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Abstract : The Equality - Generalized Travelling Salesman Problem (E-GTSP) asks to find
a Hamiltonian cycle visiting each group exactly once, where each group represents a type of
visiting node. This can represent a range of combinatorial optimization problem of NP-hard
type like planning, logistics, etc. Its solution requires transformation of E-GTSP to TSP before
solving it using a given TSP solver. This paper presents 5 different search-algorithms for optimal
transformation which considers spatial spread of nodes of each group. Algorithms are tested
over 15 cities with different street-network’s fractal-dimension for 5 instances of group-counts
each. It’s observed that the R-Search algorithm, which selects nodes from each group depending
upon their radial separation with respect to the start-end point, is the optimal search criterion
among all other algorithms with a mean length error of 8.8%. This study will help developers
and researchers to answer complex routing problems from a spatial perspective.
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1. Introduction

The Travelling Salesman Problem (TSP) is one of the well-known and extensively studies
combinatorial optimization problem which demands to estimate the shortest path in terms
of length, time, etc. that visits each station/node/vertex in a given group/set exactly once
before returning to the starting point. Mathematically, it could be stated as follows: Given
a directed/undirected graph G = (V,E) with set of vertices V and set of weighted edges E,
find the shortest path between start vertex s and end vertex e (e could be same as s for closed
path) that visits each vertex for a given set V ′ ⊆ V − {s, e} exactly once. It is nothing but
calculating the minimum-cost Hamiltonian cycle in G Hamilton 1856. It has always remained
a great source of attraction due to its ranging areas of application like routing, communication
networking, sequencing and scheduling, etc. Lenstra and Kan 1975. A detailed classification of
types of TSP and possible solutions can be found at Psaraftis et al. 2016.

A variety of heuristic and tabu search algorithms which are constructive are developed by
researchers in the past to solve this NP-hard problem, like Nearest Neighbour Gutin and Yeo
2007, Clarke-Wright heuristic Clarke and Wright 1964, Minimum Spanning Tree heuristic (eg.
Kruskal’s algorithm) Rosenkrantz et al. 2009, Christofides heuristic T. and Roberto 2015. Other
algorithms include • K-OPT Croes 1958, • Tabu search Glover 1990, • Simulated Annealing
Kirkpatrick et al. 1983, • Held-Karp lower bound Valenzuela and Jones 1997, • Lin-Kernighan
algorithm Helsgaun 2000, • Lin-Kernighan-Helsgaun Helsgaun 2009, and • Cutting Plane and
Branch-Bound techniques. A good description is also given in TSP Wiki page and Curtin et al.
2014.

Let G = (V,E) be a graph where V = {v1, v2, ..., vn} is the set of vertex,
E = {(vi, vj) | i 6= j; vi, vj ∈ V } is the edge set, and W = {wij} is the non-negative cost or
weightage defined on E. If E is undirected then directions are irrelevant and (vi, vj) = (vj , vi).
Now, in the GTSP, V is partitioned into x mutually exclusive and exhaustive groups such that
V g = {V1, V2, ...., Vx} and V = V1∪V2∪ ...∪Vx with Vα∩Vβ = ∅ for all α, β = 1, 2, ..., x and α 6=
β. The Generalized-TSP (GTSP) asks to determine the shortest Hamiltonian circuit passing
through each group at least once (introduced independently by Henry-Labor 1969, Saksena 1970,
and Srivastava et al. 1969) or exactly once (by Noon and Bean 1991, and Laporte and Nobert
1983). The exactly once case of GTSP is known as the Equality-GTSP or E-GTSP Helsgaun
2015, where the route contains exactly one station from each V g group. It has prime relevance
in location-based problems, urban planning, postal routing, logistics, microchips manufacturing,
telecommunication problems, and railway track optimization. Its existing solutions, however,
are difficult to replicate by general users for TSP models representing GIS problems, primarily
vehicle-routing.

