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Spatial Epigenetic Control of Mono- and Bistable Gene
Expression
János Z. Kelemen, Prasuna Ratna, Simone Scherrer, Attila Becskei*

Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

Abstract

Bistability in signaling networks is frequently employed to promote stochastic switch-like transitions between cellular
differentiation states. Differentiation can also be triggered by antagonism of activators and repressors mediated by
epigenetic processes that constitute regulatory circuits anchored to the chromosome. Their regulatory logic has remained
unclear. A reaction–diffusion model reveals that the same reaction mechanism can support both graded monostable and
switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing
gradient or two interacting gradients that flank a gene. Our experiments confirm that chromosomal recruitment of activator
and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial
distribution of silencing nucleation sites along the chromosome. The unveiled regulatory principles will help to understand
the mechanisms of variegated gene expression, to design synthetic genetic networks that combine transcriptional
regulatory motifs with chromatin-based epigenetic effects, and to control cellular differentiation.
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Introduction

Graded and switch-like responses reflect fundamental aspects of

the functioning of regulatory networks. A graded, monostable

response enables the faithful propagation of a signal, and it is often

the default response of simple pathways, but regulatory mecha-

nisms can improve the linearity and the dynamic range of the

graded response [1,2]. Conversely, when the signal strength

reaches a threshold value, the switch-like response is often

manifested in ON and OFF states within a cell population. This

binary response can be induced by positive feedback loops capable

of generating bistability, but many other mechanisms can support

it by rendering the underlying processes more nonlinear and

stochastic [3–9]. Positive feedback loops in transcriptional or

protein kinase networks have been increasingly recognized as a

driving force of cellular differentiation [10,11]. The components of

these networks are dissolved in the cytoplasm or nucleoplasm, and

typically have a spatially homogeneous distribution.

In contrast, inhomogeneously distributed regulatory compo-

nents are frequently observed in eukaryotic transcriptional

regulation. Binding of eukaryotic transcriptional factors—activa-

tors and repressors—to the DNA can lead to recruitment of

enzymes and structural proteins of opposing functions, that induce

structural changes and covalent modifications of chromatin,

exemplified by acetylation and methylation [12,13]. This leads

to a spatially inhomogeneous distribution of regulators along the

DNA, constituting the epigenetic code. Activators loosen the

chromatin structure. Conversely, the compaction of chromatin

and heterochromatin formation are typically induced by repressors

or repressor-recruiting DNA sequences that act or interact over

long distances, variously termed as long-range repressors, silencing

proteins, and silencers in different systems and organisms [14–17].

Genes exposed to the antagonism of activators and repressors or

silenced chromosomal regions have been frequently observed to

display binary response [13,18–21]. Although regulatory princi-

ples underlying the graded and binary responses generated by

networks with spatially homogeneously distributed components

have been increasingly elucidated, the quantitative aspects of the

behavior of epigenetic circuits anchored to the chromosome have

remained unclear.

We examined whether the spatial distribution of activator and

repressor binding sites influences gene expression to become

monostable or bistable. We examined long-range interactions

between these sites. Since long intervening DNA sequences can

receive signals from endogenous cellular pathways, we used

heterologous synthetic gene expression systems precluding

pleiotropic cellular effects. Synthetic networks have been

instrumental in reconstituting nonmonotonous responses and in

revealing the basic principles of binary response and bistability in

transcriptional regulatory networks based on feedback or

competition of activators and repressors [19,22–26]. We

identified a concise nonlinear reaction–diffusion equation that

explains gene expression of a large number of genetic constructs

with different configurations. We found that binary response is

not inherent to repressor proteins exhibiting synergy over long

distances. Both graded and binary responses can arise depending

on the spatial distribution of the binding sites of the repressors

along the DNA.
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Results

Bistable Synergistic Interaction of Silencing Gradients
Silencing is efficiently induced when multiple silencers interact

[14]. To mimic this architecture, we inserted binding sites for the

silencing protein Sir3p (in the form of a fusion protein) both

downstream and upstream of a gene reporter construct, in the

model organism Saccharomyces cerevisiae. When recruited to these

dual recruitment constructs, Sir3p evoked a variegated GFP

expression at intermediate levels of gene activation (GA) with a

bimodal distribution of cellular fluorescence (Figure 1A and 1B).

When GA was enhanced, all of the cells switched from the OFF to

the ON expression state; so that the ON state was affected only by

a residual repression (Figure 1A). Thus, a small change in the input

generated a large change in the output. The ON and OFF cell

populations represent a simple form of cellular differentiation.

To understand the principles of this form of differentiation, we

built a mathematical model based on realistic molecular processes.

Due to the complexity and incomplete description of these

processes, we sought to identify key mechanisms that can account

for bistability in the dual recruitment constructs. The changes in

the concentration of the silencing protein at a given point of the

space-time, c(x, t), are governed by source s(x), reaction r(c), and

nonlinear diffusion terms (Figure 1C, Table S1, and Text S1).
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The nucleation term, s(x), represents the recruitment of the

silencing proteins, and it is a rectangular function. Its width, sw, is

proportional to the number of tet operators, while the height of the

rectangle, sh, is proportional to the amount of the silencing proteins

recruited to the operators. Thus, sh is a function of the doxycycline

concentration. The constant nucleation of silencing proteins is

necessary for the establishment of steady-state concentration profiles

of silencing proteins around the nucleation sites (Figure S1).

Silencing proteins and their cofactors spread along the

chromosome, whereby nonspecific protein DNA interactions can

facilitate their sliding, a process described by one-dimensional

diffusion [18,27–30]. The diffusivity, D(x, c), itself is a variable

because the silencing proteins, in particular Sir3, can bridge

neighboring DNA segments and condense the chromatin in a

concentration-dependent manner, leading the heterochromatin

formation [27]. Consequently, the superimposed concentration

gradient becomes steeper, accelerating the flux of silencing

proteins. Thus, D(x, c) was approximated by DAc, so that the

diffusion term was expressed as
L
Lx

DAc
Lc

Lx

� �
. This non-Fickian

diffusion term arises in models where diffusional clustering or

condensation of particles is described [31,32].

