 of the tumor necrosis factor receptor 1 (TNFR1)

open reading frame [60] were maintained on a C57BL/6 back-

ground in-house. C57BL/6 wild-type control mice were pur-

chased from Harlan Laboratories and bred in-house. Murine

LTbR-murine IgG1 (LTbR-Ig) and MOPC21 mouse immuno-

globulin control were obtained from Biogen Idec. For analysis of

prion-infected tissues (Figs 2A–I, 6 & Supp. Figs S5, S7 & S8),

TNFR12/2 or C57BL/6 mice were injected intraperitoneally (i.p.)

with 100 mg LTbR-Ig or MOPC21 (n = 3–4/group). One week

later, mice were inoculated i.p. with 100 mL 6 log LD50 Rocky

Mountain Laboratory mouse-adapted prion strain [61], passage 6

(RML6). Mice were then boostered weekly with 100 mg LTbR-Ig

or MOPC21 until 60 days post-inoculation (d.p.i), at which point

mice were sacrificed. For analysis of uninfected tissue (Figs 1, 2J–

K, 3, 4, 5 & Supp. Figs S1, S2, S3, S4 & S6), TNFR12/2 or

C57BL/6 mice received 2 weekly injections of LTbR-Ig or

MOPC21 and were sacrificed 3 weeks following the initial

injection (n = 3–4/group). Spleens and lymph nodes from prion-

infected and uninfected mice were either flash frozen for scrapie

cell assays and gene expression analysis or frozen in 1x Hank’s

balanced salt solution for immunohistochemistry. Tissues were

stored at 280uC until analysis. All animal experiments were

carried out in strict accordance with the rules and regulations for

the Protection of Animal Rights (Tierschutzverordnung) of the

Swiss Bundesamt für Veterinärwesen and were pre-approved by

the Animal Welfare Committee of the Canton of Zürich. Animal

permit # 130/2008.

RML inoculum
CD1 wild-type mice were inoculated i.c. with 30 mL 1% (w/v)

RML-5-infected brain homogenate and sacrificed at terminal

stage disease. Brains were flash frozen in liquid nitrogen and stored

at 280uC. Brains were then homogenized in sterile 0.32 M

sucrose in 1x PBS (20% w/v) using a Ribolyser (Hybaid, Catalys).

Subsequent dilutions of inoculum were performed in sterile 5%

(w/v) bovine serum albumin (BSA) in 1x PBS. For titer deter-

minations, serial dilutions of RML6 were inoculated i.c. into indi-

cator mice, and LD50 was defined as the dilution that induced a

50% attack rate.

Real time PCR
Frozen spleens and lymph nodes were homogenized in Qiazol

(10% w/v) using a TissueLyser, and total mRNA was isolated using

an RNeasy Mini kit, according to the manufacturer’s instructions

(Qiagen). 1 mg mRNA from each sample was used for first-strand

cDNA synthesis using random hexamers from a Superscript II kit

(Invitrogen). ,100 ng cDNA, 500 nM primers, and 1x Faststart

SYBR Green reaction mixture (Roche) in 25 mL reaction volumes

were used for Real Time PCR amplification of target sequences

from spleen and lymph nodes normalized to GAPDH using an ABI

7900HT (Applied Biosystems). (See Table 1 for list of primer

sequences.) Reactions from each tissue were performed in triplicate

and averaged. Samples with a triplicate variability exceeding 10%

were eliminated from further analysis. Amplification data was

analyzed using the relative quantification method (RQ) with WT-Ig

samples serving as the calibrator values. RQ values were calculated

and averaged for each sample. Average values depicted in the

graphs represent the mean value of single spleens or lymph nodes

from each individual mouse from each treatment group. N = 2–4

mice per group, depending on the specific tissue and treatment

group.

