University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2017

Jun 20th, 3:50 PM - 4:10 PM

Integrated biological, geological and cultural diversity of river basins with hydroelectric potential

Thorleifur Eiríksson *University of Iceland*

Sigmundur Einarsson Rorum ehf.

Tómas Grétar Gunnarsson *University of Iceland*

Skúli Skúlason Hólar University College

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Eiríksson, Thorleifur; Einarsson, Sigmundur; Gunnarsson, Tómas Grétar; and Skúlason, Skúli, "Integrated biological, geological and cultural diversity of river basins with hydroelectric potential" (2017). *International Conference on Engineering and Ecohydrology for Fish Passage*. 20.

https://scholarworks.umass.edu/fishpassage_conference/2017/June20/20

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Integrated biological, geological and cultural diversity of river basins with hydroelectric potential

Thorleifur Eiríksson, Sigmundur Einarsson, Tómas Grétar Gunnarsson and Skúli Skúlason

The subject area

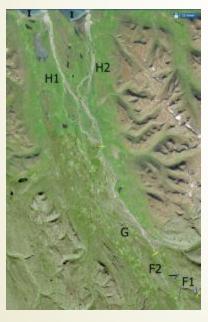
- The river Héraðsvötn/ Austari Jökulsá/ Vestari Jökulsá
- Two rivers combine into one and divide again into two rivers
- Begins in the highland plateau, goes down the mountain slope into a valley and then flood plains
- Large area
- High total diversity

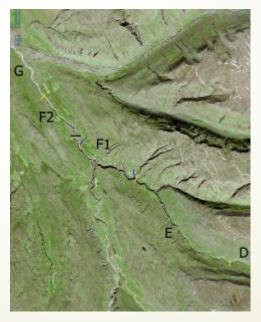
Assessment

- Reference for rating in estimate of value. Example of higher plants.
- Values are absolute and not relative to local conditions.

Enrichment/diversity	<u>Rarity</u>				
1 Very little species diversity. All species common; no species with high conservation value	1 no species with high conservation value				
4 Species diversity just below average	4 at least one endangered or vunrable species (not critically endangered) rare species / localized finding place				
8 Species diversity average	8 2-3 endangered species /rare species / localized finding place				
13 Species Diversity just above average. Several endangered/rare species / localized finding place	13 Several endangered species /rare species / localized finding place				
20 Great species diversity International Conference on Engineering and Ecohydrology for Fish Passage –	20 Several endangered species /rare species / localized finding place Oregon State University - ThE/SE/TGG/SS 20 june, 2017				

The problem

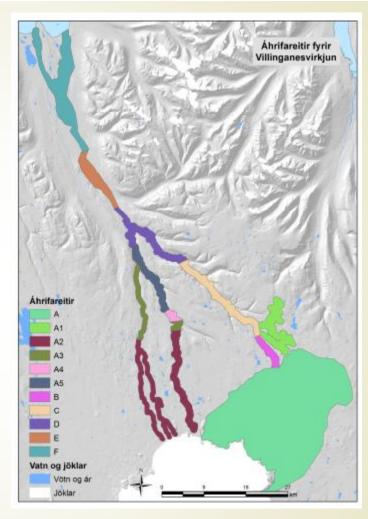

Using absolute assessment over large areas with a diversity gradient underestimates the value of subareas with low diversity even if the area represents important natural or cultural elements.


Development of method

- The method was developed in a specialist group estimating the value of land and impact from powerplants on different aspect of natural history or cultural heritage.
- The group: geology, plant ecology, zoology (birds), fresh water ecology, zoology (fish), microorganism (bacteria), archaeology, landscape.
- The idea was to use the same estimate on the different aspects of the subject even if they were considered not comparable.
- Use relative estimate.
- Divide the area in different zones with parameters independent from the subject.
- Use the zones as a basis for relative estimate

Erosional surfaces

- the process of eroding or being eroded by wind, water, or other natural agents.
- Zonation of the river Héraðsvötn/ Austari Jökulsá/ Vestari Jökulsá.