The reaction term represents an autocatalytic loop based on

processes encompassing the cooperative binding of Sir3p and

Sir4p, mutual binding of Sir2p, Sir3p, and Sir4p, deacetylation of

chromatin by Sir2p creating higher affinity sites for Sir3p and

Sir4p, and polymerization of Sir3p proteins [18,27,33–36].

r cð Þ~L
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{kdczb

It is assumed that the autocatalytic association of the silencing

proteins is superimposed onto a basal, nonspecific association,

occurring at a rate of b. The former is represented by a Hill function,

where L stands for the maximal association rate in the limit of c R ‘.

The dissociation of the silencing proteins is a linear process, and occurs

at a rate of kd.

Initial conditions with uniformly distributed low and high

concentrations were used to reflect biochemical fluctuations in the

initial accumulation of the silencing proteins (Figure 1D). The

simulation of the reaction–diffusion model (Equation 1) revealed that

when two silencing nucleation sites were positioned into sufficient

proximity, the two initial conditions gave rise to two distinct solutions

representing two concentration profiles (Figures 1D and S2). The low-

concentration profile was composed of two isolated gradients around

the silencing nucleation sites. The high-concentration profile repre-

sented a synergistic interaction of the two nucleation sites (Figure 1E).

Stability Diagram of Gene Expression as a Function of
Transcriptional Activation

The coexistence of two concentration profiles for the same

parameter values is in accord with the co-occurrence of ON and

OFF cells at intermediate GA (Figures 1A, 1E, and S3). For a more

detailed analysis of bistability, the gene expression has to be

calculated from the concentration profiles.

Gene expression is determined jointly by transcriptional

activation and silencing. Quantitatively, gene expression is defined

as the product of GA and fold inhibition due to silencing (see also

Materials and Methods). Transcriptional activators not only

induce gene expression, but also reduce the spreading of silencing

proteins because activators recruit enzymes that relax the structure

of chromatin, diminishing the slope of the superimposed

concentration gradient [37]. Furthermore, the recruited histone

acetyltransferases decrease the number of the available high-

affinity binding sites for the silencing proteins [18,33]. Therefore,

the diffusivity was set to be inversely proportional to GA, DA = D0̇

KGA/(KGA + GA). Fold inhibition was equated with the

concentration of silencing proteins at the gene regulatory region,

Author Summary

In the simplest scenario, a gene is expressed when an
activator protein binds to its regulatory sequence, and is
silenced when the regulatory sequence is bound by a
repressor. Many genes are regulated by both activators
and repressors, with the response determined by the
combined influence of both factors. When the response is
monostable graded, expression is finely tuned to a level
that reflects the proportion of the bound activator to the
bound repressor. Monostable graded systems allow cells
to respond precisely to stimuli. If the response is bistable,
the response of each cell depends on whether the
activator or the repressor wins. Bistable regulation results
in the same gene being expressed in some cells and
silenced in others, an outcome that promotes cellular
differentiation. It remains unclear, however, how different
genetic regulatory structures code for monostable graded
and bistable responses. We modeled mathematically the
behavior of repressors as they bind to and spread their
inhibitory effect along genes and found that the spatial
distribution of the binding sites determines which
response is chosen. If repressors bind both upstream and
downstream of the coding sequence, the response is
bistable. If they bind only to one side of the coding
sequence, the response is monostable. We confirmed our
theoretical findings using synthetic genetic constructs in
yeast. These findings help to explain how variations in the
location of regulatory elements can lead to cellular
differentiation and adaption to varying environments.

Chromosomal Epigenetic Regulatory Circuits
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Figure 1. Reaction–diffusion model of bistable repression. (A) In the dual recruitment construct, tetR-Sir3p, denoted as R, binds to the [tetO]2

and [tetO]4 operators upstream and downstream of the reporter gene, respectively, in the absence of doxycycline. Repression is relieved after
addition of d = 2 mM doxycycline, which dissociates tetR from the tet operators. Gene expression is activated by the estradiol (e)-inducible GEV,
denoted as A. The fluorescence value represents the mean of the fitted Gaussian distribution of the cell fluorescence. The area of the circle reflects
the proportions of the ON and OFF cells when the distribution was bimodal. (B) Fluorescence and DIC merged images of cells expressing [tetO]2-GFP-
T-YFP-[tetO]4 regulated by tetR-Sir3p. Cells were induced by e = 11 nM in the absence of doxycycline. (C) The steps involved in the reaction–diffusion
model (from top to bottom): nucleation, autocatalytic recruitment, and nonlinear diffusion. The S-shaped distortion of the DNA symbolizes the
aggregation of the silencing proteins. (D) Evolution of the simulated concentration distributions of silencing proteins along a DNA segment
nucleated at two sites. The top and bottom panels show the convergence of the profiles to the steady state representing the low and high silencing
states, respectively. The corresponding initial conditions were c(x, 0) = 2 and 4. The following parameters were used for Equation 1: L = 5, K = 7, n =
2, kd = 1, b = 0.01, and DA = 1, sh = 4, and sw = 0.057. The internucleation distance was 1.2 kb. (E) The low (gray continuous line) and the high (red
dashed line) concentration profiles represent the long-term solution (200 time units after the initiation) of the model as specified in (D) to reflect the
steady state. The blue lines denote the nucleation sites. (F) The two solutions overlap when silencing was nucleated at a single site, calculated as in
(E), indicating that the solution is monostable (gray-red dashed line).
doi:10.1371/journal.pbio.1000332.g001

Chromosomal Epigenetic Regulatory Circuits
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assuming a linear relation between them. Since repression from

the upstream and downstream sites interact multiplicatively [38]:

fold inhibition{1~ c xuð Þz1ð Þ c xdð Þz1ð Þ{1 ð2Þ

where xu and xd correspond to the positions 20.38 kb and 0 kb,

respectively (Figure 2A).