Histoblots
10 mM frozen sections were transferred to nitrocellulose pre-

soaked in 1x Tris-buffered saline with Tween 20 (TBST; 50 mM

Histoblots pre-stained with PNAd antibody and developed with AP (pink; J) also revealed some prion-infected HEVs (black arrows), some non-
infected HEVs (white arrow), and some PrPSc deposits that were not HEV-associated (yellow arrow). (K) Total numbers of PNAd-positive HEVs in
histoblot co-stains were counted and scored as PrPSc-positive (PrPSc+; black) or PrPSc-negative (PrPSc+; white), and total PrPSc deposits were counted
and scored as PNAd-positive (PNAd+; black) or PNAd-negative (PNAd; white). 35% of HEVs were PrPSc-positive, and 58% of PrPSc deposits were PNAd-
positive. Size bars in A–F = 50 mm. Size bars in G–I = 100 mm.
doi:10.1371/journal.ppat.1002867.g006
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Tris-HCl, pH = 7.8, 150 mM NaCl, 0.1% Tween 20) and air-dried.

Membranes were washed in 1x TBST for 1 hr. and then digested

with proteinase K (Roche, 20 mg/mL) diluted in digestion buffer

(10 mM Tris-HCl, pH = 7.8, 100 mM NaCl, 0.1% (v/v) Brij 35) at

37uC for 4 hrs. Membranes were then washed in TBST, incubated

in denaturing solution (10 mM Tris-HCl, pH = 7.8, 3 M guanidine

thiocyanate) for 10 min, washed in 1x TBST, blocked in 5% dried

milk in TBST for 1 hr, and then probed with 0.1 mg/mL POM1

[62] diluted in 1% milk in 1x TBST overnight at 4uC. Membranes

were then washed in 1x TBST, blocked in 1% milk in 1x TBST,

and then incubated with 1 mg/mL alkaline phosphatase (AP)-

conjugated goat anti-mouse secondary antibody (Dako) for 1 hr.

Membranes were then washed in 1x TBST, 10 min. in B3

(100 mM Tris, 100 mM NaCl, 100 mM MgCl2, pH = 9.5), and

then developed for 40 min. with BCIP/NBT (Roche). Histoblot

sections were then washed in distilled water, dried, and imaged

using an Olympus SZX12 stereomicroscope. Uninfected spleens

from wild-type mice served as negative controls for background PrP

immunoreactivity (Supp. Fig. S1).

Scrapie cell assay in endpoint format
Scrapie-susceptible neuroblastoma cells (subclone N2aPK1,

[33]) were incubated with uninfected brain homogenate, defined

titers of RML6-infected brain homogenate, or 1023 to 1026 dilu-

tions of mesenteric lymph node homogenate from WT-Ig, WT-

LTbR-Ig, TNFR12/2-Ig, or TNFR12/2-LTbR-Ig for 3 days.

Infected N2aPK1 cells were passaged 1:3 three times every 2 days,

and then 1:10 four times every 3 days. After reaching confluence,

26104 cells from each well were filtered onto the membrane of an

ELISPOT plate (Millipore; MultiScreenHTS filter plates with

Immobilon-P PVDF membrane) and denatured with 0.5 mg/mL

proteinase K (PK). Individual prion-infected cells were immuno-

detected with POM1. Wells were scored positive if the spot

number exceeded mean background values, determined as three

times the standard deviation of the uninfected control. In this

experiment, an ELISPOT membrane with $3 PrPSc+ colonies was

regarded as infected. From the proportion of negative to total

wells, the number of tissue culture infectious units per mL was

calculated with the Poisson equation. In two independent exper-

iments, a 1028 dilution of a standard inoculum (brain homogenate

from a terminally scrapie-sick mouse) yielded 11/24 or 12/24

positive wells, corresponding to a titer of ,8.3 log tissue culture

infectivity (TCI) units/g of brain tissue for the initial inoculum.

The sensitivity threshold was calculated to be 2.8 log TCI units/g

of brain tissue.

Immunohistochemistry
7 mM frozen sections on glass coverslips (Thermofisher) were

dried for several hours at room temp, fixed in 4% formalin for

2 min, 50% acetone for 2 min, 100% acetone for 2 min, and 50%

acetone for 2 min. Sections were then washed in 1x PBS, then 1x

PBS+ 0.05–0.1% Tween 20, and blocked for 1 hr. in SuperBlock

(Pierce). Sections were then incubated overnight at 4uC in primary

antibody (see Table 2 for antibodies and dilutions) diluted in 1:10

SuperBlock. For vessel stains, isotype controls (rat IgM for PNAd,

Pharmingen # 553941; rat IgG2a for MadCam1, eBioscience #
14-4321; and mouse IgG1 for PrP, Sigma # 15381) were per-

