From the Programmer's Point of View: Imagining Creative Solutions to Serve our Patrons

ACRL New England 2017 Annual Conference 2017-05-12

David Cirella

Emerging Technology Librarian New York Institute of Technology

Programmer's Point of View

A problem is the first phase of development

Given enough time/resources/support any (computer) problem can be solved

What this talk is not

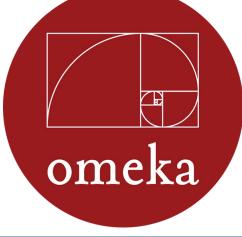
- Not a call for librarians to stop being librarians
- Not a call for everyone to become a programmer
- Not a statement about the future of libraries

What this talk is meant to be

• A call for librarian empowerment

 A call for all types of librarians to take an active role in the design and implementation of software services

Standing on the Shoulders of Giants



ArchivesSpace

blacklight

Standing on the Shoulders of Giants

 The inspiring work of systems librarians and library developers from all types of libraries

Custom Software Solutions

- We begin with:
 - Small applications
 - "glue" between larger systems
- In the future:
 - Contributions to larger open source projects
 - Collaborative projects

Different Paths

People who program

People who need to tell the programmer what to do

What's the goal?

Give the user what they want, how they want it

- User experience trends are set by commercial entities
 - Expectation for library services to have similar user experience as non-library applications

What's the goal?

- Satisfy the user's information need in as few steps (clicks) as possible
 - Generally with some software somewhere in this process

ACRL top trends

- Research data services (RDS)
- Data policies and data management plans
- Digital scholarship
- Open Educational Resources (OER) [1]

Ongoing Shift

ARL Statistical Trends

Reference Transactions (-77%)

1991-2015

- Initial Circulation(-58%) [2]
- Graduate Students (+149%)

1986-2015

- Total Students (+54%) Faculty (+40%)
- Interlibrary Lending (+82%) Interlibrary Borrowing (+237%)[3]

Ongoing Shift

ARL Statistical Trends

- Ongoing Resource Expenditures (+521%) 1991-2015
- Expenditures for Bibl. Utilities, Networks, etc. (+411%)
 vs
- TOTAL Expenditures (+197%)
- One-Time Resource Expenditures (+79%) [4]

How are we doing it today?

- Online catalogs
- Discovery Layers
- Online research guides
- Mobile Apps
- Repositories, Digital Collections
- Custom library applications / websites

Traditional Options

- Off-the-shelf commercial products
- Ask institutional department

(IT, Communications/Marketing)

• Large-scale open source projects

Downsides

- No perfect solution for our problem
- Time
- Cost
- Reliance on others

No perfect solution for our problem

- Existing, off-the-shelf software not library oriented
- The specific need may be:
 - Too small
 - Too specialized
 - Too undefined

Time

- Procurement process
- Long build times
- Not responsive to users' needs within common time frames
 - Semester
 - Academic Year

Cost

- Commercial solutions have recurring costs (maintenance contracts)
- Hourly rates for new development or features
- Funding for software is often in competition against acquiring resources / ongoing subscriptions

Reliance on Others

- Others' concept of what our users need
- Maintenance
- New features
- Responsiveness

Moving Forward

If core library services are to be delivered exclusively through web applications
 And our role is to get people the resources they need
 we should have a very large role in the

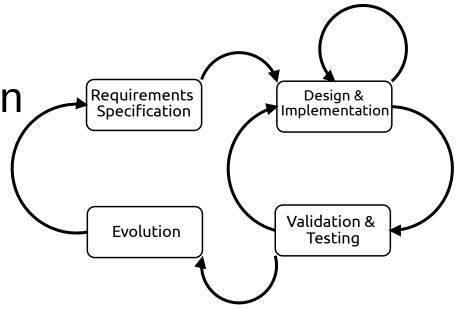
Then we should have a very large role in the design of those applications

Solution

DIY – Do it Yourself – Do it Ourselves

- We know our users' needs best
- We know what would make things better

We can do this ourselves


What do we need to Do it Ourselves?