When DA was high due to the weak GA, simulations initiated

with both conditions converged to the synergistically interacting

Figure 2. Prediction of gene expression based on the concentration profiles of silencing proteins. The values of the parameters are
given in Table S1, unless otherwise indicated. (A) Inhibition of gene expression, expressed as fold inhibition 2 1, was calculated from the values of the
silencing concentration gradient at the positions xu = 20.38 and xd = 0 kb (yellow dots), which span the transcriptional regulatory region of the
gene (Equation 2). The upstream point, xu, corresponds approximately to the region of the activator binding sites while the downstream point, xd,
corresponds to the transcriptional initiation site. These points were chosen as plausible sites of action of silencing proteins. The silencing nucleation
sites are positioned at 20.6 and 0.6 kb in the dual nucleation setting. (B) The upwards and downwards arrows represent the solutions initiated with
low (c(x, 0) #2) and high (c(x, 0) $4) starting concentrations, for the [O]2-Gene-[O]4 setting. When the solutions converge, the two arrows merge into
an arrow with two arrowheads (monostable region). Double arrows represent weighed mean values of the two solutions to reflect the population
average in the bistable region. The red and blue arrows represent solutions with DA = D0 ˙ KGA / (KGA + GA) and DA = D0 ˙ KGA / 1.36 ˙ (KGA + GA),
respectively. The reduction of diffusivity for the blue arrows reflects the effect of the transcriptional activators bound to the downstream sites that do
not contribute to GA. (C) GA reflects the ratio of expression at the applied estradiol concentration to that at maximal induction (200 nM estradiol), in
the absence of repression (d = 2 mM). Fold inhibition 2 1 at the applied estradiol concentration reflects the change in gene expression when the
repressor binds to the recruitment site (see Materials and Methods). Fold inhibition 2 1 was measured for the [tetO]2-GFP-[tetO]4 (red symbols) and
the [tetO]2-GFP-GALUAS-[tetO]4 (blue symbols) constructs when the fluorescence distributions were unimodal (o) or bimodal (‘). The insertion of the
GALUAS did not increase the maximal expression of the construct relative to the control constructs (unpublished data). (D) Calculations performed for
the Gene-[O]4 setting as in (B). (E) Fold inhibition 2 1 was measured for the GFP-[tetO]4 (red symbols) and the GFP-GALUAS [tetO]4 (blue symbols)
constructs, as in (B).
doi:10.1371/journal.pbio.1000332.g002

Chromosomal Epigenetic Regulatory Circuits
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concentration profiles. Correspondingly, gene expression was

inhibited strongly. In contrast, the inhibition was weak when GA

was strong (Figure 2B). At intermediate activation, the strongly

and weakly inhibited states co-occurred. In summary, increasing

GA is accompanied by a transition from the monostable OFF to

the monostable ON state through a bistable region, creating a

characteristic bifurcation diagram (stability within the mono- and

bistable terms refers to the number of steady states) (Figure 2B).

The bifurcation diagram was in accordance with the transitions

observed for the silenced gene expression as the GA was varied

experimentally, recapitulating a classical binary response

(Figures 1A and 2C).

The model can be validated when further activator binding sites

are inserted between the two silencing nucleation sites in a way that

they do not contribute to gene expression (Figure 2C). In this case,

the model predicted that the bifurcation diagram would not change

qualitatively; only the respective stability regions would shift toward

the lower GA levels since the diffusion of silencing proteins is further

diminished (Figure 2B). We tested this prediction by inserting

activator binding sites between the terminator of the reporter gene

and the tet operators, where they do not activate gene expression

(Figure 2C). Indeed, bimodal expression was observed for a lower

range of GA (Figures 2C and S4).

In the above model, the reduction of DA between the silencing

nucleation sites was spatially uniform. We compared this simple

model with a more complex one, in which the reduction of DA was

more pronounced in the proximity of the activator binding sites.

The solutions of the two models were in qualitative agreement

(Figure S5).

Lateral Amplification of Silencing Gradients
Whereas the predicted concentration gradient is strongly

amplified between the two nucleation sites, a moderate amplifi-

cation was also predicted for outside of the internucleation

segment (Figure 1E). To test this lateral amplification, we

compared the inhibition of gene expression when Sir3p was

recruited downstream of GFP either to a single site or to two sites

separated by a 1-kb-long transcription unit, expressing Cherry

(Figure 3A). Indeed, the efficiency of inhibition was stronger by a

factor of three for the dual recruitment construct in comparison to

the single recruitment construct (Figure 3B), suggesting that the

model adequately describes the shape of the gradient. The lateral

amplification is predicted to be stronger when DA is high (compare

Figures 1E, 1F, and S5). The detection of lateral amplification in

the convergent transcription constructs (Figure 3A) may have been

facilitated by the presence of two terminators separating the GFP

and Cherry genes, because silencing, and possibly the spreading of

silencing proteins, can be enhanced by transcriptional terminators

[38,39].

Critical Nucleation Lengths Are Required for Synergistic
Bistable Response

Bistable systems can undergo bifurcations with respect to

multiple parameters. Therefore, we explored the stability of

predicted gene expression as a function of the width of the

nucleation sites. The above simulations represented systems with

two operators upstream and four operators downstream of the

reporter gene (Figure 2B). When the width of the downstream

nucleation site was halved, the bistable response persisted: the

synergistic monostable, the bistable, and the low monostable

concentration profiles alternated as gene expression increased

(Figure 4A). Indeed, the experiments utilizing the [tetO]2-GFP-

[tetO]2 construct evidenced the bimodal gene expression at

intermediate GA and strong average repression (Figure 4C).

When the width of both nucleation segments was halved relative

to the previous setting, bistability collapsed, and only the low-

concentration profiles were seen over the entire range of GA

(Figure 4B). In the corresponding experiments, the number of tet

Figure 3. Lateral amplification of silencing gradients. (A) The lateral amplification of silencing gradients can be read out with constructs, in
which GFP expression is repressed either by a single downstream cluster of recruitment sites, [tetO]2, or by two downstream clusters of recruitment
sites separated by a transcription unit, [tetO]2-Cherry-[tetO]2. (B and C) Fold inhibition 2 1 was measured for GFP expression for the GFP-[tetO]2 and
the GFP [tetO]2-Cherry-[tetO]2 constructs. The ratio of the inhibition strengths (see Materials and Methods) of the dual recruitment constructs to that
of the single recruitment constructs was 3.2 6 0.31 and 1.77 6 0.31 for Sir3p (B) and Sum1p (C), respectively.
doi:10.1371/journal.pbio.1000332.g003

Chromosomal Epigenetic Regulatory Circuits
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operators was reduced. The resulting [tetO]1-GFP-[tetO]1 con-

struct displayed weak silencing and monostable gene expression

(Figure 4C), confirming that synergistic interaction of gradients

occurs only when the nucleation widths reach a certain threshold.