In order to transform the E-GTSP to TSP, authors have tried to think from a spatial
perspective as the underlying model primarily represents an urban setup. Once done, it could
be solved using the state-of-the-art Lin-Kernighan-Helsgaun TSP solver Helsgaun 2015. Five
different search algorithms are presented and analysed on OpenStreetMap (OSM) street dataset
for best possible transformation. Different group-counts (i.e. |V g| = 1, 2, 3, 4, 5) are modelled to
test proposed algorithms at different complexity levels and results are discussed in the Results
and Discussion Section 5. In the following sections, the proposed search algorithms are explained
and tested, and finally a commentary is provided in the Conclusion Section 6.
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2. Transformation of E-GTSP to TSP

The GTSP was introduced through the record balancing problems aroused in computer
design by Henry-Labor 1969, Srivastava et al. 1969, and Saksena 1970. The shortcoming of E-
GTSP to TSP transformation is that it increases problem’s dimension drastically, and therefore
it becomes practically unfeasible to solve. Dynamic programmatically, an E-GTSP’s solution is
based upon deciding the following two decisions in written order:

1 Selection of a vertex subset V s, also termed as station, such that V s ⊆ V and V s∩Vα = 1
for all α = 1, 2, ..., x. Note that, |V s| = |V g|.

2 Calculation of the minimum-cost Hamiltonian cycle in subgraph Gs = (V s, Es) of G
produced by V s.

The presented search algorithms do not increase problem’s size by increasing vertex or edge
count. It is much easier to filter-out distant and sub-optimal vertices from each group consid-
ering their spatial spread with respect to the end vertices. In this article, points represent all
possible vertices of V including start/end, group represents each set of vertex from V exhibiting
one particular type of vertex, and station represents the selected point from each group.

3. Methodology

Five different search criteria to select one point from each group are presented here (Fig.
1). Although a number of such algorithms are possible, authors believe presented ones to be
mutually exclusive and covering a range of search possibilities.

3.1. E-Search and D-Search

Euclidean-Search (E-Search) is based upon the euclidean line between start-end points in a
given instance. The basic approach behind this is to connect both the start/end points by a
straight line and select the closest point from each group with respect to this line (Fig. 1). It
involves two stages before reducing E-GTSP to TSP. It is O(n), where n = |V |.

Dijkstra-Search (D-Search), on the other hand, involves calculating Dijkstra route between
given start/end points before selecting the closest point with respect to that route (Fig. 1).
Computationally it is more expensive than E-Search, with O(n2). Algorithm 1 is the pseudo-
code of the above two search algorithms.

3.2. R-Search

Radial-Search (R-Search) is based upon the radial distance of stations from start/end points
for a given E-GTSP instance. Closest point from each group is selected twice, making |V s| =
2 × x (Section 2), leading 2x different TSPs, making decision 2 computationally expensive
(Fig. 1). It involves an O-complexity of O(n). Furthermore, it evaluates points lying outside
the proximity of start-end region more efficiently, unlike E-Search and D-Search.
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Figure 1: Diagrammatic representation of 5 different proposed search algorithms. Three groups of different kind
of points, marked by oval, triangular, and rectangular markers, are used to develop an E-GTSP instance. It
should be noted that for R-Search, RE-Search, and RD-Search there are two stations from each group after
decision 1 (Section 2), thus, generating 8 (2× 2× 2, for drawn instance) possible TSPs for decision 2.

3.3. RE-Search and RD-Search

Finally, the last two search algorithms are a hybrid of R-Search and E-Search (RE-Search),
and R-Search and D-Search (RD-Search). They first find the radially closest two points from
each group with respect to both the start/end points independently, making |V s| = 2× 2× x.
Later they select the closest stations from both the ends with respect to the euclidean line (for
RE-Search) or Dijskstra route (for RD-Search), Fig. 1. They have the complexities of O(n)
and O(n2), respectively. Similar to R-Search, the second step leads to a total of 2x TSPs. Once
estimated, the optimal V s from each group it is solved by Simulated Annealing Kirkpatrick
et al. 1983 TSP Solver.