Knowledge:

- Software Development Process
- System Architecture
- Skills:
 - Programming

Software Development Process

- Specification
- Design & Implementation
- Validation & Testing
- Evolution

What we have:

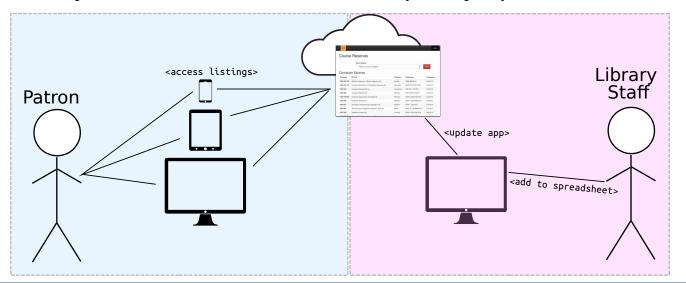
 Listing of reserve items kept in a spreadsheet, printed and placed in a binder on the circulation desk.

What we want:

- Touchscreen kiosk
- Off-campus availability
- Easy/fast to maintain and update

Software Development Process

Specification


- Define the problem
- What features are required to solve the problem?
- Use cases / User stories

Specification

- Define the problem
 - We need a listing of reserve collections
 - It needs to be easy to use, modern, and not introduce a major new service
- What features are required to solve the problem?
 - Online availability
 - Provide a kiosk-like interface
 - Simple (cheap) to deploy
 - Short development time, low resources

Specification

- Use cases / User stories
 - As a student, I need to know if the textbook for my class is on reserve
 - As library staff, I need to be able to quickly update our list of holdings

Software Development Process

Design & Implementation

- Identify architecture and application components
- Evaluate software languages, existing code libraries
- Target deployment platforms
- Consider existing data and systems

Software Development Process

Architecture of an Application

- Presentation Layer (User Interface)
- Application/Business Logic Layer
- Data Layer (Database, Information store)
- Platform

Architecture of an Application

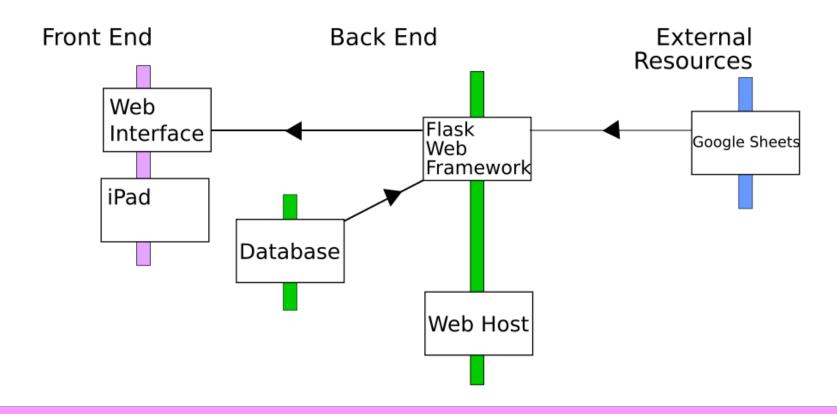
Presentation Layer

(User Interface)

- Web-based, standards compliant
- Touch, app-like
- Application/Business Logic Layer
 - Interface with Google Apps
 - Fast, simple

- Data Layer

(Information store)


- Relational Database
- Easy to host
- Platform
 - Low upkeep, low cost

Design & Implementation

- Evaluation of software languages, existing code libraries
 - Open source, leverage existing solutions, code
 - Bootstrap (HTML, CSS, Javascript)
 - Python Flask (Web framework)
 - Postgres Database
- Target deployment platforms
 - Low cost shared web hosting
 - iPad
- Consider existing data and systems
 - Leverage current reserve lists
 - Utilize Google Apps (secure, staff already using it)

Web Front End Interface	Bootstrap, HTML, CSS, Javascript
Web App Framework	Flask
Data Processing and Storage	Python, Postgres, Google Sheets
Web Server	Apache Web Server mod_wsgi
Server, Operating System	Third party web host, Linux