formed using equivalent concentrations to the corresponding pri-

mary antibodies (Supp. Fig. S4). Sections were then washed in 1x

PBS, followed by 1x PBST, then incubated with 0.2–0.4 mg/mL

Alexa Fluor secondary antibody (Invitrogen) diluted in 1x PBST

(for immunofluorescence [IF]) or 5.3 mg/mL unconjugated goat

anti-rat secondary antibody (Caltag Laboratories) or goat anti-

mouse (Jackson Immunoresearch) diluted in 1:10 SuperBlock for

1 hr. at room temperature (for light microscopy [LM]). Sections

were then washed in 1x PBS followed by 1x PBST and incubated

in 7.5 mg/mL AP-conjugated donkey anti-goat tertiary antibody

(Jackson Immunoresearch) in 1x PBST for 1 hr for LM. Sections

were then washed and developed with Fast Red (Sigma) staining

kit and counter-stained with hematoxylin & eosin (H&E) for LM.

Sections were then mounted (fluorescent mounting medium for IF

or aqueous mounting medium for LM; Dako) and coverslipped.

Sections were imaged using an Olympus BX61TRF fluorescent

microscope, a Zeiss Axiophot light microscope, or a Leica SP5

confocal microscope (where indicated).

Image quantification
FDCM1: Boundaries of lymphoid follicles were identified by

H&E counterstaining in LM images of AP-developed spleens and

Table 2. Antibodies used for immunohistochemistry and
immunofluorescence.

Antibody Product No. Source Working Conc.

MadCam1 553805 BD Pharmingen 20 mg/mL

POM1 mouse
monoclonal

N/A Polymenidou, 2008 1 mg/mL

PrP (XN) rabbit
antiserum

N/A* Montrasio, 2000 1:1000

FDCM1 551320 BD Pharmingen 6.25 mg/mL

CD21/35 553817 BD Pharmingen 5 mg/mL

F4/80 MCA497R Serotec 10 mg/mL

B220 553084 BD Pharmingen 2.5 mg/mL

FITC-MOMA-1 MCA947F Serotec 2 mg/mL

C4 Abcam ab11863 1 mg/mL

VCAM1 MCA1229 Serotec 10 mg/mL

ICAM1 MCA818 Serotec 5 mg/mL

PE-CD11c 553802 BD Pharmingen 4 mg/mL

PNAd 553863 BD Pharmingen 5 mg/mL

CD3 supernatant RM-9107-S1 Thermoscientific 1:50

*Immunogen = full-length recombinant mouse PrPC.
doi:10.1371/journal.ppat.1002867.t002

Table 1. Primer sequences used for Real Time PCR analysis.

Transcript Primer Sequence

mCXCL13 F – 59 - TGGCCAGCTGCCTCTCTC – 39

R – 59 - TTGAAATCACTCCAGAACACCTACA - 3

mNFkB2 F – 59 - GCA GAG AATGAGGAGCCTCTGTG – 39

R – 59 - GCCTCGGAAGTTTCTTTGGGTAT – 39

mPrnp F – 59 - GCC AGT GGA TCA GTA CAG CA – 39

R – 59 – ATCCCACGATCAGGAAGATG – 39

mMadCam1 F – 59 - CCT ACA TCC TGA CCT CAT CAA GT –
39

R – 59 - AGA GCT CAG AGT CCT AGG GCT AA –
39

mGAPDH F – 59 – CCACCCCAGCAAGGAGACT – 39

R – 59 – GAAATTGTGAGGGAGATGCT – 39

doi:10.1371/journal.ppat.1002867.t001
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lymph nodes immunostained with FDCM1. Follicles containing