The Bistable Response Is Conserved for Repressors
Exhibiting Long-Range Synergy

A model of a biological dynamical system can be corroborated

by replacing a network component with a functionally similar

component. For this purpose, we tested the Sum1p repressor that

binds to the E silencer of the HML heterochromatic locus and

contributes to gene silencing [40]. Its cofactor, Hst1p, is a homolog

of the silencing protein Sir2p [41]. When Sum1p was recruited as

a tetR-Sum1p fusion protein to tet operators, it inhibited

expression of GFP, independently of whether the tet operators

were positioned upstream or downstream of the reporter gene

(Figure 5A). When bound to both of these sites, Sum1p inhibited

gene expression in a strong, synergistic way (Figure 5A). The

synergistic interaction over long distance is a phenomenon typical

of silencers and repressors acting at heterochromatic loci [14,42].

At intermediate GA, expression of GFP was bimodal (Figure 5C),

similar to the observations with Sir3p. The bimodal expression was

observed up to 8 h after induction of gene expression (Figure S6).

We also examined a well-characterized mutant form of Sum1p,

Sum1-1p. This variant was identified in order to efficiently

substitute Sir-dependent silencing, and it has a capability to induce

pronounced heterochromatin formation [43,44]. Indeed, Sum1-1p

displayed a stronger synergy than Sum1p (Figure S7), and bimodal

expression was observed even up to 16 h after induction (Figure S6).

We examined whether Sir3p and Sum1p interacted with the

native HML I silencer synergistically. The Sir proteins are

recruited to both the E and I silencers, which flank the

heterochromatic HML genes, whereas Sum1p is recruited to the

E silencer only [40]. The I silencer alone did not have an

inhibitory effect on gene expression (Figure S8) [42]. When the

reporter gene was flanked by an upstream I silencer and by

downstream tet operators, both tetR-Sir3p and tetR-Sum1p

induced bimodal gene expression at intermediate GA (Figures 5D,

5E, and S9).

When the reporter gene was lengthened in the dual recruitment

constructs, the synergistic and bistable inhibition of gene

expression by Sum1p was abolished (Figure S10). This confirms

that in addition to the critical nucleation strength, the two

nucleation sites have to be within a critical distance to generate

synergistic interaction of the silencing gradients (Figure S5).

In summary, we observed similar responses for four different

combinations of silencers and repressor proteins (Figures 2B, 3,

and 5), suggesting that they follow the same regulatory principle

Figure 4. Stability of gene expression and inhibition strength as the function of the number and distribution of nucleation sites. (A
and B) Concentration profiles calculated for the [O]2-Gene-[O]2 (A) and [O]1-Gene-[O]1 (B) settings. The red dashed and gray continuous lines
represent the solutions initiated with the two initial conditions. The two solutions overlap when GA is either weak or strong (thin and thick red-gray
dashed lines). At intermediate GA, two distinct solutions evidenced the bistability (medium red dashed and gray dashed lines) for [O]2-Gene-[O]2. (C)
Inhibition strength at single (upstream or downstream) and dual recruitment constructs. The inhibition strength is the average value for fold
inhibition 2 1 in the [0.06, 0.6] interval of GA. The total number of tet operators is indicated for each dual recruitment construct [tetO]1-GFP-[tetO]1 (n
= 2), [tetO]1-GFP-[tetO]2 (n = 3), [tetO]2-GFP-[tetO]2 (n = 4), and [tetO]2-GFP-[tetO]4 (n = 6). Empty symbols stand for constructs that display bimodal
gene expression.
doi:10.1371/journal.pbio.1000332.g004

Chromosomal Epigenetic Regulatory Circuits

PLoS Biology | www.plosbiology.org 6 March 2010 | Volume 8 | Issue 3 | e1000332



that associates the synergistic interaction of repressors over large

distances with bistability (Figure 5B).

Synergistic Repressors Generate Monostable Graded
Response When Their Binding Sites Are Clustered in a
Single Chromosomal Segment

Surprisingly, when the silencing proteins were nucleated at a

single segment, only one solution emerged using the same

parameter values that generated bistability with the dual nucleation

setting (Figure 1F and S2). This gradient generated by the single

nucleation site was identical with the nonsynergistic solution of the

dual nucleation setting (Figure 1E and 1F). Even when the single

nucleation segment was broadened, the concentration profiles rose,

but they remained monostable over the entire range of GA

(Figure 6A–6C). Indeed, expression was monostable and responded

in a graded way to the binding of Sir3p to upstream regions of

promoters containing up to seven operators (Figures 4C and 6D).

Monostable graded response was also observed for the entire range

of GA when tetR-Sum1p and tetR-Sir3p bound to four sites

downstream of reporter genes (Figures 2E and 5A). The insertion of

activator binding sites in-between the terminator of the reporter

gene and downstream operators alleviated the inhibition of gene

expression (Figure 2D and 2E), similar to the case for the dual

recruitment constructs (Figure 2B and 2C).

