University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2017

Jun 21st, 2:30 PM - 2:50 PM

Determining potential functional connectivity of fish species with various life history traits

Andrew T.M. Chin University of Toronto

Marie-Josée Fortin *University of Toronto*

Carol Godin Fisheries and Oceans Canada

Roland Cormier Helmholtz-Zentrum Geesthacht

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Chin, Andrew T.M.; Fortin, Marie-Josée; Godin, Carol; and Cormier, Roland, "Determining potential functional connectivity of fish species with various life history traits" (2017). *International Conference on Engineering and Ecohydrology for Fish Passage*. 5. https://scholarworks.umass.edu/fishpassage_conference/2017/June21/5

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Determining potential functional connectivity of fish species with various life history traits

Andrew T.M. Chin^{1,}, Marie-Josée Fortin¹, Carol Godin², Roland Cormier³

¹ University of Toronto, Toronto, Canada
² Fisheries and Oceans Canada, Moncton, Canada
³ Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

atm.chin@mail.utoronto.ca

UNIVERSITY OF TORONTO

Photo: Andrew Chin

Stream Fragmentation

Migratory Fish

Diadromous species require both freshwater and marine habitat to complete lifecycle

Cool-water habitat

Headwaters

Estuary

(e.g., Atlantic salmon)

watershed

Photos: Gary Tyson;

Photos: Andrew C

Question Do culverts differently affect the potential functional connectivity of diadromous and non-diadromous species?

Hypothesis

Weak swimming diadromous species are most adversely affected by stream fragmentation

Study Area

Fisheries and Oceans Canada Located culverts upstream from mouth of estuaries (2006-2008)

Culverts surveyed

- Length
- Diameter
- Slope
- Drop height
- Material

25 species in 3 watersheds

Study Area

Fisheries and Oceans Canada Located culverts upstream from mouth of estuaries (2006-2008)

Culverts surveyed

- Length
- Diameter
- Slope
- Drop height
- Material

25 species in 3 watersheds

Study Area: Richibucto

Richibucto (119 culverts) 198 km²

143 road crossings = 83.2% culverts

Use morphological traits to imply the swimming strength

Adult fish length

Swimming Strength

	Stronger Swimmer = Hi	Stronger Swimmer = Higher Connectivity Rainbow Smelt* Atlantic Tomcod	
	Banded Killifish Central Mudminnow Mummichog Pearl Dace	Alewife* Striped Bass* American Shad* Brook Trout* Atlantic Salmon* White Perch	
	Common Shiner		
Weaker Swimmer = Lower Connectivity Fourspine Stickleback Northern Redbelly Dace Ninespine Stickleback* Fathead Minnow Finescale Dace Threespine Stickleback* Slimy Sculpin	Lake Chub Creek Chub American Eel* Sea Lamprey*		
Blacknose Dace	*diadromous		

Focal Species

NON-DIADROMOUS

Ninespine Stickleback (Pungitius pungitius)

Alewife (Alosa pseudoharengus)

Fourspine Stickleback (Apeltes quadracus)

American Shad (Alosa sapidissima)

Passability

For each culvert, it is impassable if half the total length of the species is less than the drop height

Drop height

Connectivity Index

Jethods

Each particular obstacle (e.g., road culvert, bridge, etc.) will have a different probability of passage

Dendritic
 Connectivity Index
 (DCI) (Cote et al. 2009)

Potential Connectivity Index

Methods

High fragmentation Richibucto (*n* = 119 culverts) Culvert O DCIs DCI_D = 74.28 Alewife $DCI_{D} = 69.69$ American Shad Kilome Upstream ~ 0

High fragmentation

Richibucto (*n* = 119 culverts)

Ninespine Stickleback $DCI_P = 45.45$

Fourspine Stickleback $DCI_D = 65.62$

8 Kilometen Upstream শ ~ 0

Moderate fragmentation Shediac (*n* = 30 culverts) DCIs Culvert O Alewife DCI_D = 69.69 American Shad DCI_D = 75.18 8 Kilometers Upstream

Low fragmentation

Low fragmentation Shediac (*n* = 10 culverts) DCIs Culvert O Ninespine Stickleback DCI_P = 85.37 Fourspine Stickleback DCI_D = 92.17 Upstream 4 Kilometers N $\overline{}$

Connectivity within streams

Varying cost values for obstacles (Rayfield et al., 2010)

Stickleback (weak swimmer)

Sensitivity analysis of fish passage:

- species traits
- culvert features

Significance

- Morphological trait-based analysis is a surrogate for functional connectivity
- Species-based approach is necessary to consider for functional connectivity and species persistence in stream networks
- Sensitivity analysis of passage will provide insights on which combination of species traits and culvert features affect potential functional connectivity
- Findings will inform policy and management

Acknowledgements

Supervisor Marie-Josée Fortin PhD Committee Donald Jackson Keith Somers Ecorisk Roland Cormier

Fisheries Oceans Canada Carole Godin

Jackson Lab

CNAES

Email: atm.chin@mail.utoronto.ca

Potential Connectivity Index

$$c_{ij} = \prod_{m=1}^{M} p_m^u p_m^d$$

Methods

 C_{ij} : connectivity M: number of barriers p_m^u : upstream passability p_m^u : downstream passability

Potential Connectivity Index

Method:

C_{ij} : connectivity between segment *i* and *j*

L : total length of all segments

I: length of segment between *i* and