FDCM1-stained germinal centers were classified as ‘‘FDCM1-

positive,’’ whereas follicles devoid of FDCM1 staining were classi-

fied as ‘‘FDCM1-negative.’’ The total number of FDCM1-postive

or negative follicles per treatment group was expressed as a per-

centage of the total follicles. A total of 55 follicles were scored for

WT-Ig spleens, 39 for WT-LTbR-Ig spleens, 111 for TNFR12/2-

Ig spleens, 27 for TNFR12/2-LTbR-Ig spleens, 19 for WT-Ig

mLNs, 10 for WT-LTbR-Ig mLNs, 13 for TNFR12/2-Ig mLNs,

and 10 for TNFR12/2-LTbR-Ig mLNs. MadCam1: Boundaries

of lymphoid follicles were identified by H&E counterstaining in

LM images of AP-developed spleens immunostained with

MadCam1. Follicles containing MadCam1-stained germinal

centers were classified as ‘‘MadCam1-positive,’’ whereas follicles

devoid of MadCam1 staining were classified as ‘‘MadCam1-ne-

gative.’’ The total number of MadCam1-postive or negative

follicles per treatment group was expressed as a percentage of the

total follicles. For mLNs, the total number of MadCam1-positive

vessels was scored per organ and averaged. A total of 80 follicles

were scored for WT-Ig spleens, 37 for WT-LTbR-Ig spleens, 137

for TNFR12/2-Ig spleens, 39 for TNFR12/2-LTbR-Ig spleens,

n = 2 mLNs for all treatment groups. PNAd/PrPSc co-stains:

Total numbers of HEVs and PrPSc deposits were counted on

PNAd pre-stained histoblots from TNFR12/2-Ig mLNs. HEVs

that overlapped with PrPSc deposits were scored as ‘‘PrPSc-

postive,’’ whereas HEVs with no PrPSc were scored as ‘‘PrPSc-

negative.’’ Likewise, PrPSc deposits that overlapped with HEVs

were scored as ‘‘PNAd-positive,’’ whereas PrPSc deposits that were

not associated with HEVs were scored as ‘‘PNAd-negative.’’ For

HEVs, values represent the percentage of total HEVs that were

either PrPSc-positive (black) or negative (white). For PrPSc deposits,

values represent the percentage of total PrPSc deposits that were

associated with HEVs (black) or not (white). A total of 82 HEVs

and 112 PrPSc deposits were scored.

Pentameric formic thiophene acetic acid (pFTAA) co-
staining

7 mM frozen sections on glass coverslips were dried and then

fixed in pre-chilled 100% acetone or ethanol at 220uC for 10 min.

Sections were dried for 1 min., re-hydrated in 1x PBS for 10 min.,

blocked in SuperBlock, and then incubated in 20 mg/mL Mad-

Cam1 or 6.25 mg/mL FDCM1 in 1x PBS overnight at 4uC. Sec-

tions were then washed in 1x PBS and incubated with 0.2–2 mg/mL

Alexa Fluor 594-conjugated goat anti-rat secondary antibody for

1 hr. Sections were then washed in 1x PBS and incubated with

30 mM pentameric formic thiophene acetic acid (p-FTAA; [44]) in

1x PBS for 30 min. Sections were then washed in 1x PBS, mounted

with fluorescent mounting medium (Dako), coverslipped, and

imaged using an Olympus BX61TRF fluorescent microscope.

Sections from uninfected WT spleens were used as negative controls

for non-specific pFTAA staining (Supp. Fig. S6).

Histoblot co-stains
TNFR12/2-Ig mesenteric lymph node sections (10 mm) on

nitrocellulose were soaked in 1x TBST for 1 hr., blocked in 5%

(w/v) milk in 1x TBST for 1 hr., and then probed with 0.5 mg/mL

PNAd antibody diluted in 1% (w/v) milk in 1x TBST overnight at

4uC. Histoblots were then washed in 1x TBST and probed with

0.5 mg/mL AP-conjugated goat anti-rat (Biosource # ARI3405)

secondary antibody in 1% (w/v) milk in 1x TBST. Histoblots were

then washed in 1x TBST and developed with Fast Red (Sigma) for

20 min. Histoblots were then washed in 1x TBST, digested with

20 mg/mL PK for 4 hrs at 37uC, washed and further processed as

described above for standard histoblots.

Supporting Information

Figure S1 Low basal PrP immunoreactivity in histoblots
from spleens of uninfected wild-type mice. Histoblots were

performed on frozen sections from uninfected C57BL/6 (WT)

spleens to determine the background level of PrPSc staining in

tissue devoid of PrPSc. (A) Whole organ. (B) High resolution image.