None of the above single recruitment constructs with operators

clustered to a single chromosomal segment displayed bimodal gene

expression. However, they all inhibited gene expression less than

the dual recruitment constructs displaying synergistic inhibition of

gene expression (Figure 4C). Thus, we hypothesized that bistability

was not observed because the inhibition strength did not reach a

critical value. In other words, the possibility cannot be excluded

Figure 5. Repression by Sum1p displays long-range synergy and evokes bimodal gene expression in the dual recruitment
constructs. The symbols in the fold inhibition plots correspond to those used in Figure 2. (A) tetR-Sum1p was recruited to [tetO]2-GFP, GFP-[tetO]4,
and [tetO]2-GFP-[tetO]4 constructs. The gray dashed line represents calculated multiplicative interaction of repression from upstream and
downstream sites. Fold inhibition 2 1 at GA = 0.2 was 4.8 times higher for the dual recruitment construct in comparison to the multiplicative effect,
confirming a strong synergy. (B) Calculations performed for the [O]2-Gene, Gene-[O]4, and [O]2-Gene-[O]4 setting as in Figure 2B. (C) tetR-Sum1p is
recruited to the dual recruitment construct [tetO]2-GFP-[tetO]4. The fluorescence value represents the mean of the fitted Gaussian distribution of the
cell fluorescence. The area of the circle reflects the proportions of the ON and OFF cells when the distribution was bimodal. (D) The inhibition
strength at the I silencer-GFP-[tetO]4 constructs was 5.91 6 0.91 and 7.34 6 2.37 times higher for tetR-Sum1p and -Sir3p, respectively, than that at the
parent GFP-[tetO]4 constructs. (E) Cellular fluorescence distributions due to the expression of the I silencer-GFP-[tetO]4 construct repressed by tetR-
Sum1p. Dots are experimental data obtained after adaptive binning, while the lines are fits using two Gaussian distributions. The cells were induced
by 1.5, 5.8, 8, 11, and 200 nM estradiol (denoted by black, blue, green, orange, and red colors, respectively), d = 0 mM. AU, arbitrary units.
doi:10.1371/journal.pbio.1000332.g005

Chromosomal Epigenetic Regulatory Circuits
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that if silencing nucleated at a single cluster inhibited gene

expression strongly enough, then the response would be binary.

Therefore, we searched for single recruitment constructs with

strong inhibitory potential. Fortuitously, when the tet operators

were inserted between the activator binding sites and the TATA

box, a strong inhibition of expression by both Sum1p and Sir3p

was observed. In particular, Sum1p inhibited gene expression

more strongly when bound to these intercalated operators in

comparison to when Sum1p repressed gene expression synergis-

tically in the dual recruitment constructs (Figure 7A).

However, gene expression responded in a graded way over a broad

range of activator and repressor binding when Sum1p or Sir3p

bound to the intercalated operators (Figure 7B, 7C, and S11). In

contrast, the dual recruitment constructs displayed bimodal gene

expression when the binding of the activator and repressor was

balanced (Figure 7C). The region of bistability was broader for Sir3p

in comparison to Sum1p (Figure 7C), in accordance with the stronger

synergistic repression and lateral amplification of the gradient by

Sir3p (Figure 3B and 3C) [38].

Thus, our experiments confirmed the predictions of the

reaction–diffusion model, revealing that the same mechanism

can support both graded and binary gene expression depending on

the spatial distribution of silencing nucleation sites. Monostable

graded expression was characteristic of single nucleation con-

structs, whereas binary expression was found when two nucleation

sites flanked a gene. The OFF and ON cells reflect the effect of the

synergistically interacting and isolated silencing gradients, respec-

tively (Figures 1E, 1F, and 4A). Thus, the ON cells are inhibited to

a degree comparable to the repression of single nucleation

constructs when GA is strong (Figure 5A–5C), whereas the OFF

cells are inhibited synergistically.

A further exploration of the model revealed a high degree of

plasticity of system behavior depending on the parameter values. In

particular, the dual nucleation setting generated a graded response

when the cooperativity of binding of silencing proteins was reduced

(Figure S12). Furthermore, the single nucleation setting displayed

bistability when the ratio of the diffusivity to the nucleation width

was reduced. In the latter case, however, the silencing proteins did

not propagate to long distances due to the low diffusivity, and

consequently, they may have no or little impact on gene expression

(Figure S13). It remains to be determined whether epigenetic

silencing processes exist that assume such parameter values and

display behaviors reproducing the above predictions.

Discussion

Eukaryotic transcriptional cis regulation governs developmental

and differentiation programs [45]. Long-range interaction between

Figure 6. A single cluster of silencing nucleation sites generates a graded, monostable response. (A) The concentration profiles were
calculated when GA was set to 0.022 and silencing was nucleated at 20.6 kb. The nucleation site comprised one, two, four, and seven operators. The blue
lines denote the width of the [O]7 nucleation site. The gray continuous and red dashed lines represent the simulated solutions initiated with low and high
concentrations, c(x, 0), respectively. When they overlap, the system is monostable (red-gray dashed lines). (B) The concentration profiles were calculated for
[O]7 as in (A), but GA was varied. (C) Gene expression was calculated from (B) by setting the maximal value of unrepressed gene expression to 1 (see
Materials and Methods), so that the black, blue, and red lines correspond to a GA of 0.01, 0.15, and 0.43, respectively. A lognormal distribution was assigned
to each calculated mean value. (D) Cellular fluorescence distributions due to the expression of [tetO]7-GFP, repressed by tetR-Sir3p (YSSD227.4) The cells
were induced by 2.9, 5.7, 11, 22, 32, and 200 nM estradiol, in the absence of doxycycline.
doi:10.1371/journal.pbio.1000332.g006
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transcription factors makes the deciphering of the logic of this

regulation difficult [16,17,46]. Whereas long-range interactions can

occur even in prokaryotes through looping of the intervening DNA

sequences, the long-range effects of eukaryotic activators (enhancers)

and repressors (silencers) are often mediated by cofactors that spread

along the chromatin, modifying its composition and conformation.

Therefore, eukaryotic transcriptional cis regulation requires complex

spatiotemporal models to understand its logic.

We have devised a concise reaction–diffusion model that

captures the important molecular aspects of long-range synergistic

repression: autocatalytic recruitment of proteins and their

spreading along the DNA that is accompanied by aggregation

and condensation of chromatin. We presented a number of

experimental tests that confirmed the model predictions. The

central result of the model is that the response type depends on the

distribution silencing nucleation sites. When two clusters of

Figure 7. Graded responses can be generated by both Sum1p and Sir3p even when they strongly repress gene expression. (A)
PGAL1tetO2 corresponds to the GAL1 promoter, in which the Mig1p binding sites, positioned between the GALUAS and the TATA box, were replaced by
tet operators. Fold inhibition of gene expression of the respective constructs was obtained for unimodal (o) and bimodal (‘) distributions. (B)
Gaussians were fit to fluorescence distributions induced by 3.75, 7.5, 15, 30, and 200 nM estradiol, in the absence of doxycycline. AU, arbitrary units.
(C) The means of the fitted Gaussians are color coded. When the distributions were bimodal, the squares were split into two triangles of different
colors. The cells were induced by 3.75, 7.5, 15, 30, and 200 nM estradiol and 0, 10, 20, 40, 80,160, and 2,000 nM doxycycline.
doi:10.1371/journal.pbio.1000332.g007

Chromosomal Epigenetic Regulatory Circuits

PLoS Biology | www.plosbiology.org 9 March 2010 | Volume 8 | Issue 3 | e1000332



nucleation sites flank a gene, the system is bistable. For the

corresponding genetic constructs, stochastic gene expression with

ON and OFF cells was observed. On the other hand, a

monostable graded response was generated when silencing was

nucleated at a single cluster even if it was relatively long.