4. Study Area and Data-Set Used

OSM dataset of 15 cities belonging to five different fractal dimension (frac-D) bins were used
to test proposed algorithms, out of 210 cities worldwide. Frac-D value is directly proportional
to road density of a region with 1-D representing area with just one road section and 2-D
representing area completely filled up with roads. Bin size is kept 0.1 for highly resolved classes
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Figure 2: Histogram showing the frequency of cities (marked on the world map right) for each Fractal-Dimension
bin. Increase in dimension represents increase in road-density. 3 cities are selected from each top 5 bins to test
the proposed search algorithms. Each city-polygon’s bounding box is used to download corresponding OSM XML
data from its Overpass API.

(Fig. 2). Fractal Dimension Calculator is used to calculate the dimension of each city Bourke
2003. All 105 start-end points to test algorithms are randomly generated and 5 points from
each group are likewise selected from OSM point dataset to better represent physical stops in
the city. Observations regarding best search algorithm with increased complexity are discussed
in Section 5.

5. Results and Discussion

5 different instances, i.e. |V s|, are modelled for each city to test each algorithm. Fig. 3a is a
3D-plot between different search algorithms used, different number of stations to be visited, i.e.
|V g|, and different type of street-networks, where each circle represents the average fractional
error in E-GTSP route-length coming out of all 105 start-end pairs estimated with respect to
the optimal route (by brute-force). There are 375 (15cities×5group-counts×5algorithms)
colored circles, with black ones representing error more than 20%. It is clear from the horizontal
color tone variation that the percentage error in route length will increase with higher |V s|
instances (marked by white arrow Fig. 3a) irrespective of the algorithm used. The whole plot
is divided into 5 different cross-sections representing each group-count. Fig. 3b represents 5
graphs between different search algorithms and different type of street-networks for different
values of |V s|. The black-boxed circle marks the lowest fractional error for that row. It is
observed that for lower |V s|, the D-Search algorithm gives lowest percentage error for most
of the cities irrespective of their frac-Ds. However, this out-performance gets shifted towards
R-Search for higher group-counts, with performance of similar intensity at |V s| = 5 as that for
D-Search at |V s| = 1. It is, therefore, concluded that for complex E-GTSP scenarios it is better
to select radially close points from each group with respect to the start-end points than to find
points closest to their corresponding Dijkstra-route.

6. Conclusion

The E-GTSP, which is an extension of TSP, is proven by many researchers to better model
real-life combinatorial optimization problems, where the task is to estimate open/close Hamil-
tonian cycle visiting each group exactly once in a given graph. A general approach is to reduce
it to corresponding TSP before solving it to optimality. In this article, 5 different spatially
driven search algorithms are presented and tested to transform E-GTSP to TSP. They have
been tested out for 15 cities selected based upon the frac-D for 5 different |V s| instances each.
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Figure 3: 3D-graph between Different Search Algorithms, Number of Stations to be visited, i.e. |V s|, and City’s
Fractal-Dimension bin. Each bin represents 3 cities taken from Fig. 2. Color represents the average fractional
error in route-length coming out from each algorithm with respect to the optimal one (estimated by Brute-Force),
with black color for errors more than 20%. (a) It should be noted that with increase in |V s| for a given E-GTSP
instance the error increases, irrespective of the choice of the algorithm (marked with big arrow). (b) Graph is
sliced-down for each group-count, individually. For each city the algorithm with least error is marked with black
box. It is clear that for small |V s| values the D-Search approach is better, and as one increases the number of
stations the R-Search outperforms other, marked by solid-arrows.

It is observed that with increase in instance complexity all algorithms get erroneous, thereby
giving longer routes which is independent of the choice of city street-pattern (Fig. 3a). For
lower |V s| instances D-Search and for higher |V s| instances R-Search is better among all given
algorithms (Fig. 3b). Overall, R-Search is the best approach, qualitative-wise, for tested cities
by giving least route-length values. Its win could be attributed by its ability to consider stations
belonging to regions outside the start-end proximity.