(TIF)

Figure S2 Common stromal markers in lymphoid
organs do not correlate with prion deposition. Frozen

sections from spleens (A, C, E & G) and mesenteric lymph nodes

(B, D, F & H) of C57BL/6 (WT) Ig-treated, C57BL/6 (WT)

LTbR-Ig-treated, TNFR12/2 Ig-treated, or TNFR12/2 LTbR-

Ig-treated mice were analyzed by immunohistochemistry and

developed with alkaline phosphatase (A & B) or immunofluores-

cence (C–H) for CD21/35 (A & B), complement factor C4 (C &

D), vascular cell adhesion molecule 1 (VCAM1; E & F), and

intercellular adhesion molecule 1 (ICAM1; G & H). Size bars in A

& C = 200 mm; C–H = 100 mm.

(TIF)

Figure S3 Common hematopoietic markers in lym-
phoid organs do not correlate with prion deposition.
Frozen sections from spleens (A, C, E & G) and mesenteric lymph

nodes (B, D, F & H) from C57BL/6 (WT) Ig-treated, C57BL/6

(WT) LTbR-Ig-treated, TNFR12/2 Ig-treated, or TNFR12/2

LTbR-Ig-treated mice were analyzed by immunohistochemistry

and developed with alkaline phosphatase (A–D) or immunofluo-

rescence (E–H) for macrophages (F4/80; A & B), B-cells (B-cells; C

& D), metallophilic macrophages (MOMA-1; E & F), and T-cells

(CD3; G & H). Size bars in A & C = 100 mm; B & D = 200 mm; E–

H = 100 mm.

(TIF)

Figure S4 Neither rat nor mouse isotype controls
immunoreact with mesenteric lymph node vessels or
follicles. Frozen sections from mesenteric lymph nodes of

C57BL/6 (WT) mice were immunostained with rat IgM (A), rat

IgG2a (B), or mouse IgG1 (C) isotype controls and developed with

alkaline phosphatase. No specific staining of vessels or follicles was

observed. Size bars = 200 mm.

(TIF)

Figure S5 Pentameric formic thiophene acetic acid
detects prion-infected FDC networks in spleens. Frozen

sections from spleens of prion-infected C57BL/6 mice were

analyzed by standard (A–C; G–I) or confocal (D–F; J–L)

immunofluorescence with follicular dendritic cell marker 1

(FDCM1; orange; A & red; D) or prion protein antibody POM1

(PrP; red; G & J) and pentameric formic thiophene acetic acid (p-

FTAA; green; B, E, H & K). p-FTAA co-localizes with PrP-

positive (I & L; overlay) FDC networks (C & F; overlay) of prion-

infected mice. Size bars in C & I = 100 mm; size bar in F = 60 mM;

size bar in L = 40 mm.

(TIF)

Figure S6 Pentameric formic thiophene acetic acid does
not detect PrP-positive FDC networks in uninfected
spleens. Frozen sections from spleens of uninfected C57BL/6

mice were analyzed by standard immunofluorescence with

follicular dendritic cell marker 1 (FDCM1; red; A) or prion

protein antibody POM1 (PrP; red; D) and pentameric formic

thiophene acetic acid (p-FTAA; green; B & E). No p-FTAA

staining was detected in PrPC-positive (C; overlay) FDC networks

(F; overlay) of uninfected mice. Size bars = 100 mm.

(TIF)
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Figure S7 Tissue-wide analysis of PNAd pre-stained
histoblots from prion-infected TNFR12/2-Ig mLNs show
that a proportion of PrPSc deposits co-localize to HEVs.
Histoblots of mesenteric lymph nodes from TNFR12/2 mice in-

oculated i.p. with 6 log LD50 RML6, treated weekly with control Ig,

and sacrificed at 60 d.p.i. were pre-stained with PNAd antibody,

developed with alkaline phosphatase (pink), digested with PK,

probed with POM1, and developed with BCIP/NBT (black). Low

resolution images of histoblots revealed some prion-infected HEVs,

some non-infected HEVs, and some PrPSc deposits that were not

HEV-associated.

(TIF)

Figure S8 No co-localization between dendritic cells
and PrP in prion-infected TNFR12/2-Ig lymph nodes.
Frozen sections from prion-infected TNFR12/2-Ig lymph nodes

were analyzed by immunofluorescence with POM1 (PrP; green;

A), peripheral node addressin (PNAd; blue; B), and a dendritic cell

marker (CD11c; red; C). No co-localization between PrP and

CD11c was identified (D; overlay). Size bar = 100 mm.

(TIF)
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