Both types of distributions of recruitment clusters for repressors

and silencing proteins have been encountered in the genome. An

increasing number of promoters have been identified that are

dynamically regulated by a single group of binding sites for long-

range repressors even within euchromatic regions [41,47,48]. In

such cases, monostable graded expression is expected to be

generated by repressors that follow the regulatory mechanisms we

identified.

On the other hand, the synergistic interaction of two or more

silencers scattered through telomeric and subtelomeric regions is

thought to be required for efficient heterochromatin formation in a

broad range of organisms, including yeasts and the mammalian X

chromosome [14]. The identification of such silencers is hampered

by the fact that in isolation, they lose their silencing capability or

may even activate gene expression, so a large number of

protosilencers may be hidden in the genome [14]. Genes flanked

by two or more silencers are expected to display a stochastic binary

expression. Indeed, genes positioned to subtelomeric domains

frequently display bimodal and stochastic gene expression in

response to environmental stimuli [20,21,49]. For example, cell

adhesion proteins are localized to subtelomeric domains and are

expressed in a variegated way. This phenotypic diversity may

enhance the survival and virulence of fungal cells [20,21].

Conversely, position-effect variegation, a phenomenon character-

ized by stochastic bimodal expression of a gene positioned to the

silenced domains of the chromosome, can arise due to chromo-

somal aberrations and lead to developmental abnormalities and

diseases [50–52]. Interaction between multiple silencing gradients

can also contribute to correlations in the stochastic fluctuations of

expression of genes ordered along the chromosome [53,54].

Components or mechanisms employed in silencing are often

conserved between yeast and higher organisms [33]. Long-range

repression and heterochromatin formation can be efficiently

reconstituted by tethering the appropriate proteins (or RNA) to

the chromosome in different organisms [19,34,55,56]. Therefore,

well-defined genetic systems comparable to ours can be employed

to examine if the regulatory logic we unveiled is evolutionarily

conserved.

Our results highlight a difference between signal transducers

dissolved in the cell protoplasm and regulatory circuits anchored

to the chromosome. Dissolved kinases or transcription factors

produce either a monostable or bistable response in a single cell

depending on whether they are constitutively regulated or

embedded in feedback loops (Figure 8A). In contrast, the same

long-range repressor can evoke a monostable graded response at

one gene but can induce stochastic transitions between ON and

OFF states at another gene (Figure 8B). The outcome is

determined by the distribution and density of the recruitment

sites of silencing proteins and activators.

The dissolved cellular regulatory networks and the spatially

inhomogeneously distributed chromosomal epigenetic circuits will

jointly determine gene expression and stability of cellular

differentiation states [54,57–59]. Knowing the regulatory princi-

ples of the latter will certainly help to decipher their interaction

and to understand how they shape cellular functioning.

Materials and Methods

Strain Construction and Growth Conditions
The expression of GFP from chromosomally integrated

constructs was activated by GEV, an estradiol (e)-inducible

transcriptional activator, when bound to the GALUAS, and was

repressed by tetR fusion proteins (Tables S2 and S3). tetR

dissociates from the tet operators in the presence of doxycycline (d),

and repression was relieved at d = 2 mM.

GEV is integrated into the genome into the MRP7 locus; having

five copies in the resulting YSSH208. The plasmids containing the

tetR-Sir3p and tetR-Sum1p constructs were integrated into the

RET2 locus. The GFP reporter constructs were integrated into the

YFR054c locus, unless otherwise specified.

Cells containing inducible gene expression constructs were

grown for 4 h after induction in minimal media, until a cell density

of OD600 = 0.4–0.8.

Figure 8. Control modes of dissolved and anchored regulatory circuits. (A) A regulator dissolved in the protoplasm under constitutive or
autocatalytic control can trigger either a graded or binary response in a cell population. (B) A regulator anchored to the chromosome can trigger both
graded and binary responses at different genes (black-green rectangles) within a single cell.
doi:10.1371/journal.pbio.1000332.g008
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Analysis of Mean Expression Values
Cellular fluorescence Fe,d, was measured by flow cytometry.

Total fluorescence of at least 5,000 cells was measured using flow

cytometry. Five to 15% of the total cell population was selected in

the forward-scatter versus side-scatter plot to measure GFP

fluorescence of cells with similar size.

GA is the uninhibited expression at a given estradiol concen-

tration normalized by the maximally induced uninhibited

expression (e = 0.2 mM, d = 2 mM).

GAe,2~
Fe,2{FC

F0:2,2{FC

FC is the background fluorescence of the cells. Fold inhibition is

the ratio of the unrepressed expression to the repressed expression

(typically at d = 0), at a given degree of activation.

FIe,d~
Fe,2{FC

Fe,d{FC

Thus, normalized gene expression is the product of GA and fold

inhibition at given concentrations of estradiol and doxycycline.

Typically, the OFF cells had fluorescence levels very close to the

cellular fluorescence background, which implies that the values of

fold inhibition 2 1 calculated for the OFF cells after histogram

fitting are associated with large measurement errors. For this

reason, we calculated fold inhibition 2 1 for the entire cell

population, which has a higher fluorescence value.

The inhibition strength is the average value for fold inhibition 2

1 in the interval GA = [0.06, 0.6]. Error bars represent standard

deviations calculated from three experiments.

Histogram Fitting and Bimodality Detection
The logarithmic cellular fluorescence intensities of more than

30,000 cells were extracted from list mode files. The data were

subjected to an adaptive binning algorithm [60] to determine the

number of bins, and hence, a sampled function of the distribution.

A mixture of two Gaussians (Equation 3) was then fitted to each

discrete distribution using nonlinear regression.

m xð Þ~ ae

x{m1ð Þ2
2s12

ffiffiffiffiffiffi
2p
p

s1

z
be

x{m
2

� �2

2s22

ffiffiffiffiffiffi
2p
p

s2

ð3Þ

Finally, the data were transformed from the log space into the

linear space.