This study, thus, has brought forth a new search criterion of point/vertex selection from
each group for an adequate E-GTSP to TSP transformation, tested on OSM dataset. This
considers the radial spread of all points from each group with respect to the start/end point for
optimal selection. It has widened up research possibilities in this pursuit; and researchers are
encouraged to use tested dataset provided by Zia 2016 as benchmark for subsequent studies in
order to escape long brute-force looping.

Future research will include testing R-Search criterion with other algorithms, like the state-
of-the-art Lin-Kernighan-Helsgaun TSP solver, as discussed by researchers. Additional work
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might involve developing heuristic-R-Search or ANN-R-Search algorithm. Authors are opti-
mistic that this attempt has added up few novel concepts to understand the old famous GTSP
problem.

References

Bourke, P., 2003. Fractal Dimension Calculator - FDC. Online, online; accessed 15-November-2016.
URL http://paulbourke.net/fractals/fracdim/

Clarke, G., Wright, J. W., August 1964. Scheduling of Vehicles from a Central Depot to a Number of Delivery
Points. Operations Research 12(4), 568–581.

Croes, G. A., December 1958. A Method for Solving Traveling-Salesman Problems. Operations Research, 791–812.
Curtin, K. M., Voicu, G., Rice, M. T., Stefanidis, A., April 2014. A Comparative Analysis of Traveling Salesman

Solutions from Geographic Information Systems. Transactions in GIS 18(2), 286–301.
Glover, F., August 1990. Tabu Search: A Tutorial. Interfaces, 74–94.
Gutin, G., Yeo, A., 2007. The Greedy Algorithm for the Symmetric TSP. Algorithmic Operations Research 2(1),

33–36.
Hamilton, W. R., December 1856. Memorandum respecting a new system of roots of unity. Philosophical Magazine

12, 446.
Helsgaun, K., 2000. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European

Journal of Operational Research 126, 106–130.
Helsgaun, K., October 2009. General k-opt submoves for the LinKernighan TSP heuristic. Mathematical Pro-

gramming Computation 1(2), 119–163.
Helsgaun, K., September 2015. Solving the equality generalized traveling salesman problem using the LinK-

ernighanHelsgaun Algorithm. Operations Research Letters 7(3), 269–287.
Henry-Labor, A. L., 1969. The record balancing problem: A dynamic programming solution of a genera salesman

problem. RAIRO - Operations Research 2, 43–49.
Kirkpatrick, S., Jr., C. D. G., Vecchi, M. P., May 1983. Optimization by Simulated Annealing. Science 220(4598),

671–680.
Laporte, G., Nobert, Y., 1983. Generalized Travelling Salesman Problem Through n Sets Of Nodes: An Integer

Programming Approach. INFOR: Information Systems and Operational Research 21(1), 61–75.
Lenstra, J. K., Kan, A. H. G. R., November 1975. Some Simple Applications of the Travelling Salesman Problem.

Operational Research Quarterly 26(4), 717–733.
Noon, C. E., Bean, J. C., August 1991. A Lagrangian Based Approach for the Asymmetric Generalized Traveling

Salesman Problem. International Journal of Production Research 39(4), 623–632.
Psaraftis, H. N., Wen, M., Kontovas, C. A., January 2016. Dynamic vehicle routing problems: Three decades

and counting. Networks 67(1), 3–31.
Rosenkrantz, D. J., Stearns, R. E., II, P. M. L., 2009. An analysis of several heuristics for the traveling salesman

problem. Fundamental Problems in Computing 1, 45–69.
Saksena, J. P., November 1970. Mathematical model for scheduling clients through welfare agencies. Canadian

Operational Research Society 8(3), 185.
Srivastava, S. S., Kumar, S., Garg, R. C., Sen, P., July 1969. Generalized travelling salesman problem through n

sets of nodes. Canadian Operational Research Society 7(2), 97.
T., G. M., Roberto, T., 2015. The Christofides Approximation Algorithm. Algorithm Design and Applications

18(1), 513514.
Valenzuela, C. L., Jones, A. J., October 1997. Estimating the Held-Karp lower bound for the geometric TSP.