International Conference on Engineering and Ecohydrology for Fish Passage – Oregon State University – ThE/SE/TGG/SS

Zonation parameters (geomorphology)

Znes	Distance	Elevat ion	Fall	Slope	Riverbed	Grain size	Stratum on bank	Stratum on bank	Changes			
	km	m	m	‰	Single/multible	Width (m)		Right	Left			
A	10	800- 750	50	5	Multible (sand) – outwash plain/Lichenes	Undefind	Clay-coarse gravel	Sand, moraine, tuff	Sand, moraine, tuff	None		
В	90	750- 660	90	4,3	Single/multible outwash plain	30-50 (300)	Clay- Coblestones	Moraine	Moraine	Land goes under water resevoir, ground water level rises		
С	7	660- 560	100	14,3	Single rock/outwash plain	30-40 (150)	Hnullungamöl	Rock	Rock	Chanced apperance – lesser flow(%) – erosion lessens		
D	30	560- 250	310	10,3	Multible outwash plains/Lichenes	100-200	Gravel - cobblestones	Outwash plain, rock, talus	Outwash plain, rock, talus	Chanced apperance – lesser flow(%) – erostion exeades accumulation		
E	4,5	250- 160	90	20	Single Rock	10-30	Boulders	Rock	Rock	Chanced apperance – lesser flow(%) – erosion lessens		
F1	7	160-90	70	10	Roc/ outwash plain		Cobblestones	Rock	Rock	Chanced apperance – flow		
F2	7	90-80	60	8,5	Single rock/ outwash plain		Gravel - cobblestones	Rock	Rock	Chanced apperance – lesser flow (%) – erosion lessens		
G	80	80-0	80	1	Multible outwash plains/ Lichenes		Clay - Gravel	Flood plain	Flood plain – partial canyon	Chanced apperance – lesser flow (%) – flood lessen		
H1												
H2 I	0	0	0	0	Sandy beach – river outlet		Sand-gravel	-	-	Soil erotion (?)		

The Zones

Zonation of the river Héraðsvötn/ Austari Jökulsá/ Vestari Jökulsá and the river Fossá.

Diversity classes

Fish communities is divided in to four diversity classes:

- 1. Landlocked Arctic charr populations.
- 2. Land locked salmonid populations with access to streams (i.e. small local charr).
- 3. Anadromous charr
- 4. Salmon and brown trout.

Cultural heritage is divided in to three diversity classes:

- 1. Nucleated settlement (settlement relatively stable up to the 20. century).
- Rural settlement (unstable and/or seasonal settlement).
- 3. Wilderness (no settlement and no records of a settlement).

Comparisons of zones

Skatastadir power development. Impact assessment Zoonation - Fish

Aquatic life		Zone A1	Zone A2	Zone B	Zone C	Zone D	Zone E	Zone F	Zone F1	Zone F2
Fish	Diversity class	1	1	1	1	4	4	4	4	4
	Richness- diversity	13	8	13	13	8	4	13	13	13
	Rarity	13	13	8	8	4	4	4	4	4
	Size, completeness,									
	pristineness	13	13	8	8	8	4	8	8	8
	International									
	responsibility									
	Information value									

No fish passage into area D

The process

- 1. Specification of the subject area to be rated.
- Division of subject area into zones in consideration to geomorphology.
- 3. Definition of diversity classes of different subjects.
- 4. Rating of subjects in different zones.
- 5. Summary of score for the zone.

Compatible estimate method

- Different subjects: geology, biology or cultural heritage
- Same method to estimate e.g. diversity or richness
- Therefore comparable
- Estimate of different subjects in an area accumulative
- Different areas therefore comparable
- Therefore ranking possible

Thank you

- Thanks to the others in the working group:
- Ása Lovísa Aradóttir plant ecology
- Birna Lárusdóttir cultural heritage
- Gísli Már Gíslason fresh water ecology
- Kristján Jónasson geology
- Sólborg Una Pálsdóttir cultural heritage
- Sólveig K. Pétursdóttir microorganism (bacteria)
- Thorvaldur Thórdarson geology
- Thorvardur Árnason landscape