To systematically detect bimodality in a distribution, we

performed the following procedure. The fluorescence distribution

was first normalized to a mean of zero, mM = 0, and standard

deviation of 1, sM = 1, and then subjected to binning and

regression, as previously described. Subsequently, we considered

three metapopulations for the further analysis. The first metapop-

ulation corresponded to the measured events (M), with mM = 0 and

sM = 1, since the distribution had been normalized. The

population size was normalized to 100. The two remaining

metapopulations, denoted A and B, represented the two fitted

Gaussian components (Equation 3) with the mean and variance

parameters (mi, si
2) resulting from the nonlinear regression,

whereas the respective population sizes na and nb resulted from

the normalization of the coefficients a and b to the sum of 100, na +
nb = 100. Thus, the sample sizes of M, A, and B were set

empirically to correspond to percentages. Next, we performed

statistical comparisons between the means of the metapopulations

using two-sample t-test with unequal variance. When the

difference, mM 2 m1 (m1 ,m2,) was significant (a = 1024), the

distribution m(x) was considered bimodal.

Supporting Information

Figure S1 Simulated evolution of concentration of
silencing proteins in the absence of persistent nucle-
ation, sh = 0. An initial pulse was provided in the form of c(x,

0) = 6 within the segment 20.6, x ,0.6 kb. DA = 0.64. The

initiated accumulation of silencing proteins dissipates after around

15 time units, indicating that a constant source of silencing

proteins is needed for the maintenance of concentration profiles in

the range of parameter values used in our simulations.

Found at: doi:10.1371/journal.pbio.1000332.s001 (0.12 MB TIF)

Figure S2 Simulated concentration distribution of si-
lencing proteins along a DNA segment with coarse
spatial discretization. To account for the compartmental

nature of chromatin, we employed the method of finite difference

to simulate the model (Equation 1). For the Euler discretization of

space and time, the space steps were sized according to the length

of the nucleosome (0.16 kb) to ensure the numerical stability of the

procedure, the time step was considerably smaller than the space

step. The simulation ran to reach 200 time units, similar to the

simulations employing the FEM. The concentration profiles are

comparable to those in Figure 1E and 1F, using the same kinetic

parameters, except for D0 = 0.5, sh = 4; sw had to be extended to

0.16 kb, because this is the minimal nucleation width using the

coarse spatial discretization. The steady-state concentration

profiles were obtained by extending the data points to lines (as

with the zero-order hold procedure) to better illustrate the

coarseness of the space resolution.

Found at: doi:10.1371/journal.pbio.1000332.s002 (0.19 MB TIF)

Figure S3 Parameter dependence of the switch-like
transition. The surface represents the bistable region, which

separates the ON and OFF expression states. L, K, and n were

varied in the range [0.5, 10], [0.5, 10], and [1,3], respectively, with

steps of 0.5 units each. The rest of the parameters were kept

constant at the same values as used for the dual nucleation model

in Figure 1E. Two long-term solutions were calculated, using the

low and high initial conditions, to determine the occurrence of

bistability. The surface was extrapolated from the points

corresponding to parameter triplets (L, K, n) that give rise to

bistability. Note, that for n = 1 (lack of cooperativity), bistability did

not occur.

Found at: doi:10.1371/journal.pbio.1000332.s003 (0.24 MB TIF)

Figure S4 Cellular fluorescence distributions due to the
expression of the [tetO]2-GFP-GALUAS-[tetO]4 construct
repressed by tetR-Sir3. The cells (PRY524.1) were induced

by 2.1, 4.1, 8, 16, and 200 nM estradiol in the absence of

doxycycline.

Found at: doi:10.1371/journal.pbio.1000332.s004 (0.19 MB TIF)

Figure S5 Comparison of the concentration profiles
with uniform and nonuniform diffusivities within the
[O]2-Gene-[O]4 setting. GA reduces the spreading of the

silencing proteins, which can be mediated by histone acetylation,

and by the activator-induced transcription that disrupts hetero-

chromatin. The former process is expected to reduce diffusivity

around the activator binding sites, whereas the latter reduces

Chromosomal Epigenetic Regulatory Circuits
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diffusivity along the entire gene. In the main simulations, the

diffusion coefficient was reduced uniformly in the segment flanked

by the nucleation sites to imitate reduction of diffusivity along the

entire gene (see also [A, C, and E]). For comparison, we simulated

concentration profiles when the diffusivity was reduced nonuni-

formly, around the activator binding sites (B, D, and F). The

results are comparable using the two approaches. (A) DA was

reduced uniformly as GA was increased in-between the nucleation

sites, whereas outside of this region, D0 = 0.64. Curves represent

the functions DA = 0.52, 0.36, and 0.24. (B) The nonuniform

distribution is given by DA(x) = D0N(1+fsN(m, s2))21 where N
(m,s2) denotes the Gaussian distribution with mean m and variance

s2. m was set to 20.38 kb, which corresponds to the activator

binding site, while s equals the internucleation distance divided by

four. D0 = 0.64. GA was increased by setting f to 1.5, 6, and

12. (C and D) The red dashed and gray continuous lines

represent the solutions initiated with low and high starting

concentrations. The internucleation distance was 1.2 kb. (E

and F) Simulations as performed in (C) and (D), but the

internucleation distance was increased to 1.5 kb. Consequently,

the synergistic interaction between the two gradients was

abolished.

Found at: doi:10.1371/journal.pbio.1000332.s005 (0.55 MB TIF)

Figure S6 Long-term changes in the cellular fluores-
cence distributions due to the expression of the [tetO]2-
GFP-[tetO]4 construct repressed by Sum1p or Sum1-
1p. The cells were induced by 0, 8, 11.3, 22, and 200 nM

estradiol (denoted by black, blue, green, orange, and red colors,

respectively), in the absence of doxycycline. Cells were grown

exponentially for the period (8 h or 16 h) indicated. Bimodal

expression can be seen 16 h after induction by 11.3 nM estradiol

due to silencing by Sum1-1p.