European Journal of Operational Research 102(1), 157–175.
Zia, M., 2016. E-GTSP-to-TSP-tested-instances. Online, online; accessed 15-November-2016.

URL https://github.com/Zia-/E-GTSP-to-TSP-tested-instances

OSGeo Journal Volume 17, Issue 1 Page 21

http://paulbourke.net/fractals/fracdim/
http://paulbourke.net/fractals/fracdim/
http://pubsonline.informs.org/doi/abs/10.1287/opre.12.4.568
http://pubsonline.informs.org/doi/abs/10.1287/opre.12.4.568
http://pubsonline.informs.org/doi/abs/10.1287/opre.6.6.791
http://onlinelibrary.wiley.com/doi/10.1111/tgis.12045/abstract
http://onlinelibrary.wiley.com/doi/10.1111/tgis.12045/abstract
http://pubsonline.informs.org/doi/abs/10.1287/inte.20.4.74
https://journals.lib.unb.ca/index.php/aor/article/view/2732/3180
https://www.iberlibro.com/Memorandum-respecting-new-system-roots-unity/14055343037/bd
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.4908
http://link.springer.com/article/10.1007/s12532-009-0004-6
http://link.springer.com/article/10.1007/s12532-015-0080-8
http://link.springer.com/article/10.1007/s12532-015-0080-8
http://science.sciencemag.org/content/220/4598/671.article-info
http://www.tandfonline.com/doi/abs/10.1080/03155986.1983.11731885
http://www.tandfonline.com/doi/abs/10.1080/03155986.1983.11731885
https://www.jstor.org/stable/3008306?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/171169?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/171169?seq=1#page_scan_tab_contents
http://onlinelibrary.wiley.com/doi/10.1002/net.21628/full
http://onlinelibrary.wiley.com/doi/10.1002/net.21628/full
http://link.springer.com/chapter/10.1007%2F978-1-4020-9688-4_3
http://link.springer.com/chapter/10.1007%2F978-1-4020-9688-4_3
http://connection.ebscohost.com/c/articles/8553374/mathematical-model-scheduling-clients-through-welfare-agencies
http://connection.ebscohost.com/c/articles/8553795/generalized-travelling-salesman-problem-through-n-sets-nodes
http://connection.ebscohost.com/c/articles/8553795/generalized-travelling-salesman-problem-through-n-sets-nodes
http://www.sciencedirect.com/science/article/pii/S0377221796002147
https://github.com/Zia-/E-GTSP-to-TSP-tested-instances
https://github.com/Zia-/E-GTSP-to-TSP-tested-instances


FOSS4G 2017 Academic Program Transformation of E-GTSP to TSP

Algorithm 1 E-Search & D-Search pseudo-code

Require: Terminal points S and F , G = (V,E) representing urban street-network, & V g =
{V1, V2, ..., Vx}, i.e. points’ groups set, where Vi ⊆ V & Vi ∩ Vj = ∅ ∀ i, j = 1, 2, ..., x &
i 6= j.

1: procedure E-GTSP ⇒ TSP
2: if Algorithm 1 =̂ E-Search then Draw SF Euclidean Line
3: end if . =̂ means corresponds to
4: if Algorithm 1 =̂ D-Search then Calculate SF Dijkstra Route
5: end if
6: Initialize an empty container C1
7: for Vi ∈ V g ∀ i = 1, 2, .., x do
8: Initialize an empty container C2.
9: for vm ∈ Vi ∀ m = 1, 2, .., |Vi| do

10: C2 ← vm − SF shortest Euclidean distance . ← means append
11: end for
12: return C2
13: C1 ← v =̂ vm − SF ∈ C2, with the smallest Euclidean distance
14: end for
15: return C1
16: end procedure
17: procedure TSP
18: Calculate the minimum-cost Hamiltonian cycle induced by C1. Note: C1 = V s.
19: end procedure
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