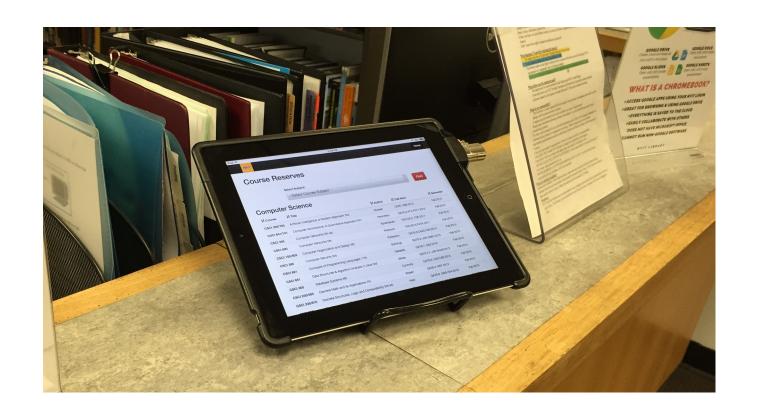
Information Flow

Software Design

Validation and Testing

- Simulation Testing
- Component Testing
- User tests

Evolution


- Ongoing maintenance
- Changing Requirements
- New features
- Change Tolerance

Validation and Testing

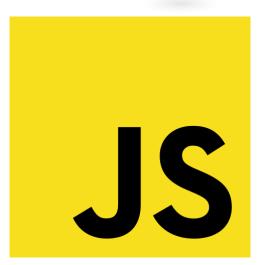
- Simulation Testing
 - Sample data
- Component Testing
- User tests
 - Informal discussion with users
 - Participant observation

Evolution

- Ongoing maintenance
 - Updates
 - Evolving platforms
- New Features
 - Additional locations
 - New types of resources

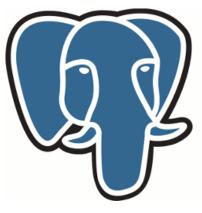
Work with Web standards

- HTML
- CSS



Pick a Language, Any Language

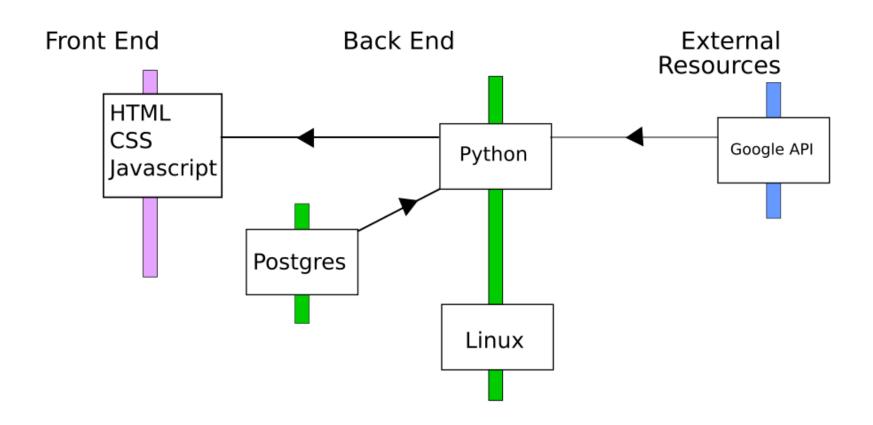
- Python
- Javascript
- Ruby

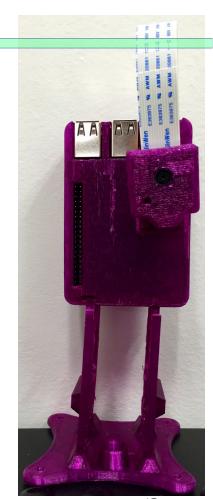


You will Eventually need a Database

- Postgres
- MySQL

the world's most advanced open source database


- Learn a common platform for deployment
 - Unix / Linux
 - Cloud / Web



Another Project

3D Printer Tweetbot

- Goal: Provide interactive real time updates on status of 3D Prints
- Design: Twitter as the public front end / user interface
 Python to interact with Twitter API
 Raspberry Pi as platform
- User tweets a trigger word to the bot account, gets reply with real time photo of 3D printer bed

Thanks!

References

- [1] ACRL Research Planning and Review Committee. 2016 top trends in academic libraries: A review of the trends and issues affecting academic libraries in higher education Coll. res. libr. news June 2016 77:274-281 "http://crln.acrl.org/content/77/6/274.full"
- [2] Service Trends in ARL Libraries, 1991-2015 Source: ARL Statistics 2014-15 Association of Research Libraries, Washington, D.C http://www.arl.org/storage/documents/service-trends.pdf
- [3] Supply and Demand in ARL Libraries, 1986-2015 Source: ARL Statistics 2014-15, Association of Research Libraries, Washington, D.C. http://www.arl.org/storage/documents/supply-demand.pdf
- [4] Service Trends in ARL Libraries, 1991-2015 Source: ARL Statistics 2014-15 Association of Research Libraries, Washington, D.C http://www.arl.org/storage/documents/expenditure-trends.pdf
- [5] Sommerville, I. (2010). Software engineering (9th ed.). Boston: Addison-Wesley Educational Publishers.

Image Credits