University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2017

Jun 21st, 2:30 PM - 2:50 PM

Estimating Salmon Escapement across the Snake River basin: a novel approach using PIT tags

Kevin See *QCI*

Chris Beasley QCI

Ryan Kinzer QCI

Rick Orme *QCI*

Mike Ackerman QCI

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

See, Kevin; Beasley, Chris; Kinzer, Ryan; Orme, Rick; and Ackerman, Mike, "Estimating Salmon Escapement across the Snake River basin: a novel approach using PIT tags" (2017). *International Conference on Engineering and Ecohydrology for Fish Passage*. 11. https://scholarworks.umass.edu/fishpassage_conference/2017/June21/11

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Estimating Salmon Escapement across the Snake River basin: a novel approach using PIT tags

Fish Passage Conference – June 2017

Presenter: Kevin See

Co-authors: Chris Beasley, Ryan Kinzer, Rick Orme, Mike Ackerman

Motivation

Current Methods

- Redd Counts
- Weirs

Objective

• Estimate spring/summer Chinook and steelhead escapement to major tributaries above Lower Granite Dam with PIT tag data

Modeling Plan

Total Wild Escapement Model

Total Wild Escapement

> Tributary Escapement Estimates

Hierarchical Patch-Occupancy Model

Movement Probabilities

Lower Granite Dam

Total Escapement Past Lower Granite Dam

How many are there?

PIT Tags

Fish Trap

Example Results

Hierarchical Patch-Occupancy Model

Where do they go?

Fish are PIT tagged...

And re-sighted upstream

Model

Movement Probabilities (Ψ)

Movement Probabilities (Ψ)

Model Pieces Movement Probabilities (Ψ) A -> B $A \rightarrow C$ Е $A \rightarrow D$ C → E D С Β $A \rightarrow E = (A \rightarrow C) \times (C \rightarrow E)$ Α

Movement Probabilities (Ψ)

A -> B

 $A \rightarrow C$

 $A \rightarrow$

 $A \rightarrow E = (A \rightarrow C) \times (C \rightarrow E)$

Detection

Probabilities (p)

Movement Probabilities (Ψ)

Detection Probabilities (p) Estimate: A, B, C, E Fixed: D

Model Benefits

- Initial branches have time-varying probabilities
 - Tagged fish may not be representative of run at large
 - Trap rate changes / shut down
 - Differential run timing
- Escapement estimates on various spatial scales
 - MPG
 - Population
 - Tributary
- Incorporates all uncertainty
- Potentially cost-effective compared to weirs and redd counts

Validation

Comparison with Weirs

Comparison with Weirs

Conclusions

Take home messages

- This works!
- Accurate estimate of total escapement, with uncertainty
- Match up well with independent estimates
- Movements incorporate differential run timing
- Available in many places with no alternative method

Acknowledgements

Questions?

Comparison with Redds

Comparison with Redds