Found at: doi:10.1371/journal.pbio.1000332.s006 (0.45 MB TIF)

Figure S7 Synergy of repression by Sum1-1p. Sum1-1p

is the T988I mutant form of Sum1p. tetR-Sum1-1p was recruited

to [tetO]2-GFP (DHS43), GFP-[tetO]4 (DHS44), and [tetO]2-

GFP-[tetO]4 (DHS45) constructs. The gray dashed line represents

calculated multiplicative interaction of repression from upstream

and downstream sites. Fold inhibition 2 1 at GA = 0.2 was 13.1

times higher for the dual recruitment construct in comparison to

the multiplicative effect, indicating a very strong synergy (see also

Figure 5A).

Found at: doi:10.1371/journal.pbio.1000332.s007 (0.16 MB TIF)

Figure S8 The I silencer alone does not repress the
reporter gene. The expression induced by GEV at the I

silencer-GFP-[tetO]4 construct (PRY544.1, 2545.1) was not lower

than that at the GFP-tetO4 construct (YJK15), in nonrepressive

conditions (tetR-Sum1p and tetR-Sir3p do not repress expression

in the presence of 2 mM doxycycline). Thus, the I silencer alone

does not repress the reporter gene; it has rather a weak activatory

potential.

Found at: doi:10.1371/journal.pbio.1000332.s008 (0.23 MB TIF)

Figure S9 Cellular fluorescence distributions due to the
expression of the I-silencer-GFP-tetO construct re-
pressed by tetR-Sir3. The cells (PRY544.1) were induced

by 1.5, 5.8, 8, 11, and 200 nM estradiol, in the absence of

doxycycline.

Found at: doi:10.1371/journal.pbio.1000332.s009 (0.19 MB TIF)

Figure S10 Collapse of bimodal expression as the
distance between the recruitment sites for tetR-Sum1
is increased. (A) Sum1p was recruited to the dual recruitment

constructs enclosing reporter genes of varying lengths (GFP,

[GFP]2, GFP-T-YFP, GFP-T-lacZ integrated within the respective

strains: YJKD-16, 23.4, 23.5, 23.6). The relative inhibition

denotes the inhibition strength (see Materials and Methods) of the

dual recruitment constructs normalized using the [tetO]2-GFP

construct. The inhibition strength is the average value of the fold

inhibition 2 1 interpolated on the interval GA = [0.06, 0.6]. Error

bars represent standard deviations calculated from three experi-

ments. (B and C) Cellular fluorescence distributions due to the

expression of the [tetO]2-[GFP]2-[tetO]4 (B) and [tetO]2-GFP-T-

lacZ-[tetO]4 (C) constructs repressed by Sum1p. The cells were

induced by 0, 4.1, 5.8, 16, and 200 nM estradiol, in the absence of

doxycycline. No bimodal response was detected for the [tetO]2-

GFP-T-lacZ-[tetO]4 construct.

Found at: doi:10.1371/journal.pbio.1000332.s010 (0.36 MB TIF)

Figure S11 Cellular fluorescence distributions when
expression is repressed by Sum1p. The cells (YJKD21.2.2

and YJK16) were induced by 3.75, 7.5, 15, 30, and 200 nM

estradiol, in the absence of doxycycline.

Found at: doi:10.1371/journal.pbio.1000332.s011 (0.24 MB TIF)

Figure S12 Monostable concentration profiles arise
when cooperativity in the positive feedback loop is
small. The Hill coefficient was reduced from 2 to n = 1.5. The

following parameters were used for the simulations: sh = 6, L = 5,

K = 5, b = 0.01, and kd = 1. The internucleation distance was 1.2 kb

for the [O]2-Gene-[O]2 setting. (A) The red dashed and gray

continuous lines represent the solutions initiated with low and high

starting concentrations. The blue lines delimit the nucleation sites.

When the two concentration profiles overlap red–gray dashed

lines are visible. Monostable concentration profiles were obtained

even at intermediate GA. (B) Inhibition of gene expression,

expressed as fold inhibition 2 1, was calculated from the values of

the silencing concentration gradients. Even though there is no

bistability at intermediate GA, a sigmoidal change in fold inhibition

can be seen in this range.

Found at: doi:10.1371/journal.pbio.1000332.s012 (0.25 MB TIF)

Figure S13 Bistable concentration profiles are confined
to the proximity of the nucleating segment when
diffusivity is low relative to the nucleation width. The

following parameters were used for the simulations: sh = 0.3, L = 5,

K = 7, b = 0.01, and kd = 1 for a [O]20-Gene setting. DA was set to

the indicated values uniformly between the boundaries of the

simulation. The blue lines delimit the nucleation segment,

sw = 0.741 kb. The widening of the nucleation segment and

reduction of the diffusivity renders the spatial aspect of the

reaction–diffusion system less pronounced. Consequently, the

behavior of the systems approximates that of a simple (nonspatial)

positive feedback loop that generates bistability. The yellow dots

denote the concentrations at 20.38 and 0 kb, which determine the

level of GA. (A and B) The red dashed and gray continuous lines

represent the solutions initiated with low and high starting

concentrations with DA = 0.2 (A) and 0.6 (B). Bistable solution is

obtained for lower diffusivity, DA = 0.2. It is evident that the

silencing proteins do not propagate to long distances relative to the

width of the nucleation segment and the concentrations of the

silencing proteins at the gene regulatory region (yellow dots) are

low even for the high-concentration profile. Thus, they have an

effect on gene expression only in the vicinity of the nucleating

segment. (C) The magnified version of the low-concentration

profiles is displayed for DA = 0.2 (thin line) and 0.6 (thick line). It is

evident that the concentration profile obtained for the lower

diffusivity is more square-like.

Found at: doi:10.1371/journal.pbio.1000332.s013 (0.29 MB TIF)
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Table S1 Constants used in the equations.
Found at: doi:10.1371/journal.pbio.1000332.s014 (0.04 MB

DOC)

Table S2 Strains.
Found at: doi:10.1371/journal.pbio.1000332.s015 (0.06 MB

DOC)

Table S3 Plasmids.
Found at: doi:10.1371/journal.pbio.1000332.s016 (0.05 MB

DOC)

Text S1 Supporting text and references.
Found at: doi:10.1371/journal.pbio.1000332.s017 (0.05 MB

DOC)
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